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1 Introduction

1.1 Organization of the Manual

This manual is organized as follows.
1. Introduction

Organization of the Manual, notation and how to get Risa/Asir
2. Risa/Asir

Summary of Asir, Installation
3. Types

Types in Asir

4. Asir user language
Description of Asir user language

5. Debugger
Description of the debugger of Asir user language

6. Built-in function
Detailed description of various built-in functions

7. Distributed computation
Description of functions for distributed computation

8. Groebner bases
Description of functions and operations for Groebner basis computation

9. Algebraic numbers
Description of functions and operations for algebraic numbers

10. Finite fields
Description of functions and operations on finite fields

11. Appendix
Syntax in detail, description of sample files, interfaces for input from keyboard, changes,
references

1.2 Notation

In this manual, we shall use several notations, which is described here
• The name of a function is written in a typewriter type

gcd(), gr()
• For the description of a function, its argument is written in a slanted type.

int, poly

• A file name is written in a ‘typewriter type with single quotes’
‘dbxinit’, ‘asir_plot’

• An example is indented and written in a typewriter type.
[0] 1;
1
[1] quit;
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• References are made by a typewriter type bracketed by [].
[Boehm,Weiser]

• Arguments (actual parameters) of a function are optional when they are bracketed
by []’s. The repeatable items (including non-existence of the item) are bracketed by
[]*’s.
setprec([n]), diff(rat[,varn]*)

• The prompt from the shell (csh) is denoted, as it is, by %. The prompt, however, is
denoted by #, when you are assumed to be working as the root, for example, at the
installation.

% cat afo
afo
bfo
% su
Password:XXXX
# cp asir /usr/local/bin
# exit
%

• The rational integer ring is denoted by Z, the rational number field by Q, the real
number field by R, and the complex number field by C.

1.3 How to get Risa/Asir

The source code of Risa/Asir (‘asir2000.tgz’), PARI (‘pari.tgz’) and Windows binary
(‘asirwin-ja.tgz’, ‘asirwin-en.tgz’) are available via ftp from

ftp://ftp.math.kobe-u.ac.jp/pub/asir
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2 Risa/Asir

2.1 Risa and Asir

Risa is the name of whole libraries of a computer algebra system which is under development
at FUJITSU LABORATORIES LIMITED. The structure of Risa is as follows.
• The basic algebraic engine

This is the part which performs basic algebraic operations, such as arithmetic opera-
tions, to algebraic objects, e.g., numbers and polynomials, which are already converted
into internal forms. It exists, like ‘libc.a’ of UNIX, as a library of ordinary UNIX
system. The algebraic engine is written mainly in C language and partly in assembler.
It serves as the basic operation part of Asir, a standard language interface of Risa.

• Memory Manager
Risa employs, as its memory management component (the memory manager), a free
software distributed by Boehm (gc-6.1alpha5). It is proposed by [Boehm,Weiser],
and developed by Boehm and his colleagues. The memory manager has a memory
allocator which automatically reclaims garbages, i.e., allocated but unused memories,
and refreshes them for further use. The algebraic engine gets all its necessary memories
through the memory manager.

• Asir
Asir is a standard language interface of Risa’s algebraic engine. It is one of the possible
language interfaces, because one can develop one’s own language interface easily on Risa
system. Asir is an example of such language interfaces. Asir has very similar syntax
and semantics as C language. Furthermore, it has a debugger that provide a subset of
commands of dbx, a widely used debugger of C language.

2.2 Features of Asir

As mentioned in the previous section, Asir is a standard language interface forRisa’s al-
gebraic engine. Usually, it is provided as an executable file named asir. Main features
supported for the current version of Asir is as follows.
• A C-like programming language
• Arithmetic operations (addition, subtraction, multiplication and division) on numbers,

polynomials and rational expressions
• Operations on vectors and matrices
• List processing operations at the minimum
• Several Built-in functions (factorization, GCD computation, Groebner basis computa-

tion etc.)
• Useful user defined functions(e.g., factorization over algebraic number fields)
• A dbx-like debugger
• Plotting of implicit functions
• Numerical evaluation of mathematical expressions including elementary transcendental

functions at arbitrary precision. This feature is in force only if PARI system (see
Section 6.1.14 [pari], page 40).
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• Distributed computation over UNIX

2.3 Installation

Any questions and any comments on this manual are welcome by e-mails to the following
address.

noro@math.kobe-u.ac.jp

2.3.1 UNIX binary version

A file ‘asir.tgz’ suitable for the target machine/architecture is required. After getting
it, you have to unpack it by gzip. First of all, determine a derectory where binaries and
library files are installed. We call the directory the library directory. The following installs
the files in ‘/usr/local/lib/asir’.

# gzip -dc asir.tgz | ( cd /usr/local/lib; tar xf - )

In this case you don’t have to set any environment variable.
You can install them elsewhere.

% gzip -dc asir.tgz | ( cd $HOME; tar xf - )

In this case you have to set the name of the library directory to the environment variable
ASIR_LIBDIR.

% setenv ASIR_LIBDIR $HOME/asir

Asir itself is in the library directory. It will be convenient to create a symbolic link to it
from ‘/usr/local/bin’ or the user’s search path.

