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“Algorithms to Reduce the Instability of the HGM and Tricks
Useful for the HGM", preprint (expository, technical).

1. 2O A7 4 F® PDF: | Nobuki Takayama | [search]
2. http:
//www.math.kobe-u.ac. jp/0OpenXM/Math/hgm/ref-hgm.html
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’Tﬁ%ﬂ: Runge-Kutta i

dF

T~ P(t)F 1

"~ p(r) 1)
where P(t) is an r x r matrix and F(t) is a column vector valued

unknown function. Let E be the r x r identity matrix.
F1 = FO =+ hkl = (E + hP(to))Fo, /(1 = P(to)Fo.
F(to+h)—F1 = F(to)+F'(tg)h+0(h*)—F, = O(h?), F'(ty) = P(to)Fo

The 4th order Runge-Kutta (RK) method.

kiti = P(to+ civah)(Fo+ aivikih), ko =0 (2)
Fi = Fo+ h(biki + boko + bsks + baka) 3

Determine the constants so that F1 — F(to + h) = O(h®) where F(t) is the
solution with the initial condition F(t)) = Fo. a1 =c1=0,b1 =1/6,b, =
1/3,b3=1/3,bs =1/6,=c=c=1/2,ap=a3=1/2,a, = 1.
E.Hairer, S.P.Norsett, G.Wanner, Solving ordinary differential
equations I, Il, 1993, 1996, Springer
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’ Matrix factorial ‘

Q(t,h) = E+ hP(t), for the first order RK
or Q(t, h) is an analogous matrix for the 4th order RK. Then,
Fitr1 = Q(k)Fk (Q(k) = Q(to + kh, h) in short). We call
Q(k)Q(k —1)---Q(1)Q(0)
the matrix factorial. Applying the matrix factorial to Fgy, we obtain
Fi+1 (approximate solution).
Methods for exact evaluation of matrix factorials (the binary splitting and the

modular method)*. LAT & % 736,

5 x 5 contingency table, a benchmark

test of evaluating the normalizing

:g:t--:' constant (A-hypergeometric polyno-
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N is a parameter in the marginal sum.

N

*[tgkt] Y.Tachibana, Y.Goto, T.Koyama, N.Takayama, Holonomic Gradient
Method for Two Wav Contincency Tablees arxiv-1802 04170 3/27




235 adaptive Runge-Kutta method‘

Let F; be the vector determined by RK (of the 4th order) of the
step size 2h (not h). Let F, be the vector determined by RK two
times with the step size h.

|F(to +2h) — F1| = $(2h)° + O(h°) (4)

where ¢ depends only on the solution F and ty. We also have
|F(to + 2h) — Fa| = ¢h° + ¢'h> + O(h®) (5)

Assume ¢ = ¢'. Taking the difference of (5) and (4), we have
|F2 — Fi| ~ 30¢h° + O(h°) (6)

The good point of this identity is that we can estimate ¢ without
knowing the true solution F(t) and estimate the coeficient of the
error. We put A(h) = 30¢h°.
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#235: adaptive Runge-Kutta method it & ‘
Let us assume

A = ¢|Fy (7)
Then, ¢ = |Fo|e/(30h°). Then the relative error
|(F(t + ho) — F1)/Fol is bounded by

|p|h°
| Fol

3

+ O(h®) = 20

+ O(h®) (8)

When we want to make the relative error smaller than 35—0, we need

to make A(h) (difference of 2h step and two times of h step)
smaller than ¢|Fp|.
In order to choose the next h,

) ; --> load("ak2.rr");
use the following relation

--> QQ=rk_mat2(newmat (2,2, [[0,1], [t,0]])
--> base_replace(QQ[0],QQ[1]1);

ho A(hg) 1/5 [ 1/24%h~4xt"2+(1/48%h 5+1/2%h~2) xt+1/6%
/T1 = A(hy) [ 1/6%h~3%t"2+(1/6%h"4+h)*t+1/24*h~5+1/2
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/NG BIRFURT ODE % $UfARNT (X 187 |

