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Abstract

Homogenizing a module over the ring of differential operators, we define
the notion of a minimal free resolution that is adapted to a filtration.
We show that one can apply a modification of the algorithm of La Scala
and Stillman to compute such a free resolution. By dehomogenization,
one gets a free resolution of the original module that is small enough to
compute, e.g., its restriction and integration. We have implemented our
algorithm in a computer algebra system Kan and give examples by using
this implementation.

1. Introduction

We denote by D = D,, the Weyl algebra on n indeterminates x4, ..., z, over a
field K of characteristic 0; i.e., a K-algebra generated by xy,..., 2, and 0y,...,0,
with fundamental relations

;T = Tjxy, 828] = 8]-82-, &wj = x]&- + (52']‘

fore,7 =1,...,n. Let M be a left D-module of finite type. A presentation of M
is an exact sequence
D2y pro 2 M 0 (1)

of left D-modules. The homomorphism ¢; is defined by
WY1 : D'y U = (Ul,---,Um) — UP € D™

with an r; X ro matrix P = (P,;) whose elements are in D. Hence we often
identify the homomorphism ¢; with the matrix P. Hence giving a presentation
of M is equivalent to giving such a matrix P. It is the starting point of the
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D-module theory to regard M as a system of linear differential equations
o
ZPZ-ju]- =0 (i=1,...,m)
i=1

for unknown functions uy, ..., u,,. In algorithms for D-modules, one of the basic
tools is the computation of free resolutions. For example, in order to compute
the dual of a holonomic system M, we can use an arbitrary free resolution of M.
On the other hand, for the computation of the cohomology groups associated
with the restriction (inverse image) and the integration (direct image) of a D-
module M, we need a free resolution that is adapted to (or strict with respect to)
the filtration of D defined by a certain weight vector (cf. Oaku and Takayama
(in press), Oaku and Takayama (1999)). In Oaku and Takayama (in press), we
proposed to use the so called Schreyer resolution to obtain an adapted free
resolution. However, it often produces a resolution that is too big to complete
the resolution computation, or to pass to the next step.

To overcome this bottleneck, we need an adapted free resolution that is as
small as possible. However, for a D-module the notion of minimal free resolution
is not defined directly. For this purpose, we use the homogenized Weyl algebra
(or the homogenized ring of differential operators); it was implemented in a
computer algebra system Kan/sml and its fundamental properties were studied
by Castro-Jimenez and Macarro (1997).

Definition (homogenized Weyl algebra): We denote by DM = D®) the K-algebra
generated by h, © = (z1,...,2,), and d = (04, ..., 0,) with the fundamental re-
lations

xixj — J;jxi = 0, 828] — 8]82 = 0, xiaj — 8]-.7:2- = —(Sith,
hx; — xih =0, ho; — 0ih =0 (1,7 =1,...,n).

We call D) the homogenized Weyl algebra.

Note that D is isomorphic to the Rees ring associated with D. An element
P of D™ is written uniquely in the form

P= > aush'z?d’
AEN,a,BENT

with ay.p € K. The total degree of P is defined by
deg(P) := max{X + |a| + |B] | arap # 0}.

Let (D™); be the set of elements of D™ homogeneous of degree 7 with respect
to the total degree. Then we get a decomposition into direct sum
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which makes D) a non-commutative graded ring. We have (D), = K, and
(D), is a finite dimensional K-vector space. Hence we can define the notion of
minimal free resolution for D"-modules. Moreover, we shall show that we can
define a minimal one among the adapted free resolutions of a D")-module. We
can compute such a free resolution by modifying the algorithm of La Scala and
Stillman (1998) (see also La Scala (1994)).

The substitution A = 1 induces a ring homomorphism
p: DM 5Py Plu=1 € D.

We call this homomorphism the dehomogenization.
Dehomogenizing a presentation

(DB 2y (Do Loy a0 (2)
of a left graded D™-module M’, we get an exact sequence

pr st pro elst a0

of a left D-module M’|,—;, which is unique up to isomorphism, independent of a
presentation of M'. Conversely, given a presentation (1) of a D-module M, there
exists an exact sequence (2) of D")-modules whose dehomogenization coincides
with (1). However, such an M’ depends on the presentation of M.

Further, dehomogenizing a free resolution

2 (DW)re 2y (DU B (pyre Py g (3)

of a D™ -module M, we get a free resolution of the D-module M’|;—;.
Hence, given a presentation (1) of a left D-module M, we propose to compute
a free resolution of M as follows:

1. Take a presentation (2) of a left D("-module M’ whose dehomogenization
coincides with (1);

2. Compute a minimal free resolution (3) of M’ that is adapted to a filtration
if necessary;

3. Dehomogenizing (3), we get a free resolution of M (adapted to a filtration).

The reason why we compute free resolutions via homogenization consists in
the fact that a minimal free resolution (adapted to a filtration) is defined and
computable for a graded D")-module of finite type by using (a modification of)
the algorithm of La Scala and Stillman (1998). We can also define the notion of
minimal free resolution of a D-module M adapted to the filtration defined by
the total degree. We prove that this coincides with the dehomogenization of a
minimal free resolution in D) of a homogenization of M. Hence, at least for the
ordinary minimal resolutions, the homogenization does not increase the size of
the free resolution although it increments the number of indeterminates by one.
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We have implemented these algorithms in a computer algebra system Kan/kO,
which is obtainable from the web page of OpenXM project (2000). Examples
computed by this implementation suggest that this method for adapted free
resolutions is almost optimal as far as the size of the resolution is concerned.

2. Minimal free resolutions of D-modules

By assigning a vector n = (ny,...,n,) € Z", we define the i-th homogeneous
part of the free module (D))" to be

(DY) = (DW);y & -+ @ (D),

This defines a structure of graded left D®)-module, which we denote by (D))" [n].
We call such a graded module a graded free DY) -module of finite type. In general,
for graded DWW modules M = BiczM; and N = B,z N;, a D(h)—homomorphism
@ : M — N is homogeneous by definition if ¢(M;) C N; holds for any 1 € Z.

