cheaiihas O‘F 185AC. 910,

An algorithm of constructing the integral of a module
— an infinite dimensional analog of Grébner basis
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§1. Introduction
Let 9 be a left ideal of Weyl algebra:

An — I{(mll"'!mn!al!“'!aﬂ)'

Put M = A,/%. M is a left A, module. The purpose of this paper is an explicit construction of the left
A, _1 module:

./'Mrd;r:n =M/, M

by introducing an analog of Grobner basis of a submodule of a kind of infinite dimensional free module. We
call M /8, M the integral of the module M. The non-commutativity of A, prevents us from using the usual
Buchberger algorithm to construct M/8, M. (If A, is commutative, then M/8, M ~ A, /(8,,¥%). There is
no problem.) We must consider a sum of left and right ideal of A,,. We overcome this difficulty by using an
infinite dimensional analog of Grobner basis.

The algorithm of constructing the integral of a module is not only important to mathematicians, but also
has many impacts on the classical fields of computer algebra. It plays central roles in mathematical formula
verification [Zeil], [Tak2], computation of a definite integral [AZ], [Tak2] and an asymptotic expansion of
a definite integral with respect to parameters. However, a complete algorithm of obtaining M /8, M has
not been known. We give a complete algorithm in this paper. The algorithm is an answer to the research
problem of the paper [AZ].

We refer to [Buchl], [Buch2], [MM], [FSK], [Bay] for the Grobner basis of a polynomial ideal and free
module, to [Gal], [Cas], [Tak1l], [Nou] , [UT] for the Grébner basis of the ideal of Weyl algebra, to [Ber],
[Bjo] for holonomic system and Weyl algebra. We remark that [Berg] also considered infinite set of reduction
systems.

Acknowledgement. The author thanks to Prof. Noumi for his encouragement of considering the problem
of the paper.

§2. Grobner basis for submodule of R, =lim R™
—

Put R = K{2y,--+,2n_1,01,-+-,0p) = An_1[8s]. We define a left .R module structure to R™ in the
following way. Given s
R™ >3 f=(f(0),-+-,f(m—=1)), a € Ay_1,
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we put
(2.1) af = (af(0),-+ af(m - 1))
and for @ = 8y,
(2:2) af = (af(0)+ f(1), - af (k) + (k + D)f(k+1),--,af(m —1)).
The Weyl algebra A, has a left R module structure in the standard way. The map
m—1
p:R™ > fr— Y apf(k) € An
k=0

is homomorphism of left R module.

We can define the notions of addmissible order, reducible, S-polynomial( sp ) and Grébner basis of the
ring R in a similar way to the case of the polynomial ring. Let us explain some of them for clarity. We define
an order <; between monomials of R by

(2.3) ARt DU A (P (O
—
(ala" ':an—l},ﬁl)" 'IIBH) '<'.! (7])" '17!’!—1,61)" ':6n)
where <3 is the total degree order in IN2"~!. We use the order in the sequel. Let r and s be elements of R.
We put

head(r) = leading term of r by the order (2.3).
We assume head(r) = cz®d” and head(s) = dz79%, ¢,d € K. We define

lem(a,y) = (max{ay, 11}, ,max{an_1,7n-1}) and lem(B,6) = (max{By,61},---,max{fBs,8,}). l

Iff lem(e, ¥) = & and lem(3, §) = B3, r is reducible by s. Put §£ = lem(e,v) and 5 = lem(y, §). We define
Sp(‘;-] S) = pé-egn-B, _ %xf-—‘yalp—és‘

Let r be reducible by s and t = sp(r, s), then the situation is denoted by “r — ¢ by s”. Let —* be a transitive
closure of —. A finite subset G of R is called Grobner basis of an ideal o if Vry,r; € G,sp(rs,7j) —* 0 by G
and % = RG. It is well known that every left ideal of R has a Grébner basis [Gal], [Cas], [Takl], [Nou],
[UT].

