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Abstract We introduce a modification of A-hypergeometric systems (GKZ sys-
tems) by applying a change of variables for Gröbner deformations and study its
Gröbner basis and indicial polynomial along the exceptional hypersurface.
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1 Introduction

An A-hypergeometric system is a system of multidimensional hypergeometric
partial differential equations defined by a matrix A and a set of parameters β.
It is defined on (y1, . . . , yn) space. We will denote such a system by HA(β).
By specializing parameters and some independent variables, we obtain classical
hypergeometric differential equations in one or several variables. Ever since the
study of Gel’fand, Zelevinsky, and Kapranov [3], studies of A-hypergeometric
systems (GKZ systems) have attracted the interest of many mathematicians,
who wish to understand hypergeometric differential equations in a general way.
We refer the reader to the book [11] for a review of important studies on A-
hypergeometric systems up to 2000, and the recent papers [5] and [12] and their
references for recent advances. We also note that these studies have interacted
fruitfully with the frontiers of computational commutative algebra and com-
putational D-modules (where D denotes the ring of differential operators with
polynomial coefficients).

In this short paper, we introduce a modified version of A-hypergeometric
systems and indicate a first step for studying them. The original system is
defined on y = (y1, . . . , yn) space, whereas the modified system is defined
on (t, x1, . . . , xn) space with an additional variable t. Let us sketch our idea
for introducing the modified system. We consider the direct sum of the A-
hypergeometric D-module on y space and the D-module D/D · s∂s on s-space.
For the weight vector w ∈ Zn, the original system restricted on Cn × C∗ is
transformed into the modified system on (t, x) space by the map

Cn ×C∗ 3 (y1, . . . , yn, s) 7→ (x1, . . . , xn, t) ∈ Cn ×C∗

where
(x1, . . . , xn, t) = (s−w1y1, . . . , s

−wnyn, s)

1



and
(y1, . . . , yn, s) = (tw1x1, . . . , t

wnxn, t)

(see [9] and [11] on this transformation). The transformed system can be natu-
rally extended on Cn+1. The system is firstly defined on t 6= 0 and is extended
to the whole space Cn+1 including t = 0. Intuitively speaking, the hypersurface
t = 0 is analogous to the exceptional hypersurface of a blowing-up operation.
We rigorously define the modified system in the next section.

We are interested in how solutions behave near the exceptional hypersurface
t = 0. We will study the indicial polynomial along t = 0 as a first step to
performing local and global analyses of the modified system.

2 Definition and Holonomic Rank of Modified
A-hypergeometric systems

Let A = (aij) be a d×n-matrix whose elements are integers and w = (w1, . . . , wn)
a vector of integers. We suppose that the set of the column vectors of A spans
Zd. Set

Ã =




a11 · · · a1n 0
· · · 0

adn · · · adn 0
w1 · · · wn 1


 .

Definition 1 We call the following system of differential equations HA,w(β) a
modified A-hypergeometric system:




n∑

j=1

aijxj∂j − βi


 • f = 0, (i = 1, . . . , d)




n∑

j=1

wjxj∂j − t∂t


 • f = 0,




n∏

i=1

∂ui
i tun+1 −

n∏

j=1

∂
vj

j tvn+1


 • f = 0. (u, v ∈ Nn+1

0 run over all u, v such that Ãu = Ãv)

Here, N0 = {0, 1, 2, . . .} and β = (β1, . . . , βd) ∈ Cd are parameters.

Let IÃ be the toric ideal generated by

n∏

i=1

∂ui
i tun+1−

n∏

j=1

∂
vj

j tvn+1 (u, v ∈ Nn+1
0 run over all u, v such that Ãu = Ãv)

(1)
in C[∂1, . . . , ∂n, t]. Since C[∂1, . . . , ∂n, t]/IÃ is an integral domain and tm does
not belong to the toric ideal, we have

IÃ = Isat
Ã

:= (IÃ : t∞) := {` | tm` ∈ IÃ for a non-negative integer m} (2)



This fact will be used in the proof of Theorem 2.
We note that the matrix Ã with w = (1, . . . , 1) was introduced in [7] to

construct a fundamental set of convergent series solutions.
Throughout this paper, we will use facts shown in [11]. However, they

are limited to only a small part of this book and this paper is written to be
understandable with an elementary knowledge on Gröbner bases in the ring of
differential operators and basics on D-modules.

