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Abstract. Tropical representations of all the second order g-Painlevé equations are given. Corresponding
amoebae arising as the integral curves of autonomous cases are also presented.

1 Introduction

A birational transformation is called “tropical” if it can be represented as a subtraction free expression[14].
Such tropical transformations have combinatorial analog through the ultra-discretization procedure[27]

a+b— max(a,b), axb—a+bd (1)

The resulting Max-Plus algebra has been interested from various points of view such as combinatorics[14][23],
representation theory[1][2], tropical geometry[18][19] and integrable systems[15][16][29].

It is known that some of the g-difference Painlevé equations and their higher order generalizations
have a tropical form[13] [28]. In this note, we give a tropical representation for the Weyl group for all
the second order g-Painlevé equations in Sakai’s list[24].
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A
/
Eél) — Egl) — Eél) — Dél) — Ail) — (A2 + Al)(l) — (A1 + Al)(l) — A(ll) — A(()l)

This diagram also represent the degeneration of 5d N = 2 SU(2) gauge theories[26][8][30]. Correspond-

ing Weyl group actions are given as the Cremona transformations on P2[17][5]. In case of Egl) and

Eél), however, these actions are not tropical in the original coordinates on P2. We find the coordinate
transformations which makes these formulas tropical form.

Under some special condition on the root parameters, these Painlevé equations become autonomous
and integrable. We give the explicit formulae of the integral curves together with the corresponding
amoebae[18][19]. The results can be identified with the [p, g]-five brane web diagrams(see for example[3][4][9]).

2 'Tropical representations of affine Weyl groups

Our construction of discrete Painlvé equations is based on representations of affine Weyl groups, where
the difference equations arises as the actions of translations in the affine Weyl group[22].

In what follows, s; denotes the simple reflections whose labelings are given in the Dynkin diagrams.
The action of s; on multiplicative root parameters b; are standard one s;(b;) = b;b, % with corresponding
Cartan matrix (Cj;), and we will suppress them in the following data. Trivial actions s;(z) = « will also
be omitted.
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Case Eél). The Weyl group is W(Eél)) = (S0,...,Ss)-
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Nontrivial actions on dependent variables (f,g) are given as follows:

solf) =1 52(g) = bag,
s(f):fb3+b3f+g S(): 1+b3f+g (2)
’ +f+g Y79 0+f+9)

Case Eél). The Weyl group is W(E§1)) = (s, ..., s7) extended by its diagram automorphism Aut(Eél)) =
(p1) ~ Ga.
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Nontrivial actions on dependent variables (f, g) are given as follows:

f

N4 N4 O
5) 6 7

so(f) = by’ s3(g) = bsy,

. b4+b4f+g s N 1+b4f+g
S4(f)_];1+f+g ; 4(9)—Zb4(1+f2_g)7 3)
n(n =" plg) = M l)

Y41 (b{0,1,2,3,475,6,7}) - b{0,7,675,4,3,2,1}-

Case Eél). The Weyl group is W(Eél)) = (S0, ..., s¢) extended by its diagram-automorphism Aut(Eé.l)) =
(p1,p2) ~ G3.

U\O



b b
8(f)=f%3+bgf+g salg) = gt BT HI
’ 1+f+g ’ bs(1+ f+g)’
86(9) = bﬁga
(4)
()=~ o) = 2
P1 f, b3f7
p2(f) =g, p2(9) = f,
_ -1 _ -1
pl(b{071,2,3,4,5,6}) = b{5’1’2’3’6,0$4}7p2(b{0,1,2,374,5,6}) - b{1’0’6,3$4’5’2}'
Case Dél). The Weyl group is W(Dél)) = (S0y.--,85)"
0 5
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The nontrivial actions are:
1+bof
= b =
so(f) =bof, solg) =g i/
/
s ==,
. b3+b3f+g B 1+b3f+g
53(]“)7.}(‘ 1+f+g ) 53(g)7gb3(1+f+g>7
s5(g) = bsg.
The diagram automorphism is generated by p1, po:
_ 1+ f 1+f+yg
pl(b{0,1,2,3,4,5}) = b{514 3,2,1,0}° pl(f) = pl(g) =
e g fg (6)
_ 1 g
1
PQ(b{0,1,2,3,4,5}) = b{0,172’375’4}a PQ(f) = }7 Pl(g) = @
Case Afll). The Weyl group is W(Afll)) = (S0y.--,84):
_ . botyg _ g
So(f)_fb0(1+g)7 So(g)_ bO’
Sl<g) = blg7
by +bof +g 1+baf+yg
s =f=——= 3 = ,
i
S3(f) - b37
14 byf
sa(f) =baf, salg) =g 5/
The diagram automorphism is generated by p1, po:
1+f+yg 1+ f
Pl(b{0,1,2,3,4}) = 5{1,2,3,4,0}7 pi(f) = f—7 p1(g) = —,
o 1+ f
p2(bgo,1,2,3,4)) = b(2.1,0,43} p2(9) = N