Consider R™. [Bay], [MM] and [FSK] extended the notion of Grobner basis to free modules. We can
apply their extension to R™. Let us review their extension (See [Tak1] for proofs in the case of a free module
over a non-commutative ring). Given an element f of R™ that satisfies f(i) = 0 (k < i < m — 1) and
f(k) # 0, we put topIndex(f) = k. Let f and § be elements of R™. The element f is reducible by g iff
k = topIndex(f) = topIndex(§) and f(k) is reducible by g(k) in R. We put

(7.9 0, if topIndex(f) # topIndex(7)
spl/,9) = o
crf —caf, ifk= toplndex(ﬁ = topIndex(g),

where ¢y and cy are determined by the relation sp(f(k), g(k)) = e1 f(k) — cag(k). We define an order » in
R™ in the following way.

topIndex(f) > topIndex(§)

2.4 - g )
(2.4) Rl B (topIndeX(f} = topIndex(§) = & and f(k) >, g(k))
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We use the order (2.4) of ™ in the sequel. We remark that other order in R™ can be used in our
theory. The use of good orders leads us to a fast termination of Buchberger algorithm.
Put

G = {jl}"'ljp}'
The set G is a Grobner basis of a left R submodule M of R™ iff (1) Vi, 3, sp(§i, ;) —* 0 by G and (2) G
generates M over R.
Any left submodule M of R™ has a Grébner basis ([Bay],[MM], [FSK], [Tak1]).
The i-th unit vector is denoted by &;, i.e.,
E"Q :(1,0,---,0), E'l == (U,],O,---,U),---.

Any vector § € R™ can be decomposed into a sum of (monomial of R) x (unit vector) which is written as

§i = E cjé;, ¢ is a monomial of R.
i

The set G is a reduced Grobner basis of a left submodule M iff G is a Grébner basis of M,
Vi, j ‘{gkj = cglé'h by G\ {7:}
and the leading coefficient of §; is 1.

We define these notions on
Ry =lim R™ ~ R module A4,,.

Any element f'of R can be written as
F=(f(0), £(1),---), Fk,i>k=> f(i) =0 and f(k) # 0.

The number k is denoted by topIndex(f‘). Therefore we can consider fas the element of R™, m > k. We
define the notions of reducibility, s-polynomial and order < identifying the element fof R, with the element

(£(0),--+, f(m = 1)) of R™, (m > k).
Put

gz{ulv_‘%"'}l EzeRoo

We do not assume that G is finite set. Put

G(k) = {7 € G|topIndex(§) < k}.

AsSsUMPTION 2.1
Yk, #G(k) < +co.

We consider the existence of a Grobner basis under Assumption 2.1 in the sequal.
DEeFINITION 2.1
f—hby G 3i,3m, §; € G, topIndex(g;) < m,topIndex(f) < m and f — h by § in R™.
The rewriting f — & is called reduction of i

ProprosiTioN 2.1 For any element fe R, any sequence of reduction of j_" by G terminales in finite
steps.
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Proof. Put m = topIndex(f). Note that any sequence of reduction of f uses the elements of G(m).
Since G(m) is the finite set, the sequence terminates in finite steps. g

It follows from Proposition 2.1 that we can take a transitive closure of — in finite steps. The transitive
closure is denoted by —*.

DEFINITION 2.2 The set G is a Grobner basis of a left R submodule M of R, iff
(l) Vi!j) Sp(!}‘ilg"j) —*0 by g 5
(2) G generates M over R, ie., Vf € M,3I C N,Ta; € 12 such that #I < co and

=) g
i€l

(3) (local finiteness)
VYm, #G(m) < +o0.

ProrosITION 2.2 If G is a Grobner basis of an R submodule M C Ry, then

Vi, 35 € G(m), sp(di, §;) —" 0 by G(m).

Proof. We have sp(#i, ) —"* 0byG. Since topIndex(sp(di, 7;)) < m, we have sp(#i,7;) —"
0 by G(m).

THEOREM 2.1  Let M be a left R submodule of Ry, and G be a Gréobner basis of M. If f_‘E M, then
f—"0byg

Proof. Since G is a set of generators of M, there exist an index set I and elements a; € R, i € I such
that #I < +co and f = Yier @ifi. Put m = max;er{topIndex(g;)}. We can consider f as an element of
R™. Tt follows from Proposition 2.2 that G(m) is a Grobner basis of RG(m) in R™. Since f € RG(m), we
have f —* 0 by G(m) for any sequence of reduction. g

Let Hy, m=0,1,2,... be subsets of Ry, that satisfy the conditions:
CHmn CHmp1 €

2.5 5
125) #Hyn < -+oco and topIndex(f_) <m forall f€Hn.

Suppose that M, is the left R submodule generated by | Jr_o Hm. We have Mo, = |, RHim

THEOREM 2.2  Lel Gy, be the reduced Gribner basis of RM,, in R™. The sel
oQ
goo ==) Gm

m=0

1l

is a Grobner basis of Mo

Proof. We prove the local finiteness condition: #G.,(m) < -+oo. We remark that G,(m) # G,, in
general. Put

Gi(m)={f e gk|topIndex(f§ < m}.
Gir(m) is a Grobner basis of RG;(m) in R™. Since --- C RGp(m) C RGi41(m) C -+ in R™, there exists kg
such that Yk > ko, RGi(m) = RGy,(m). Gy is the reduced Grobner basis, then we have Yk > ko, Gi(m) =
Gro(m). Hence #Goo(m) < +o0.
Other conditions are easily verified. g
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§3. Computation of the integral of A, module
Let ¥ be a left ideal of A4,, and M be A,/%. We have
M/, M ~ Ap[/(8nAn + &) as A,_; module.

