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Introduction

This paper consists of two parts. In the first part, we study the restriction as a D-module of the

A-hypergeometric system to its singularities and give a combinatorial description of the restriction. In

the second part, we derive a complete set of the connection formulas among the series solutions of the

A-hypergeometric system of the general prism ∆1 × ∆n−1, which is a generalization of the well-known

connection formula of the Gauss hypergeometric series :

(0.1)

F (α, β, γ;x) =
Γ(γ)Γ(β − α)

Γ(β)Γ(γ − α)
(−x)−αF (α, α− γ + 1, α− β + 1, 1/x)

+
Γ(γ)Γ(α− β)

Γ(α)Γ(γ − α)
(−x)−βF (β, β − γ + 1, β − α+ 1, 1/x).

Moreover, we give a set of formulas that is regarded as a multiplicative 1-cocycle of the permutation group

Sn. We utilize the results of the first part to derive connection formulas by the method of boundary values

([Hek;2]).

The general theory of the hypergeometric functions has been developed by K.Aomoto (the theory

of twisted cycles), I.M.Gel’fand (hypergeometric functions on the Grassmann manifold etc.) and their

respective joint workers. Especially, I.M.Gel’fand, A.V.Zelevinsky and M.M.Kapranov ([GZK2]) defined the

A-hypergeometric system for a given set of points A. We can naturally regard the system as a D-module

MA on Cn. The D-module MA is holonomic and the sheaf of the holomorphic solutions HomDn(MA,On)

is a constructible sheaf of finite rank by the theorem of Kashiwara ([K1]). In [GZK2], they gave an explicit

expression of the characteristic cycle of MA and proved that the solution sheaf HomDn(MA,On) is a locally

constant sheaf of which rank is the volume of A on the generic stratum X ′
A that is the complement of the zero

set of the principal A-determinant EA ([GZK1]). Moreover, they defined the notion of a regular triangulation

and explicitly gave fundamental sets of series solutions on X ′
A determined by regular triangulations.

The results above raise the following problems :

A) to study the D-module MA on non-generic strata,

B) to find the connection formulas among the series solutions determined by the regular triangulations.
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As readers may think, the answer to A) solves B) when the geometry of X ′
A has a nice property (e.g.

Theorem 1.4). In [GZK3; 270p, line 9], they gave an answer to the problem A) in a quite abstract way;

they expressed the solution sheaf by the twisted cohomology. Unfortunately, their answer is hard to use for

solving the problem B). In Section 1, we will give a description of restrictions of MA to non-generic strata

by utilizing the secondary polytope Σ(A) ([GZK1; 3A.2] or [BFS]) and a generalization of the theory of

b-functions ([S1]). The description also yields a description of the solution sheaf on non-generic strata.

Let us turn to the problem B). Among various A-hypergeometric systems, the most fundamental and

important one is the system when A is the general prism An = ∆1 ×∆n−1 where ∆k is the k-simplex. The

An-hypergeometric system admits the Lauricella function FD of n − 1 variables as a solution. The system

is also obtained by restricting the hypergeometric system on the Grassmann manifold G2,n+2 to an affine

chart.

In Theorem 5.1, we will give a set of the connection formulas among the series solutions of the An-

hypergeometric system, which is the main result of the second part. In case of n = 2, the An-hypergeometric

system is essentially equivalent to the Gauss hypergeometric equation. The square ∆1×∆1 admits 2 regular

triangulations and our connection formula among the 2 sets of the fundamental solutions determined by the

2 regular triangulations is essentially equivalent to the formula (0.1).

Let us briefly summarize the contents of each section and show the techniques used in this paper.

In Section 1, we define the notion of formal restriction of the A-hypergeometric system and prove that

the restriction as a D-module of the A-hypergeometric system is a quotient of the formal restriction. We use

a generalization of the theory of b-functions for A-hypergeometric system (cf. [S1]) to prove it. The theory

is summarized in Appendix. We also illustrate a general method of deriving the connection formulas among

the series solutions by utilizing the formal restriction. This section is the first part of this paper.

The second part of this paper starts from Section 2. In Section 2, we quickly state the known results

about the secondary polytope of ∆1×∆n−1 in a suitable form for our study. The secondary polytope of ∆1×

∆n−1 is the permutahedron ([BFS]). In section 3, we give series solutions of the ∆1 ×∆n−1-hypergeometric

system. In Section 4, we decompose C2n into simply connected domains to give our connection formulas

on these domains. In Section 5, we give our connection formulas in a recursive form. Let F be a field and

suppose that a group G acts on F . A set of matrices {C(g) ∈ GL(m,F) | g ∈ G} that satisfies the condition

C(gh) = C(h)C(g)h, g, h ∈ G

is called a multiplicative 1-cocycle of the group G. The set of our connection formulas is realized as a

multiplicative 1-cocycle of the permutation group Sn. Notice that the group Sn can be understood as the

group generated by the operations of restructuring ([GZK1;3A.7]) of the triangulations of ∆1 × ∆n−1. In
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Section 6, we prove the connection formulas. We can reduce the proof to a problem in lower dimensions by

utilizing the formal restriction.

Finally, the second author would like to express his sincere gratitude to J.Sekiguchi, with whom the

author studied the connection formula of the Appell function F1 which is a prototype of our formulas, to

L.Billera and B.Strumfels, who kindly explained the importance of the theory of the secondary polytopes,

and to A.Zelevinsky, who gave constructive criticisms on the very early version of this work at the Taniguchi

symposium of 1991.

The first part of this paper is written while the second author is visiting Mathematical Sciences Institute of Cornell University.

This research is partly supported by the US Army Research Office through the Mathematical Sciences Institute of Cornell University.

1. Formal restriction of A-hypergeometric system

We start with reviewing the definition of the A-hypergeometric system ([GZK2]).

Let A = {a1, . . . , an} be a set of n-points in Zd which satisfies the conditions:

(1.1) there exists a vector c ∈ (Zd)∗ such that

⟨c, ai⟩ = 1, i = 1, . . . , n;

(1.2) ZA = Za1 + · · ·+ Zan = Zd.

We regard the ai as the column vector and denote the (i, j) component of the matrix (a1, . . . , an) by aij .

