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It is a classical problem to find contiguous relations of hypergeometric functions of several
variables. Recently Kametaka [11] and Okamoto [15] have developed the theory of hyper-
geometric solutions of the Toda equation. We need to find the explicit formulas of contiguous
relations (or ladders) to construct the hypergeometric solutions of the Toda equation explicitly.
We present an algorithm to obtain contiguous relations of hypergeometric functions of several
variables. The algorithm is based on Buchberger’s algorithm [3] on the Grobner basis.
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§0. Introduction

In this paper we answer the following problem.

PROBLEM ([12], 54-60). Find a systematic method to obtain contiguous relations
(or ladders) of hypergeometric functions of several variables.

The problem is classical, but we need to answer the problem in view of the recent
studies of hypergeometric solutions of the Toda equation [11], [15]. Contiguous
relations are also used to make correspondence between Lie algebra and special
functions. The correspondence yields formulas of special functions [13].

We present a new algorithm to obtain contiguous relations of hypergeometric
functions of several variables. The author implemented the algorithm on the
computer algebra system REDUCE3.2.

Our algorithm is based on Buchberger’s algorithm that constructs a Groébner
basis ([3]). But we need to generalize the notion of Grébner basis to the following
rings.

Let k be a field of characteristic 0. A ring of differential operators with rational

function coefficients
0 %,
k(xl" e xr:) el 3
0x, ox,

is denoted by 7. A product in .« is defined by the relation
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where 6;; is Kronecker’s delta.
Let 4, be a difference operator defined by

Ai./.(’]"lv ; ”’)'l"r "‘1)“r:r)=f(;'1= “'ali+]’ “"Am)'

A ring of difference-differential operators with rational function coefficients

ad 0
Rld =500y A Xt o ) [Al, ) A,,,,a—x], i ?’x_,l
is denoted by .o/(m, n). Note that ./(0, n) =./.

Buchberger [3] found Buchberger’s algorithm that constructs a Grébner basis of
an ideal of a polynomial ring. His algorithm has been extended in many fields.
Zacharias [17] found the efficient algorithm that solves a linear indefinite equation in
a polynomial ring and is based on the Grébner basis. These algorithms are extended
to modules by [1], [14], [8]. Galligo [9] also extended them to modules over the rings of
differential operators.

In § 1 we generalize Buchberger’s algorithm and the algorithm to solve a linear
indefinite equaion to a class of modules that include .o/ (m, n). There is no published
Buchberger’s algorithm for .o/ (m, n), but we can generalize the algorithm by the same
idea with Buchberger’s original work. We remark that Bergman [2] essentially
suggested these algorithms.

In §2 we state the algorithm to obtain contiguous relations. The notion of a
Grobner basis for o7, .o/ (m, n) plays a crucial role. We present the explicit formula of
the contiguous relation of Appell’s F, with respect to the parameter « (see [7] 5.7 on
the Appell’s functions). It is a new formula. The first motivation of the paper was to
answer the question “Is F, a hypergeometric solution of the Toda equation?”’. The
answer is negative by the formula.

§ 1. Grobner Basis

We define G:={0,1,2, ---} and G,:=G u {w} where w is a symbol that is not
an element of G. G is a commutative semigroup with respect to ‘+’. We define
w+k=w, ke G,. It is a natural extension of ‘+’ to G,,. The action of G? on (G )" is
defined by

G x Ggua((klv T, kq)? (‘fls teee) I—'(k1+f1, A0 /Cq+fq)EGfu :
Let I be a subset of (G,)%. I is a monoideal iff G'+I<=1. Let k; be elements of G,
oy ety i 1S Uls,-s,(!c,--l— G"). Any set of monoideals [; (i=1, 2, - - ) satisfies the

ascending chain condition, i.e. if [;=1;,,, then there exists i, such that /; =1, for all
Let R be an associative ring (with unit) and M be a left R module. Suppose that
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case. We call the rewriting procedure the weak reduction. By the Proposition 1-1, we
can verify that a weak reduction by % terminates in finite steps.

Let F, G be elements of M. If lem(F, G)=(w, - - -, w), we define the critical pair
of Fand G as

sp(F, G):=0.

If lem(F, G)#(w, -+, w), there exists c¢,deR such that deg(cF)=deg(dG)=
lem(F, G). We have {(deg(dG)) < {deg(G)) by (1.5). The condition (1.7) says that
there exists #e R such that deg(cF—hG)<deg(cF)=Ilcm(F, G) and deg(cF)=
deg(hG). We define the critical pair of Fand G as

sp(F, G):=cF—hG .