Before starting an algebraic discussion about the modified A-hypergeometric
system, we informally discuss a bit about an integral representation of the mod-
ified system to explain about a relation between modified systems and classical
hypergeometric functions. Let ai be the i-th column vector of the matrix A and
F (β, x, t) the integral

F (β, x, t) =
∫

C

exp

(
n∑

i=1

xit
wisai

)
s−β−1ds, s = (s1, . . . , sd), β = (β1, . . . , βd).

Here, sai =
∏d

j=1 s
aji

j , s−β−1 =
∏d

j=1 s
−βj−1
j , ds = ds1 · · · dsd. The integral

F (β, x, t) satisfies the modified A-hypergeometric system “formally”, which can
be shown by integration by parts (see, e.g., [11, 221–222]). We use the word
“formally”, because we have no general and rigorous description about the cycle
C except the case of d = 1 [4]. However, the integral representation gives
an intuitive description of what are solutions of modified A-hypergeometric
systems. We note that if adi = 1 for all i, we also have the following “formal”
integral representation

F (β, x, t) =
∫

C

(
n∑

i=1

xit
wi s̃ãi

)−βd

s̃−β̃−1ds̃,

ãi = (a1i, . . . , ad−1,i)T , s̃ = (s1, . . . , sd−1), β̃ = (β1, . . . , βd−1).

We denote by D the ring of differential operators C〈x1, . . . , xn, t, ∂1, . . . , ∂n, ∂t〉.
We will regard the modified A-hypergeometric system as the left ideal in D. We
will denote by HA,w(β) this left ideal as long as no confusion arises and call it
the modified A-hypergeometric ideal.

A set of generators of HA,w(β) can be computed by computing a set of
generators of the toric ideal IÃ. An algorithm of computing a set of generators
of the toric ideal is given in the book [10, Algorithm 4.5].

Here is a log of a session with the computer algebra system kan/sm1 [8] to
obtain a set of generators of HA,w(β) for A = (−1, 1, 2), w = (−2,−1, 0) and
β = (0).

(cohom.sm1) run

[ [[-1,1,2]], [-2,-1,0], [0]] mgkz ::

[-x1*Dx1+x2*Dx2+2*x3*Dx3, -2*x1*Dx1-x2*Dx2-x4*Dx4,

x4^2*Dx2^2-Dx3,-x4^3*Dx1*Dx2+1,x4*Dx1*Dx3-Dx2,-x4*Dx2^3+Dx1*Dx3^2,-Dx1^2*Dx3^3+Dx2^4]

The command mgkz outputs a set of generators of HA,w(β). Here, x1, x2, x3,
x4 stand for x1, x2, x3 and t respectively and Dxi stands for ∂i.



The rank of HA,w(β) is the dimension of the C-vector space of the classical
solutions of HA,w(β) and is denoted by rank (HA,w(β)) [11, p.31].

Theorem 1 1. The left D-module D/HA,w(β) is holonomic.

2. The rank of HA,w(β) agrees with the rank of HA(β) for any w.

Proof. (1) We apply the Laplace transformation with respect to the variable
t ( t 7→ −∂t′ , ∂t 7→ t′ ) for the modified A-hypergeometric ideal HA,w(β). Then,
the transformed system is nothing but A-hypergeometric ideal for the matrix
Ã and the parameter vector (β1, . . . , βn,−1). It is known that the transformed
system is holonomic, then the original system is also holonomic by showing
the Hilbert polynomials with respect to the Bernstein filtration of each system
agree.

