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Abstract

We extend Mora’s tangent cone or the écart division algorithm to a homogenized
ring of differential operators. This allows us to compute standard bases of modules
over the ring of analytic differential operators with respect to sufficiently general
orderings which are needed in the D-module theory.
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differential operator, D-module

1 Introduction

In the theory of D-modules, one often needs to compute standard or Gröbner
bases of ideals of, or modules over, the ring D of analytic differential op-
erators with respect to some ordering. In terms of the coordinate system
x = (x1, . . . , xn) of Cn, an element P of D is written in a finite sum P =∑

β∈Nn aβ(x)∂β with aβ(x) belonging to C{x}, the ring of convergent power

series. Here we use the notation ∂β = ∂β1
1 · · · ∂βn

n with ∂i = ∂/∂xi and β =
(β1, . . . , βn) ∈ Nn (N = {0, 1, 2, . . . }).

Let D be the Weyl algebra, i.e., the ring of differential operators with poly-
nomial coefficients, which is a subring of D. A D-module is a global object in
the sense that it is considered to be defined on the affine space Cn. On the
other hand, a D-module is a local object; in fact, it is regarded as a stalk of a
sheaf of modules in the context of analytic D-module theory. Hence in order to
compute local invariants of D-modules, we need standard bases over D rather
than Gröbner bases over D although in some cases, e.g., as in the computa-
tion of b-functions and restrictions of D-modules (cf. [9]), we can extract local
information as well from the latter.
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¿From the computational viewpoint, we are mostly interested in a submodule
N of Dr which is ‘algebraic’ in the sense that it is generated by elements of Dr.
Our main purpose is to compute a standard basis of N with respect to a suffi-
ciently general ordering which is compatible with the left D-module structure
of Dr. For example, a standard bases with respect to an ordering compatible
with what is called the V-filtration is needed in order to compute local invari-
ants such as the indicial polynomial (or the b-function), the restriction, and
the local cohomology group of a D-module.

If an ordering is defined first by a well-ordering on the derivations, and then
by a reverse well-ordering on the coefficients (polynomials or power series)
as a tie-breaker, then one can apply the tangent cone or the écart division
algorithm of Mora [8] directly to the coefficients. However, this is not the case
with, e.g., the ordering compatible with the V-filtration. For this reason, we
adopt homogenization of differential operators following [1] by using a new
variable which we denote h. Working in this homogenized ring D(h) of D, we
can extend Mora’s tangent cone algorithm for power series in its extended
form given by Gräbe [3] and the Singular team [6] (see also [2]) to algebraic
submodules of (D(h))r with respect to sufficiently general monomial orderings.

Mora’s tangent cone algorithm can be regarded as an algebraic counterpart of
the Weierstrass-Hironaka division theorem for power series. Our tangent cone
algorithm is an algebraic counterpart of the division theorem of [1] for D(h),
or of its vector version given in [4] (see also [5]).

By using this tangent cone algorithm, we obtain an algorithm to compute
standard bases and syzygies of algebraic modules over D(h). In fact, we prove
analogues of Buchberger’s criterion for generators to be a standard base, and
of Schreyer’s theorem on syzygies. We remark that our division theorem is
essentially used in proving the correctness of these analogues. As is presented in
[1], standard bases over D(h) give standard bases over D via dehomogenization
h = 1. As an application, we obtain an algorithm to compute minimal filtered
free resolutions ofD(h)-modules defined in [4], for which the local standard base
computation is essential instead of the global Gröbner base computation.

Standard bases can also be computed by bihomogenization, which is a gener-
alization of Lazard’s method [7] to algebraic modules over D(h). Hence there
are at least two methods to compute standard bases over D(h) (and hence over
D). We give some examples comparing these two methods by using software
Kan/sm1 [12].

2



2 Tangent cone algorithm for algebraic differential operators

By the homogenization process, we can switch from D-modules to modules
over the ring D(h) of homogenized differential operators, which are easier to
handle from the computational as well as the theoretical viewpoint. Especially,
we have the Weierstrass-Hironaka type division theorem for free modules over
D(h) with respect to sufficiently general monomial orderings as was shown in
[1], [4]. Our purpose is to prove its algebraic and algorithmic analogue.

The ring D(h) is the C-algebra generated by C{x}, ∂1, . . . , ∂n, and a new
variable h with the commuting relations

ha = ah, h∂i = ∂ih, ∂i∂j = ∂j∂i, ∂ia− a∂i =
∂a

∂xi

h

for any a ∈ C{x} and i, j ∈ {1, . . . , n}. It is a non-commutative graded C-
algebra with the grading

D(h) =
⊕

d≥0

(D(h))d with (D(h))d :=
⊕

|β|+k=d

C{x}∂βhk.

An element P ofD(h) is uniquely written as a finite sum P =
∑

β∈Nn,k∈N aβk(x)∂βhk

with aβk ∈ C{x}.