Put

pi =
n∑

j=1

aijxj∂j − αi, ∂i =
∂

∂xi
, i = 1, . . . , d

where α = (α1, . . . , αd) is a fixed vector of complex numbers. Let

DA = OA⟨∂1, . . . , ∂n⟩, OA = On

be the sheaf of the differential operators on the A-space Cn. The A-hypergeometric system MA is defined

by

MA = DA/HA, HA =
d∑

i=1

DApi + IA

where IA is the left ideal of DA generated by

△b =
∏
bj>0

∂
bj
j −

∏
bj<0

∂
−bj
j , b = (b1, . . . , bn) ∈ ker(a1, . . . , an) ∩ Zn.
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When we need to emphasize the dependency of pi, HA and MA on the parameter α, we denote them by

pi(α),HA(α) and MA(α) respectively.

Next, we quickly review the definition of the regular polyhedral subdivision ([GZK1], [BFS]). Let

(ω1, . . . , ωn) be a vector in Rn. Consider the convex hull H of the points

{(a1, ω1), . . . , (an, ωn)}

where ai are vectors in Zd. Let

π : Rd+1 ∋ (y1, . . . , yd+1) 7−→ (y1, . . . , yd) ∈ Rd

be the projection. The projection by π of the convex hull H induces the polyhedral subdivision of the convex

hull conv(A). The polyhedral subdivision obtained by this way is called the regular polyhedral subdivision.

When the polyhedral subdivision is the triangulation of A, the polyhedral subdivision is called the regular

triangulation. The set of all regular polyhedral subdivisions is the poset (partially ordered set) by the

refinement. It is shown in [GZK1] (or [BFS]) that there exists the secondary polytope Σ(A) such that the

face lattice of the secondary polytope is anti-isomorphic to the poset of the regular polyhedral subdivisions.

We fix a regular polyhedral subdivision {Γ(1), . . . ,Γ(r)} of conv(A) expressed by indices of the n-points.

We can assume Γ(1) = {1, . . . ,m} ⊂ {1, . . . , n} without loss of generality and put Γ = Γ(1).

Put

qi(β) =
m∑
j=1

aijxj∂j − βi, i = 1, . . . , d, β = (β1, . . . , βd)

and

△b =
∏
bi>0

∂bi
i −

∏
bj<0

∂
−bj
j , b = (b1, . . . , bm) ∈ ker(a1, . . . , am) ∩ Zm.

Let λ1 = 0, λ2, . . . , λv ∈
∑n

j=1 Z≥0aj be a set of the representatives of the additive group ZA/ZΓ. We can

take the representatives from the semigroup
∑n

i=m+1 Z≥0ai because of the following lemma.

LEMMA 1.1

ZΓ +
n∑

i=m+1

Z≥0ai = ZA.

Proof. Put v = |ZA/ZΓ| > 0. Then −vaj ∈ ZΓ. Hence, −aj ∈ ZΓ +
∑n

i=m+1 Z≥0ai. []

We denote by DΓ the sheaf of the differential operators of m-variables x1, . . . , xm. Put

MΓ(α− λk) = DΓ/HΓ(α− λk)

HΓ(α− λk) =
d∑

i=1

DΓqi(α− λk) + IΓ
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where IΓ is the left ideal of DΓ generated by

△b, b ∈ ker(a1, . . . , am) ∩ Zm.

The formal restriction of MA to the submanifold xm+1 = · · · = xn = 0 is defined to be

⊕v
k=1MΓ(α− λk), v = |ZA/ZΓ|.

The formal restriction is the left DΓ-module. If the parameter α is generic, the formal restriction does not

depend on the choice of the representatives λ1, . . . , λv by virtue of Theorem 1.1. If we regard ZΓ as the new

Zd and forget the old lattice structure ZA = Zd, then the left DΓ-module MΓ(α − λk) is nothing but the

hypergeometric system defined by the set of points Γ.

Put

(1.3) XΓ = {x = (x1, . . . , xn) ∈ Cn |xm+1 = · · · = xn = 0}

and let j be the injection from XΓ to Cn. The restriction as a D-module of the left DA-module MA to XΓ

is defined by

OΓ ⊗j−1OA j−1MA = j−1

(
DA/

n∑
i=m+1

xiDA ⊗DA MA

)
= j−1

(
DA/

(
n∑

i=m+1

xiDA +HA

))

and is denoted by j∗MA ([K2]). The restriction j∗MA is the left holonomic DΓ-module ([K2]). We will

study a relation between the restriction j∗MA and the formal restriction ⊕v
k=1MΓ(α− λk).

As a first step, we note that there exists a DΓ-morphism r from the formal restriction ⊕v
k=1MΓ(α−λk)

to j∗MA by defining

r : ⊕v
k=1MΓ(α− λk) ∋ (ℓk)

v
k=1 7−→

v∑
k=1

ℓk∂
λk ∈ j∗MA

where ∂λk =
∏

∂λki
i and λk =

∑n
i=m+1 λkiai. The map r is well-defined, because

qi(α− λk)∂
λk

=

pi(α− λk)−
n∑

j=m+1

aijxj∂j

 ∂λk

=∂λkpi(α)−
n∑

j=m+1

aijxj∂j∂
λk

∈
n∑

j=m+1

xjDA +HA(α)

and

IΓ ⊂ IA.
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Moreover, the map r induces a map among solutions. Let us denote the sheaf of the holomorphic

solutions of MA by HomDA(MA,OA). Then we have the induced map

tr : HomDΓ
(j∗MA(α),OΓ) −→ HomDΓ

(⊕v
k=1MΓ(α− λk),OΓ).

As a second step, we need the theory of b-functions of A-hypergeometric system without assuming

the normality condition. Although the theory of b-function with the normality condition has been already

studied in [S1], we need to drop the condition for our theorem.