(2) We consider the biholomorphic map ϕ on Cn ×C∗

Cn×C∗ 3 (y1, . . . , yn, s) 7→ (s−w1y1, . . . , s
−wnyn, s) = (x1, . . . , xn, t) ∈ Cn×C∗

(3)
The map ϕ induces a correspondence of differential operators on Cn ×C∗

∂

∂yi
= t−wi

∂

∂xi

−s
∂

∂s
= −t

∂

∂t
+

n∑

j=1

wnxn
∂

∂xi

Consider a left ideal HY in DY = C〈y1, . . . , yn, s, ∂y1 , . . . , ∂yn , ∂s〉 generated by
HA(β) and s∂s. The holonomic rank of DY /HY is that of HA(β). We can
see that the image of DY /DY HY by the biholomorphic map ϕ on Cn ×C∗ is
DX/DXHA,w(β) by utilizing the correspondence of differential operators. Here,
DX and DY denote the sheaves of differential operators on Cn × C∗ of (y, s)-
space and (x, t)-space respectively. Since the holonomic rank agrees with the
multiplicity of the zero section of the characteristic variety at generic points,
the holonomic ranks of the both systems agree [11, pp 28–40]. Q.E.D.

We denote by vol(A) the normalized volume of the convex hull of the column
vectors of matrix A and the origin [11, p.50].

Corollary 1 rank (HA(β)) ≥ vol(A)

Proof. When A has (1, 1, . . . , 1) in its row space (A is homogeneous), rank (HA(β)) ≥
vol(A) holds [11, Theorem 3.5.1], which is proved by utilizing that HA(β) is
regular holonomic and by constructing vol(A) many series solutions. Put w =
(1, 1, . . . , 1) in the modified system HA,w(β). Then, we have rank (HA,w(β)) ≥
vol(A). Hence, Theorem 1 gives the conclusion. Q.E.D.

Note that the upper semi continuity theorem of holonomic rank of [5] also
gives this result.



The aim of this paper is to determine the indicial polynomial of HA,w(β)
along t = 0 and construct formal series solutions standing for roots of the indicial
polynomial. Before starting a systematic discussion, we show one example of
construction of a formal series solution.

Example 1 We take A = (1, 3), β = (−1), and w = (−1, 0) (Airy type integral)
[11, p.223]. The monomial x−3m−1

1 xm
2 t3m+1 satisfies the two first order equa-

tions of the Definition 1. Then, we can expect a superposition of monomials
of this form is a formal solution. The ideal IÃ is generated by ∂2 − t3∂3

1 . Put
f =

∑∞
m=0 dmx−3m−1

1 xm
2 t3m+1 and determine dm by utilizing ∂2 − t3∂3

1 . Then,
we can see that dm satisfies the following recurrence

d0 = 1, dm+1 =
−(3m + 1)(3m + 2)(3m + 3)

m
dm

The divergent series

f(x; t) =
∞∑

m=0

(
dmx−3m−1

1 xm
2

)
t3m+1

=
∞∑

m=0

(
(−1)m Γ(3m + 1)

Γ(m + 1)
x−3m−1

1 xm
2

)
t3m+1 (4)

is a formal solution of the modified system. Fix a point (x1, x2) = (a1, a2) such
that a1, a2 6= 0. Then this is a Gevrey formal power series solution at (a1, a2, 0)
along t = 0 in the class s = 1 + 2/3 from the definition of Gevrey series.

The slope of a holonomic system is a set of numbers each of which stands for
discontinuity of a one parameter family of micro-characteristic varieties [1]. The
slope of this system can be computed by our software [8, command sm1.slope,
slope], which uses algorithms in [1], [2] and the set of the slopes is {−3/2}.
Since 1/(1 − s) agrees with −3/2, we have constructed a formal power series
standing for the slope −3/2.

3 Gröbner Bases of Modified A-Hypergeometric
Systems

We will call t = 0 the exceptional hypersurface and we are interested in local
analysis near t = 0. We denote by

τ = (0,−1;0, 1)

the weight vector such that t has the weight −1 and ∂t has the weight 1. θi

is xi∂i and θt is t∂t. We denote by Ãθ,w,β the set of the first (d + 1) Euler
operators of the modified A-hypergeometric system. For ` ∈ D, inτ (`) is the
sum of the maximal τ -order terms in `. For a left ideal J in D, inτ (J) is the
left ideal in D generated by inτ (`), ` ∈ J [11, p.4].