%F — P(z)F, zeC

We want to solve the differential equation along the path

z=z0+(z1—2)t, 0<t<1lz,z7€C
with the initial value F(z) = Fy. By d/dz = (z1 — z9)~*d/dt,

dF

e (z1 — 20)P(z0 + (z1 — 20)t)F (9)

Decompose (z1 — z9)P(zp + (z1 — 20)t) into the real part and the
imaginary part as Pi(t) ++/—1Px(t) Put F = u+ v/—1v.

alv)=(R 2)() o

c2rsys(P(t));
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Defusing method (heuristic) 1‘

dF
ol P(t)F (11)
F(ty) = F{™ €R" (12)

F{re is the initial value of F at t = to.

Situation

1. The initial value has at most 3 digits of accuracy. We
denote this initial value Fg.

2. The property |F| — 0 when t — 400 is known, e.g., from a
background of the statistics.

3. There exists a solution F of (11) such that |F| > 0,
t — +4o0.

Under this situation, the HGM works only for a very short interval
of t because the error of the initial value vector makes the fake
solution £ dominant and it hides the true solution F(t). We call
this bad behavior of the HGM the instability of the-HGM.
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Defusing method 2. {4,

Example
-1 1 0
diF: 0 -1 1 |F
t 0 0 0

The solution space is spanned by F! = (exp(—t),0,0)7,
F2 = (0,exp(—t),0)", F3 =(1,1,1)". The initial value
(1,0,0)™ at t = 0 yields the solution F. Add some errors
(1,1073°,1073%) 7 to the initial value. Then, we have

‘ t ‘ value F; by RK | difference F; — F 1 ‘
50 | 1.92827e-22 9.99959e-31
60 | 8.75556e-27 1.00000e-30
70 | 1.39737e-30 1.00000e-30
80 | 1.00002e-30 1.00000e-30
We can see the instability.
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’ Defusing method 3. Airy function % LA dilic ‘
From the Airy differential equation y”(t) — ty(t) = 0 by

F=(y(t).y'(t)"
P(t) = < 2 > .

1 b s3
Ai(t) = — lim / cos | — +ts)ds
T b—+oo Jg 3

(Airy function) is a solution of the Airy differential equation. We
want to obtain values of Ai(x) by RK.1

The figure is a graph of Airy s
Ai(t) function and Airy Bi(t) s
function drawn by Mathemat- *°
ica.  The function F(t) ="
(Ai(t),Ai'(t))T satisfies the
condition 2 of the Situation 1 | e, e
of the instability problem. h ' B

TMore advanced method is “S.Chevillard, M.Mezzarobba, Multiple-precision
evaluation of the Airy Ai function with reduced cancellation,-arxiv:1212.4731"=
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’ Defusing method 4. Algorithm‘
Fii1=Q(k)Fx. Q=Q(N—1)---Q(1)Q(0).
Algorithm

1. Obtain eigenvalues A\; > Ap > -+ > A\, > 0 (assumption) of
Q and the corresponding eigenvectors v, ..., V;.

2. Let A\, be the eigenvalue which is almost equal to 0.
3. Express the initial value vector Fy containing errors in terms
of vi's as
Fo=fw+- -+ fv, fieR (13)
4. Choose a constant ¢ such that Fj := c(fpmvm + -+ + frvy)
approximates Fg.

5. Determine Fy by Fy = QF(’) with the new initial value vector
F§. B9 312 Q DRZ WIEAMICHIES 2 WA 2 D7) %
WIFAMED> & B < .