For given χ ∈ Z≥0Γ, we consider the natural morphism :

fχ : MΓ(α− χ) ∋ ℓ 7−→ ℓ∂χ ∈ MΓ(α),

where ∂χ =
∏

∂bi
i , χ =

∑m
i=1 biai, Γ = {a1, . . . , am}. We consider a sufficient condition for the morphism

fχ to be the isomorphism. The set of the facets of the cone defined by Γ is denoted by FΓ. Let τ ∈ FΓ be a

facet and

Fτ : Zd = ZΓ −→ Z

be the integral supporting function of the facet τ ; the function Fτ is linear, vanishes on τ ∩ZΓ, takes positive

values on Γ\τ and is surjective. The supporting function Fτ can be extended as the function on ZΓ⊗C = Cd

and we also denote it by Fτ .

THEOREM 1.1 Assume that Fτ (α) ̸∈ Z≥0 for any τ ∈ FΓ. Then the morphism

fχ : MΓ(α− χ) −→ MΓ(α)

is isomorphic for all χ ∈ Z≥0Γ.

Notice that we regard the parameter α as the vector in ZΓ ⊗ C in this theorem. This theorem is a

generalization of [S1] in which the normality condition is essentially assumed. We will give a proof of the

theorem in Appendix.

As the last step, we state our main theorem of the first part.

THEOREM 1.2 Assume that Fτ (α) ̸∈ Z≥0 +
∑n

j=m+1 Z≥0Fτ (aj) for any τ ∈ FΓ. Then the morphism

r : ⊕v
k=1MΓ(α− λk) −→ j∗MA(α)

is surjective.
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COROLLARY 1.1 Assume that Fτ (α) ̸∈ Z≥0 +
∑n

j=m+1 Z≥0Fτ (aj) for any τ ∈ FΓ. The induced map

tr : j−1HomDA(α)(MA,OA) −→ HomDΓ(⊕v
k=1MΓ(α− λk),OΓ)

is injective.

In order to prove the theorem, we need the following lemmas.

LEMMA 1.2 Suppose that Fτ (α) ̸∈ Z≥0 for any τ ∈ FΓ. For any vector (c1, . . . , cm) ∈ Zm
≥0, there exists

p ∈ DΓ such that

p

m∏
i=1

∂ci
i − 1 ∈ HΓ(α).

Proof. The map
m∏
i=1

∂ci
i : MΓ(α−

m∑
j=1

cjaj) −→ MΓ(α)

is isomorphism from Theorem 1.1. Let p be the inverse image of 1 ∈ MΓ(α). We have p
∏m

i=1 ∂
ci
i = 1 in

MΓ(α). []

LEMMA 1.3 Assume that Fτ (α) ̸∈ Z≥0+
∑n

j=m+1 Z≥0Fτ (aj) for any τ ∈ FΓ. Then for any (cm+1, . . . , cn) ∈

Zn−m
≥0 , there exist an operator q ∈ DΓ and an index 1 ≤ k ≤ v such that

n∏
i=m+1

∂ci
i − q∂λk ∈ HA +

n∑
i=m+1

xiDA.

Proof. By the definition of λk’s, there exist 1 ≤ k ≤ v and e1, . . . , em ∈ Z such that
∑n

j=m+1 cjaj =

λk +
∑m

i=1 eiai. Hence, we have

n∏
j=m+1

∂
cj
j

∏
ei<0

∂−ei
i −

(∏
ei>0

∂ei
i

)
∂λk ∈ IA.

By Lemma 1.2, there exists an operator P ∈ DΓ such that P
∏

ei<0 ∂
−ei
i − 1 ∈ HΓ(α−

∑n
j=m+1 cjaj). Since

we have
n∏

j=m+1

∂
cj
j HΓ

α−
n∑

j=m+1

cjaj

 ⊂ HA +
n∑

i=m+1

xiDA,

we conclude
n∏

j=m+1

∂
cj
j − P

∏
ei>0

∂ei
i ∂λk ∈ HA +

n∑
i=m+1

xiDA. []
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Proof of Theorem 1.2. Any element f ∈ DA can be written as∑
γ=(γm+1,...,γn)∈Z

n−m

≥0

fγ∂
γ

where fγ ∈ OA⟨∂1, . . . , ∂m⟩ and ∂γ = ∂
γm+1

m+1 · · · ∂γn
n . It follows from Lemma 1.3 that there exist qγ ∈ DΓ and

λkγ such that

∂γ − qγ∂
λkγ ∈ HA +

n∑
i=m+1

xiDA.

Since fγ commutes with xi (m+ 1 ≤ i ≤ n), we have

f −
∑

(fγqγ)|XΓ
∂λkγ ∈ HA +

n∑
i=m+1

xiDA.

Put

ℓk =
∑
kγ=k

(fγqγ)|XΓ
, k = 1, . . . , v.

Then, we have

r ((ℓ1, . . . , ℓv)) = f

and we have completed the proof. []

Proof of Corollary 1.1. It follows from Theorem 1.2 that the induced map tr is injective. Since MA is

regular holonomic ([Hot; 6.2]), we have

HomDΓ(j
∗MA,OΓ) ≃ j−1HomDA(MA,OA)

by the Riemann-Hilbert correspondence ([M; Th 2.2.3] or [K3]). []

Let f ∈ OA be a solution of MA that is holomorphic at a point in XΓ. We have

(trj−1)(f) = (∂λ1f, . . . , ∂λvf)|XΓ
∈ HomDΓ(⊕v

k=1MΓ(α− λk),OΓ).

Corollary 1.1 asserts the uniqueness of the solution of MA around XΓ. The solution f is determined only

by the values of the derivatives ∂λkf on the submanifold XΓ. Although the uniqueness is enough to obtain

our connection formulas, we shall prove that the map tr is isomorphic for generic values of α.

THEOREM 1.3 Let T be a regular triangulation which is a refinement of the regular polyhedral subdivision

∪Γ(k). If the parameter α is T -nonresonant ([GZK2; Def 3]) and Fτ ̸∈ Z≥0 +
∑n

j=m+1 Z≥0Fτ (aj) for any

τ ∈ FΓ, then we have the isomorphism

tr : j−1HomDA(MA,OA) ≃ HomDΓ(⊕v
k=1MΓ(α− λk),OΓ)
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on the generic stratum of XΓ.