It is easy to see that, for generic w, inτ (D·IÃ) can be generated by monomials
in C[∂1, . . . , ∂n].



Theorem 2 For generic β and w, we have

inτ (HA,w(β)) = D · inτ (D · IÃ) + D · Ãθ,w,β (5)

Proof. Let G′′ be a Gröbner basis of the left ideal HA,w(β) for an order
which refines the partial order determined by the weight vector τ . Then, the
set {inτ (g) | g ∈ G′′} generates inτ (HA,w(β)) [11, Theorem 1.1.6]. The proof
is performed by applying the Buchberger algorithm of computing the Gröbner
basis G′′.

Let s = (s1, . . . , sd) be a vector of new indeterminates. Consider the algebra

D[s] = C〈x1, . . . , xn, t, ∂1, . . . , ∂n, ∂t, s1, . . . , sd〉

and its homogenized Weyl algebra by h

D[s]h = C〈x1, . . . , xn, t, ∂1, . . . , ∂n, ∂t, s1, . . . , sd, h〉

where ∂ixj = xj∂i + h2δij and h commutes with other variables. Let H be
the left ideal in D[s]h generated by Ãθ,w,s2 and the homogenization of IÃ. We
define a partial order >τ on monomials in D[s] by

saxb∂ctd∂e
t >τ sa′xb′∂c′td

′
∂e′

t ⇔ −d + e > −d′ + e′, or
−d + e = −d′ + e′ and (a, e, d) >lex (a′, e′, d′)

We refine this partial order by any monomial order and define orders < in D[s].
(This order on D[s] is extended to the order in the homogenized Weyl algebra
and D[s]h as in [11, Section 1.2].)

Let G be the reduced Gröbner basis of the homogenized binomial ideal IÃ in
D[s]h with respect to the order <. Note that the reduced Gröbner basis consists
of elements of the form ∂uhp − ∂vtvn+1hp′ , vn+1 > 0 because w is generic and
IÃ is saturated with respect to t. Note that either p = 0 or p′ = 0 holds.

We will show that G and Ãθ,w,s2 is a Gröbner basis G′ with respect to < in
D[s]h. This fact can be shown by checking the S-pair criterion in D[s]h. It is
easy to see that

sp(θt −
∑

wjθj , s
2
i −

∑
aijθj) →G′ 0

sp(s2
k −

∑
akjθj , s

2
i −

∑
aijθj) →G′ 0

We assume p > 0 and p′ = 0.

sp(∂uhp − ∂vtvn+1 , s2
i −

∑
aijθj)

= s2
i (∂

uhp − ∂vtvn+1)− ∂uhp(s2
i −

∑
aijθj))

= −s2
i ∂

vtvn+1 + ∂uhp
∑

aijθj

= −s2
i ∂

vtvn+1 +
(∑

aijθj

)
∂uhp +

(∑
aijuj

)
∂uhp

since ∂uhp > ∂vtvn+1 we may rewrite it as



= −s2
i ∂

vtvn+1 +
(∑

aijθj

)
(∂uhp − ∂vtvn+1) +

(∑
aijθj

)
∂vtvn+1 +

(∑
aijuj

)
∂uhp

=
(∑

aijθj

)
(∂uhp − ∂vtvn+1) + ∂vtvn+1

(∑
aijθj −

∑
aijvj − s2

i

)
+

(∑
aijuj

)
∂uhp

since
∑

aijuj =
∑

aijvj

=
(∑

aijθj

)
(∂uhp − ∂vtvn+1) + ∂vtvn+1

(∑
aijθj − s2

i

)
+

(∑
aijuj

)
(∂uhp − ∂vtvn+1)

→G′ 0

The case p = 0, and p′ > 0 can be shown analogously.
The final case we have to check is that

sp(∂uhp − ∂vtvn+1 , θt −
∑

wjθj)