# ln -s /usr/local/lib/asir/asir /usr/local/bin/asir

Then you can start ‘asir’.
% /usr/local/bin/asir
This is Risa/Asir, Version 20000821.
Copyright (C) FUJITSU LABORATORIES LIMITED.
1994-2000. All rights reserved.
[0]

2.3.2 UNIX source code version

First of all you have to determine the install directory. In the install directory, the
following subdirectories are put:
• bin

executables of PARI and Asir
• lib

library files of PARI and Asir
• include

header files of PARI

These subdirectories are created automatically if they does not exist. If you can be a
root, it is recommended to set the install directory to ‘/usr/local’. In the following the
directory is denoted by TARGETDIR.

Then, install PARI library. After getting ‘pari.tgz’, unpack and install it as follows:
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% gzip -dc pari.tgz | tar xvf -
% cd pari
% ./Configure --prefix=TARGETDIR
% make all
% su
# make install
# make install-lib-sta

While executing ’make install’, the procedure may stop due to some error. Then try the
following:

% cd Oxxx
% make lib-sta
% su
# make install-lib-sta
# make install-include
# exit
%

In the above example, xxx denotes the name of the target operating system. Although
GP is not built, the library necessary for building asir2000 will be generated.

After getting ‘asir2000.tgz’, unpack it and install necessary files as follows.
% gzip -dc asir.tgz | tar xf -
% cd asir2000
% ./configure --prefix=TARGETDIR --with-pari --enable-plot
% make
% su
# make install
# make install-lib
# make install-doc
# exit

2.3.3 Windows version

The necessary file is ‘asirwin-en.tgz’. To unpack it ‘gzip.exe’ and ‘tar.exe’ are neces-
sary. They are in the same directory as ‘asirwin-en.tgz’ on the ftp server. Putting them
in the same directory, execute the following:

C:\...> tar xzf asirwin.tgz

Then a directory ‘Asir’ (Asir root directory) is created, which has subdirectories named
‘bin’ and ‘lib’. Asir can be invoked by double-clicking ‘asirgui.exe’.

2.4 Command line options

Command-line options for the command ‘asir’ are as follows.

-heap number
In Risa/Asir, 4KB is used as an unit, called block, for memory allocation. By
default, 16 blocks (64KB) are allocated initially. This value can be changed
by giving an option -heap a number parameter in unit block. Size of the heap
area is obtained by a Built-in function heap(), the result of which is a number
in Bytes.
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-adj number
Heap area will be stretched by the memory manager, if the size of reclaimed
memories is less than 1/number of currently allocated heap area. The default
value for number is 3. If you do not prefer to stretch heap area by some reason,
perhaps by restriction of available memories, but if prefer to resort to reclaiming
garbages as far as possible, then a large value should be chosen for number, e.g.,
8.

-norc When this option is specified, Asir does not read the initial file ‘$HOME/.asirrc’.

-quiet

-f file Instead of the standard input, file is used as the input. Upon an error, the
execution immediately terminates.

-paristack number
This option specifies the private memory size for PARI (see Section 6.1.14 [pari],
page 40). The unit is Bytes. By default, it is set to 1 MB.

-maxheap number
This option sets an upper limit of the heap size. The unit is Bytes. Note that
the size is already limited by the value of datasize displayed by the command
limit on UNIX.

2.5 Environment variable

There exist several environment variables concerning with an execution of Asir. On UNIX,
an environment variable is set from shells, or in rc files of shells. On Windows NT, it
can be set from [Control Panel] ->[Environment]. On Windows 95/98, it can be set in
‘c:\autoexec.bat’. Note that the setting takes effect after rebooting the machine on
Windows 95/98.
• ASIR_LIBDIR

The library directory of Asir, i.e., the directory where , for example, files containing
programs written in Asir. If not specified, on UNIX, ‘/usr/local/lib/asir’ is used by
default. On Windows, ‘lib’ in Asir root directory is used by default. This environment
will be useful in a case where Asir binaries are installed on a private directory of the
user. This environmental variable will become obsolete.

• ASIR_CONTRIB_DIR
The asir-contrib library directory of Asir, i.e., the directory where packages and
data developed by the OpenXM/asir-contrib project files are put. If not specified,
on UNIX, ‘/usr/local/lib/asir-contrib’ is used by default. On Windows,
‘lib-asir-contrib’ in Asir root directory is used by default. This environment will
be useful in a case where Asir binaries are installed on a private directory of the user.

• ASIRLOADPATH
This environment specifies directories which contains files to be loaded by Asir com-
mand load(). Directories are separated by a ‘:’ on UNIX, a ’;’ on Windows respec-
tively. The search order is from the left to the right. After searching out all directories
in ASIRLOADPATH, or in case of no specification at all, the library directory will be
searched.
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• HOME
If Asir is invoked without -norc, ‘$HOME/.asirrc’, if exists, is executed. If HOME is
not set, nothing is done on UNIX. On Windows, ‘.asirrc’ in Asir root directory is
executed if it exists.

2.6 Starting and Terminating an Asir session

Run Asir, then the copyright notice and the first prompt will appear on your screen, and a
new Asir session will be started.

[0]

When initialization file ‘$HOME/.asirrc’ exists, Asir interpreter executes it at first taking
it as a program file written in Asir.

The prompt indicates the sequential number of your input commands to Asir. The session
will terminate when you input end; or quit; to Asir. Input commands are evaluated
statement by statement. A statement normally ends with its terminator ‘;’ or ‘$’. (There
are some exceptions. See, syntax of Asir.) The result will be displayed when the command,
i.e. statement, is terminated by a ‘;’, and will not when terminated by a ‘$’.