Proof. Since the parameter α is T -nonresonant, we have volZA(A) linearly independent series solutions

defined by T ([GZK2; Th3]) where volZA(S) generally denotes the volume of the convex hull of the set S

with respect to the lattice ZA = Zd. Among these solutions, we choose volZA(Γ) solutions standing for the

simplices T ∩ conv(Γ). These solutions converge on a point p ∈ XΓ ⊂ Cn. Therefore we have

dimCHomDA(MA,OA)p ≥ volZA(Γ).

On the other hand, we have

dimCHomDΓ(MΓ(α− λk),OΓ)p ≤ volZΓ(Γ)

and volZΓ(Γ) = volZA(Γ)/v. Since the map tr is injective from Corollary 1.1, we have the conclusion on the

generic stratum of XΓ. []

Notice that the proof above also shows that the series solutions standing for the simplices T ∩ conv(Γ)

span the solution space j−1HomDA(MA,OA) on the generic stratum of XΓ.

Finally, we will illustrate how to use Theorem 1.2 to derive connection formulas. We use the method of

boundary values ([Hek]) and the restrictions of the hypergeometric DA-module.

Let T and T ′ be regular triangulations which are refinements of the regular polyhedral subdivision ∪Γ(k)

such that T = T ′ on ∪k≥2conv(Γ
(k)). Put

P = T ∩ conv(Γ), P ′ = T ′ ∩ conv(Γ) and Q = T ∩ ∪k≥2conv(Γ
(k)).

We denote the vector of series solutions defined by the collection of simplices T by ϕT . Using this notation,

we have

ϕT = t(ϕP , ϕQ), ϕT ′ = t(ϕP ′ , ϕQ).

Let CP , CP ′ and CQ be the domains of convergence of the vectors of the series ϕP , ϕP ′ and ϕQ respectively.

Notice that CP ∩XΓ ̸= ∅ and CP ′ ∩XΓ ̸= ∅. Put X = Cn \ SingMA \XΓ and take points

(1.4)
u ∈ CP ∩ CQ, u′ ∈ CP ′ ∩ CQ,

v ∈ CP ∩XΓ ∩X, v′ ∈ CP ′ ∩XΓ ∩X.

We, moreover, take the paths α, α′ and γ which satisfy the following conditions;

(1.5)

γ is a path in CQ ∩ (X \XΓ) that starts from u and arrives at u′.

α is a path in CP ∩X that starts from v and arrives at u.

α′ is a path in CP ′ ∩X that starts from v′ and arrives at u′.
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THEOREM 1.4 Suppose that the path α ◦ γ ◦ α′−1
can be continuously deformed into a path γ′ of X ∩XΓ

in X. If we are given a connection formula in XΓ

γ′∗
(
∂λkϕP |XΓ

)
= Mγ′

(
∂λkϕP ′ |XΓ

)
, Mγ′ ∈ GL(vol(Γ))

that is valid for any k (1 ≤ k ≤ v), then we have a connection formula in X \XΓ

γ∗ϕT =

(
Mγ′ 0
0 I

)
ϕT ′

where I is the (vol(A)−vol(Γ))×(vol(A)−vol(Γ)) identity matrix and γ∗ϕT denotes the analytic continuation

of the function ϕT along the path γ.

Proof. Since γ ⊂ CQ, we have γ∗ϕQ = ϕQ′ . We also have α∗ϕP = ϕP and β∗ϕP ′ = ϕP ′ , because of

α ⊂ CP ∩X and α′ ⊂ CP ′ ∩X. Moreover, we have

α′−1∗
(γ∗ϕP −Mγ′ϕP ′)

=(γ ◦ α′−1
)∗ϕP −Mγ′ϕP ′

=(α−1 ◦ γ′)∗ϕP −Mγ′ϕP ′

=γ′∗ϕP −Mγ′ϕP ′ .

It follows from Corollary 1.1 and the assumption that we have γ′∗ϕP − Mγ′ϕP ′ = 0. Therefore we have

γ∗ϕP −Mγ′ϕP ′ = 0. []

2. Triangulations of the general prism ∆1 ×∆n−1 ([BFS])

We have used the symbols n ,α and pi and have fixed the meaning of them in Section 1, but readers

should forget the fixed meaning from this section.

The k-simplex ∆k is the convex hull of

e1, . . . , ek+1

where ei denotes the i-th standard basis vector of Rk+1. We consider the general prism ∆1 × ∆n−1 in

R2 ⊕Rn = R2+n of which vertices are

ei ⊕ ej , (i = 1, 2, 1 ≤ j ≤ n, ei ∈ R2, ej ∈ Rn).

By a triangulation of An = {ei ⊕ ej}, we mean a triangulation of ∆1 ×∆n−1 with vertices in An.
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Let

τ (i) = {(1, 1), (1, 2), . . . , (1, n− i+ 1), (2, n− i+ 1), (2, n− i+ 2), . . . , (2, n)}

be the n-simplex where (p, q) denotes the point ep ⊕ eq. The collection

T = {τ (1), . . . , τ (n)}

is a triangulation of An and will be cited as the stair-case triangulation. The n-simplex τ (i) is often figured,

for example in case of n = 4, as follows;

τ (1) =

(
∗ ∗ ∗ ∗
0 0 0 ∗

)
, τ (2) =

(
∗ ∗ ∗ 0
0 0 ∗ ∗

)
, τ (3) =

(
∗ ∗ 0 0
0 ∗ ∗ ∗

)
, τ (4) =

(
∗ 0 0 0
∗ ∗ ∗ ∗

)
.

Let us note that the general prism ∆1 × ∆n−1 admits the action of the group of all permutations of

n-letters Sn;

σ : ∆1 ×∆n−1 ∋ ei ⊕ ej 7−→ ei ⊕ eσ(j) ∈ ∆1 ×∆n−1, σ ∈ Sn.

Therefore, we can get a new triangulation T σ by the action of the group Sn from the stair-case triangulation

T . In case of the general prism, we can obtain all other triangulations of An by the procedure above.

Furthermore, they are regular triangulations in the sense of [GZK1;3A] (see also [BFS;2]).

PROPOSITION 2.1 ([BFS;5]) The set of all triangulations of An is the set {T σ |σ ∈ Sn}. Furthermore,

each triangulation T σ is a regular triangulation.