Definition (minimal free resolution): Let M’ be a graded left DW_module of
finite type. A free resolution

S (D)2 22 (DU 2 (DI 22 M 0 (4)

of M"is called a minimal free resolution if and only if there exist n; € Z" (¢ > 0)
such that each o, : (D")"i[n,] — (D®™)"-1[n,_] is homogeneous and does not
contain nonzero constants when regarded as a matrix.

The following fact follows easily; See e.g., Eisenbud (1994, Lemma 19.4) for
the commutative case:

LEMMA 2.1: A homogencous free resolution (4) of a graded D™ -module M' is
minimal if and only if ;(1,0,...,0), ..., ¢;(0,...,0,1) form a minimal set of
generators of Ker g,y for each 1 > 1, and ¢o(1,0,...,0), ..., ©o(0,...,0,1) are
a minimal set of generators of M.

PROPOSITION 2.1: A minimal free resolution (4) of a left graded DM module
M’ is unique up to isomorphism. In particular, the Betti numbers ro,r1,... are
uniquely determined by M'.

This proposition can be proved in the same way as in the commutative case
(Eisenbud (1994, Theorem 20.2)). To this proof, the following lemma is essential,
which can be also proved in the same way as in the commutative case:

LEMMA 2.2: Let N be a graded left D™ -module of finite type. If N is projective,
then it is a graded free D™ -module.

PROPOSITION 2.2: A minimal free resolution of a finitely generated D) -module
M' is computable.



T. Oaku and N. Takayama: Minimal resolutions of ID-modules 5

Proof: We can apply Algorithms 4.1 and 4.6 of La Scala and Stillman (1998). In
applying Algorithm 4.1, we can use an arbitrary term order for (D")); As deg
in Algorithm 4.1 to determine the strategy (the order to perform the reduction),
we adopt the total degree (with appropriate shift vectors determined by the
Schreyer resolution).

However, for the output of Algorithm 4.6 executed after Algorithm 4.1 to
be a minimal resolution, it is necessary that ¢y(1,0,...,0), ---, ¥0(0,...,0,1)
be a minimal set of generators of M’ in the initial presentation (2) ; i.e., that
1 does not contain nonzero constants as its components. If (2) does not meet
this condition, we apply the following pre-process to (2): Suppose that e.g. the
(1,rg)-component of ¢ is a nonzero constant. Then compute a set of generators

of the D" _-module
{(Ula R Um—l) | (Ula LRI Uro—la 0) € Ker’lf/)o}

and let ] be the matrix with these generators as row vectors. Replace the
presentation (2) by

(DY Ly (DW=t M7 s g,

Continue this procedure until ¥»; does not contain nonzero constants as its com-

ponents, or rqg = 0. If rg = 0, then the minimal free resolution is 0 — M’ — 0.
O

3. Minimal resolutions adapted to a weight vector

We call (u,v) an (admissible) weight vector if u,v € Z" satisfy u +v > 0 (i.e.,
each component of u + v is non-negative) and (u,v) # (0,0). The weight of
a monomial 229% of D as well as of a monomial h*z?9” of D™ is defined by
(u,a) + (v, 3). In general, for an element P of D or of D*) we define the (u,v)-
order ord,,)(P) of P to be the maximum weight of its monomials. This defines
filtrations on D and on D) by

F(ZU)(D) = {PeD | ordy,. (P) < k},

for & € Z. The graded rings with respect to these filtrations are defined by

g @Fuv Fk 1)(D)7

k€L

gr(uv @Fuv F(k 1)<D)
kEL

respectively. For example, we have

gr(u,'u)(D> ~ D7 gl(u,v)(D(h)) = D(h)
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if u+v =0, and

gr(u,v)(D) = [X’[$7 5]7 gr(u,v)(D(h ) = [X[ § h]

if w4+ v > 0 (componentwise positive), where £ = (£, ...,&,) denotes commuta-
tive indeterminates.

Moreover, by assigning m = (my,...,m,) € Z", which we call a shift vector,
we define filtrations on D" and on (D™)" by

Fooym)(DY) = {(Pr,...,P) e D" orduwy(P) +mi <k (i=1,...,r)},
Flpm)((DW)) = {(Pr,..o, P) € (DW) [ordguu(P) +mi <k (i=1,....7)}

respectively. We denote by gr(, [rn]( ", T (u0) [m]((D™)") the graded modules
associated with these ﬁltldtlonb For

P=(P,...,P)e DMy, P= Y an.sh’a®d’
A€EN o, BENT

putting
k= ord(uiv)[m](P) = max{ord(uiy)(PZ-) +m; |1 <i<r},

we define the initial part in(,,)[m](P) to be the residue class of P € Fk [m]((D(h))”)
in 5 [ml((DO))/FEAImI(D)) € g lml((D)). More concretely

the 1n1t1al part is ertten 1n the form

ln(u,u)[m](P> = Z al,\aﬁh/\waaﬁ, cee Z ar/\aﬁh/\xaaﬁ
<u,a>+(v,ﬁ>=k—m1 (u,a>+<v,ﬁ>=k‘—mr

ifu+v=0,and

in(“v”) [m](P> = Z al/\aﬁh/\‘fcafﬁu Tt Z ar/\aﬁh/\‘rafﬁ

{(u,0)+{v,B)=k—m1 (u,a)+(v,B)=k—m,
if u+v>0.