Case (A; + A3)™M.  The Weyl group is product of W(Aél)) = (sp, S1, S2) and W(Agl)) = (rg,7r1). The
corresponding multiplicative root parameters are denoted by {ag, a1, a2} and {bg,b1} (apaias = boby).
The tropical action on f, g variables is given by

_ s ftyg _ bif+yg
so(f) = 0o f + a0y’ olg) = W09 G e
st =af. s@=g
)= Ity 0= o)
ro(f) = bi(arazf +9+a1fg) rolg) = apaz(arazf +g+aifg)
i araz(b1f + aog + agarfg) " ashi f + agazg +bifg ’
N LSl R S ot
T e YT )

The diagram automorphism is generated by p1, po:

g aog
p1(agoa,2y) = aqi20y,  Pi(bgoay) = bpoy, pi(f) = o pi(g) = _bof)
0 1 (10)
2

p2(ago,1,2y) = 0{701,271}7 p2(bo,1y) = 5{711,0}7 p2(f) = 7’ p2(9) = ol

Case (A; + A1), The symmetry group is semi-direct product of W(Agl)) = (s0,81), Z = (p1) and
So = (p2). Their relations are p% = (p1p2)2 = Sop2S1p2 = 1, p%si = sip%. The parameters are {ag,ay,b}.
The tropical representation is given as follows.

pilago1y) = g o p1(b) = arb, n(f) =g, nio) = 52,

pa(agoy) = aiioy. nh) =52 mlo-s

81(a1)= ail’ 81(%)Zaoa%&(b):bahsl(f)wa%,ﬁ(g):g%’ (11)
sofor) = andd, sola) = oy solt) = oy so() = PIEZD ) — ST,

C;ase A:(Ll).2 The symmetry group is semi-direct product of Z = (p1) and &2 = (p2) with relations
ps = (p1p2)?) = 1.

pian) = i) = afaa,pr (1) = LD g =
1 1 1 (12)
p2(ao) = a_17p2(a1) = a—o, pa(g) = E

I
Case Agl) . The symmetry group is semi-direct product of Dg = (p1,p2) and W(Agl)) = (s1,80) with
relations pf = p3 = (p1p2)? = 57 = 1 and s1pa = pasp. The actions are as follows:

pi(ao) = a1, pi(ar) =ao, pi(f) =g, pilg) = ao;n’
1 1
paloo) = ap’ Pa(an) = a_1’p2(f) - aoga1’ P2(9) = ao{h’ (13)
1
s1(a0) = afan, 1) = o) = 9L i (g) =g LS,



Case A". The symmetry group is dihedral group D¢ = (p1,pa|p? = p2 = (pap1)? = 1).

)

pi(a) = a, pi(f) = %pl(g) =

pa(e) = 412l = 7. malo) =

N N

3 Realization as Cremona transformations

The tropical representations given in previous section are essentially the same as those given by the
Cremona transformations[24](see also[5]). However, the representations obtained in that way are not
tropical for E§1) and Eél) cases. This is because the relevant configurations of 9points on P? do not

admit the torus action in these cases. The tropical representations for E;l) and Eél) in previous section

were obtained by extending the case Eél). Since the representation of Eél) on variables (f, g) are nontrivial
only near the trivalent vertex, one can easily generalize it for any trivalent Dynkin diagrams T),q.[28].

In this section, we make explicit relation between the tropical representation and geometric ones, in
order to understand the systems of type ES) and Eél).