More precisely, we have the following by specializing the result of [GZK1; Theorem 3A.5] and [BFS;

Lemma 5.2 and example 5.6]. Refer to [BFS] for secondary polytope.

PROPOSITION 2.2 ([GZK1], [BFS]) The secondary polytope Σ(An) is the (n − 1)-dimensional zonotope

which is the Minkowskii sum of
(
n
2

)
segments. The n! vertices of the secondary polytope Σ(An) are in

one-to-one correspondence with the regular triangulations {T σ |σ ∈ Sn}.

3. The A-hypergeometric system of the general prism

Using a symmetry of the ∆1 ×∆n−1-hypergeometric system, we will explicitly give series solutions and

compute the integral supporting functions.

Put χij = ei ⊕ ej , (i = 1, 2, j = 1, . . . , n) and we regard χij as the column vector in R2+n. Put

χ = (χ11, χ12, . . . , χ1n, χ21, . . . , χ2n)
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which is the (2 + n)× 2n matrix. For example,

χ =


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1


in case of n = 2. Let αi (i = 1, . . . , n), β1, β2 be complex numbers which satisfy

n∑
i=1

αi +

2∑
i=1

βi = n.

The A-hypergeometric system of the general prism is the system of partial differential equations

pif = 0, (i = 1, . . . , n+ 2)(3.1)

△af = 0, a ∈ Kerχ ∩ Z2n(3.2)

where

(3.3)



p1
·
·
·
·
·
·
·

p2+n


= χ



u11∂11
u12∂12

·
·

u1n∂1n
u21∂21

·
·

u2n∂2n


−



−β1

−β2

α1 − 1
·
·
·
·
·

αn − 1


,

(3.4) △a =
∏

aij>0

∂
aij

ij −
∏

aij<0

∂
−aij

ij , a = (a11, a12, . . . , a1n, a21, . . . , a2n) ∈ Z2n,

uij (i = 1, 2, j = 1, . . . , n) are variables and ∂ij =
∂

∂uij
.

Let χ′ be the (1 + n) × 2n matrix obtained by dropping the first row of the matrix χ. The A-

hypergeometric system (3.1) and (3.2) is nothing but the A-hypergeometric system defined by the matrix χ′,

but we use the redundant operator p1 and the redundant parameter −β1 to keep a symmetry of the system.

In the previous section, we have seen that the group Sn acts on the general prism ∆1 × ∆n−1. The

group also acts on the solutions of the A-hypergeometric system of the general prism.

PROPOSITION 3.1 Let f(α1, . . . , αn;β1, β2;u) be a solution of the A-hypergeometric system (3.1) and (3.2).

Then the function

fσ = f(ασ(1), . . . , ασ(n);β1, β2;u
σ)

is also the solution of the system where

uσ =

(
u1σ(1) . . . u1σ(n)

u2σ(1) . . . u2σ(n)

)
.

12



In [GZK2;1.1], they constructed the fundamental sets of series solutions of the A-hypergeometric system

determined by the regular triangulations of A. We follow their construction in the case of the general prism.

For the simplex τ (k) ∈ T , let

γ(k) = t(γ
(k)
11 , . . . , γ

(k)
1n , γ

(k)
21 , . . . , γ

(k)
2n ) ∈ C2n

be the unique column vector which satisfies the linear equation

χγ(k) = t(−β1,−β2, α1 − 1, . . . , αn − 1)

and the constraint

γ
(k)
ij = 0 when (i, j) ̸∈ τ (k).

Put

(3.5) ϕk = uγ(k) ∑
p∈Kerχ∩Z2n

up/Γ(γ(k) + p+ 1), k = 1, . . . , n

where

uγ(k)

=
∏
i,j

u
γ
(k)
ij

ij , up =
∏
i,j

u
pij

ij

and

Γ(γ(k) + p+ 1) =
∏
i,j

Γ(γ
(k)
ij + pij + 1).

It follows from [GZK2;Theorem 3 and 5] that {ϕk} is a base of holomorphic solutions of the hypergeometric

system (3.1) and (3.2) at a generic point when the T -non-resonant condition is satisfied ([GZK2; Def 3]). The

existence of a common domain of convergence of {ϕk} is proved by using the “regularity” of the triangulation

in [GZK2;Proposition 2]. Let us state the T -non-resonant condition of the An-hypergeometric system.

PROPOSITION 3.2 If

(3.6)
∑
i∈I

αi + βj ̸∈ Z

for any j and for any subset I of {1, . . . , n} such that 1 ≤ |I| ≤ n/2, then the n lattices

γ(k) + (kerχ ∩ Z2n), k = 1, . . . , n

are disjoint each other ( T -non-resonant) and {ϕk} is the fundamental set of solutions.
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Finally, we give the integral supporting functions of the cone defined by the set of points ∆1 ×∆n−1 \

{(1, n)}.

PROPOSITION 3.3 The cone (∆1 × ∆n−1 \ {(1, n)}) ∪ {0} has n + 2 facets and the integral supporting

functions of them are

si (i = 1, . . . , n), t1, t2 − sn.

where
∑n

i=1 si − t1 − t2 = 0.

4. Simply connected domains in C2n

In most of the literatures, the connection formulas of the Gauss hypergeometric function are given in the

upper half plane and in the lower half plane. In order to give connection formulas of the A-hypergeometric

system of the general prism in a similar way, we need to decompose u-space C2n into “nice” simply con-

nected domains. Connection formulas can also be given as a representation of the fundamental groupoid

of the domain of the definition of the hypergeometric function. Unfortunately, it is a difficult problem to

explicitly obtain the fundamental groupoid. We can avoid to study the fundamental groupoid by finding a

decomposition into simply connected domains. Notice that the problem of finding a “nice” decomposition

was first considered in [Sek1] in order to give connection formulas for the zonal spherical systems.

Let {θij | i = 1, 2, j = 1, . . . , n} be a set of coordinates of R2n and consider an arrangement S ′ of lines

defined by 
θij = −π, 0, π,

θ1i − θ2i = ±kπ, (k = 0, 1, 2)

(θ1i − θ2i)− (θ1j − θ2j) = ±kπ, (k = 0, 1, 2, 3, 4).