Let us denote by C[x]0 the subring of C{x} consisting of rational functions
whose denominators do not vanish at 0 ∈ Cn. Then we put

D(h)
alg :=

{
P =

∑

β,k

aβk(x)∂βhk ∈ D(h) | aβk(x) ∈ C[x]0

}
,

which is a subring of D(h). We also denote by h(0,1)(D) the subring of D(h)
alg

consisting of operators with polynomial coefficients:

h(0,1)(D) :=
{
P =

∑

β,k

aβk(x)∂βhk ∈ D(h) | aβk(x) ∈ C[x]
}
.

These two rings are graded C-subalgebras of D(h). Note that D(h) is faithfully
flat over D(h)

alg , while D(h)
alg is flat, but not faithfully flat, over h(0,1)(D).

Graded free modules over D(h), D(h)
alg , and h(0,1)(D) are specified by the rank

r and a shift vector n = (n1, . . . , nr) ∈ Zr, which we denote by

3



(D(h))r[n] :=
⊕

d∈Z

(
(D(h))d−n1 ⊕ · · · ⊕ (D(h))d−nr

)
,

(D(h)
alg )r[n] :=

⊕

d∈Z

(
(D(h)

alg )d−n1 ⊕ · · · ⊕ (D(h)
alg )d−nr

)
,

h(0,1)(D)r[n] :=
⊕

d∈Z

(
h(0,1)(D)

d−n1
⊕ · · · ⊕ h(0,1)(D)

d−nr

)
.

A homogeneous element, i.e. an element of the dth direct summand of one
of these graded modules is said to be (0,1)-homogeneous of degree d (with
respect to n). In the sequel, we mainly work in h(0,1)(D)r[n].

We take another (arbitrary) shift vector v = (v1, . . . , vr) ∈ Zr for the (−1,1)-
homogenization. For a vector of operators P ∈ h(0,1)(D)r of the form

P =
r∑

i=1

∑

k∈N,α,β∈Nn

aαβkix
α∂βhkei

with e1 := (1, 0, . . . , 0), . . . , er := (0, . . . , 0, 1) ∈ Zr and aαβki ∈ C, put

m := min{|β| − |α|+ vi | aαβki 6= 0}.

Then the (−1,1)-homogenization P (s) of P is an element of (h(0,1)(D)[s])r

defined by

P (s) :=
r∑

i=1

∑

k∈N,α,β∈Nn

aαβkis
|β|−|α|+vi−mxα∂βhkei

with a new variable s. In general, an element

Q =
r∑

i=1

∑

k,ν∈N,α,β∈Nn

aναβkis
νxα∂βhkei

of (h(0,1)(D)[s])r is said to be (−1,1)-homogeneous of degree p if there exists
an integer p such that aναβki = 0 unless |β| − |α| − ν + vi = p. If, in addition,
Q is a (0,1)-homogeneous element of h(0,1)(D)r[n] of degree d, then we call Q
bihomogeneous of bidegree (d, p). The product of a bihomogeneous element of
h(0,1)(D) and a bihomogeneous element of (h(0,1)(D))r is also bihomogeneous.
(For h(0,1)(D), we take the shift vector (0) both for the (0,1)- and the (−1,1)-
homogeneity.)

Introducing commutative variables ξ = (ξ1, . . . , ξn) corresponding to ∂, the
(total) symbol of P =

∑r
i=1

∑
α,β∈Nn,k∈N aαβkix

α∂βhkei ∈ (D(h))r is defined
to be

∑r
i=1

∑
α,β∈Nn,k∈N aαβkix

αξβhkei ∈ (C{x}[ξ, h])r. We fix an ordering ≺
among the monomials {xαξβhkei} in C[x, ξ, h]r which is compatible with mul-
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tiplication (i.e. a monomial ordering) and satisfies the conditions

|β|+ k + ni < |β′|+ k′ + nj ⇒ xαξβhkei ≺ xα′ξβ′hk′ej, (2.1)

xαei ¹ ei for any α ∈ Nn and i = 1, . . . , r, (2.2)

hei ≺ xjξjei for any i = 1, . . . , r and j = 1, . . . , n. (2.3)

Note that the condition (2.1) is not really needed because we shall deal only
with (0,1)-homogeneous operators. With respect to this ordering, the leading
monomial of a nonzero vector

P =
r∑

i=1

∑

k∈N,α,β∈Nn

aαβkix
α∂βhkei ∈ (D(h))r

is the maximum in ≺:

lm≺(P ) := max ≺{xαξβhkei | aαβki 6= 0}.