% asir
[0] A;
0
[1] A=(x+y)^5;
x^5+5*y*x^4+10*y^2*x^3+10*y^3*x^2+5*y^4*x+y^5
[2] A;
x^5+5*y*x^4+10*y^2*x^3+10*y^3*x^2+5*y^4*x+y^5
[3] a=(x+y)^5;
evalpv : invalid assignment
return to toplevel
[3] a;
a
[4] fctr(A);
[[1,1],[x+y,5]]
[5] quit;
%

In the above example, names A, a, x and y are used to identify mathematical and program-
ming objects. There, the name A denotes a program variable (some times called simply as a
program variable.) while the other names, a, x and y, denote mathematical objects, that is,
indeterminates. In general, program variables have names which begin with capital letters,
while names of indeterminates begin with small letters. As you can see in the example,
program variables are used to hold and keep objects, such as numbers and expressions,
as their values, just like variables in C programming language. Whereas, indeterminates
cannot have values so that assignment to indeterminates are illegal. If one wants to get a
result by substituting a value for an indeterminate in an expression, it is achieved by the
function subst as the value of the function.
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2.7 Interruption

To interrupt the Asir execution, input an interrupt character from the keyboard. A C-c is
usually used for it. (Notice: C-x on Windows and DOS.)

@ (x+y)^1000;
C-cinterrupt ?(q/t/c/d/u/w/?)

Here, the meaning of options are as follows.

q Terminates Asir session. (Confirmation requested.)

t Returns to toplevel. (Confirmation requested.)

c Resumes to continue the execution.

d Enters debugging mode at the next statement of the Asir program, if Asir
has been executing a program loaded from a file. Note that it will sometimes
take a long time before entering debugging mode when Asir is executing basic
functions in the algebraic engine, (e.g., arithmetic operation, factorization etc.)
Detailed description about the debugger will be given in Chapter 5 [Debugger],
page 30.

u After executing a function registered by register_handler() (see Section 7.5.6
[ox reset ox intr register handler], page 107), returns to toplevel. A confirma-
tion is prompted.

w Displays the calling sequence up to the interruption.

? Show a brief description of options.

2.8 Error handling

When arguments with illegal types are given to a built-in function, an error will be detected
and the execution will be quit. In many cases, when an error is detected in a built-in
function, Asir automatically enters debugging mode before coming back to toplevel. At
that time, one can examine the state of the program, for example, inspect argument values
just before the error occurred. Messages reported there are various depending on cases.
They are reported after the internal function name. The internal function name sometimes
differs from the built-in function name that is specified by the user program.
In the execution of internal functions, errors may happen by various reasons. The UNIX
version of Asir will report those errors as one of the following internal error’s, and enters
debugging mode just like normal errors.

SEGV
BUS ERROR

Some of the built-in functions transmit their arguments to internal operation
routines without strict type-checking. In such cases, one of these two errors will
be reported when an access violation caused by an illegal pointer or a NULL
pointer is detected.

BROKEN PIPE

In the process communication, this error will be reported if a process attempts



Chapter 2: Risa/Asir 9

to read from or to write onto the partner process when the stream to the partner
process does not already exist, (e.g., terminated process.)

For UNIX version, even in such a case, the process itself does not terminate because such
an error can be caught by signal() and recovered. To remove this weak point, complete
type checking of all arguments are indispensable at the entry of a built-in function, which
requires an enormous amount of re-making efforts.

2.9 Referencing results and special numbers

An @ used for an escape character; rules currently in force are as follows.

@n The evaluated result of n-th input command

@@ The evaluated result of the last command

@i The unit of imaginary number, square root of -1.

@pi The number pi, the ratio of a circumference of the circle and its diameter.

@e Napier’s number, the base of natural logarithm.

@ A generator of GF(2^m), a finite field of characteristic 2, over GF(2). It is
a root of an irreducible univariate polynomial over GF(2) which is set as the
defining polynomial of GF(2^m).

@>, @<, @>=, @<=, @==, @&&, @||
Fist order logical operators. They are used in quantifier elimination.

[0] fctr(x^10-1);
[[1,1],[x-1,1],[x+1,1],[x^4+x^3+x^2+x+1,1],[x^4-x^3+x^2-x+1,1]]
[1] @@[3];
[x^4+x^3+x^2+x+1,1]
[2] eval(sin(@pi/2));
1.000000000000000000000000000000000000000000000000000000000
[3] eval(log(@e),20);
0.99999999999999999999999999998
[4] @0[4][0];
x^4-x^3+x^2-x+1
[5] (1+@i)^5;
(-4-4*@i)
[6] eval(exp(@pi*@i));
-1.0000000000000000000000000000
[7] (@+1)^9;
(@^9+@^8+@+1)

As you can see in the above example, results of toplevel computation can be referred to by
@ convention. This is convenient for users, while it sometimes imposes a heavy burden to
the garbage collector. It may happen that GC time will rapidly increase after computing a
very large expression at the toplevel. In such cases delete_history() (see Section 6.14.15
[delete_history], page 97) takes effect.
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3 Data types

3.1 Types in Asir

In Asir, various objects described according to the syntax of Asir are translated to in-
termediate forms and by Asir interpreter further translated into internal forms with the
help of basic algebraic engine. Such an object in an internal form has one of the following
types listed below. In the list, the number coincides with the value returned by the built-in
function type(). Each example shows possible forms of inputs for Asir’s prompt.