We denote by S the set of 2n-cells of S ′ which are contained in the domain {(θij) | − π < θij < π}. For an

element S of S, we put

D(S) = {(rijeiθij ) ∈ C2n | rij > 0, (θij) ∈ S} ⊂ {(uij)} = C2n.

The set {D(S) |S ∈ S} has the following properties.

PROPOSITION 4.1

(1) The domain D(S) is connected and simply connected.

(2) There is no singularity of the A-hypergeometric system of the general prism (3.1) and (3.2) in D(S).

(3) The set {D(S) | s ∈ S} is invariant under the action of Sn;

(uij) 7−→ (uiσ(j)), σ ∈ Sn.

14



(4) The functions

(4.1)
[ij]a

(−[ij])a

and

(4.2) [ij]a
ua
1iu

a
2j

ua
1ju

a
2i

, (i ̸= j)

are constant on D(S). Here, we define

[ij] =
u1ju2i

u1iu2j

and regard za as “the single valued” function on C \ (−∞, 0) which is the analytic continuation of the

function ea log z on z > 0. Moreover, the value of (4.1) on D(S) is eπia or e−πia and that of (4.2) is e−4πia

or e−2πia or 1 or e2πia or e4πia.

Proof. (1) The domain D(S) is homeomorphic to the direct product of the simply connected domains

S and Rn
>0. Therefore, D(S) is simply connected.

(2) Since the singularity of the A-hypergeometric system of the general prism is

∏
i=1,2,j=1,...,n

uij

∏
1≤k<ℓ≤n

∣∣∣∣u1k u1ℓ

u2k u2ℓ

∣∣∣∣ = 0,

we get (2).

(3) is easily shown from the definition of S.

(4) Let us notice that the following formulas hold;

xµ = c1(µ;x)(−x)µ,(4.3)

(xy)µ = c2(µ;x, y, xy)x
µyµ,(4.4)

where

c1(µ; a) =

{
eπiµ when Im a > 0
e−πiµ when Im a < 0,

and

c2(µ; a, b, c) =

{
e−2πiµ when Im a > 0, Im b > 0, Im c < 0
e2πiµ when Im a < 0, Im b < 0, Im c > 0
1 in the other cases.

(4) follows easily from the formulas (4.3) and (4.4) and a case by case study. []

Now, we can define an analytic continuation of the solution ϕk (3.5). Consider the intersection of the

domain D(S) and the domain of convergence of ϕk. The intersection is non-empty, connected and simply-

connected. Therefore, the function ϕk has the unique analytic continuation to the larger domain D(S). The

analytic continuation is denoted by φk.
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5. Connection formulas among the series solutions corresponding to the regular triangulations

of the general prism

Let ϕk be the solution (3.5) of the A-hypergeometric system of the general prism. The function φk is

the analytic continuation of the function ϕk to the domain D(S), S ∈ S (Section 4) and is the single valued

function on D(S). Put Φ = t(φ1, . . . , φn) and Φσ = t(φσ
1 , . . . , φ

σ
n), σ ∈ Sn. Notice that φσ

k is the unique

analytic continuation of the series ϕσ
k . Since the functions Φ and Φσ are fundamental sets of solutions of the

A-hypergeometric system of the general prism, there exists the connection matrix C(σ) such that

Φ = C(σ)Φσ on D(S).

For a given τ ∈ Sn, we have

Φτ = C(σ)τΦστ

where

C(σ)τ = C(σ)|αi 7→ατ(i),uij 7→uiτ(j)
.

Then we have

Φ = C(τ)C(σ)τΦστ = C(στ)Φστ ,

which means

(5.1) C(στ) = C(τ)C(σ)τ .

The relation (5.1) is the 1-cocycle property. In order to obtain the general connection matrix C(σ), we need

to explicitly get C(si) only for the generators si = (i, i + 1) of the group Sn by virtue of the 1-cocycle

property. Notice that T si (i = 1, . . . , n − 1) is the triangulation obtained from T by the restructuring si

([GZK1;3A.7]).

The connection formula is given by the following recurrence formula with respect to the dimension of

the general prism.

THEOREM 5.1 Assume the non-resonant condition (3.6) and the condition αi− 1,−βj ̸∈ Z≥0. Define p× p

matrix Cp by the recurrence relations

Cp(si;α1, . . . , αp;β1, β2; 1, . . . , p) = 1⊕ Cp−1(si;α1, . . . , αp−1;β1, β2 + αp − 1; 1, . . . , p− 1)

for 1 ≤ i < p− 1,

Cp(sp−1;α1, . . . , αp;β1, β2; 1, . . . , p) = Cp−1(sp−2;α2, . . . , αp;β1 + α1 − 1, β2; 2, . . . , p)⊕ 1
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and

C2(s1;α1, α2;β1, β2; i, j) =

(
qij(α1, β2) qij(−β2,−α1)

qij(−β1,−α2) qij(α2, β1)

)
where qij is the Heaviside function on the arrangement S defined by

qij(α1, β2) =

[ij]−2α1

(−[ij])−2α1
− 1

[ij]−2α1−2β2

(−[ij])−2α1−2β2
− 1

[ij]−β2
uβ2

1ju
β2

2i

uβ2

1i u
β2

2j

, [ij] =
u1ju2i

u1iu2j
.

Then, the matrix

Cn(si;α1, . . . , αn;β1, β2; 1, . . . , n)

is the connection matrix among the set of solutions Φ and Φsi .

The theorem 5.1 tells us that the connection matrices of the A-hypergeometric system of the general

prism ∆1×∆n−1 can be obtained from the connection matrices of theA-hypergeometric system of ∆1×∆n−2.

Repeating the process recursively, we can express the connection matrices in terms of the connection matrix

of the A-hypergeometric system of ∆1 ×∆1, which is essentially the Gauss hypergeometric equation.

We notice that the connection formulas of the q-analogue of the Lauricella function FD has already been

obtained as a multiplicative 1-cocycle of the permutation group ([AKM]). The authors think that it is an

interesting problem to derive our connection formulas by putting q = 1 or by using the connection formulas

of FD realized as a multiplicative 1-cocycle of the Braid group ([MSTY;5]).