We call the i such that lm≺(P ) = xαξβhkei the leading position of P , denoted
lp≺(P ). Note that lm≺(QP ) = lm≺i

(Q)lm≺(P ) holds for Q ∈ D(h) and
P ∈ (D(h))r with lp≺(P ) = i, where ≺i is the ordering for D(h) defined by

xαξβhk ≺i xα′ξβ′hk′ ⇔ xαξβhkei ≺ xα′ξβ′hk′ei,

in view of the condition (2.3).

Now we define an ordering≺s among monomials {sνxαξβhkei | k, ν ∈ N, α, β ∈
Nn, i = 1, . . . , r} of (h(0,1)(D)[s])r by

sνxαξβhkei ≺s sν′xα′ξβ′hk′ej

⇔





ν + k + |α|+ ni − vi < ν ′ + k′ + |α′|+ nj − vj

or (ν + k + |α|+ ni − vi = ν ′ + k′ + |α′|+ nj − vj

and xαξβhkei ≺ xα′ξβ′hk′ej).

Note that ≺s is a well-ordering.

Lemma 2.1 Suppose that P, Q ∈ (h(0,1)(D)[s])r are bihomogeneous of the
same bidegree. Then lm≺(P |s=1) ≺ lm≺(Q|s=1) holds if and only if lm≺s(P ) ≺s

lm≺s(Q).

Proof: First assume that P,Q are monomials P = sνxα∂βhkei, Q = sν′xα′∂β′hk′ej.
Then by the bihomogeneity we have

|β|+ k + ni = |β′|+ k′ + nj, |β| − |α| − ν + vi = |β′| − |α′| − ν ′ + vj.
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This implies

ν + k + |α|+ ni − vi = ν ′ + k′ + |α′|+ nj − vj.

Hence the assertion follows from the definition of the ordering ≺s. We can
prove the assertion in the general case by the same argument. 2

Let P,Q be nonzero elements of (h(0,1)(D)[s])r. If lm≺s(Q) divides lm≺s(P ),
let U ∈ h(0,1)(D)[s] be the monomial whose total symbol is lm≺s(P )/lm≺s(Q).
(Here the canonical generators e1, . . . , er are regarded as commutative inde-
terminates rather than vectors. ) Then we define Red(P,Q) to be a list

Red(P,Q) = [R, U ] with R := P − UQ.

Then lm≺s(R) ≺s lm≺s(P ) holds if R 6= 0. Suppose P,Q ∈ (h(0,1)(D))r are
bihomogeneous. Then R is also bihomogeneous of the same bidegree as P and
lm≺(R|s=1) ≺ lm≺(P |s=1) holds if R 6= 0. The latter assertion follows from
Lemma 2.1.

By using the bihomogeneity, we can extend a homogenized version of Mora’s
écart algorithm ([3],[6], we follow the presentation in [2]) for polynomials to

free modules over D(h)
alg as follows:

Algorithm 2.2 (écart division algorithm for h(0,1)(D))
Input: P, P1, . . . , Pm: homogeneous nonzero elements of h(0,1)(D)r[n].
Output: a(x) ∈ C[x], Q = (Q1, . . . , Qm) ∈ h(0,1)(D)m, and R ∈ h(0,1)(D)r

such that

• a(x)P = Q1P1 + · · ·+ QmPm + R,
• a(0) 6= 0,
• lm≺(QiPi) ¹ lm≺(P ) if Qi 6= 0,
• lm≺(R) is not divisible by lm≺(Pi) for any i if R 6= 0.

G := [P
(s)
1 , . . . , P (s)

m ] (a list), R := P (s), A := 1
Q = (Q1, . . . , Qm) := (0, . . . , 0) ∈ h(0,1)(D)m

IF R 6= 0
THEN F := {P ′ ∈ G | lm≺s(P

′) divides lm≺s(s
`R) for some ` ∈ N}

ELSE F := ∅ (an empty set)
H := [ ] (an empty list)
WHILE (R 6= 0 AND F 6= ∅) DO

Choose P ′ ∈ F with ` minimal, which is the i-th element of G
IF ` > 0 THEN

G := G ∪ [R] (append R to G as the last element)
H := H ∪ [[A,Q]] (append a list [A,Q] to H as the last element)

[R, U ] := Red(s`R,P ′)
IF i ≤ m THEN Qi := Qi + U
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IF i > m THEN
[A′, Q′] := H[i−m] (the (i−m)-th element of H)
A := A− UA′

FOR j = 1, . . . ,m DO Qj := Qj − UQ′
j

IF R 6= 0 THEN
ν := the highest power of s dividing R
R := R/sν

F := {P ′ ∈ G | lm≺s(P
′) divides lm≺s(s

`R) for some ` ∈ N}
FOR j = 1, . . . ,m DO Qj := Qj|s=1

R := R|s=1, a := A|s=1

We call a(x)−1R a remainder of P on division by P1, . . . , Pm, which is not
necessarily unique. Note that lm≺(a(x)−1R) = lm≺(R) ¹ lm≺(P ) holds if
R 6= 0 in view of the condition (2.2). By factoring out the denominators of
the input and applying Algorithm 2.2, we get

Theorem 2.3 Let P, P1, . . . , Pm be homogeneous elements of (D(h)
alg )r[n]. Then

one can obtain algorithmically homogeneous Q1, . . . , Qr ∈ D(h)
alg and R ∈ (D(h)

alg )r[n]
satisfying P =

∑m
k=1 QkPk + R such that lm≺(R) is not divisible by any of

lm≺(Pk) (k = 1, . . . , m) if R 6= 0, and lm≺(QkPk) ¹ lm≺(P ) if Qk 6= 0, for
k = 1, . . . , m.