0 0
As a matter of fact, no object exists that has 0 as its identification number. The
number 0 is implemented as a null (0) pointer of C language. For convenience’s
sake, a 0 is returned for the input type(0).

1 number

1 2/3 14.5 3+2*@i

Numbers have sub-types. See Section 3.2 [Types of numbers], page 13.

2 polynomial (but not a number)
x afo (2.3*x+y)^10

Every polynomial is maintained internally in its full expanded form, represented
as a nested univariate polynomial, according to the current variable ordering,
arranged by the descending order of exponents. (See Section 8.1 [Distributed
polynomial], page 118.) In the representation, the indeterminate (or variable),
appearing in the polynomial, with maximum ordering is called the main vari-
able. Moreover, we call the coefficient of the maximum degree term of the
polynomial with respect to the main variable the leading coefficient.

3 rational expression (not a polynomial)
(x+1)/(y^2-y-x) x/x

Note that in Risa/Asir a rational expression is not simplified by reducing the
common divisors unless red() is called explicitly, even if it is possible. This is
because the GCD computation of polynomials is a considerably heavy opera-
tion. You have to be careful enough in operating rational expressions.

4 list

[] [1,2,[3,4],[x,y]]

Lists are all read-only object. A null list is specified by []. There are operations
for lists: car(), cdr(), cons() etc. And further more, element referencing by
indexing is available. Indexing is done by putting [index]’s after a program
variable as many as are required. For example,

[0] L = [[1,2,3],[4,[5,6]],7]$
[1] L[1][1];
[5,6]

Notice that for lists, matrices and vectors, the index begins with number 0.
Also notice that referencing list elements is done by following pointers from
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the first element. Therefore, it sometimes takes much more time to perform
referencing operations on a large list than on a vectors or a matrices with the
same size.

5 vector

newvect(3) newvect(2,[a,1])

Vector objects are created only by explicit execution of newvect() command.
The first example above creates a null vector object with 3 elements. The other
example creates a vector object with 2 elements which is initialized such that
its 0-th element is a and 1st element is 1. The second argument for newvect is
used to initialize elements of the newly created vector. A list with size smaller
or equal to the first argument will be accepted. Elements of the initializing list
is used from the left to the right. If the list is too short to specify all the vector
elements, the unspecified elements are filled with as many 0’s as are required.
Any vector element is designated by indexing, e.g., [index]. Asir allows any
type, including vector, matrix and list, for each respective element of a vector.
As a matter of course, arrays with arbitrary dimensions can be represented
by vectors, because each element of a vector can be a vector or matrix itself.
An element designator of a vector can be a left value of assignment statement.
This implies that an element designator is treated just like a simple program
variable. Note that an assignment to the element designator of a vector has
effect on the whole value of that vector.

[0] A3 = newvect(3);
[ 0 0 0 ]
[1] for (I=0;I<3;I++)A3[I] = newvect(3);
[2] for (I=0;I<3;I++)for(J=0;J<3;J++)A3[I][J]=newvect(3);
[3] A3;
[ [ [ 0 0 0 ] [ 0 0 0 ] [ 0 0 0 ] ]
[ [ 0 0 0 ] [ 0 0 0 ] [ 0 0 0 ] ]
[ [ 0 0 0 ] [ 0 0 0 ] [ 0 0 0 ] ] ]
[4] A3[0];
[ [ 0 0 0 ] [ 0 0 0 ] [ 0 0 0 ] ]
[5] A3[0][0];
[ 0 0 0 ]

6 matrix

newmat(2,2) newmat(2,3,[[x,y],[z]])

Like vector objects, matrix objects are also created only by explicit execution of
newmat() command. Initialization of the matrix elements are done in a similar
manner with that of the vector elements except that the elements are specified
by a list of lists. Each element, again a list, is used to initialize each row; if the
list is too short to specify all the row elements, unspecified elements are filled
with as many 0’s as are required. Like vectors, any matrix element is designated
by indexing, e.g., [index][index]. Asir also allows any type, including vector,
matrix and list, for each respective element of a matrix. An element designator
of a matrix can also be a left value of assignment statement. This implies that
an element designator is treated just like a simple program variable. Note that
an assignment to the element designator of a matrix has effect on the whole
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value of that matrix. Note also that every row, (not column,) of a matrix can
be extracted and referred to as a vector.

[0] M=newmat(2,3);
[ 0 0 0 ]
[ 0 0 0 ]
[1] M[1];
[ 0 0 0 ]
[2] type(@@);
5

7 string

"" "afo"

Strings are used mainly for naming files. It is also used for giving comments
of the results. Operator symbol + denote the concatenation operation of two
strings.

[0] "afo"+"take";
afotake

8 structure
newstruct(afo)

The type structure is a simplified version of that in C language. It is defined
as a fixed length array and each entry of the array is accessed by its name. A
name is associated with each structure.