= −θt∂
vtvn+1 + hp∂u

∑
wjθj

= −θt∂
vtvn+1 +

(∑
wjθj +

∑
wjuj

)
hp∂u

= −θt∂
vtvn+1 +

(∑
wjθj +

∑
wjuj

)
(hp∂u − ∂vtvn+1)

+
(∑

wjθj +
∑

wjuj

)
∂vtvn+1

= −θt∂
vtvn+1 +

(∑
wjθj +

∑
wjuj

)
(hp∂u − ∂vtvn+1)

+∂vtvn+1

(∑
wjθj +

∑
wjuj −

∑
wjvj

)

=
(∑

wjθj +
∑

wjuj

)
(hp∂u − ∂vtvn+1)

+∂vtvn+1

(∑
wjθj +

∑
wjuj −

∑
wjvj − θt − vn+1

)

=
(∑

wjθj +
∑

wjuj

)(
hp∂u − ∂vtvn+1

)
+ ∂vtvn+1

(∑
wjθj − θt

)

→G′ 0

Specializing s to a vector of generic numbers β and h to 1 in G′, we have a
Gröbner basis of HA,w(β) with respect to τ . The correctness proof of this fact
and the rest of the proof are analogous to [11, Theorem 3.1.3, p.106]. Q.E.D.

4 Indicial Polynomial along t = 0

The indicial polynomial of HA,w(β) along t = 0 is the monic generator b(θt) of
the principal ideal inτ (HA,w(β)) ∩ C[θt]. We fix a generic weight vector w.
Since w is generic, inτ (IÃ) can be generated by monomials in C[∂1, . . . , ∂n]. Let
M be the monomial ideal generated by these monomials in C[∂1, . . . , ∂n]. The
top dimensional standard pairs are denoted by T (M) [11, p.112] and β(∂β ,σ) is
the zero point in Cn of the distraction D ·M ∩C[θ1, . . . , θn] of M and Aθ − β
associated to the standard pair (∂β , σ) [11, p.68]. Here, the ring D in this para-
graph is C〈x1, . . . , xn, ∂1, . . . , ∂n〉 and we regard the sub ring C[θ1, . . . , θn] ⊂ D
as a commutative polynomial ring in variables θi.



Theorem 3 Let both of β and w be generic. Then, the indicial polynomial b(s)
of HA,w(β) along t = 0 is

∑

(∂β ,σ)∈T (M)

(s− w · β(∂β ,σ)) (6)

If T (M) is the empty set, the indicial polynomial is 0.

Proof. Under Theorem 2, the proof is analogous to [11, p.198, Proposition
5.1.9].

If the indicial polynomial is not constant and the difference of roots are not
integral, we can construct formal series solution of the form

te
∞∑

k=0

ck(x)tk, ck ∈ C[1/x1, . . . , 1/xn, x1, . . . , xn] (7)

where e is a root of the indicial polynomial and tec0(x) is a solution of the initial
system in(0,−1;0,1)(HA,w(β)). If the indicial polynomial is a constant, there is
no formal series solution of the form above.

Example 2 (Continuation of Example 1). Note that IÃ is generated by ∂2 −
t3∂3

1 and inτ (IÃ) = 〈∂2〉. The distraction [11, p.68] of M = 〈∂2〉 is θ2. The zero
set of the ideal generated by θ2 and Aθ−β = {θ1 +3θ2 +1} is {(−1, 0)}. Then,
the indicial polynomial is s−w · (−1, 0) = s− 1. The formal solution (4) stands
for the root s = 1.

Example 3 Consider the modified hypergeometric system for A = (−1, 1, 2),
β = (1/2), w = (−2,−1, 0). This is the Bessel function in two variables called
by Kimura and Okamoto (see, e.g., [6]).

The indicial polynomial is 1, because IÃ 3 1 − ∂2
1∂3. Then, there exists no

series solution of the form (7). Incidentally, the set of the slopes along t = 0 at
x = (2, 2, 1) is equal to {−2,−3/2}. The values are obtained by our software
[8].