Example 2.4 We work in h(0,1)(D) with n = 2, n = (0), v = (0), and x = x1,
y = x2, ∂x = ∂1, ∂y = ∂2. Let ≺ be an arbitrary monomial ordering which
satisfies x∂x ≺ ∂y, y∂y ≺ ∂x as well as (2.2),(2.3), i.e., x ≺ 1, y ≺ 1, h ≺ x∂x,
h ≺ y∂y. Put

P := xy∂x∂y, P1 := x∂x + xy∂y, P2 := y∂y + xy∂x.

Then Algorithm 2.2 proceeds as follows (the underlined part is the leading
monomial with respect to ≺s):

R := xy∂x∂y =: P ′
3,

G := [P ′
1, P

′
2] with P ′

1 := P
(s)
1 = sx∂x + xy∂y, P ′

2 := P
(s)
2 = sy∂y + xy∂x,

A := 1, Q := (0, 0), H := [ ], F = {P ′
1, P

′
2}.

1st pass of the WHILE loop (choose P ′
1 with ` = 1):

R := sR− y∂yP
′
1 = −xy2∂2

y − xy∂yh =: P ′
4,

G := [P ′
1, P

′
2, P

′
3], H := [[1, (0, 0)]],

Q := Q + (y∂y, 0) = (y∂y, 0),
F = {P ′

2}.
2nd pass (choose P ′

2 with ` = 1):
R := sR− (−xy∂y)P

′
2 = x2y2∂x∂y + x2y∂xh,

G := [P ′
1, P

′
2, P

′
3, P

′
4], H := [[1, (0, 0)], [1, (y∂y, 0)]],

Q := Q + (0,−xy∂y) = (y∂y,−xy∂y),
F = {P ′

1, P
′
2, P

′
3}.
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3rd pass (choose P ′
3 with ` = 0):

R := R− xyP ′
3 = x2y∂xh =: P ′

5,
A := 1− xy, Q := Q− xy(0, 0) = (y∂y,−xy∂y) (by using the 1st element

of H),
F = {P ′

1}.
4th pass (choose P ′

1 with ` = 1):
R := sR− xyhP ′

1 = −x2y2∂yh =: P ′
6,

G := [P ′
1, P

′
2, P

′
3, P

′
4, P

′
5],

H := [[1, (0, 0)], [1, ( y∂y, 0)], [1− xy, (y∂y,−xy∂y)]],
Q := Q + (xyh, 0) = (y∂y + xyh,−xy∂y),
F = {P ′

2}.
5th pass (choose P ′

2 with ` = 1):
R := sR− (−x2yh)P ′

2 = x3y2∂xh,
G := [P ′

1, P
′
2, P

′
3, P

′
4, P

′
5, P

′
6],

H :=
[[1, (0, 0)], [1, (y∂y, 0)], [1− xy, (y∂y,−xy∂y)], [1− xy, (y∂y + xyh,−xy∂y)]],

Q := Q− (0, x2yh) = (y∂y + xyh,−xy∂y − x2yh),
F = {P ′

1, P
′
5}.

6th pass (choose P ′
5 with ` = 0):

R := R− xyP ′
5 = 0,

A := A− xy(1− xy) = (1− xy)2,
Q := Q− xy(y∂y,−xy∂y) = (y∂y − xy2∂y + xyh,−xy∂y + x2y2∂y − x2yh),
F = {}.

Hence we have R = 0 and

(1− xy)2P = (y∂y − xy2∂y + xyh)P1 + (−xy∂y + x2y2∂y − x2yh)P2.

Let us prove the correctness of Algorithm 2.2. We denote by 〈G〉 the ideal
generated by a set of monomials G in the polynomial ring. In Algorithm 2.2, R
is added to G only if s`lm≺s(R) is divisible by lm≺s(G) = {lm≺s(P

′) | P ′ ∈ G}
with some ` > 0 but lm≺s(R) is not. This implies

〈lm≺s(G)〉 ( 〈lm≺s(G ∪ {R})〉, 〈lm≺(G|s=1)〉 = 〈lm≺(G|s=1 ∪ {R|s=1})〉.