9 distributed polynomial
2*<<0,1,2,3>>-3*<<1,2,3,4>>

This is the short for ‘Distributed representation of polynomials.’ This type
is specially devised for computation of Groebner bases. Though for ordinary
users this type may never be needed, it is provided as a distinguished type that
user can operate by Asir. This is because the Groebner basis package provided
with Risa/Asir is written in the Asir user language. For details See Chapter 8
[Groebner basis computation], page 118.

10 32bit unsigned integer

11 error object

These are special objects used for OpenXM.

12 matrix over GF(2)

This is used for basis conversion in finite fields of characteristic 2.

13 MATHCAP object

This object is used to express available funcionalities for Open XM.

14 first order formula

This expresses a first order formula used in quantifier elimination.
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15 matrix over GF(p)

A matrix over a small finite field.

16 byte array

An array of unsigned bytes.

-1 VOID object

The object with the object identifier -1 indicates that a return value of a function
is void.

3.2 Types of numbers

0 rational number
Rational numbers are implemented by arbitrary precision integers (bignum). A
rational number is always expressed by a fraction of lowest terms.

1 double precision floating point number (double float)
The numbers of this type are numbers provided by the computer hardware. By
default, when Asir is started, floating point numbers in a ordinary form are
transformed into numbers of this type. However, they will be transformed into
bigfloat numbers when the switch bigfloat is turned on (enabled) by ctrl()
command.

[0] 1.2;
1.2
[1] 1.2e-1000;
0
[2] ctrl("bigfloat",1);
1
[3] 1.2e-1000;
1.20000000000000000513 E-1000

A rational number shall be converted automatically into a double float number
before the operation with another double float number and the result shall be
computed as a double float number.

2 algebraic number
See Chapter 9 [Algebraic numbers], page 152.

3 bigfloat
The bigfloat numbers of Asir is realized by PARI library. A bigfloat number
of PARI has an arbitrary precision mantissa part. However, its exponent part
admits only an integer with a single word precision. Floating point operations
will be performed all in bigfloat after activating the bigfloat switch by ctrl()
command. The default precision is about 9 digits, which can be specified by
setprec() command.

[0] ctrl("bigfloat",1);
1
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[1] eval(2^(1/2));
1.414213562373095048763788073031
[2] setprec(100);
9
[3] eval(2^(1/2));
1.41421356237309504880168872420969807856967187537694807317...

Function eval() evaluates numerically its argument as far as possible. Notice
that the integer given for the argument of setprec() does not guarantee the
accuracy of the result, but it indicates the representation size of numbers with
which internal operations of PARI are performed. (See Section 6.1.13 [eval
deval], page 39, Section 6.1.14 [pari], page 40.)

4 complex number
A complex number of Risa/Asir is a number with the form a+b*@i, where @i is
the unit of imaginary number, and a and b are either a rational number, double
float number or bigfloat number, respectively. The real part and the imaginary
part of a complex number can be taken out by real() and imag() respectively.

5 element of a small finite prime field
Here a small finite fieid means that its characteristic is less than 2^27. At
present small finite fields are used mainly for groebner basis computation, and
elements in such finite fields can be extracted by taking coefficients of dis-
tributed polynomials whose coefficients are in finite fields. Such an element
itself does not have any information about the field to which the element be-
longs, and field operations are executed by using a prime p which is set by
setmod().

6 element of large finite prime field
This type expresses an element of a finite prime field whose characteristic is an
arbitrary prime. An object of this type is obtained by applying simp_ff to an
integer.

7 element of a finite field of characteristic 2
This type expresses an element of a finite field of characteristic 2. Let F be a
finite field of characteristic 2. If [F:GF(2)] is equal to n, then F is expressed as
F=GF(2)[t]/(f(t)), where f(t) is an irreducible polynomial over GF(2) of degree
n. As an element g of GF(2)[t] can be expressed by a bit string, An element g
mod f in F can be expressed by two bit strings representing g and f respectively.
Several methods to input an element of F are provided.
• @

@ represents t mod f in F=GF(2)[t](f(t)). By using @ one can input an
element of F. For example @^10+@+1 represents an element of F.

• ptogf2n
ptogf2n converts a univariate polynomial into an element of F.

• ntogf2n
As a bit string, a non-negative integer can be regarded as an element of
F. Note that one can input a non-negative integer in decimal, hexadecimal
(0x prefix) and binary (0b prefix) formats.
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• micellaneous
simp_ff is available if one wants to convert the whole coefficients of a
polynomial.

8 element of a finite field of characteristic p^n

A finite field of order p^n, where p is an arbitrary prime and n is a positive
integer, is set by setmod_ff by specifying its characteristic p and an irreducible
polynomial of degree n over GF(p). An element of this field is represented by
a polynomial over GF(p) modulo m(x).

9 element of a finite field of characteristic p^n (small order)

A finite field of order p^n, where p^n must be less than 2^29 and n must be
equal to 1 if p is greater or equal to 2^14, is set by setmod_ff by specifying
its characteristic p the extension degree n. If p is less than 2^14, each non-zero
element of this field is a power of a fixed element, which is a generator of the
multiplicative group of the field, and it is represented by its exponent. Other-
wise, each element is represented by the redue modulo p. This specification is
useful for treating both cases in a single program.

10 element of a finite field which is an algebraic extension of a small finite field of
characteristic p^n

An extension field K of the small finite field F of order p^n is set by setmod_
ff by specifying its characteristic p the extension degree n and m=[K :F]. An
irreducible polynomial of degree m over K is automatically generated and used
as the defining polynomial of the generator of the extension K/F. The generator
is denoted by @s.