There is ambiguity in our definition of the critical pair sp(F, G). We choose one of the
elements that satisfies the definition of the critical pair and fix it.

Example 1-1. A left ideal R of the ring .o/(m, n) is left .o/ (m, n) submodule of
o/(m, n). Let an order >, on G™ be a lexicographic order, i.e.

(ple ey ',P,,,)>‘1(Q1a S q"a) iﬁpm>qm or (!Jm:q": and (pla £33 "pm—l)>'l
(qlv L q"l—l)) ,
and an order >, on G" be a total degree order, i.e.
(pla (s lﬂprl)>-2(q1’ ¥ ‘an) lff(])]“Jr it '+pn>QL+ = +q”) or (p1+ s +pn
=q,+ - +q,and (p,;>q, or (py=q, and (py, -, P)>2(q2, " ", 4,))) .
We define an order > on G"x G"=G™"" as

(vy, 1) > (wy, Wy) iff  vy>,w, or (v;=w, and v >w),

where v, w, e G™, v,, w, e G". Put

it e OO B Y %0
i k<« i i @xl K—" P=0y (au )

and deg(o) : =(a)’ ko ﬂ)), Whel‘e k=(k19 FA Ay km+n) and‘ a=(a1° s am‘!’)r)' ‘deg, and
> satisfy the conditions (1.1)—(1.8).

Example 1-2 (cf. [1], [8], [14], [9]). Let R be an associative ring (with unit).
Suppose that there exists a map

deg, : R—(G,)"

and an order >, that satisfies the conditions (1.1)-(1.8). R" is a left R module. We
define a ‘deg’ as

degiRES (B, - =, BENI——H(@;, = 0 deg (), <, B)E(Gu)”
where Q,=(w, -+, @) (n-tuple), Vjdeg,(F®)>=, deg,(F¥) and if deg,(F")=
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deg, (FY), then j=>1i.
We define an order > as

(Qh S0ty QI—D degl(F“)), Thaes Qr)>'('le it s Qj“ls degl(F(j})a i 'Qr) .

iff deg,(F?)>, deg,(F) or (deg,(F")=deg, (FY) and i<j). It satisfies the con-
ditions (1.1)~(1.8).

Let (LY, - - -, L'”) be an R submodule of M generated by L?e M (i=1, - - -, p).

Algorithm 1-1 (Buchberger’s algorithm, [3]).
input: {LY), -+, L'P}: generator of the submodule (L', - - -, L),
output: ¥: Grobner basis of (LY, - - -, L"),
@::@;Sﬂ;z{Lm, s L(”)};
while & £ & do
begin 4. =% v ¥, & :=;
while there is a weakly reducible elements in 4 do

begin
L, :=one of the weakly reducible elements of %,
G:=9\{Lo};
Li;=Lg;

repeat weak reduction of L
until L becomes weakly irreducible by 4,
if L#0 then ¥:=% v {L};
end;
for
all combinations (P, Q) (P+# Q) of the elements of 4
do begin
T:= Sp(P! Q),
repeat weak reduction of T
until 7° becomes weakly irreducible by %,
if T#0 then & :=% u {T};
end;
end;

The chain of the mono-ideals generated by deg(d), de % satisfies the ascending
chain condition. Therefore we can verify that the algorithm 1-1 terminates in finite

steps ([3]).

DEFINITION 1-2. The output % of the algorithm 1-1 is called the Grdbner basis
of the left R submodule (L, - - -, L'?),

Let 4={G,, -+, G,} be a Grobner basis of the finitely generated left R
submodule R of the left R module M. We fix the Grébner basis. A representation of
the element D of R on % is an element d of R™ such that
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m
D=3 aG,, where d=(a,, ', a,).
i=1
The element D of | may have more than one representation on 4. The following
proposition is an immediate consequence of the definition of the Grébner basis.

PROPOSITION 1-2.  sp(G;, G)) =a{"G,—4\"G; (is)) has a representation § =
(s, -, 88D such that deg(s{"G,)<deg(sp(G;, G))) for all k.

THEOREM 1-1(¢f. [3], [2]). Suppose that % ={G,, - -, G, ) is a Grobner basis of
a submodule R, then

U <deg(L)>: <deg(Gl )': A dEg(Gm)> .

Leijo)

That is to say, Ne M is weakly reducible by % or equal to 0 if NeR.
Proof. Let i=(h,, -+ -, h,) be an element of R™. We set
deg(h):=Max;_, ... ,[deg(h,G)],
M(h):=8{h;|deg(h,G;) =deg(h), 1 <i<m) .