We call this algorithm the defusing method. This is a heuristic
algorithm .
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Defusing method 5. Airy O |

Example

to=0, h=10"3 N =10 x 103, 4-th order Runge-Kutta
scheme. We have A\; = 9.708 x 10°, v; = (—5.097, —159.919) "
and \p = 3.247 x 1077, vp = (—5.097,37.16)" = (a, b). Then,

m = 2. We assume the 3 digits accuracy of the value Ai(0) as
0.355 and set F§ = (0.355,0.355b/a). Then, the obtained value
Fsooo at t =5 is (0.00010808, —0.00024685) by the defusing
method. We have the following accurate value by Mathematica
In[1]:= N[AiryAi[5]1]; Out[1]= 0.00010834

On the other hand, we appy the 4th order Runge-Kutta method
with h = 1073 for Fy = (0.355, —0.259)7, which has the
accuracy of 3 digits. It gives the value at t =5 as

(—0.147395, —0.322215), which is a completely wrong value, and
the value at t = 10 as (—102173,—320491), which is a blow-up
solution.
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Example: defusing method for H*(x, y), 1

Hrlf(XJ):/ the toFi(; n; yt)dt.
0

Proposition (dots)
The function u = HX(x, y) satisfies

{6,y +n—-1)+y(0x—6,—k—1)}eu = 0,
(Ox—0,—k—14+x)0c0u =

where 0, = x%ﬂy = y%. The holonomic rank of this system is 4.

The ODE of y direction is unstable for HX.*

I[dots] F.H.Danufane, K.Ohara, N.Takayama, C.Siriteanu, Holonomic
Gradient Method-Based CDF Evaluation for the Largest Eigenvalue of a

Complex Noncentral Wishart Matrix, https://arxiv.org/abs/1707.02564.
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it HE(x.y) B EIIEME N 57

Theorem (Kang-Alouini®)

When the matrix ¥ ~XMM*Y has the positive eigenvalues
0< A <X <--- < Ag, then the cummulative distribution
function of the largest eigenvalue ¢s of S for the threshold x is

_ exp(— 27:1 Ai)
PO <X = s ) Ty e O — W)

where V(x) is a matrix valued function of which (i,j) element is

det W(x)

HiZl (60 M) = /0 y' Texp(=y)oFi(it —s+ 1 y)) dy

¥M. Kang, M. S. Alouini, Largest Eigenvalue of Complex Wishart Matrices
and Performance Analysis of MIMO MRC Systems, IEEE Journal on Selected
Areas in Communications 21 (2003), 418-426.

Ychannel matrix H is Nt x Ng complex valued random matrix. The column

vector X satisfies E[X] = M and the convariance is ¥ 5. S = X *HH*.
13/27



Defusing Method for HX, 2.

The ODE of y direction is unstable for HX.
By the DEtools[formal _sol] function of Maple, we have

b= ()T exp(—200) %) (1 + O(1/y'?)),
he = y L+ 0(1)y)),

hy = () P exp(2(xy)2)(L + O(1/yM?)),
he =y " ep(y)(1+ O(1/y)),

when y — 4+00. What is the asymptotic behavior of the function HX(x, y)
when x is fixed? We compare the value of hs and the value by a numerical
integration in Mathematicall.
‘ y ‘ Ratio ‘

1000 | 7.36595030875893e-452

2000 | 2.64621603289928e-381

3000 | 2.67723893601667e-1311
Ratio = (H1°(1/2,y))/(y* """  exp(y)), which suggests that HY is expressed by
h1, ha, h3 without the dominant component hs.

where

IThe method to evaluate hypergeometric functions in Mathematica is still a
black box. It is not easy to give a numerical evaluator of hypergeometric
functions which matches to Mathematica in all ranges of parameters and

independent variables.
14 /27



Defusing method for HX, 3
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log Hi°(1,y). Exact value (by numer-
ical integration) and the value by our
defusing method agree. The adaptive
Runge-Kutta method with the ini-
tial relative error 107%° (upper curve)
does not agree with the exact value

when y is larger than about 25.

The relative error of H{°(1,y) of our
defusing method. The relative error
is defined as (Hs — H)/H where Hy
is the value by the defusing method

and H is the exact value.