11 algebraic number represented by a distributed polynomial
See Chapter 9 [Algebraic numbers], page 152.

Finite fields other than small finite prime fields are set by setmod_ff. Elements of finite
fields do not have informations about the modulus. Upon an arithmetic operation, i f one
of the operands is a rational number, it is automatically converted into an element of the
finite field currently set and the operation is done in the finite field.

3.3 Types of indeterminates

An algebraic object is recognized as an indeterminate when it can be a (so-called) variable
in polynomials. An ordinary indeterminate is usually denoted by a string that start with a
small alphabetical letter followed by an arbitrary number of alphabetical letters, digits or
‘_’. In addition to such ordinary indeterminates, there are other kinds of indeterminates in
a wider sense in Asir. Such indeterminates in the wider sense have type polynomial, and
further are classified into sub-types of the type indeterminate.

0 ordinary indeterminate
An object of this sub-type is denoted by a string that start with a small al-
phabetical letter followed by an arbitrary number of alphabetical letters, digits
or ‘_’. This kind of indeterminates are most commonly used for variables of
polynomials.
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[0] [vtype(a),vtype(aA_12)];
[0,0]

1 undetermined coefficient
The function uc() creates an indeterminate which is denoted by a string that
begins with ‘_’. Such an indeterminate cannot be directly input by its name.
Other properties are the same as those of ordinary indeterminate. Therefore,
it has a property that it cannot cause collision with the name of ordinary
indeterminates input by the user. And this property is conveniently used to
create undetermined coefficients dynamically by programs.

[1] U=uc();
_0
[2] vtype(U);
1

2 function form
A function call to a built-in function or to an user defined function is usually
evaluated by Asir and retained in a proper internal form. Some expressions,
however, will remain in the same form after evaluation. For example, sin(x)
and cos(x+1) will remain as if they were not evaluated. These (unevaluated)
forms are called ‘function forms’ and are treated as if they are indeterminates
in a wider sense. Also, special forms such as @pi the ratio of circumference and
diameter, and @e Napier’s number, will be treated as ‘function forms.’

[3] V=sin(x);
sin(x)
[4] vtype(V);
2
[5] vars(V^2+V+1);
[sin(x)]

3 functor
A function call (or a function form) has a form fname(args). Here, fname alone
is called a functor. There are several kinds of functors: built-in functor, user
defined functor and functor for the elementary functions. A functor alone is
treated as an indeterminate in a wider sense.

[6] vtype(sin);
3
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4 User language Asir

Asir provides many built-in functions, which perform algebraic computations, e.g., factor-
ization and GCD computation, file I/O, extract a part of an algebraic expression, etc. In
practice, you will often encounter a specific problem for which Asir does not provide a direct
solution. For such cases, you have to write a program in a certain user language. The user
language for Asir is also called Asir. In the following, we describe the Syntax and then
show how to write a user program by several examples.

4.1 Syntax — Difference from C language

The syntax of Asir is based on C language. Main differences are as follows. In this section,
a variable does not mean an indeterminate, but a program variable which is written by a
string which begins with a capital alphabetical letter in Asir.
• No types for variables.

As is already mentioned, any object in Asir has their respective types. A program
variable, however, is type-less, that is, any typed object can be assigned to it.

[0] A = 1;
1
[1] type(A);
1
[2] A = [1,2,3];
[1,2,3]
[3] type(A);
4

• Variables, together with formal parameters, in a function (procedure) are all local to
the function by default.
Variables can be global at the top level, if they are declared with the key word extern.
Thus, the scope rule of Asir is very simple. There are only two types of variables:
global variables and local variables. A name that is input to the Asir’s prompt at the
top level is denotes a global variable commonly accessed at the top level. In a function
(procedure) the following rules are applied.
1. If a variable is declared as global by an extern statement in a function, the variable

used in that function denotes a global variable at the top level. Furthermore, if a
variable in a function is preceded by an extern declaration outside the function
but in a file where the function is defined, all the appearance of that variable in
the same file denote commonly a global variable at the top level.

2. A variable in a function is local to that function, if it is not declared as global by
an extern declaration.
% cat afo
def afo() { return A;}
extern A$
def bfo() { return A;}
end$
% asir
[0] load("afo")$
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[5] A = 1;
1
[6] afo();
0
[7] bfo();
1

• Program variables and algebraic indeterminates are distinguished in Asir.
The names of program variables must begin with a capital letter; while the names of
indeterminates and functions must begin with a small letter.
This is an unique point that differs from almost all other existing computer algebra
systems. The distinction between program variables and indeterminates is adopted to
avoid the possible and usual confusion that may arise in a situation where a name is
used as an indeterminate but, as it was, the name has been already assigned some
value. To use different type of letters, capital and small, was a matter of syntactical
convention like Prolog, but it is convenient to distinguish variables and indeterminates
in a program.

• No switch statements, and goto statements.
Lack of goto statement makes it rather bothering to exit from within multiple loops.

• Comma expressions are allowed only in A, B and C of the constructs for (A;B;C) or
while(A).
This limitation came from adopting lists as legal data objects for Asir.

The above are limitations; extensions are listed as follows.
• Arithmetic for rational expressions can be done in the same manner as is done for

numbers in C language.
• Lists are available for data objects.