6. Proof

In this section, we will give a proof to the recurrence formula of the connection matrices of the A-

hypergeometric function of the general prism ∆1 × ∆n−1. Our proof utilizes the formal restriction of MA

defined by a regular polyhedral subdivision and the existence of the recurrence stands for the fact that the

formal restriction is essentially the A-hypergeometric system of the smaller general prism ∆1 ×∆n−2.

First, put

Γ = An \ {(1, n)} An = ∆1 ×∆n−1.

Then

(6.1) conv(Γ) ∪ conv({(1, n), (2, 1), . . . , (2, n)})

is a regular polyhedral subdivision of An. Notice that conv(Γ) is the cone over ∆1 × ∆n−2. Consider the

formal restriction MΓ. Since the system of differential equations of MΓ contains the equation

u2n∂2nf = (αn − 1)f,

17



any solution f of MΓ can be written as

f = uαn−1
2n f ′(u1,1, . . . , u1,n−1, u2,1, . . . , u2,n−1).

Inserting the expression above into the system of differential equations of MΓ, we have the following propo-

sition.

PROPOSITION 6.1 The differential equation for f ′ is the A-hypergeometric system of ∆1 ×∆n−2 with the

parameters

t(−β1,−(β2 + αn − 1), α1 − 1, . . . , αn−1 − 1).
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About the figure: Figure of the secondary polytope Σ(∆1×∆4−1). The hexagon 1234-1324-3124-3214-

2314-2134 is the face of the secondary polytope and stands for the regular polyhedral subdivision (6.1). The

vertex σ corresponds to the solution Φσ. Theorem 5.1 gives the connection formulas among the solutions

standing for the vertices.

Secondly, we have the following proposition from Theorem 1.3, Proposition 3.2, Proposotion 3.3 and

Theorem 4 of [GZK2] on the characteristic variety of the A-hypergeometric system.

PROPOSITION 6.2 If the non-resonant condition (3.6) and the condition αi, βj ̸∈ Z are satisfied, then we

have the isomorphism

r : j−1HomDA(MA,OA) ≃ HomDΓ(MΓ,OΓ).

on Dn ∩XΓ where

Dn =

u ∈ C2n

∣∣∣∣∣∣
∏

i=1,2,j=1,...,n,(i,j)̸=(1,n)

uij

∏
1≤k<ℓ≤n

∣∣∣∣u1k u1ℓ

u2k u2ℓ

∣∣∣∣ ̸= 0


and XΓ = {u ∈ C2n |u1n = 0}.

Finally, we give a proof of Theorem 5.1. We can easily apply Theorem 1.4 for our case, because

the domain of the definition of the An-hypergeometric function Dn \ XΓ has relatively simple topological

structure.

Proof of Theorem 5.1. We prove the theorem by the induction on n. The case n = 2 can be easily

shown by the connection formula of the Gauss hypergeometric function (see e.g. 14.51 of [WW]), which can

be proved, for example, by using the Barnes integral representation.

Let us consider the case 1 ≤ i < n− 1. Since φ1 = φsi
1 , we consider the difference of the functions

δ =


φ2

·
·
φn

− Cn−1(si;α1, . . . , αn−1;β1, β2 + αn − 1; 1, . . . , n− 1)


φsi
2

·
·

φsi
n


on D(S). Let CP be the domain of convergence of the vector of series (ϕ2, . . . , ϕn) and CQ be the domain

of convergence of the series ϕ1. We can easily see that CP ∩XΓ ̸= ∅ and CP ′ ∩XΓ ̸= ∅ (CP ′ = (CP )
si). We

can take paths α, α′ and γ of which interior lie in the simply connected domain D(S) and which satisfy the

condition (1.5). The path α ◦ γ ◦ α′−1
can be continuously deformed into a path in

D′(S) = {(rijeiθij ) ∈ C2n | rij > 0, (i, j) ̸= (1, n), (θij) ∈ S, r1n = 0} ⊂ XΓ.
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It follows from the induction hypothesis, Proposition 6.1, Proposition 6.2 and Theorem 1.4 that we have

δ = 0 on D(S).

The case of sn−1 can be shown in a similar way. In this case, we restrict the difference to u21 = 0. []

Appendix

We will give a proof of Theorem 1.1 in this appendix. Throughout the appendix, Zd means the lattice

ZΓ and the readers are advised to forget the lattice ZA ≃ Zd ⊃ ZΓ.

We denote by Λ the semigroup

Z≥0Γ =

m∑
i=1

Z≥0ai

and we put

Λ′ = {χ ∈ Zd |Fτ (χ) ≥ 0, ∀τ ∈ F := FΓ}.

The following lemma is the key to prove Theorem 1.1 without the normality condition.

LEMMA 1 There exists χ′ ∈ Λ such that

χ′ + Λ′ ⊂ Λ ⊂ Λ′.

In order to prove the lemma, we need preparatory lemmas.

There exist µ1, . . . , µk ∈ Λ′ such that

Λ′ =
k∑

i=1

Z≥0µi + Λ

by Gordan’s lemma. We fix such µ1, . . . , µk. Since µi ∈ QΓ, we have the following lemma.

LEMMA 2 For any i, there exists mi ∈ Z≥0 such that miµi ∈ Λ.

We fix such mi. We define a function h(λ) on Zd which characterizes the semigroups Λ and Λ′. The

function h(λ) is defined by

h(λ) = max
λ=
∑m

j=1
ℓjaj , ℓj∈Z

(
min
j

(ℓj)

)
.

LEMMA 3

(1) h(λ) ≥ 0 if and only if λ ∈ Λ.
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(2) For any λ, µ ∈ Zd, we have

h(λ+ µ) ≥ h(λ) + h(µ).

Proof. The statement (1) can be easily shown from the definition. Let us prove (2). Take representations

λ =
m∑
i=1

ℓiai, µ =
m∑
i=1

ℓ′iai

that attain the value h(λ) and h(µ) and assume h(λ) = min(ℓi) and h(µ) = min(ℓ′i). It follows from the

definition that we have

h(λ+ µ) ≥ min(ℓi + ℓ′i) ≥ min(ℓi) + min(ℓ′i) = h(λ) + h(µ). []

LEMMA 4 There exists a number c ∈ Z≥0 such that h(λ) ≥ −c for all λ ∈ Λ′.