Definition (free resolution adapted to a weight vector): Let M be aleft D-module
of finite type. A free resolution

D E D S M =0 (5)

of M is said to be adapted to the weight vector (u,v), or strict with respect to
(u, v) (also (u,v)-adapted or (u, v)-strict for short) if there exist m; = (mi,...,my,,) €
Z" such that (5) induces an exact sequence

- Fl i )(D) = Fl Ly Imel (D) =% F{, o) (M) =0 (6)
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of abelian groups for any k € Z, where we put
F, oy [mol (M) := @o(F(,, ) [mo](D™)).
Under the condition that (5) is exact and
(Bl [mil (D)) C i, [misa] (DW)7)

holds for any k € Z and ¢ > 1, the free resolution (5) is adapted to (u,v) if and
only if the complex

[mg](M) — 0

of graded gr(, ,y(D)-modules induced by (5) is exact (Oaku and Takayama (in
press, Theorem 10.7)). We denote by (¢;); the j-th row vector of ¢; regarded as
a matrix. If (5) is adapted to (u,v), we have

e &) 8T (u,v) [ml](Drl) i) &7 (u,v) [mo](Dm) ﬂ) gr(

u,v)

ord () [mii]((@i);) <my (21, 1 <7 <),
More strictly, if
ord .y [mio]((wi);) =mi; (21, 1<5 <)

holds, then (5) is said to be properly adapted to (u,v) with respect to the shift
vectors m;. This condition is equivalent to no row vectors of each @, being zero
vectors. If this condition holds, we have

) in () [i21]((0i)1)

Pi = gy [misi](wi) = :
0 (y,0) [ ((94)r;)

We define a free resolution of a left D™-module to be (properly) adapted to
(u,v) in the same way.

For computing the cohomology groups associated with the restriction or the
integration of a D-module, we need a free resolution adapted to a weight vector
(u,v) with u + v = 0 (Oaku and Takayama (in press), Oaku and Takayama
(1999)).

LEMMA 3.1: Substituting 1 for h in a free resolution

co 2y (D 2 (pRyro oy gy (7)

of a D) -module M', we gel an exact sequence
-2y D Zy D B M 0 (8)

of D-modules, which we call the dehomogenization of (7). We denote this M
by M'|j—. Then the D-module M'|,—, is uniquely determined by M' up to iso-
morphism independently of the free resolution (7). Moreover, if (7) is (properly)
adapted to (u,v), then (8) is also (properly) adapted to (u,v).
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Proof: The exactness of (7) easily implies the exactness of (8). Since two free
resolutions of M’ are homotopic, so are their dehomogenizations. Hence M'|,—;
is unique up to isomorphism. Moreover, if (7) is adapted to (u,v), there exist
m; € Z" such that (7) induces an exact sequence

Wy - P o o
e gI‘ (u,v) [1’1’1]](( h)> ) — gr(’zt,v)[mo]((D(h)) ) — gr(u,’u) [l’no](M,> — 0.

Its dehomogenization coincides with the complex

P M) (D7) 2 gr i (Mol (D7) 2% gr,.,) Mol (M) — 0

induced by (8). Hence this last complex is exact. This proves that (8) is adapted
to (u, 'U). O
By definition gr(u’v)(D(h)) has a structure of graded ring defined by
k=1 h
g ( = D Foy (PO FLZH (D)
kEL

while it has another structure of graded ring by the decomposition

g u’u) @gruy i

>0

defined by the total degree. For finitely generated modules over gr(u,y)(D(h))
regarded as a graded ring with respect to the total degree, we can define minimal
free resolutions and they are unique up to isomorphism.

Definition ((u,v)-minimal free resolution): A free resolution
P2 (h)\r1 L4} (R)yro %o '

of a graded left D" -module M’ with n; € Z" is said to be a (u,v)-minimal free
resolution if (9) is adapted to (u,v) with shift vectors m; € Z", and the induced
exact sequence

B . 2 ro Yo
E— gr(u,'u) [ml](D )[1’11] — gr(u,v) [m0]<D )[no] — gr(u,'u) [mo](M,> — 0

is a minimal free resolution of gr(, [mg](M’) regarded as a graded gr(u’u)(D(h))—
module with respect to the total degree. When a free resolution (9) of M’
is properly adapted to (u,v), then (9) is (u,v)-minimal if and only if each
in(u’y) [mz_l](d}z) does not have nonzero constants as its components.

A (u,v)-minimal free resolution is not necessarily a minimal free resolution.
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ExampLE 3.1: Putting n = 2, 2 = x1, y = x,, 0, = 01, 0y = 0y, define a
D" _-module M’ by

M' = D" /(D™W(hd, — 20, — yd,) + DM (hd, — x0, — yd,)).

Asa (-1,1) = (—1,—1,1,1)-minimal free resolution of M’, we obtain

0 — (DM 22 (DMWY 28 pt) 5 A — 0,

hdy — 20, — y0y
Py = hdy — x0, — yoy ,
20} — 20,0, + y0,0, — yO;

B 20, — x0y + yOy + he —ydy, —hx —h+z
vz = —8, + h D, — h 1 '

This is not a minimal resolution of M’ since 1, has 1 as its component. The
associated shift vectors are mg = (0), m; = (1,1,1), my = (1,2). Hence the
associated minimal resolution of gr(_Ll)(M') is given by

0 — (D®)? 22 (D) 24 D) s gr | [mg](M') = 0,

B ho,
’(bl = hay ’
20; — 1020y + y0,0y — yO,

7, = 0y —x0y +y0, —yd, —h
2 —0, Oy 0o /)

On the other hand, a minimal free resolution of M’ is
0 = DB Y2 (pUayz Yy pty a2y g,

[ —20,—yd, + ho ,
n= ( —h, -I—yhay y ) o V= (—hOe +hdy, w0p +ydy —hd, +h* ).

LEMMA 3.2: Lel N be a graded left submodule of (D™)"[n] with m,n € Z".
Let Py, ..., P, be homogeneous elements of N. Assume that for any P € N,
in(u) [M](P) is contained in the left gr, [m]((DM)")-module generated by ing,,y[m](P),
<, () M) (Ps). Then for any P € N, there exist Q1,...,Qs € D satisfying

P=>"QiP,  ord(.(Q:)+ord([m](P) <ordy,m](P) (i=1,...,s).
=1
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Proof: Suppose P is a homogeneous element of N and put k = ord(y,,)[m](P).

By the assumption, there exist homogeneous elements Q e Qg of D™
satisfying

=P — ZQ P, € Fi A m]((DM)),

ord(u,v)(QZ(. )) + ord(uym](P) <k (i=1,...,s).
Then P belongs to € NV and ord ufu [m]( )) < k —1 holds. Hence there exist

homogeneous elements Q s Q of DU satisfying

ZQ 'P, € F{22m] (D™,

ord(u,y)(Qg )) —+ Ord(um) [m](Pz) < E—1 (z = 1’ e S).
(2) Q(?’)