Suppose the Le®R and L#0. If we prove that L has a representation / such that
deg(L)=deg(f?), the proof is completed by (1.5). So the proof of the theorem is
reduced to proving that if L=%"" h,G,; and deg(h)>deg(L), then we can construct a
representation j of L such that

deg(/)<deg(h)  or M())<M(k).

If deg(l?)>-deg(L), then we have M(j1)>2 by (1.3). We can suppose that deg(f?)=
deg(h,G,) =deg(h,G,) (renumber the indexes of G, if necessary). We have
sp(Gy, Gy) =¢,G, — ¢, G, deg(c,G,) =deg(c,G,) and <deg(hlG1)>§<deg(C:G,)> by
(1.8). Therefore there exists ge R such that

deg(h, Gy —qc,G,) < deg(h, G))
by (1.7). We have

L=h G, —qc,G,+qc,G, + Z h,G,;
iz2

m

=(h,—qc)G, +qsp(G,, G,)+qc,G,+ Z h.G,;

i=2

m m

=(h; —qc))G,+q 2, s{'?Gy+qc,G,+ ), hG;.
k=1

iz2

Put
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Jri=h —qc+gsi?,
J2i=qs$ 4+ qc,+ b,
Jii=hiAgsi®, (i#1,2).
J satisfies the conclusion. M
Once we construct the Grobner basis, we can obtain a special solution of a linear

indefinite equation. We will describe the procedure. It is the same as thé well known
procedure for polynomial ring (see [17], [1], [8], [14]).

Let C; (i=1, - -, ) and D be elements of M, and ‘R be a left R submodule of M
generated by C; (i=1, ---, /). A linear indefinite equation

!
Y xG=D, x€ER (1.9)

i=1

has a solution (x;, - -+, x)) iff DeR. We can construct a Grébner basis 4 ={G,|k=
I, ---,m} of R by the algorithm 1-1. Hence it follows that we can express G, by
{Gi|i=1,"~+,1} explicitly

Therefore we have

So we may solve

m

Z yka:D L]
k=1

to solve the (1.9). If De R, then there exists a sequence of weak reductions of D by %
such that

F}k_Sik+lGik+l=‘F‘ika(Osksq_la F}D=D)a
£, =0.
Eliminating F;, from the above sequence, we obtain one special solution of

:l=1 WG =D.

§2. Answer to the Problem

LSet fi(x,, - -, X,) be a hypergeometric function with a parameter A. A differen-
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tial operator H, that satisfies

H,{f)_ =f1+1 (2. 1)
is an step-up operator, and a differential operator B, that satisfies
Bif)_ :./li_l (2.2)

is a step-down operator.
Example 2-1. Put

aps — S (0!, H'l)(ﬂ, m) _m
gl mgo L, m),m)

We have
H f(a, B, y; X)=f(e+1, 8,7, %),
B flo, B, v; x)=Fflo—1, B, y; x)..

The pair of identities (2.1) and (2.2) is called a contiguous relation (or ladder). The
problem is to “Find an algorithm to obtain a step-up operator and a step-down
operator”.

It is well known ([7], [12]) that /; is a solution of a system of partial differential
equations

DPf,=0, Dfest, (i=1,-,]).

£0; = 0)=1.,

Let R, be the left ideal of the ring of differential operators .« generated by D{* (i=
1, -,0)and 4={G¥|i=1, - - -, m} be the Grobner basis of R,.

PROPOSITION 2-1. If we have a step-up operator H, (resp. a step-down operator
B,), then a step-down operator B, (resp. a step-up operator H,_)) is a solution of a
linear indefinite equation in of

Y XGP+ B H=1, (2.3)
i=1
(resp.

m

Y, X,GP+H, B;=1,)

i=1

where X;, By, (resp. H,_,) are unknown elements.
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Proof. We prove the first case. Let (X,, ‘- -, X,,, B,+,) be a solution of (2.3).
Since G\ f, =0 and H,f,=f,+,, we have

m

> X.GYf+ B, H, fi=1 i

i=1

BJ.+1H.AfA :fA
BA+1fA+i=fJ.- [

The equation (2.3) has a solution iff the left ideal generated by % U {H,} is equal
to .«/. The condition holds if R, is a left maximal ideal and H, ¢ R,.

PROPOSITION 2-2. [If'R, is left maximal and [, #0, then H, and B, are unique by
modulo R ;.