Hence the monomial ideal 〈lm≺(G|s=1)〉 remains unchanged throughout the
algorithm, and 〈lm≺s(G)〉 stays unchanged after, say, the k-th pass of the
WHILE loop in view of Dickson’s lemma. This implies that after the k-th
pass, G itself stays unchanged, and consequently the procedure afterwards is
nothing but the usual division algorithm with respect to the well-ordering ≺s.
Thus the algorithm terminates and the leading monomial lm≺(R) of the final
output R is, if nonzero, not divisible by lm≺(Pi) for any i = 1, . . . , m.

We denote R, Q = (Q1, . . . , Qm), i, `, G, etc. at the end of the k-th pass of
the WHILE loop by Rk, Q(k) = (Q1k, . . . , Qmk), i(k), `(k), Gk, etc. and prove
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the properties

Ak ∈ C[x, s] with Ak(0, 1) = 1,

(Ak|s=1)P = (Q1k|s=1)P1 + · · ·+ (Qmk|s=1)Pm + Rk|s=1,

lm≺(Qik|s=1Pi) ¹ lm≺(P ) if Qik 6= 0

(2.4)

by induction on k. When k = 0, these properties are trivially satisfied. By the
reduction at the k-th pass, we have

s`(k)Rk−1 = UkP
′
i(k) + sν(k)Rk (∃ν(k) ∈ N), (2.5)

where P ′
i(k) is the i(k)-th element of Gk. By the induction hypothesis we also

have

(Ak−1|s=1)P = (Q1,k−1|s=1)P1 + · · ·+ (Qm,k−1|s=1)Pm + Rk−1|s=1. (2.6)

First assume i(k) ≤ m. Then we get Ak = Ak−1 and

(Ak|s=1)P = (Q1,k−1|s=1)P1 + · · ·+ (Qm,k−1|s=1)Pm + (Uk|s=1)Pi(k) + Rk|s=1.

Hence (2.4) is satisfied at the k-th pass.

Next assume i(k) > m. Then P ′
i(k) = Rj with some j < k − 1. Hence we have

s`(k)Rk−1 = UkRj + sν(k)Rk. (2.7)

Since Rk−1 and Rj are (0,1)-homogeneous of the same degree by induction
using (2.5), Uk is (0,1)-homogeneous of degree zero, that is, a monomial in
C[x, s]. In view of the remark preceding Algorithm 2.2, we have

lm≺(Rk|s=1) ≺ lm≺(Rk−1|s=1) ≺ · · · ≺ lm≺(Rj|s=1).

Hence Uk does not belong to C[s], and consequently Uk(0, 1) = 0 holds. Thus
Ak = Ak−1−UkAj also belongs to C[x, s] and satisfies Ak(0, 1) = Ak−1(0, 1) =
1. It follows from the induction hypothesis that

(Aj|s=1)P = (Q1,j|s=1)P1 + · · ·+ (Qm,j|s=1)Pm + Rj|s=1. (2.8)

Combining the equations (2.6), (2.7), (2.8), we get

(Ak−1 − UkAj)|s=1P

= (Q1,k−1 − UkQ1,j)|s=1P1 + · · ·+ (Qm,k−1 − UkQm,j)|s=1Pm + Rk|s=1.

Since Ak = Ak−1 − UkAj and Qi,k = Qi,k−1 − UkQi,j for i = 1, . . . , m, (2.4) is
also satisfied at the end of the k-th pass. This completes the correctness proof
of Algorithm 2.2.
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Remark 2.5 For the second homogenization P (s), we can use an arbitrary
weight vector of the form (−u1, . . . ,−un, u1, . . . , un) with positive integers
u1, . . . , un instead of (−1,1).

Remark 2.6 Algorithm 2.2 also works in the Weyl algebra D (i.e. without
the (0,1)-homogenization in terms of h) if we use an ordering satisfying (2.1)
with k = k′ = 0 and (2.2) since the order (i.e. the total degree in ∂ shifted by
n) of R does not increase in the WHILE loop of the algorithm.

3 Computation of standard bases and syzygies

The tangent cone algorithm (Theorem 2.3) enables us to compute standard

or Gröbner bases of D(h)
alg -modules with respect to a sufficiently large class of

orderings. For the sake of simplicity, we assume that there exist a monomial
ordering ≺1 on {xαξβhk | (α, β, k) ∈ N2n+1} such that

|β|+ k < |β′|+ k′ ⇒ xαξβhk ≺1 xα′ξβ′hk′ (∀α, α′ ∈ Nn), (3.1)

xαξβhk ¹1 ξβhk (∀α, β ∈ Nn, ∀k ∈ N), (3.2)

h ≺1 xjξj (∀j = 1, . . . , n), (3.3)

an ordering <′ on {1, . . . , r}, and monomials Ai = xα(i)
ξβ(i)

hk(i)
(i = 1, . . . , r),

so that

xαξβhkei ≺ xα′ξβ′hk′ej

⇔




xαξβhkAi ≺1 xα′ξβ′hk′Aj

or (xαξβhkAi = xα′ξβ′hk′Aj and i <′ j)

It is easy to see that this ordering ≺ satisfies the conditions (2.1),(2.2),(2.3)
with ni := |β(i)|+ k(i).