In the same way, we can take );”, Q. ..

(D) ]); 0 F, oy m]((D®)7) = 0

for a sufficiently small & € Z. Hence the above procedure terminates and the
conclusion of the proposition holds for the finite sum Q; = >". Q(-]). O
]_ k3

. successively. For any j € Z, we have

Definition (involutive base): We call {Py,..., P;} satisfying the assumption of
Lemma 3.2 a (u,v)-involutive base of N with respect to m. In case of D, we
impose the additional condition that {P;,..., P} generate N (cf. Oaku and
Takayama (in press, Definition 10.1)).

We have the following criteria for (u,v)-adapted and (u,v)-minimal resolu-
tions:

PROPOSITION 3.1: Let M be a graded left DU -module of finite type and (u,v)
be an admissible weight vector. Assume that

2y (D 2y (pyre oy gty (10)

is a complex of graded left D) -modules, i.e., that ¥;_y o t; = 0 holds fori > 1.
Assume moreover that Imy = Ker g and

i Fopmi] (DM)) € F i) (DW)=1) - (21, k€ Z)

hold with m; € Z". Then (10) is a (u,v)-adapted free resolution with respect to
the shift vectors m; if and only if ¢y is (u,v)-involutive with respect to my, i.e.,
the row vectors of 1 constitute a (u,v)-involutive base of Imy with respect to
my, and (10) induces an exacl sequence
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In addition, under the above conditions, (10) is a (u,v)-minimal free resolution
of M" if and only if (11) is a minimal free resolution of Cokeri, and v, is

(u, v)-involutive with respect to my.

Proof: Suppose that t; is (u,v)-involutive and (11) is exact. For 1 > 2, N =

Kert,_y and {(¢:)1,-.., (%), } satisfy the assumptions of Lemma 3.2. Hence in

view of this lemma, Ker¢;_; = Im1; holds and (10) is (u,v)-adapted as well.
Next, since {(¢1)1,-..,(¢1)r,} is a (u,v)-involutive base of N = Im1; with

respect to mg, we get

Coker E] = gr(u,'u) [mo]((D(h)>r0>/gr(u,v) [l’l’lo](N) = gr(u,'u) [mo](M)

The converse implication is obvious. O
The above proposition also holds for D-modules if u,v > 0.

PROPOSITION 3.2 (LIFTING): (1) Let M be a graded left D) -module of finite
type and (u,v) € Z*" be an arbitrary admissible weight vector. In a presentation

(DM 2y (pWyro Loy a7 g (12)

which is homogeneous with respect to the total degree, suppose that vy is (u,v)-
involutive with respect to mg € Z™. Moreover, assume that there exist m; € Z™
(1 > 1) and an exact sequence

s g ] (DW)) 2 g, Imo] (D™)) (13)

U,

of graded gr(u’u)(D(h))-modules which is homogeneous with respect to both the
(u,v)-grading and the total degree, such that ¢; = in(,.)[mo](¢1) holds and no
row vector of each p; is a zero vector. Under these assumptions, there exists a
free resolution

o (DB 22y (pyr By (pyre 2oy Ay (14)
of M' that is properly adapted to (u,v) with respect to the shift vectors m;, such
that iny,) (m;_1](¢i) = ¢; holds for any 1 > 1.

(2) Let M be a left D-module of finite type and let (u,v) € Z*" be a weight

vector such that u,v > 0. In a presentation
D pro o M 0

of M, suppose that 1y is (u,v)-involutive with respect to my € Z"™. Moreover,
suppose that there exist m; € Z™ (1 > 1) and an exacl sequence

g T](DT) 5 g, Mol (D7)
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of gr(uw)(D)-modules that is homogeneous with respect to (u,v), such thal ¢ =
N, [Mo](¥1) and no row vectors of w; are zero vectors. Under these assump-
tions, there exvists a free resolution

Yoy pre 22y pr Uy pro By A 0

of M that is properly adapted to (u,v), such that in(,.)[m;_1](1;) = @i holds for
any 1> 1.

Proof: We denote the (j,k)-components of ; and of ¢; as matrices by (v;);i
and (;);r respectively, and the j-th row vectors of ¢; and of ¢; by (¢;); and
(:); respectively. By the assumption, we have ord,,,)[mo]((¢1);) = m1;. Choos-
ing arbitrary homogeneous elements (¥4); (j = 1,...,7) of (D)™ such that
in(y,.) [my]((¢5);) = (p2);, we define an ry X ry ma’rrlx ;b; with (¥5)1, - (¥V5)r,
as its row vectors. Then we have ord(,.)((¥})i;) < ma; — my; with the equality
holding at least for one j for each 1. Since 3 0 p; = 0, we have

1

D ()ig(vn); € Fray mol(DW)*) nimgy (1 <0 < ).

i=1

Here N = Imyy = Kereg and {(¢1)1,...,(¢1)r, } satisfy the assumptions of
Lemma 3.2 since ¢ is (u,v)-involutive. Hence there exist Q;; € D™ homo-
geneous of the same degree as (1});; such that ord(uﬂ,)(Qij) < g —maj — 1
and

Z 77Z)2 2] 77Z)1 ZQ” ¢1 (1 < . < 7'2)-

Let 13 be the matrix whose (z,])—component is (¢4)ij — Qi Then the homomor-
phism induced by ¥ in the graded modules coincides with ¢y, and ¥y 0 1y = 0
holds.