Proof. We prove the uniqueness of H,. Suppose that

Hyfi=Fiv1» Bofi=f1+s and H,%H, mod R,

We have (H,—H))f,=0, H,—H,¢%R, and R,f,=0. Since R, is left maximal,
H,—H,and R, generates .. Therefore we have 1-f,=0. It is a contradiction. M

PROPOSITION 2-3. (a) If the system of differential equations R, f=0 is irreduc-
ible, then R, is left maximal.

(b) Suppose that any solution [ of R, f=0 has regular singularities on the n-
dimensional projective space and that the dimension of the solution space of the system
of differential equations R, f=0 is finite. ‘R, is irreducible iff the monodromy group of
the solution of R, f=0 is irreducible.

Proof of (a). Suppose that R, is not left maximal, we have the operator P such
that

(m},:\ P)(..__._f?’j, (Enj_e P):f—'&‘f

A solution space of equations (R,, P)f =0 is a proper subspace of the solution space
of the equations R, f =0. It means that R,/ =0 is reducible. W

The fact (b) is well known, so we omit the proof.
PROPOSITION 2-4.
n n
Xy ( Z a0y +ag "f‘mh):( Z a0y +f‘0)xkr s
i=1 i=1
where a; (i=0, - - -, n) and r are complex numbers and § ;= x,(8/0x;).

Proof. By a calculation. M
Let
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n q n
rtad otyi= 11 ($ aousat)-o f1( plockb). 0

=1 Ni=1 ji=1 \i=1
where {af}, {b{} are complex numbers and r is an integer. By the Proposition 2-4,

we have

Lk({a{}s {5{})( Z bf"(sxi—l_bf)):( Z bf‘éu'i_b{()) Lk({ﬂ}i}, {bf}) ]

i=1 i=1
where |
bi=bi (i#0 or j#k),
Bt = bk 4 rb*.

Hence it follows that if the function f(ad}, {bi}; x,, -+ -, X,) is a solution of the
partial differential equation L,({a}}, {b{})f =0, then

(5 ot ob )t B0, xd
i=1
is a solution of the partial differential equation L,({ai}, 1hiy) f=0.

The differential operators that define the hypergeometric functions of several
variables consist of the operators of the form (2.4). So either a step-up or a step-down
operator is of the form

¢ (E bi‘(sxl_*—b;(())s

i=1
where ¢ is a constant for a normalization.

Algorithm 2-1.
input: A system of partial differential equations

DY f;=0(i=1,--.0),

that defines a hypergeometric function of several variables.
output: Step-up operator H; and step-down operator B;.
begin
Construct a Grobner basis {GV}
of the left ideal generated by {D{V};
Find H, (resp. B,) by the Proposition 2-4;
Solve the linear indefinite equation (2.3),
Do weak reduction of B, (resp. H, _,),
then we obtain the output;

end;

We remark that the contiguous relation of the holonomic solution of the Euler-
Poisson-Darboux equation or harmonic equation of Darboux with respect to the
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parameters that are contained in these equations can be obtained by the algorithm 2-
1 if the equation (2.3) has a solution. See [10] and [16] on these equations.

Example 2-2. Appell’s F, is

vy e v (& m+n)B, m+n)
Felb B o ",.,."Z:o (1, m)(L, n)(y, m)(¥’, n)

m..n

Put
{Lga}=éx((3x+y_ I)Hx((sx+5y-l_oc)(5x+(5y+ ﬁ) 3
LE=0,0,+7y" = 1) =0, +0,+)(d:+5,+B) ,
then F, is the solution of
LPf=LPf=0, [(0,0)=1.
Put k:=C(f,7,y) and o :=k(x, y)[0/éx, 8/0y]. Let R, be the left ideal of o
generated by L{® and L. Put
|
H,::;(()_\.-i— (21 i3 Y (2.5)
then
H.Fy(o, B, 7, 7"; x, ) =Fala+1, 8,7, 75 %, 1) .
We use the ‘deg” and > of Example 1-1. The Grobner basis of R, is

i i A
xa 2+}'a }faj 7 a;,
82 62 d 0
2xy8x6y+(y"—y(1—x))a;+(a+ﬁ+1—}')xa+((a+ﬂ+l)y—}"(l—x))ajiﬂﬁ,

3
2034 (x? —2xy—2x+y* =2y + l)a—y3 +lower order terms .