Lists are conveniently used to represent a certain collection of objects. Use of lists
enables to write programs more easily, shorter and more comprehensible than use of
structure like C programs.

• Options can be specified in calling user defined functions.
See Section 4.2.12 [option], page 26.

4.2 Writing user defined functions

4.2.1 User defined functions

To define functions by an user himself, ‘def’ statement must be used. Syntactical errors are
detected in the parsing phase of Asir, and notified with an indication of where Asir found
the error. If a function with the same name is already defined (regardless to its arity,) the
new definition will override the old one, and the user will be told by a message,

afo() redefined.

on the screen when a flag verbose is set to a non-zero value by ctrl(). Recursive definition,
and of course, recursive use of functions are available. A call for an yet undefined function
in a function definition is not detected as an error. An error will be detected at execution
of the call of that yet undefined function.
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/* X! */

def f(X) {
if ( !X )

return 1;
else

return X * f(X-1);
}

/* iCj ( 0 ≤ i ≤ N, 0 ≤ j ≤ i ) */

def c(N)
{

A = newvect(N+1); A[0] = B = newvect(1); B[0] = 1;
for ( K = 1; K <= N; K++ ) {

A[K] = B = newvect(K+1); B[0] = B[K] = 1;
for ( P = A[K-1], J = 1; J < K; J++ )

B[J] = P[J-1]+P[J];
}

return A;
}

/* A + B */

def add(A,B)
"add two numbers."
{

return A+B;
}

In the second example, c(N) returns a vector, say A, of length N+1. A[I] is a vector of
length I+1, and each element is again a vector which contains ICJ as its elements.

References
Section 6.14.4 [help], page 91.

In the following, the manner of writing Asir programs is exhibited for those who have no
experience in writing C programs.

4.2.2 variables and indeterminates

variables (program variables)
A program variable is a string that begins with a capital alphabetical letter
followed by any numbers of alphabetical letters, digits and ‘_’.
A program variable is thought of a box (a carrier) which can contain Asir
objects of various types. The content is called the ‘value’ of that variable.
When an expression in a program is to be evaluated, the variable appearing in
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the expression is first replaced by its value and then the expression is evaluated
to some value and stored in the memory. Thus, no program variable appears
in objects in the internal form. All the program variables are initialized to the
value 0.

[0] X^2+X+1;
1
[1] X=2;
2
[2] X^2+X+1;
7

indeterminates
An indeterminate is a string that begins with a small alphabetical letter followed
by any numbers of alphabetical letters, digits and ‘_’.
An indeterminate is a transcendental element, so-called variable, which is used
to construct polynomial rings. An indeterminate cannot have any value. No
assignment is allowed to it.

[3] X=x;
x
[4] X^2+X+1;
x^2+x+1
[5] A=’Dx’*(x-1)+x*y-y;
(y+Dx)*x-y-Dx
[6] function foo(x,y);
[7] B=foo(x,y)*x^2-1;
foo(x,y)*x^2-1

4.2.3 parameters and arguments

def sum(N) {
for ( I = 1, S = 0; I <= N; I++ )

S += I;
return S;

}

This is an example definition of a function that sums up integers from 1 to N. The N in
sum(N) is called the (formal) parameter of sum(N). The example shows a function of the
single argument. In general, any number of parameters can be specified by separating by
commas (‘,’). A (formal) parameter accepts a value given as an argument (or an actual
parameter) at a function call of the function. Since the value of the argument is given to the
formal parameter, any modification to the parameter does not usually affect the argument
(or actual parameter). However, there are a few exceptions: vector arguments and matrix
arguments.

Let A be a program variable and assigned to a vector value [ a, b ]. If A is given as
an actual parameter to a formal parameter, say V, of a function, then an assignment in the
function to the vector element designator V[1], say V[1]=c;, causes modification of the
actual parameter A resulting A to have an altered value [ a c ]. Thus, if a vector is given
to a formal parameter of a function, then its element (and subsequently the vector itself)
in the calling side is modified through modification of the formal parameter by a vector
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element designator in the called function. The same applies to a matrix argument. Note
that, even in such case where a vector (or a matrix) is given to a formal parameter, the
assignment to the whole parameter itself has only a local effect within the function.

def clear_vector(M) {
/* M is expected to be a vector */
L = size(M)[0];
for ( I = 0; I < L; I++ )

M[I] = 0;
}

This function will clear off the vector given as its argument to the formal parameter M and
return a 0 vector.

Passing a vector as an argument to a function enables returning multiple results by
packing each result in a vector element. Another alternative to return multiple results is to
use a list. Which to use depends on cases.

4.2.4 comments

The text enclosed by ‘/*’ and ‘*/’ (containing ‘/*’ and ‘*/’) is treated as a comment and
has no effect to the program execution as in C programs.

/*
* This is a comment.
*/

def afo(X) {

A comment can span to several lines, but it cannot be nested. Only the first ‘/*’ is effective
no matter how many ‘/*’’s in the subsequent text exist, and the comment terminates at
the first ‘*/’.

In order to comment out a program part that may contain comments in it, use the pair,
#if 0 and #endif. (See Section 4.2.11 [preprocessor], page 25.)