15/27



I3 e
Koyama** gave an integral formula of a generalization of y?
distribution motivated by the work of Marumo, Oaku, Takemuraff

Theorem (koyama2019)
The probability density function f(x) = L P(3°1_; X[ < x) (Xk's

are i.i.d random normal variables with m =0,0=1,r>3)is
expressed by the following integrals.

f(x) %W /000 exp(—xs) Im [@3(5) exp(vV/—1m/r) + @0(5)] ! ds, r odd
f(x) = % <72T>”/2 /000 exp(—xs) Im [@3(5) exp(lew/r)]nds, r even

(14)

**[koyama2019] T. Koyama, An integral formula for the powered sum of the
independent, identically and normally distributed random variables, preprint.
Old version is at arxiv https://arxiv.org/abs/1706.03989

”[mot2014] N.Marumo, T.Oaku, A.Takemura, Properties of powers of
functions satisfying second-order linear differential equations with applications
to statistics, arxiv:1405.4451
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L1 B x5, 2.

Here,

00 e2mV=1/r
@3(5):/ exp(—st") exp —#tz dt (15)
0

for s > 0 and

oo
vo(s) = / exp(—st” — t%/2)dt (16)
0
We will evaluate the following integral when r = 4 as an example.

f(x) = 1 (2)n/2 /OOO exp(—xs) Im [ga3(5) exp(\/jlﬂ/r)]n ds,

m
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INEE 1 B " A, 3.‘

It seems that it is not a good method to evaluate f(x) itself by the HGM,
because the rank of the holonomic system for the integrand becomes very high
when n increases [mot2014].

It will be a good method to generate a table of 3 by the HGM and use a one

dimensional numerical integration method to obtain the value of the PDF f(x).
Note that the HGM is a good method to generate a table of values.
Trick: use HGM as a subprocedure of a numerical integration.

The PDF f(x) for r = 4,n =
015 173’5

--> load("test-ak2.rr");
--> Ans=hgm_phi3(R=6,X=100)$ // evalua

Time=[ 41.2335 0 2313312788 41.2705 ]
‘ ‘ ) ‘ . —=> Ans[0];
: ‘ ¢ ¢ * [100,[ (0.4229-0.012354%@i) ...]]
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AL B X 5, 4

Proposition
The cummulative distribution function (CDF) P(3_7_ X! < y) is
approximately expressed as

b — 0
1_ _ «
/ 1= exp(=ys) ys)g(s)ds%—coé—l9 —caya/ et ldt (17)
0 S (0% by

where b is a sufficiently large number, o« = n/r, and &(s) is given
in (18) and (19).

€s) = S Tm[ps(s)exp(v=Ir/r) + ()] ris 4d8)

T (27)n/2

n/2
&(s) = 1<2> Im [p3(s) exp(v/—17/r)]" riseven (19)

T \T

Co is a constant (see the preprint as to the explicit value).
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N By 5, 5|

_ The CDF F,(y) for y € [0,10],

r=4,n=1,3,57,9,10 (from
the top to the bottom).

The CDF F,(y) for y € [10,210],
n = 10,30, 50, 70,90, 100. Note that
n = 90,100 cases (two lower curves)
give wrong values because of numer-

ical error of high powers n.
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E2HT g3 DBFITR, 1]
Put

f(x1,x2) = / exp(x12% 4 xoz")dz (20)

—00

Lemma
The function f satisfies the following A-hypergeometric system

(201412 +1) o F =0 (1)
(8{1 _62).f:0’ (r:2r1 is even) (22)
(o — @%) of =0, (risodd) (23)

where 9,’ = X,'a,' = X,'%.
1
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L2 5T o3 OBHTIRR, 2|

Lemma
Fix x; to a number. The function f(x1,x2) annihilated by the
following ordinary differential operator

. n rn—1
<2r> H <92 + 2kt 1) —x1"0> (r is even) (24)
k=0 r
r r—1
(—2r> H (02 + 2kr+ 1) —x{05 (risodd)  (25)
k=0

p3(s) = f (—GQWT/Z —S)-
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/NEE, B E[x(My)], 1.
The expected Euler characteristic for the largest eigenvalue of a real Wishart
matrix is numerically evaluated for a small sized Wishart matrix by HGM *. Let
A = (aj) be a real m x n matrix valued random variable with the density

p(A)dA, dA=]] day.
We assume that p(A) is smooth and n > m > 2. Define a manifold
M={hg" |geS" L heSeS" '} ~8" x5~

where (h, g) ~ (—h, —g) and h and g are regarded as column vectors and hg"™
is a rank 1 m x n matrix. Put

f(U)y=tr(UA)=g"Ah, UeM

and
={hg" € M|f(U)=g"Ah > x}
We are interested in E[x(M)].