Solve the linear indefinite equation (2.3). We have
Ba+,=i(c0+c[i+czi+csi), (2.6)
c Ox dy oy*
where
c==2(—a+y' = 1)(—a+y+y =20—a+y—1),
co=20> +40?fx +4o? By — 202 f— daPy — 4oy’ + 82 — 3t fiyx — Safyy +
affy —Safy’'x —3afy v+ afy’+ 10afx+ 100fy — daf + 2ay* + 6ayy’ — 100y +

20y — 100ty + 10+ 28y%y + 2Byy"x+ 2yy"y — 3Byx— TByy + By + 2By *x —
TBy'x =3By y+ By +6fx+ 68y — 28— 27y + 29> —2yy + 8yy’ — 67+ 2y — 6y +4,
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¢, = x(do?x + 4o’y — 462 + 20 fx — 20y — 2008 — Soryx — 3ayy + Sy —
Sap’x — 3o y 4+ Sop” + 1200x + 8oty — 1200 — fiyx + Byy+ By — By x+By'y+
By’ +2Bx—2By— 2B+ 7P+ y—y*+ 39y x+ 97’y = 3yy" —6yx —dyy+
6y+2y"2x— 292 —8y'x —2y y+ 8y +8x+4y—8),

¢, =4e2xy+ do?y? — 4oPy — 2ufxy+ 20fy* — 20fy — 3oy xy — Secy )2+
Soryy + 200" xX% — Toty' Xy — Aoy x — 3oy y? 4 oy 'y + 207+ Bouxy + 120y — 120y +
Byxy — Byy? + Byy + By xy — By'y? + B’y —2Bxy+2By* =28y + 2y*y* = 2%y —
WYX 3yy Xy 29y X+ 29y ¥ =9y y— 7y — 2yxp — ByyP 4 Byy —y2x7 + 3y xy+
29 2x 4y 2y —y 242y x% — 8y xy—4y'x—4y )P+ 27"y + 2y +dxy+ 82 —8y,
e;=3Qu—y—7 +2)¥(x*—2xy—2x+y*=2p+1).
This is a new formula.
PROPOSITION 2-5. Suppose that o,y,y',y+y ¢ Z and 20— (y+7')#0. If the

monodromy group of Fy(a, f,v,7'; x,y) is irveducible, then any ladder of F, with
respect to the parameters o

(Ha+m Ba-f-n)! (nEZ)
is not a ladder of Laplace.

Proof. Since the monodromy group is irreducible, then H, and B, are unique
by modulo R, by the Propositions 2-2 and 2-3. The step-down operator B, (2.6) 1s
weakly irreducible by the Grobner basis of the ideal ;. Hence it follows that (2.6) is
the lowest degree expression of the step-down operator by the order > of the

Example 1-1. Therefore we cannot construct a ladder which consists of first order
operators (see [15] on the ladder of Laplace). M

We conclude that F,(«+n, 8,7, 7’; x, y) is not a hypergeometric solution of the
Toda equation in the context of [11], [15]. A complete list of hypergeometric solutions
of the Toda equation will be presented in a future paper.

We use (deg, >) defined in Example 1-1 in the sequel. We can obtain a difference
contiguous relation by constructing a Grébner basis in the ring 2/(1, n) by (deg, >).
We write A for 4, in the sequel. Let D{*, - - -, D{* be differential opertors that define

hypergeometric functions of several variables and H; be a step-up operator.

PROPOSITION 2-6. Put
Re=(DY, -+, D, Hy—4,).
if
diMim, x, - e (L, )R < +00,

then the Gribner basis of the ideal R by (deg, >) contains an element
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Lek(d, x;, +~ «,x)[d4] .

Proof. If there exists no such element in the Grobner basis, 4,'— 4,7 (i#)) is

weakly irreducible by the Grébner basis of the ideal SR. Therefore we have

A=A ¢R (i)

by Theorem 1-1. It means

dimk(}...\‘l. e -‘,rn]'—oi/(]., H)/ER =+ o0 .

It is a contradiction. [l

Example 2-3. Let

1 0
Hy=—|x,=—+4
; A(XIax:+ )

be the step-up operator of the Gauss hypergeometric function, and D§" be

82 , d
x,(1 mxl)ﬁ+[}'-—(n+f>’+ l)xlja—lﬁ.

Put k:=C(B, 7). The Grébner basis of the ideal (D§", H, — A,) of the ring £#(1, 1) by
(deg, >) is

L=+ D(1—x)42+[p -2+ 1)+ 41—B)x, 4, +(A+1—-7),

2 Ad, + 4
a_Xl'_ 1+ L]

we have

LF(A‘_, ﬁa ?i .\:1):0 ?

It is the well known difference contiguous relation of the Gauss hypergeometric
function.

[6]
(7]
[8]
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