Now we show Im1), = Ker;. Suppose Q € Kerv. Put Q := Ny [mMy](Q)
with k = ord () [my](Q). Since Q € Ker g, = Imy,, we know that

Q= ZUJ'(%)]' € T,

holds with some U = (Uh,...,U,,) € F(];U) [my]((D™)2) applying Lemma 3.2
to N = Ker¢y and {(¢¥2)1,...,(¥2)r, }. We have shown, at the same time, that
g is (u,v)-involutive with respect to my. Thus we can construct s, 4, ...
successively and get an exact sequence (14). Since ¢y is (u,v)-involutive, (13)
is a free resolution of gr, )[rno](M'). Hence (14) is a free resolution properly

adapted to (u,v). We can prove (2) in the same way. a

THEOREM 3.1: Any graded D™ -module M’ of finite type has a (u,v)-minimal
free resolution.
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Proof: Take a presentation (12) of M’ such that ¢ has no nonzero constants
as components by the same method as that in Proposition 2.2. Adding row
vectors if necessary, we may assume that ¢; is (u,v)-involutive with respect to
my € 7. This process does not produce nonzero constants since the elements
are all homogeneous with respect to the total degree. Put

my := (ord () [Mo]((¢1)1), - -, ord vy [Mo] (1))

and @1 1= Ny, [mo](1). Then we get an exact sequence
8T ) ] (D)) 55 g,y [mo] (D)) 225 gr(,, ) [mo] (M) — 0.

Since 1 does not have nonzero constants as its components, we can construct a
minimal free resolution of gr(, [mo](M’) starting from the above presentation.
We may assume that this free resolution is homogeneous with respect to both
the (u,v)-grading and the total degree. We have only to lift this free resolution
by applying Proposition 3.2. O

THEOREM 3.2: A (u,v)-minimal free resolution of a left graded DWW -module M’
of finite type is computable.

Proof: Take an arbitrary mg € Z™. Let < be a term order for (D(h))”o which
refines the (u,v)-order; i.e., ord () [mg](P) < ord () [mg](Q) implies ing(P) <
ing(Q) for P,Q € (D(h’))“ homogeneous of the same degree; here ing denotes
the leading term with respect to <. Take a presentation

(DMWY 2y (pWyro Loy 3ty

of M’ such that the row vectors of ¥y form a Grobner base of Tm ¢, with respect
to <. Moreover, applying the pre-process stated in the proof of Proposition 2.2
to this presentation, we may assume that »; has no nonzero constants. Then we
apply Algorithm 4.1 of La Scala and Stillman (1998) to M" and to gr(,, ,y[mo](M’)
‘in parallel’, and then apply Algorithm 4.6 of La Scala and Stillman (1998) so
as to obtain a minimal free resolution of gr(,, (M’). Here we use the Schreyer
order induced by the term order < for reduction, and as the deg to determine the
reduction strategy, we adopt the total degree. As to the output of this procedure,
we know that the free resolution of M’ is a lifting of the free resolution of
gr(uﬁv)[mo](/\/[') since the Schreyer frames in the terminology of La Scala and
Stillman (1998) for M’ and for 8T (u0) [mg](M’) coincide in view of the definition
of the term order <.

More concretely, we replace the if-condition f = 0 in Algorithm 4.1 of La
Scala and Stillman (1998) by the condition ord . [m;_s](f) < ordy,.)[m;_1](m)
for m € (DW)ri=1 (hence f € (D")ri-2). Here m; is the shift vector deter-
mined by the Schreyer frame (cf. also Oaku and Takayama (in press, Section
9)). This condition is equivalent to the reduction of the initial part of m in
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8T (u,0) [m;_,]((D™®)"i=2) being zero. Applying Algorithm 4.6 to the output H; of
Algorithm 4.1 modified as above, we obtain a (u,v)-minimal free resolution of
M'. Note that the computation itself is performed in D not in gr( )(D(h)); in
other words, we only modify the above if-condition and keep the other part of
Algorithms 4.1 and 4.6 unchanged.

Let (14) be the free resolution of M’ obtained as the output of the above
procedure. Then the complex (13) induced by (14) is exact and each ¢; does not
contain nonzero constants. Since the gr(u’y)(D)—module generated by the row

U,

vectors of in(y,y) [mo](%1) stays unchanged during the execution of the algorithm,
we know that Imep; = gr(,,)[mo](Imy). Hence (14) is a (u,v)-minimal free
resolution of M’ in view of Proposition 3.1. O

4. Minimal resolution of a D-module and its homogeniza-
tion

Here we define a minimal free resolution of a D-module without using D®), and

show that its homogenization gives a minimal free resolution of a D®™-module.

By using this fact we can relate the length of the minimal resolution of a D)-

module to the length of the minimal resolution of a graded module over the

polynomial ring.

We write (1,1) = (1,---,1,1,...,1) € Z*". Then the graded ring gr(l’l)(D) is
isomorphic to the polynomial ring K[z, {]. Hence for a graded gr(; 1)(D)-module
of finite type, we can define the notion of minimal free resolution and it is unique
up to isomorphism.

Definition: Let M be a left D-module of finite type. A free resolution
2y D L D B M 0 (15)

of M is said to be a (1,1)-minimal free resolution of M if there exist n; € Z"
such that

pi Fipn](D™)) C Fiymia](D™Y) (i 21, k€ Z)
holds and the complex
R gr(l,l)[anDm) o gr(1,1)[n0](Dr0) 5 gr(1,1)[n0](M> — 0

of graded gr(; 1)(D)-modules induced by (15) is a minimal free resolution of

gr(1,1)[n0](M)-

In particular, a minimal free resolution of M is properly adapted to (1,1). We
can show the following by the same argument as in the preceding section:

PRrROPOSITION 4.1: For a left D-module M, its (1,1)-minimal free resolution
exists and computable.
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Definition (homogenization): For an element

P = i: Z aamxaaﬁei

i=1 «o,BEN"

of D" and n = (ny,...,n,) € Z", where ey,..., e, are the canonical generators
of D", put

k =degn](P) := max{|a|+ |8+ n; | assi # 0},
H[l’l](P) = Z Z aamhk‘M"'ﬁ"“ixaaﬁei.
=1 a,EN?

We call H[n](P) the homogenization of P with respect to n. When n is a zero
vector, we also denote H[n](P) by P" and call it simply the homogenization of
P. Then H[n](P) is a homogeneous element of (D"))"[n] of degree k. Moreover,
for a left D-submodule N of D", we denote by H[n](N) the left D"*)-submodule
of (D))" generated by {H[n](P) | P € N}.