Consider the configuration of ten points P; (i = 1,...,10) on P2. Let s;; (1 < i < j < 9) be the
exchange of P; and P; and let s;55, (1 < i < j < k <9) be the standard Cremona transformation with
base points P;, Pj, P, (namely, (z : y : 2) — (yz : zz : zy) in the coordinate P; = (1 : 0 : 0),P; =
(0:1:0),P, = (0:0:1).) It has been known that the transformations s;; (1 <@ < j < 9) and s;j
(1 <i<j<k<9) generate the affine Weyl group W(Eél))[5]. This affine Weyl group action is the
geometric origin of the (discrete) Painlevé equations[24]. Note that the tenth point Pjg plays the role of
dependent variables (f,g) in this formulation[21][12].

Case Eél) Let us begin with the case Eél) for comparison. The configuration is

P1:(1:0:—1), ]DQZ(bQIOZ—l)7 P3:(b1b2:0:—1),
P4=(0:—121), P5=(OZ—1Ib6), PGZ(OI—lleb()), (15)
P7:(71Sbg20)7P8:(711b3b420),P9:(712b3b4b520).

Then our tropical representation is realized as

So = S56, S1 = S23, S2 = S12, $3 = S147, S4 = 878, (16)
S5 = 889, S6 = S45, P1 = S05546, P1 = S01526-

The 9 points are on a degenerate cubic G(z,y, z) = xyz = 0. When the parameters satisfy the relation
bob1b3b3b3bsbZ = 1, then there exist one-parameter family of cubic curves F(z,y,2) — HG(z,y,2) =
0 passing through the 9 points. Then the ratio H = F(x,y,z)/G(z,y,z) gives the integral of the
autonomous system. In terms of the inhomogeneous coordinate f = x/z,g = y/z, this gives the integral
eq.(33) in next section.

Case Egl) The configuration is

P1 = (bgbo :0: —1), P2 = (bzbgbo :0: —1), P3 = (b1b2b3b0 :0: —1),
Py =P(by"), P; = P(1), Ps = P(by), (17)
P7 = P(b4b5), Pg = P(b4b5b6), Pg = P(b4b5b6b7).

where P(u) = (u=2 :uw~! : 1). In this case, the Cremona transformation is not tropical. For instance the
action of s145 in coordinate (z :y : 1) is given by

2% — 2y — xyby + y2by + xbobs — yZbobs

bs(z — y? — ybs + y>bs + bobs — ybobs) ’ (18)
sras(y) = — y(=2 +y — bo + ybo)

19 & —y% — ybs + y2bs + bobs — ybobs

8145(96) =




However, it can be repaired into tropical form under the following change of variables:

oo P +b(+f+9) _ I
g(1+g) ’ 149
f+yd+9)=0, (z—y*)g=(y—1)(y—bo)

As a result, our tropical representation is realized as the Cremona transformations written in terms
of the variables f, g:

(19)

S0 = S45, S1 = 523, 82 = 512, S3 = S145, S4 = 856, (20)
S5 = S67, S6 — S78, S7 = 589, P1 = S5456517528539-

When b2b1b3b3b3b3b2b7 = 1, the equations of cubic pencil is given by

23+ 22my + xma + m3 — ymaw + y* (mawa — ma) — y3mawz+

21
zy?(mawy —my) — 2ymaws + Hy(z — y*) =0, 1)
where
(14 b3boz) (1 4 babsboz) (1 + bibabsboz) = 1+ myz + -+ + myz>,
z
(1 + Z)(l + b_)(l + b42)<1 + b4b52)(1 + b4b5b62)(1 + b4b5b6b7z) =1+ W1z + -+ wgzﬁ. (22)
0
Integral H = H(x,y) is also become tropical under the coordinate transformation (19).
Case Eél)
—ud
P=(u: 2% 1), (i=1,...,9) (23)
Uj
In this case, the nontrivial Cremona actions are computed as follows:
sl(uz) = Ui+1, si(qu) = U4, (Z = 1,...,8)
- Ug o Uug _ U N — (N
so(ug) = U tigUs’ so(u1) = ugls’ so(uz) g’ so(u3) g’
so(z) = 22ugky — uo(ug — k3) + xyug — ugks (24)
0 yks + zugky — ugks — $2(U() - k‘g) ’
So(y) _ y2u0k3 — yu%kg —+ ugkl (’LLO — ]i)g) — x2u0k2(u0 — ]Cg) + l’yUOklkg + .’L'Uo(’LLO — k3)2
kjg(ykg + xuokl - uOk‘g - xQ(uo - ]413))
Again, this action can be recasted into our tropical form through the variable change:
(23 + 2y — uo)urugus f + (. — u1)(z — ug)(z — ug)ug = 0 (25)
bp= —20  p=- (>0
UiU2U3 Us4-1
When u3 = ujus - - - ug, the cubic pencil is given by
mg(x?y + y? + 2up)ug 2 — my(x? + y)ug ' 4+ me — msx + maax? — maa® — mox(zy — u) (26)