For two nonzero vectors P, Q ∈ (D(h))r with a common leading position i,
their S-vector is defined to be

S(P, Q) := SP − TQ,

where S and T are ‘monomials’ in D(h) whose symbols are

LCM(lm≺(P )/ei, lm≺(Q)/ei)

lm≺(P )/ei

,
LCM(lm≺(P )/ei, lm≺(Q)/ei)

lm≺(Q)/ei

respectively, where LCM denotes the least common multiple of monomials.
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Definition 3.1 Let N be a left submodule of (D(h))r (or of (D(h)
alg )r) and let

G be a subset of N \ {0}. Then G is called a standard base or a Gröbner base
of N with respect to the ordering ≺ if it satisfies the following two conditions:

(1) G generates N .
(2) For any P ∈ N \ {0}, its leading monomial lm≺(P ) is divisible by (i.e.,

is a monomial times) lm≺(Q) for some Q ∈ G.

Then we have the following criterion of Buchberger’s type.

Theorem 3.2 Let ≺ be an ordering defined as above by using an ordering
≺1 satisfying (3.1), (3.2), (3.3). Let P1, . . . , Pm be nonzero homogeneous el-

ements of (D(h)
alg )r[n] and N be the left submodule of (D(h))r generated by

G := {P1, . . . , Pm}. Then the following two conditions are equivalent:

(1) G is a standard base of N with respect to ≺.
(2) For any (i, j) ∈ Λ := {(i, j) | 1 ≤ i < j ≤ m, lp≺(Pi) = lp≺(Pj)}, there

exist Qijk ∈ D(h)
alg (k = 1, . . . , m) such that QijkPk are homogeneous of the

same degree as S(Pi, Pj) and

S(Pi, Pj) = SjiPi − SijPj =
m∑

k=1

QijkPk, (3.4)

lm≺(QijkPk) ≺ LCM(lm≺(Pi)/e`, lm≺(Pj)/e`) (3.5)

with ` := lp≺(Pi) if Qijk 6= 0.

Proof: Assume (1). Then for any (i, j) ∈ Λ, we can find Qijk ∈ D(h)
alg and

Rij ∈ (D(h)
alg )r such that

S(Pi, Pj) =
m∑

k=1

QijkPk + Rij,

lm≺(QijkPk) ¹ lm≺(S(Pi, Pj)) if Qijk 6= 0,

lm≺(Rij) is not divisible by any of lm≺(Pk) if Rij 6= 0

by Theorem 2.3. Then the assumption (1) and the fact that Rij ∈ N implies
Rij = 0. Hence (2) holds.

Now assume (2). By Robbiano’s theorem ([10]), there exist vectors wi =
(wi,1, . . . , wi,n; wi,n+1, . . . , wi,2n; wi,2n+1) ∈ R2n+1 such that the ordering ≺1 is
equivalent to the lexicographic ordering with respect to

(〈w0, (α, β, k)〉, 〈w1, (α, β, k)〉, · · · , 〈wp, (α, β, k)〉).

By the condition (3.1), we may assume that w0 = (0, . . . , 0; 1, . . . , 1; 1). For
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ε ∈ R, put

w(ε) = (w1(ε), . . . , w2n+1(ε)) := w1 + εw2 + · · ·+ εp−1wp.

Then by virtue of conditions (3.2), (3.3) we have

wi(ε) < 0, wi(ε) + wn+i(ε) > w2n+1(ε) (i = 1, . . . , n) (3.6)

for any ε > 0 sufficiently small. By using this vector, we define a new ordering
≺ε

1 for D(h) by

xαξβhk ≺ε
1 xα′ξβ′hk′

⇔





|β|+ k < |β′|+ k′

or (|β|+ k = |β′|+ k′ and 〈w(ε), (α, β, k)〉 < 〈w(ε), (α′, β′, k′)〉)
or (|β|+ k = |β′|+ k′ and 〈w(ε), (α, β, k)〉 = 〈w(ε), (α′, β′, k′)〉

and xαξβhk ≺1 xα′ξβ′hk′
)

and define a new ordering ≺ε in terms of ≺ε
1 in the same way as ≺ is defined

in terms of ≺1.