The set 9, Ap + An® = 9, A, + U is not left A, module. Let us note that R is a subalgebra which is
commutative to 8,. Therefore 9, A,, + ¥ has a left R module structure. We will show that 8,4, + o is the
left R submodule of R,,, prove the existence of a Grobner basis (with the local finiteness property) of the

module and present a construction algorithm of the basis.
Let

(3'1) G={9’1"'sgp}
be generators of the left ideal 9( of A,,. Any element g can be written as
Ik
o= g, g€ R.
j=0

We put
w(anl‘:.l) = (0:"')07k16ﬂ:0! g 70) € Rm’

and i
1#"(48:19‘&) —_ (Os"'loﬂgkﬂlgkls'"’gk-!;.lor"':o) € R,

Let H,, C R™ be
m=1 P m—sp-1

@2 (Uoestn)u(0"0 vision)).
k=0 k=1 i=0

We have --- C Hyp C Hmy1 C - and #Hyn < +00. Moy = Um=o RMm is the left R submodule of R.,. It
follows from Theorem 2.2 that M., has a Grébner basis G

THEOREM 3.1.
Roo /Moo = Ap /(8 Ap + ) = fMda:,,

as left An_1 module,

Proof. We define a map:

Q:Roo Bf-’z (f(0)7f(1)1"':f(m)xos"') ==t
fFO) +2af(1)+ -+ (zn)™ f(m) € A,

where m = topIndex(f_).
We prove if f € M, then ﬂ(f_j € 8, An + . Since f € Moo, there exists a;, b; € R such that

f= > ai(Oaeli) + > b))
) J
where EJ. is a finite sum. Then we have
o(f) = Zajan-""ﬁj + Zbi""::jm:j
3 -

J
=D On(a;28) + 3 (b2if Yo, € Ondn + 2.
i j
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Therefore we can define a map: !
0 : Rm/Moo — An/(anAn + u))

by (17)) = [0/}, “

It is easily verified that # is A,_; homomorphism and surjective.

We will show that § is injective. We assume that E(f_) =0,h+9g€8,A,+%, he A,,g € A. hcan be
written as h =3, hiyzk, hy € R. Then we have 8,h = Yok hi(9nzk). g can be written as g = Yk CkGE. Ck
has an expression of the form ¢ = Ej bkj:c;’;, by; € B. Then we have g = Ek,j byjz} gr. Since @ is injective,

then we have - :
F= het(@nzh) + Y bist(zhor) € Moo
k kj

Therefore 0 is injective. g

CoROLLARY 3.1  If M is holonomic, then there exisis a number m such that
R™ ) RG oo (m) =~ / M,

as An_y module where Go, is a Grébner basis of M, =|J RHy of (3.2).

We will show an application of our theory to the zero recognition problem [Zeil] [Tak2] and the com-
putation of a definite integral with parameters [AZ] [Tak2]. Algorithm 3.1 can be used in Algorithm 1.2 of
[Tak2] and is “correct ” algorithm in the sense of [Tak2].

ArGoriTHM 3.1 (Computation of differential equations for a definite integral with parameters)

INPUT: G = {gi}, generators (3.1) of a left ideal ¥ of A,. We assume that M = A, /¥ is holonomic.

OUTPUT: G(0), a Grobner basis in R such that R/RG(0) is holonomic A,_; module, i.e. , G(0) is a very
- large system of differential equations such that G(0) C 8,4, + .

(1) m := max{s; + 1}; G :=0;

(2) repeat

(3) Hys i =(3.2);

(4) G := G U { reduced Grobner basis of RH,, in R™ by the order (2.4) };

(5) m:=m+1;

(6) until ( R/RG(0) is holonomic)

TueoreM 3.2 Algorithm 3.1 stops.

THEOREM 3.3  Assume a function f of xy,..-,z, is rapidly decreasing with respect to x,. Let % be an
ideal of A, such that %f =0. If A, /% is holonomic, then the integral

[

is annihilated by differential operators G(0) where ¥ is the input of Algorithm 3.1 and G(0) is the output.
R/RG(0) is holonomic A,_1 module.

Examples and timing data appear in [NT].
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