—my (zy? + 2%ug — yug) — mo(y> — 3z3ug + 3u%)ua3 +uoH (23 + 2y — ug) = 0,

where

9 9

H(l—kuiz) = Zmiz’. (27)

i=1 i=0
By construction, these pencils(21)(26) coincide with the corresponding Seiberg-Witten curves [8][30][20][7][6],

where b; and H plays the role of multiplicative flavor masses and the u-parameter. In fact, by compar-

ing the Weierstrass normal forms, we find that the curve (26) coincides with the curve (B1) in [6] with

H = 54 — u. The role of cubic pencils in discrete Painlevé equations was clarified in [12]. The differential

cases and their relation to d = 4 Seiberg-Witten curves were given in [11].



4 Integral curves of autonomous cases

In this section, we give explicit integrals of autonomous ¢-Painlevé equatins. In the Fig.(2)-(12), the
parameters (b;) are given in additive notation.

Case E\". (Fig.12) Autonomous condition : bob?b4bSbibib3b2bs = 1. The integral is

6 6—1

1 o
H= D) eif'd . (28)
f 9 i=0 j=0
Where
k 2%kl k(12 + 215) 2%k(lyly + 13)
00,021—27 00,121—2, 00,221—2, CO,32172;
k(12 + 20113) 2kl 3(k + Is) Akly + Alsly +myls
Co,4 = l72’ Co,5 = l—a Co,6 = k7 C1,0 = l—g» C1,1 = 12 )
3 3 3 3
l%]{i:g + 312]{13 + l%lgk’Q + m1l113k2 + 3[2l3k2 + m5l§
C1,2 = 272 )
k23
lllgk?’ + 313]{53 + 31%]@2 + m1l2l3k2 + l1lglg/€2 + m5lll§
C1,3 = kzl% )
llks + m1l3k2 + 1113k2 + m5l2l3 m513
€14 = K215 » G5 = T2
3(k? + 33k +13) 2(11k% + malsk + 4y 13k + mql3 + 1113)
C2,0 = 2 y C21 = 2 )
ks ) ki3 (29)
l2]€4 + l%lng + m1l1l3k3 + 4[213]63 + mgl§k2 + mllll§k2 + lQl%kQ + m5l§k -+ m5l§
C22 =
’ k313 ’
myls (k + lg)(k‘z + 8l3k + l%)
C23 =0, cou= 2 0 30 = S )
m1k2 -+ 411]{)2 -+ 4m1l3k + 4lllgk + mllg
63,1 = k2l )
3 2 3 2 2 2 2
. lok® + malsk? + mililsk® + lalsk? + malsk + msl3
3,2 — )
) k315
m3l3 3(k2 + 3l3k + l%) Q(kml + lgml + k’ll) m2l3
€3,3 = T2 C4,0 = K205 y  C41 = 12 )y C42 = T2
- 3(]'{3 + lg) o mllg - lg
C5,0 = TRz C5,1 = T2 C6,0 = 52
and
k = bob1 b2,
(1 +Z)(1+b22)(1+b1b22) = 1+l12+l222+1323, (30)
z z z
14+ Y1+ .. (1+—=  _HYy=1 6,
( +b3)( +b3b4) ( +b3b4---b8) +miz+ -+ mez