Now take a nonzero homogeneous P ∈ N . Then there exist homogeneous
Q1, . . . , Qm ∈ D(h) such that

P = Q1P1 + · · ·+ QmPm. (3.7)

There exists a finite set of monomials of P to which the leading monomial of
P with respect to any monomial ordering satisfying (2.1),(2.2),(2.3) belongs.
It follows that the leading terms of P, Pi, Qijk and the inequality (3.5) stay the
same if we replace ≺ by ≺ε with ε > 0 small enough. We fix an ε > 0 which
satisfies this condition as well as (3.6). If the leading monomial of some QiPi

is greater than that of P , then rewriting the right hand side of (3.7) by using
(3.4), we can replace Q1, . . . , Qm in expression (3.7) by Q′

1, . . . , Q
′ ∈ D(h) so

that

max ≺ε{lm≺ε(Q′
iPi) | i = 1, . . . , m, Q′

i 6= 0}
≺ε max ≺ε{lm≺ε(QiPi) | i = 1, . . . ,m, Qi 6= 0}.

Let P be homogeneous of degree d. Then by (3.6) the set

{(α, β, k, i) : |β|+ k + ni = d, lm≺ε(P ) ≺ε xαξβhkei}

is finite. Hence we can take Qi in (3.7) so that lm≺ε(QiPi) ¹ε lm≺ε(P ). Thus
lm≺(P ) = lm≺ε(P ) is divisible by some lm≺(Pi) = lm≺ε(Pi). This completes
the proof. 2
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Hence the Buchberger algorithm with the écart division (Algorithm 2.2) gives
an algorithm for computing a standard base of a module generated by a given
finite set of generators. In the écart division, we can use an arbitrary shift
vector v for the bihomogenization and may discard the ‘denominator’ a(x).

Corollary 3.3 Let Nalg be a left D(h)
alg -submodule of (D(h)

alg )r and let N be the

left D(h)-submodule of (D(h))r generated by Nalg. Then for any nonzero element
P of N and an ordering ≺ as above, there exists an element P ′ of Nalg ∩
(h(0,1)(D))r such that lm≺(P ) = lm≺(P ′).

Proof: By the above theorem, there is a standard base of N consisting of
elements of Nalg. By dividing out the denominators, we may further assume
that each element of the base belongs to (h(0,1)(D))r. Hence the assertion
follows from the definition of standard base. 2

Schreyer’s theorem on syzygies also holds in this situation:

Theorem 3.4 Let ≺ be an ordering as above. Let P1, . . . , Pm be nonzero ho-
mogeneous elements of (D(h)

alg )r[n] and N be the left submodule of (D(h))r gen-
erated by G := {P1, . . . , Pm}. Assume that G is a standard base of N with

respect to ≺. Take Qijk ∈ D(h)
alg which satisfy (3.4) and (3.5) and put

Vij := (0, . . . , Sji, . . . ,−Sij, . . . , , 0)− (Qij1, . . . , Qijm) ((i, j) ∈ Λ).

Define an ordering ≺′ for (D(h))m by

xαξβhke′i ≺′ xα′ξβ′hk′e′j

⇔




xαξβhklm≺(Pi) ≺ xα′ξβ′hk′lm≺(Pj)

or (xαξβhklm≺(Pi) = xα′ξβ′hk′lm≺(Pj) and i > j),

where e′1, . . . , e
′
m are the canonical generators of (D(h))m. Then {Vij | (i, j) ∈

Λ} is a standard base with respect to ≺′ of the syzygy module

Syz(P1, . . . , Pm;D(h)) :=
{
(Q1, . . . , Qm) ∈ (D(h))r | Q1P1 + · · ·+ QmPm = 0

}

over D(h).

Proof: First we show that {Vij | (i, j) ∈ Λ} is a standard base of the syzygy
module

Syz(P1, . . . , Pm;D(h)
alg ) :=

{
(Q1, . . . , Qm) ∈ (D(h)

alg )r | Q1P1 + · · ·+ QmPm = 0
}

overD(h)
alg with respect to≺′. In fact, suppose that a nonzero Q = (Q1, . . . , Qm) ∈

(D(h)
alg )m satisfies Q1P1 + · · ·+QmPm = 0 and let K be the subset of {1, . . . ,m}
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consisting of k’s such that lm≺(QkPk) attains the maximum. Then we have

∑

k∈K

lm≺1(Qk)lm≺(Pk) = 0.

It follows that lm≺′(Q) is divisible by some lm≺′(Vij) = lm≺1(Sji)e
′
i. Hence

the remainder of Q on division by Vij’s is zero. This means that the Vij’s are

a standard base of the syzygy module over D(h)
alg with respect to ≺′.

In particular, there is an exact sequence

(D(h)
alg )Λ ψ−→ (D(h)

alg )m ϕ−→ Nalg → 0,

where Nalg is the left D(h)
alg -module generated by {P1, . . . , Pm}, ϕ and ψ are

D(h)
alg -homomorphisms defined by ϕ(ei) = Pi and ψ(e′(i,j)) = Vij respectively

with {e′(i,j) | (i, j) ∈ Λ} being the canonical base of (D(h)
alg )Λ. In view of the

flatness of D(h) over D(h)
alg , the above sequence yields an exact sequence

(D(h))Λ ψ−→ (D(h))m ϕ−→ N → 0.