Let us give a sufficient condition for the homogenization of a free resolution
of a D-module to be a free resolution of a D"-module:

PROPOSITION 4.2: Assume thal a free resolution

2D EL Do 2 M 0 (16)
of a left D-module M is properly adapted to (u,v) = (1,1) =(1,---,1,1,...,1)

with the shift vectors ng,ny,.... Then there exists an exacl sequence
22 (DB ] s (DM [ng] L2 M — 0

of graded D™ -modules the dehomogenization of which coincides with (16). More-
over, we have Im, = H[ng)(N), namely M' = (D™ /H[ng|(N) with N :=
Im .

Proof: Let egi), ey e%) be the canonical generators of D" and put

Hlni 1 (pi(el?))
Vi = :
Hni_](¢i(el?)
This defines a homomorphism
i o (DM ] — (D)=t [n;].
Since (16) is properly adapted to (1,1), we have

deg[ni_l](api(egi))) =n; (1>1,1<5<m).
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This implies that t; is homogeneous and ¢;_; 0 ¢; = 0 (2 > 2).
Let Q be a homogeneous element of Ker1; as a graded submodule of (D))" [n,].
Since @;41 is (1, 1)-involutive by the assumption, there exist Uy,...,U,,,, € D

s VUrig
such that
rig1
Qli=r = Uspipa (el ™) (17)
7=1
and '
deg[m](@h:l) 2 deg[ni](U]—LpiH(e;))) (] = 1, Ce ,7'z'+1)- (18)

The same inequality holds for the homogenization of @|,=; and those of U;p;11 (eyﬂ)).

The total degree of @ is not less than that of the homogenization of @|,—;. Hence

there exist non-negative integers v, ..., v, such that
Tit1 » ren -
Q= (U Hind(pea (e ™) = D7 (U g ().
J=1 .

Hence @ belongs to the image of ¢, 41. Thus we have shown that
e (DO ] S (D) ] S (DY) )

is an exact sequence. Finally, let us prove Imv¢y = H[no|(N). Since Imy C
Hno|(N) is obvious by the definition, we have only to prove Im; O H[ng|(N).
Let @ be a homogeneous element of H[no|(/N). Then there exist Uy,..., U, € D
such that

Q|h=1 = Z UjS‘ol(e;‘l))

=1
and

deg[no)(Qlazr) > degngl(Uspr () (5 =1,...,m).
This implies () € Im1); in the same way as in the former part of the proof. 0O

COROLLARY 4.1: Let N be a left D-submodule of D" and n € Z". Suppose that
G is a (1,1)-involutive base of N with respect ton; i.e., G is a subselt of N and
{inq,yn](P) | P € G} generate gr(Ll)[n](N). Then Hn](N) is generated by
{H[n](P)| P eG}.

PROPOSITION 4.3: Applying Proposition 4.2 to a (1,1)-minimal free resolution
o2y D EL Do 2 M 0
of a D-module M, we obtain a minimal free resolution
o B (DMWY ] 2 (DM [ng] X M= 0

of M" with M'|—, = M.
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Proof: By the definition, in(y 1)[n;_1](p;) does not contain nonzero constants.
In view of the definition of the homogenization, this implies that ¢; does not
contain nonzero constants. O

Finally let us remark on the length of the minimal resolution. Let us recall
the following fundamental fact:

LEMMA 4.1: (Schapira (1985, Lemma B.2.2)) Assume that A is a Noetherian
ring such that any left A-module of finite type has a free resolution of finite
length. Suppose that M is a left A-module of finite type and Ext’,(M,A) = 0
holds for any j > p. Then M has a free resolution of length at most max{p,1}.

If Ais a polynomial ring, D, or D™, then the assumption of the above lemma is
satisfied in view of, e.g., the Schreyer algorithm for free resolutions (see Eisenbud
(1994, Corollary 15.11), Oaku and Takayama (in press, Theorem 9.11)). Since
the global dimension of D is n, it follows that any D-module of finite type has a
free resolution of length at most n. However, it seems an open problem whether
such a free resolution is computable. More weakly, Proposition 4.3 immediately
implies the following:

COROLLARY 4.2: In a presentation
D2 D — M — 0

of M, assume that ¢y is (1, 1)-involutive with respect to ng € Z™ and ing 1y[no] (1)
does not have nonzero constants. Then the length of a minimal free resolution of
the left D™ -module M’ := (D(h))TO/H[no](Imgol) coincides with the length of a

minimal free resolution of gr(Ll)[no](M), hence is al most 2n.

EXAMPLE 4.1: Put n = 1, x = z;, d = 0;. Consider two D-modules M; =
D/D3J and My = D/(D0* 4+ D(xzd — 1)). The natural homogenizations of these
are M! = D /DM§ and M} = D™ /(DM§? 4 D) (29 — h?)). Note that M,
and M, are isomorphic as D-modules. In fact, ¢ : My — M; which sends the
residue class of 1 in My to that of x in M; gives an isomorphism. A minimal {ree
resolution of M is

0— DW Ly p® _y M7 0,

and a minimal free resolution of Mj is

0 — DM 22, (D)2 Ly p 2oy Ny g,

52
¢1:<$a_h2)7 ¢2:<$ _a)

In particular, M{ and M} are not isomorphic as D"-modules. Note that the
dehomogenizations of the above resolutions give (1,1)-minimal resolutions of
M, and of M, respectively.
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Not an arbitrary D)-module of finite type has a free resolution of length at
most 2n.

EXAMPLE 4.2: Put n =1, = z1, 0 = 01 and define M’ by
M' = D™/ (DWy+ DMy = DM /(DM G+ DMy 4 DPIp?).
Then a minimal free resolution of M’ is

0 — D) L2y (D)2 L2y (D)2 L1y ) Loy apr g,

0 —x0 — 2h* 0?
¢1:<$>7 ¢2:< 2 xa_hZ)v ¢3:<$_a)7

the length of which is 3 = 2n 4+ 1. Note that its dehomogenization is not a
(1, 1)-minimal resolution of M’|;=; = 0 since ¢|s=1 is not (1, 1)-involutive.