Case Egl) (Figl1l) Autonomous condition: b3bb3b3b7bEb2b; = 1. The integral is

P b 2P 4bo) | 2b0(14bo) | f(1+4bo+b5) | Dgma | bgma | gbgms

H="+ -2+ + +
2b292 o , 2 ) 92 ) 92 , fg f f (31)
+9 om4+f m5+ o(m1 + bomq + ms) +f( om1 + ms + boms) 4 Fmg + gme
/ g g
where
(14 2)(1 + b32)(1 + bab3z)(1 + bybobzz) = 1 +myz + -+ + myz, (32)
z z z 32
1+ )1+ —)(1 1 —1 4
( +b4)( +b4b5)( +b4b5b6)( +b4b5b6b7) +msz+ -+ mgz



Case Eél) (Fig.10) Autonomous condition: bgb;babsbsbsbs = 1. The integral is

f? (biba + by +1)f  (babs +bs+1)f  boby +b1+1

H =

gb1b3 gb1b3 b1b3b3bsbs gb1bo (33)

g(b5b4 + by + 1) ngob% + gbﬁ(bﬁbo + by + 1) n bobe + bg + 1 n i

b b3b3b3bs f f f af

Case Dél). (Fig.9) Autonomous condition: bob;b3b3bsbs = 1. The integral is
1 1+b5 g 1+b1+b1b2 (1+b2+b1b2)f f2

H=—+ F o2 b+ g+ bobs(1+ ba) f + . (34
R o R AT

The ¢-Painlevé equation with D( ) symmetry is the ¢-Pyp [10], which is originally given in P! x P!
rather than P2. The coordinates ( f g) for P! x P! are given by f = f,§g = f+b1bs and the corresponding
amoeba is given in Fig.8.

Case Afll). (Fig.7) Autonomous condition: bobibabsby = 1. The integral is

1+b1 g 1+ b3 1 /

H=g+ — + . 35
I 00T T 0uf T bibsbag * bibafg  bibsbag (%)
Case (Ay + A;)M.  (Fig.6) Autonomous condition: agajaz = 1. The integral is
1 azf g
= T A : 36
aiby f / 9 9 b arby f (36)
Case (A; + A))M.  (Fig.5) Autonomous condition: aga; = 1. The integral is
1 f
= + = + +9. 37
abf " ar g " aibfg o
Case Agl). (Fig.4) Autonomous condition: apa; = 1. The integral is
a1 al
H=—+f+——+ay. 38
7 7R (38)
Case Agl)/. (Fig.3) Autonomous condition: aga; = 1. The integral is
ay 1
H==+4af+-+g. 39
7o+ (39)
Case Aél). (Fig.2) Autonomous condition: a = 1. The integral is
L
H=f+-+2. 40
77 (40)

Normalize the above integrals H as H = NH with the normalization constants in Table 1. Then H
is invariant under the affine Weyl group actions.

The Newton polygons of the integrals for Mul.4-Mul.10 cases are given in Fig(1). These polygons can
also be interpreted as toric diagram which reflect the blowing up structure of the corresponding rational
surfaces.



Case Normalization factor || Case Normalization factor
Eél) 1 E§1) b63 2b;1 2b51b;3 2
EM b2/3b3 P bgb2 i/ DY b2/ Py, OBk o3/
AS) bgl/zbg1/2b21/4bé/4 (Ay + A aé/3a?/3b}/2
(A1 + A)D | al/? A 1
I
ALY a7’ AL 1
Table 1: Normalization factor
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Figure 1: Newton polygons
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Figure 2: Aél) amoeba
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Figure 3: Agl)/ amoeba : (ag,a1) = (2,—-2)
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Figure 4: Agl) amoeba : (ag,a1) = (=5,5)
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Figure 5: (A; + A1) amoeba : (ag,a1,b) = (2, —1,3)
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Figure 6: (Ay + A;)(") amoeba : (ag, a1, a2, bo,b1) = (1,2, -3, —4,4)
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Figure 7: Afll) amoeba : (bg,--- ,by) = (4,-5,4,3,—6)
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Figure 8: D" amoeba (P! x P!
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Figure 9: DS amoeba (P2) : (by, -+ ,bs) = (—4,2,4,-3,-2,3)
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Figure 10: Eél) amoeba : (bg, - - -

80

,be) = (12,31,22, —43, 24,84, —45)
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Figure 11: E" amoeba : (by, - - -

,br) = (37,21,28,—-23,—-17,14, —11, —34)
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Figure 12: Eél) amoeba : (b, -

7b8):

(41,-52, —43, —54, —41,112, 63, —41,127) /10
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