Proof. Put

−c = min
0≤di<mi, i

h

(
k∑

i=1

diµi

)
.

Take an element λ of
∑k

i=1 Z≥0µi + Λ. The vector λ can be expressed as

λ =
k∑

i=1

ℓiµi +
m∑
j=1

njaj

where ℓi, aj ∈ Z≥0 and

ℓi = pimi + qi, q ≤ qi < mi.

We have

h(λ) ≥ h

(
k∑

i=1

ℓiµi

)
(Lemma 3)

≥ h

(
k∑

i=1

qiµi

)
(Lemma 2 and 3)

≥ −c. []

Now, we are ready for proving the key lemma.

Proof of Lemma 1. The inclusion Λ ⊂ Λ′ is trivial. Put χ′ = c
∑m

i=1 ai where the number c is the one

in Lemma 4. Take an arbitrary vector λ ∈ Λ′. Then we have

h(χ′ + λ) ≥ h(χ′) + h(λ) ≥ c− c ≥ 0
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by Lemma 3 and 4. Lemma 3 (1) yields χ′ + λ ∈ Λ. []

We start to prove Theorem 1.1 by utilizing Lemma 1. It is enough for proving it to show that the left

ideal of the Weyl algebra generated by ∂χ, qi(α) (i = 1, . . . , d) and △r (r ∈ ker(a1, . . . , am) ∩ Zd) is the

trivial ideal generated by 1. We will show this fact step by step and begin with defining a decomposition of

an ideal.

Let W be the Weyl algebra C⟨x1, . . . , xm, ∂1, . . . , ∂m⟩. We denote by I ′ the left ideal of W generated

by △r (r ∈ ker(a1, . . . , am) ∩ Zm) and by I ′(χ0) the left ideal generated by I ′ and ∂χ0 .

Similarly, the left ideal of W generated by △r (r ∈ ker(a1, . . . , am) ∩ Zm) and ∂χ (Fτ (χ) ≥ Fτ (χ0)) is

denoted by I ′(τ, χ0).

PROPOSITION 1 (cf. [S1; Proposition 4.3]) For any χ0 ∈ Λ, we have

∩τ∈FI
′(τ, χ0 + χ′) ⊂ I ′(χ0) ⊂ ∩τ∈FI

′(τ, χ0).

Proof. Let π be the natural projection of W onto W/I ′. Clearly we have I ′(χ0) ⊂ ∩τ∈FI
′(τ, χ0).

As C[x1, . . . , xm ]-modules, W/I ′, π(I ′(τ, χ0)) and π(I ′(χ0)) are free modules with basis { ∂χ |χ ∈ Λ },

{ ∂χ |Fτ (χ) ≥ Fτ (χ0) } and { ∂χ0+χ |χ ∈ Λ } respectively. Hence we have ∩τ∈Fπ(I
′(τ, χ0 + χ′)) ⊂ π(I ′(χ0))

by Lemma 1. Since we have π−1π(I ′(χ0)) = I ′(χ0) and π−1π(I ′(τ, χ0 + χ′)) = I ′(τ, χ0 + χ′), we conclude

∩τ∈FI
′(τ, χ0 + χ′) ⊂ I ′(χ0). []

We denote by W [s] the ring C[s1, . . . , sd]⊗C W where each si commutes with sj , xj and ∂j . Let I be

the left ideal of W [s] generated by qi(s) (i = 1, . . . , d) and △r (r ∈ ker(a1, . . . , am) ∩ Zd). Similarly, the

left ideal generated by qi(s) (i = 1, . . . ,m) and I ′(χ0) is denoted by I(χ0) and the left ideal generated by

qi(s) (i = 1, . . . , d) and I ′(τ, χ0) by I(τ, χ0).

By using a similar argument to [S1; Proposition 4.4], we have the following decomposition.

PROPOSITION 2 For any χ0 ∈ Λ, we have

∩τ∈FI(τ, χ0 + χ′) ⊂ I(χ0) ⊂ ∩τ∈FI(τ, χ0).

Put B(χ0) = C[s] ∩ I(χ0) and B(τ, χ0) = C[s] ∩ I(τ, χ0). The polynomials in B(χ0) are called b-

functions with respect to χ0 (cf. [S1; 5]). Since the left ideal I(χ0) is generated by qi(s) (i = 1, . . . , d), △r

(r ∈ ker(a1, . . . , am)) and ∂χ0 , we have the following proposition from the definition of B(χ0).
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PROPOSITION 3 (cf. [S1; Corollary 5.4]) If there exists a polynomial b(s) ∈ B(χ0) such that b(β) ̸= 0, then

the morphism

fχ0 : MΓ(β − χ0) −→ MΓ(β)

is isomorphic.

It follows from Proposition 2 and the definitions of B(χ0) and B(τ, χ0) that the ideal B(χ0) can be

characterized as follows.

PROPOSITION 4 For any χ0 ∈ Λ, we have

∩τ∈FB(τ, χ0 + χ′) ⊂ B(χ0) ⊂ ∩τ∈FB(τ, χ0).

The proposition above admits us to study the ideals B(χ0) by using simpler ideals B(τ, χ0 + χ′).

The final thing we have to do to prove Theorem 1.1 is to find a nice element in the ideal B(τ, χ0 + χ′).

Fortunately, by virtue of [S1; Proposition 5.6 and Lemma 6.1], we have the nice element as follows.

PROPOSITION 5
Fτ (χ0+χ′)∏

m=0

(Fτ (s)−m) ∈ B(τ, χ0 + χ′).

Now, we can complete the proof of Theorem 1.1. In fact, since we have

∏
τ∈F

Fτ (χ0+χ′)∏
m=0

(Fτ (s)−m) ∈ ∩τ∈FB(τ, χ0 + χ′) ⊂ B(χ0)

from Propositions 4 and 5 and since Fτ (α) ̸∈ Z≥0 for all τ ∈ F , Proposition 3 completes the proof of Theorem

1.1.
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