5. Examples

One of the reasons why we are interested in (u,v)-minimal free resolutions is
to make computation of the restriction of D-modules efficient. In Oaku and
Takayama (in press), we gave an algorithm to compute the cohomology groups
of the restriction of a given holonomic D-module M. For example, to compute
the restriction to the origin, our algorithm requires construction of a (—w,w)-
adapted (strict) free resolution with a componentwise positive w € Z". We
proved that the Schreyer free resolution by an appropriate term order is (—w, w)-
adapted. Once an adapted free resolution is obtained, we have only to compute
Ker /Im of a complex of vector spaces of dimensions

0 <2(k1 - mm‘)i) :

i=1

where r; is the i-th Betti number of the resolution, (m;i,...,m;,) is the asso-
ciated i-th shift vector, and k; is the maximal integral root of the b-function
of M with respect to (—w,w). Unfortunately, Betti numbers of Schreyer free
resolutions are usually big and our method often caused memory exhaustion in
computing Ker /Im.

We have implemented modified La Scala’s algorithm to construct (u, v)-minimal
free resolutions. The algorithm is described in the proof of Theorem 3.2. By using
our implementation, we have observed that the Betti numbers of (v, v)-minimal
free resolutions are much smaller than those of Schreyer free resolutions for many
examples. Lengths are also shorter.

In the sequel, we will see some examples of (—w, w)-minimal free resolutions.
Especially, we compare Betti numbers of (—w, w)-minimal free resolutions and
Schreyer free resolutions. Before presenting examples, we introduce some nota-
tions and explain some background of examples.
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1. The Betti numbers of a Schreyer resolution depend not only on (—w,w)
but also on the tie-breaking order. We use the graded reverse lexicographic
order as the tie-breaking order.

2. We denote free resolutions by sets of matrices. For instance, we denote the
free resolution {,;} of Example 3.1 by

L
L
L Dx*h-x*Dx-y*Dy ]
L Dy*h-x*Dx-y*Dy ]
L x*Dx "~ 2-x*Dx*Dy+y*Dx*Dy-y*Dy~2 ]
]
L
L x*Dx-x*Dy+y*Dy+x*h , -y*Dy-x*h , -h+x ]
[ -Dy+h , Dx-h , 1]
]
]

3. Assume that a left ideal I is generated by homogeneous elements. For a

given (u,v)-minimal free resolution of D™ /I there exists a unique set of
shift vectors {m;} such that my = 0 and the resolution is properly adapted
to (u,v). The set of shift vectors are presented by the name Degree Shifts.
For example,

Degree Shifts: [[0] , [t1,1,1]1 , [ 1,21 1
is the shift vectors satisfying the condition for Example 3.1.

4. Let —r be the minimal integral root of the Berndstein-Sato polynomial
of a polynomial f. We denote by Ann(Df~") the output of the function
Sannfs(f,v), which is a set of generators of the annihilating ideal of 1/f".

5. For a set GG of elements of D, F(G) denotes the set of the formal Laplace
transformations of the elements of G.

6. The homogenization of F(G) is denoted by F"(&).

7. Put I = F(Ann(Df~")). The cohomology groups of the restriction of D/T
to the origin agree with the singular cohomology groups of the space C" \
V(f) by the Grothendieck comparison theorem. See Oaku and Takayama
(1999) for details.

In the following examples, we always define the filtration of D /I by

FF (D(h)/]):F(k )(D(h))/(F’“ (DMWY 1).

(—w,w) —w,w (—w,w)

Hence the Betti numbers of a (—w,w)-minimal free resolution of D" /T are
uniquely determined by [ and w. Incidentally or not, the following (—w,w)-
minimal free resolutions are all minimal (cf. Example 3.1).

EXAMPLE 5.1: Put I = F"[Ann (D(2® — y?)™")]. The ideal I is generated by

—220, — 3yd, + h*, =3y} + 2z0,h.



T. Oaku and N. Takayama: Minimal resolutions of ID-modules

Resolution type | Betti numbers
Schreyer 1,4, 4,1
(—1,1)-minimal | 1, 2, 1
minimal 1,2, 1

(—1,1)-minimal resolution

L
L
L -2%x*Dx-3*y*Dy+h~2 ]
L -3%y*Dx"2+2*x*Dy*h ]
]
L
C —-3*%y*Dx"2+2%x*Dy*h , 2%x*Dx+3*y*Dy ]
]
]

Degree shifts
L (L ol , [ o,11,[011]1

Schreyer Resolution

L
L
L -2%x*Dx-3*y*Dy+h~2 ]
L -3%y*Dx"2+2*x*Dy*h ]
L 9%y~ 24Dx*Dy+3*y*Dx*h~2+4%x "~ 2*Dy*h ]
L 274y~ 3*Dy "~ 2+27*y " 2%Dy*h~2-3%y*h~4-8*x"~3*Dy*h ]
]
L
[ 9%y~ 24Dy+3%y*h~2 , 0 , 2*x , 1 ]
C -4*x~2*Dy*h , 0 , —-3%y*Dy+4+h~2 , Dx ]
C 2*x*Dy*h , 3*%y*Dy-2*h~2 , Dx , 0 ]
L 3xy*Dx , -2%x , 1 , 0 ]
]
L
[ -Dx , 1 , 2%x , 3*y*Dy-2%h~2 ]
]
]

EXAMPLE 5.2: [ = F"[Ann (D(2® 4+ y* + 2%)7")]
Resolution type Betti numbers
Schreyer 1, 12, 44, 75, 70, 39, 13, 2
(—1,-2,-3,1,2,3)-minimal | 1, 4, 5, 2
minimal 1,4, 5,2

(—1,-2,-3,1,2,3)-minimal resolution

L

L

x*Dx+y*Dy+z*Dz-3%¥h"2 ]
y*Dz"2-z+Dy"2 ]
x*Dz"2-z*Dx"2 ]
x*Dy~2-y*Dx"2 ]

Lo B e B e B |

20
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]
L
L 0, -x,y, -z]
L -x*Dz"2+z*Dx"2 , x*Dy , x*Dx+z*Dz-3*h"~2 , z*Dy ]
L -x*Dy"2+y*Dx~2 , -x*Dz , y*Dz , x*Dx+y*Dy-3%h~2 ]
L -y*Dz"2+z*Dy~2 , x*Dx+y*Dy+z*Dz-2*h~2 , 0 , 0 ]
L 0, Dx"2, -Dy"2 , Dz"2 ]
]
L
L -x*#Dx+3%h"2 , vy , -z , -x , 0 ]
L -Dz"3-Dy~3 , -Dy"2 , Dz"2 , Dx"2 , -x*Dx-y*Dy-z*Dz ]
]
]

Degree shifts
(fol ,[Lo0,4,5,31,03,5,6,4,9]1,[ 3,121 1]

EXAMPLE 5.3: [ = F"[Ann (D(2® — y?2? + y* + 2%)7")].