This implies that the syzygy module over D(h) is generated by Vij’s. The first
part of the proof and Corollary 3.3 ensure that the Vij’s are a standard base
of the syzygy module over D(h) with respect to ≺′. 2

In Theorem 3.4, put lm≺(Pk) = Bkelk with a monomial Bi. Then we have

xαξβhke′i ≺′ xα′ξβ′hk′e′j

⇔





xαξβhkBiAli ≺1 xα′ξβ′hk′BjAlj

or (xαξβhkBiAli = xα′ξβ′hk′BjAlj and li <′ lj),

or (xαξβhkBiAli = xα′ξβ′hk′BjAlj and li = lj and i > j).

In particular, ≺′ satisfies the same condition as what we imposed on ≺. Hence
if we take ≺1 for which the second weight vector w1 is of the form (u, v, 0) =
(u1, . . . , un; v1, . . . , vn; 0), repeated applications of Theorem 3.4 yield a (u, v)-
filtered free resolution of (D(h))r/N in the sense of [4]. Finally, step by step

minimalization process over D(h)
alg as is described in [4] over D(h) produces a

minimal (u, v)-filtered resolution (see examples in [4]).

Remark 3.5 Under the assumptions of Theorems 3.2 and 3.4, the dehomog-
enizations P1|h=1, . . . , Pm|h=1 are a standard base (with respect to the restric-
tion of ≺) of the submodule of Dr which they generate, and Vij|h=1 generate
the syzygy module of P1|h=1, . . . , Pm|h=1 over D.
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4 The écart division versus bihomogenization

The second homogenization parameter s was used only in Algorithm 2.2, not
in the Buchberger algorithm as a whole. However, we can also compute a
standard base with s and the usual (not écart) division algorithm with respect
to the well-ordering ≺s. This can be regarded as a differential operator version
of Lazard’s method ([7]).

Theorem 4.1 Let P1, . . . , Pm be bihomogeneous elements of (h(0,1)(D)[s])r[n]
(resp. (−1,1)-homogeneous elements of D[s]r) with respect to shifts n,v ∈ Zr.
Assume that P1, . . . , Pm are a Gröbner base of the left submodule of (h(0,1)(D)[s])r

(resp. of D[s]r) which they generate, with respect to the ordering ≺s defined
in the same way as in Section 2 from an ordering ≺ of Section 3 (resp. the
restriction of ≺s to D[s]r). Then P1|s=1, . . . , Pm|s=1 are a standard base of the
left submodule of (D(h))r (resp. of Dr) which they generate.

Proof: It is easy to see by the standard argument that P1|s=1, . . . , Pm|s=1 are

a standard base of the left D(h)
alg -submodule of (D(h)

alg )r which they generate.
Then Corollary 3.3 implies the assertion. The case for Dr is similar in view of
Remark 2.6. 2

We give some comparisons between the two methods to compute standard
bases by our implementation using software Kan ([12]). For a polynomial f of
x, we take the annihilator ideal If of δ(t − f(x)) in D(h), which is generated
by (0,1)-homogeneous operators

t− f, ∂i +
∂f

∂xi

∂t (i = 1, . . . , n).

We use an ordering ≺ for D(h) which is defined lexicographically with respect
to the weights given by

t x1 · · · xn ∂t ∂1 · · · ∂n h

−1 0 · · · 0 1 0 · · · 0 0

0 0 · · · 0 1 1 · · · 1 0

−1 −1 · · · −1 0 0 · · · 0 0

(4.1)

with a reverse-lexicographic order as the tie-breaker. Then a standard base of
If is adapted to the V-filtration with respect to t = 0. Such a base is closely
connected with the singularity structure, e.g., the Bernstein-Sato polynomial
and the local cohomology, attached to the hypersurface f(x) = 0 (cf. [9],[4]).
In the table below, we show the number of elements of a minimal (or in-
terreduced in the terminology of [6]) standard base of If with computation
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time in parentheses by using a 1GHz Pentium III processor and 2G mem-
ory. (E) means the method described in Theorem 3.2 with the écart division;
(L) means the method of Theorem 4.1 with bihomogenization; (G) means the
usual (global) Gröbner base computation in the homogenized Weyl algebra
(see [9],[11]) with respect to an ordering defined by the first two rows of (4.1)
and a reverse lexicographic tie-breaking order, which does not give a local
standard base but is shown only for reference.

f (E) (L) (G)

x3 − y2z2 − w2 23 (0.21s) 128 (13.1s) 36 (0.24s)

x3 + z4 + y3w + w8 145 (228.9s) ? (> 1 day) 82 (47.6s)
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