Let us change w into w = (3, 2, 1). The initial ideal inτ (IÃ) is gener-
ated by the set {∂1∂3, ∂

2
2 , ∂1∂2} and the distraction of it is generated by θ1θ3,

θ2(θ2 − 1), θ1θ2. The set of zero points of the distraction and Aθ − β is
{(−1/2, 0, 0), (0, 0, 1/4), (0, 1,−1/4)} which is obtained by computing the pri-
mary decomposition of the ideal generated by the distraction and Aθ−β by the
computer algebra system Risa/Asir [8] as

[0] load("gr"); load("primdec");

[107] [182] G=[x1*x3 , x2*(x2-1) , x1*x2 , -2*x1+2*x2+4*x3-1];

[x3*x1,x2^2-x2,x2*x1,-2*x1+4*x3+2*x2-1]

[183] primadec(G,[x1,x2,x3]);

[[[x3,x2,2*x1+1],[x3,x2,2*x1+1]],

[[4*x3-1,x2,x1],[4*x3-1,x2,x1]],

[[4*x3+1,x2-1,x1],[4*x3+1,x2-1,x1]]]



In this case, the generic condition for the Theorem 3 satisfied and the formula
(6) gives the indicial polynomial (s − 3/2)(s + 1/4)(s − 7/4). We may use the
Risa/Asir command generic_bfct to compute the indicial polynomial, but
it uses a lot of memory and computation time when A is relatively large matrix.
Our formula (6) can be applied to larger A. The rank of this system is 3. The
set of the slopes along t = 0 at x = (2, 2, 1) is empty.

Although it is a side story in view of this paper, we want to note that a
3-dimensional graph of a solution of this system can be seen at
http://www.math.kobe-u.ac.jp/HOME/taka/test-bess2m.html. We can see
waves in two directions. This graph is drawn by series solutions and the Runge-
Kutta method [6].

The number of solutions of the form (7) is less than the rank in general. It
is an interesting open problem to construct rank many series solutions in terms
of formal puiseux series and exponential functions along t = 0.
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slopes”? We realized that the original A-hypergeometric system has few clas-
sical solutions representing slopes for some examples. The author introduced a
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Finally, Go Okuyama posed a question on the lower bound of the rank of an
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[1] A.Assi, F.J.Castro-Jiménez, M.Granger, How to Calculate the Slopes of a
D-module. Compositio Mathematica 104, (1996) 107–123.

[2] F.J.Castro-Jimenez and N.Takayama, Singularities of the Hypergeometric
System associated with a Monomial Curve. Transaction of the American
Mathematica Society 355, (2003), 3761–3775.

[3] I.M.Gel’fand, A.V.Zelevinsky, M.M.Kapranov, Hypergeometric Functions
and Toral Manifolds. Functional Analysis and its Applications 23, (1989)
94–106.



[4] H.Majima, K.Matsumoto, N.Takayama, Quadratic Relations for Confluent
Hypergeometric Functions, Tohoku Mathematical Journal 52, (2000) 489–
513.

[5] L.F.Matusevich, E.Miller, U.Walther, Homological Methods for Hyperge-
ometric Families, Journal of American Mathematical Society 18, (2005)
919–941. math.AG/0406383.

[6] T.Oaku, Y.Shiraki, N.Takayama, Algebraic Algorithms for D-modules and
Numerical Analysis, Z.M.Li, W.Sit (editors), Computer Mathematics, Pro-
ceedings of the sixth Asian symposium, 23–39, World scientific, 2003.

[7] K.Ohara, N.Takayama, Holonomic Rank of A-hypergeometric Differential-
Difference Equations, math.CA/0706.2706v1

[8] OpenXM, a project to integrate mathematical software systems, 1998–2008,
http://www.openxm.org.

[9] B.Sturmfels, Asymptotic Analysis of Toric Ideals, Memoirs of the Faculty
of Science, Kyushu University. Series A, Mathematics 46, (1992) 217–228.
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