Resolution type | Betti numbers
Schreyer 1, 13, 43, 50, 21, 2
(—1,1)-minimal | 1, 7, 10, 4
minimal 1,7,10, 4

Degree Shifts
(ffol,[2,2,2,2,2,2,21],
[1,2,2,2,2,3,4,4,4,4]1,[1,3,4,861]];

Put f = 2 — y*2* + y* + 2%. Then the dimensions of the singular cohomology
groups H'(C*\ V(f),C) are dim H° = 1, dim H' = 1, dim H* = 0, dim H® = 8.
They are evaluated by applying the method of Oaku and Takayama (1999) to
the (—1,1)-minimal free resolution. The method reduces the evaluation of the
dimensions of singular cohomology groups to that of the dimensions of coho-
mology groups of a complex of vector spaces. The maximal integral root of the
b-function of D/I],=; with respect to (=1,1) is 3 and the dimensions of vector
spaces of the complex are 20,2827, 11. If we use the Schreyer resolution, these
dimensions are 20,49, 87,73, 28, 5.

EXAMPLE 5.4: [ = D(h) '{ZL’lal +2$282+3$3(93, af—agh, —8182+83h, 83 —8183}.
This i1s a homogenization of the GKZ hypergeometric system associated with

A=(1,2,3) and 8 =0 (see Saito et al. (1999) on GKZ systems).

Resolution type | Betti numbers
Schreyer 1, 10, 25, 23, 8, 1
(—1,1)-minimal | 1, 4, 5, 2
minimal 1,4, 5,2

(—1,1)-minimal resolution

L
L
[ x1*Dx1+2*%x2%Dx2+3*x3%Dx3 ]
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L Dx1°2-Dx2#h ]

L -Dx1%Dx2+Dx3%h ]
L Dx2"2-Dx1*Dx3 ]
]
[
[ Dx1*Dx2-Dx3*h , -x1*Dx2 , 2%x2*Dx2+3*x3*Dx3+3%h~2 , —-x1%*h ]
L Dx1°2-Dx2*h , -x1*Dx1-3#*x3*Dx3-2*h~2 , 2%x2*Dxl , 2%x2*h ]
[ Dx2"2-Dx1*Dx3 , x1*Dx3 , x1*Dx2 , —-2*x2*Dx2-3*x3*Dx3-4*h"2 ]
[ 0, Dx3 , Dx2 , Dx1 ]
L 0, -Dx2 , -Dx1 , -h ]
]
[
L Dx2 , -Dx3 , -Dx1 , —2*x2*Dx2-3*x3*Dx3-4*h"2 , -x1*Dx2-2*x2*Dx3 ]
L -Dx1 , Dx2 , h , -x1*%h , —-3*x3*Dx3-h"2 ]
]
]
Degree shifts
(L o] ,[0,2,2,2]1,[2,2,2,3,31,1[ 3,371 1

On the other hand, the Koszul complex of the homogenization of the affine toric
ideal associated with the matrix (1,2, 3) induces the double complex

0 —— (DW)2 2, (phy 1, pk 5 g

0 —— (DWy2 2, (pmy &, pk) g

Here we denote by d; the minimal free resolution of the homogenization of the
affine toric ideal associated with the 1 x 3 matrix A:

07 — dyh
b= | —ond+ 05k |, dy = (‘6?2 o —ah) |
07 — 0,04 3 2 !
Put ¢ = 10, + 22905 + 32305 and define u; as
{4 2h? 0 0
2
0 0 {4 4h?

Then the associated single complex is
L' [r—= (=do(f)ua(f)) € P& L,

Lo L's (f,9) — (—=di(f),ua(f) + da(g)) € LP & L7,
LP® 1?3 (f,9) — uo(f) + di(g) € L°
with L' = (D")2 12 = (D®"))3 [3 = D) This is also a (—1,1)-minimal free
resolution of D(h)/]. It can be checked by using Kan/k0 and Proposition 3.1.

It would be an interesting problem to consider minimal free resolutions of
GK7Z hypergeometric systems systematically.
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ExaMPLE 5.5: We consider the GKZ hypergeometric system associated with

[eiN en BN
O = O =
_o o =
OO = =
O ==
—_ 0 = =

and 3 = (0,0,0,0). The Betti numbers of a (u,v) = (=1, 1)-minimal free reso-
lution of this system are as follows.

Resolution type | Betti numbers
Schreyer 1, 21, 132, 331, 431, 319, 134, 30, 3
(—1,1)-minimal | 1, 7, 20, 30, 25, 11, 2
minimal 1, 7, 20, 30, 25, 11, 2

Degree Shifts:

L
o]
[ 0,0,0,2,2,2,0 ]
[ 0,0,0,2,0,0,2,0,2,2,2,3,3,2,2,2,2,2,2,2 ]
[ 2,2,2,0,2,0,2,3,2,3,2,2,3,2,2,0,2,2,2,2,2,3,2,0,3,2,2,3,3,3 ]
[ 3,3,3,3,2,2,2,3,2,3,2,3,0,2,3,2,3,2,2,2,3,3,2,2,3 ]
[ 3,2,3,2,3,2,3,3,3,3,3 ]
[3,3]

]
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