*[euler2019] N.Takayama, L.Jiu, S.Kuriki, Y.Zhang, Computations of the
Expected Euler Characteristic for the Largest Eigenvalue of a Real Wishart
Matrix, arxiv:1903.10099
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INEz, B E[x(My)], 2.

Assume m = n =2 and p(A) is a Gaussian distribution
1
(2w)mn/2 det(X)"/2

The mean is expressed by the variable M = (mj;). We gave an integral
representation of E(x(Mx)) in [euler2019]. Moreover, we derived an ODE of

rank 11 for (26) by the computer algebra package HolonomicFunctions.m
(C.Koutchan).

E[x(M

51520' 7b2 ~
- 27r2/ da/ db/ ds/ e e exp{ R}(ze)

where R is a rational function in o, b, s, t, s1, S, M1, mM21, M22. More precisely,
put

p(A)dA =

exp{ Iva—mys- (AfM)}dA.

R = s (bsinfsin¢+ ocosfcosd — mi1)’ + s (o sin b cosd — bcosOsind — mo )
+s51 (0 cosOsin ¢ — bsin 6 cos ¢)* + s, (bcos cos ¢ + o sin Osin g — my)?
replace sin, cos in R by
. 2s 1-5° 2t 1-¢
&n&zm, cos&zm, sing = 1T os¢:1+t2.

and we set this K. We want to evaluate it when my; = 1,my =2,mp =3
(means) and s; = 103, s, = 102,
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N B E[x(M), 3.

bigfloat, FAA 2 fili ) D2 EHE L &\

’Trick: Do not hesitate to use the bigfloat and powerseries. | We

use series solutions as a basis of interpolation or extrapolation.

The extrapolation function with pow-
erseries of 20000 terms. Solid line is
the extrapolation function, which di-
verges when x > 3.8633. Dots are
values by simulations.

We use bigfloat of size 380 to deter-

mine series solutions.
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AHEHOF Ly LRIER L 1
Computational Try

R.Vidunas and A.Takemura! derived a system of linear partial

differential equations for the outage probability P(¢s < x). Try
to make a numerical analysis of this system with Grobner basis,
the defusing method, or the method to obtain a stabile system.

Problem

Derive a good system of non-linear equations satisfied by

det W(x). The theory of holonomic quantum field and Hirota
bilinear equations might help to solve this problem. If we can
find such system, try a numerical analysis of it.

Computational Try

Try the defusing method for HX(x, y) upto y ~ 108, which lies
in a range to apply to practical problems.

fR.Vidunas, A.Takemura, Differential relations for the largest root
distribution of complex non-central Wishart matrices, arxiv:1609.01799
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SO F v Ly Y LR E 2]

Computational Try

The defusing method for non-linear equation needs to compute a
composition of non-linear functions instead of the matrix factorial. What is
the size of a problem feasible by current computer algebra systems?

Computational Try

Marumo, Oaku, Takemura gave a method to derive a linear ODE for ¢".
The function 3 for r = 4 satisfies a 2nd order linear ODE. Try to make a
numerical analysis of the system for @3 with the defusing method, or the
method to obtain a stabile system.

Problem
Give a method for a high precision evalution of the hypergeometric function
+F1 and ,Fy. Refer, e.g., to the paper by S.Chevillard and M.Mezzarobba.

Computational Try

Try to make a numerical analysis of the ODE of rank 11 for E[x(M)] with
the defusing method, or the method to obtain a stabile system.
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