#if 0
def bfo(X) {
/* empty */
}
#endif

4.2.5 statements

An user function of Asir is defined in the following form.
def name(parameter, parameter,...,parameter) {

statement
statement
...
statement

}

As you can see, the statement is a fundamental element of the function. Therefore, in order
to write a program, you have to learn what the statement is. The simplest statement is the
simple statement. One example is an expression with a terminator (‘;’ or ‘$’.)
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S = sum(N);

A ‘return statement’ and ‘break statement’ are also primitives to construct ‘statements.’
As you can see the syntactic definition of ‘if statement’ and ‘for statement’, each of their
bodies consists of a single ‘statement.’ Usually, you need several statements in such a
body. To solve this contradictory requirement, you may use the ‘compound statement.’ A
‘compound statement’ is a sequence of ‘statement’s enclosed by a left brace ‘{’ and a right
brace ‘}’. Thus, you can use multiple statement as if it were a single statement.

if ( I == 0 ) {
J = 1;
K = 2;
L = 3;

}

No terminator symbol is necessary after ‘}’, because ‘{’ statement sequence ‘}’ already
forms a statement, and it satisfies the syntactical requirement of the ‘if statement.’

4.2.6 return statement

There are two forms of return statement.
return expression;

return;

Both forms are used for exiting from a function. The former returns the value of the
expression as a function value. The function value of the latter is not defined.

4.2.7 if statement

There are two forms of if statement.
if ( expression ) if ( expression )

statement and statement
else

statement

The interpretation of these forms are obvious. However, be careful when another if state-
ment comes at the place for ‘statement’. Let us examine the following example.

if ( expression1 )
if ( expression2 ) statement1

else
statement2

One might guess statement2 after else corresponds with the first if ( expression1 )
by its appearance of indentation. But, as a matter of fact, the Asir parser decides that
it correspond with the second if ( expression2 ). Ambiguity due to such two kinds of
forms of if statement is thus solved by introducing a rule that a statement preceded by an
else matches to the nearest preceding if.

Therefore, rearrangement of the above example for improving readability according to
the actual interpretation gives the following.

if ( expression1 ) {
if ( expression2 ) statement1 else statement2
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}

On the other hand, in order to reflect the indentation, it must be written as the following.
if ( expression1 ) {

if ( expression2 ) statement1
} else

statement2

When if is used in the top level, the if expression should be terminated with $ or ;. If
there is no terminator, the next expression will be skipped to be evaluated.

4.2.8 loop, break, return, continue

There are three kinds of statements for loops (repetitions): the while statement, the for
statement, and the do statement.

• while statement
It has the following form.

while ( expression ) statement

This statement specifies that statement is repeatedly evaluated as far as the
expression evaluates to a non-zero value. If the expression 1 is given to the
expression, it forms an infinite loop.

• for statement
It has the following form.

for ( expr list-1; expr; expr list-2 ) statement

This is equivalent to the program
expr list-1 (transformed into a sequence of simple statement)
while ( expr ) {

statement
expr list-2 (transformed into a sequence of simple statement)

}

• do statement

do {
statement

} while ( expression )

This statement differs from while statement by the location of the termination condi-
tion: This statement first execute the statement and then check the condition, whereas
while statement does it in the reverse order.

As means for exiting from loops, there are break statement and return statement. The
continue statement allows to move the control to a certain point of the loop.

• break
The break statement is used to exit the inner most loop.

• return
The return statement is usually used to exit from a function call and it is also effective
in a loop.



Chapter 4: User language Asir 24

• continue
The continue statement is used to move the control to the end point of the loop body.
For example, the last expression list will be evaluated in a for statement, and the
termination condition will be evaluated in a while statement.

4.2.9 structure definition

A structure data type is a fixed length array and each component of the array is accessed
by its name. Each type of structure is distinguished by its name. A structure data type
is declared by struct statement. A structure object is generated by a builtin function
newstruct. Each member of a structure is accessed by an operatator ->. If a member of a
structure is again a structure, then the specification by -> can be nested.

[1] struct rat {num,denom};
0
[2] A = newstruct(rat);
{0,0}
[3] A->num = 1;
1
[4] A->den = 2;
2
[5] A;
{1,2}
[6] struct_type(A);
1

References
Section 6.7.1 [newstruct], page 71, Section 6.7.3 [struct_type], page 74

4.2.10 various expressions

Major elements to construct expressions are the following:

• addition, subtraction, multiplication, division, exponentiation
The exponentiation is denoted by ‘^’. (This differs from C language.) Division denoted
by ‘/’ is used to operate in a field, for example, 2/3 results in a rational number 2/3. For
integer division and polynomial division, both including remainder operation, built-in
functions are provided.

x+1 A^2*B*afo X/3

• programming variables with indices
An element of a vector, a matrix or a list can be referred to by indexing. Note that the
indices begin with number 0. When the referred element is again a vector, a matrix or
a list, repeated indexing is also effective.

V[0] M[1][2]

• comparison operation
There are comparison operations ‘==’ for equivalence, ‘!=’ for non-equivalence, ‘>’,
‘<’,‘>=’, and ‘<=’ for larger or smaller. The results of these operations are either value
1 for the truth, or 0 for the false.
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• logical expression
There are two binary logical operations ‘&&’ for logical ‘conjunction’(and), ‘||’ for log-
ical ‘disjunction’(or), and one unary logical operation ‘!’ for logical ‘negation’(not).
The results of these operations are either value 1 for the truth, and 0 for the false.

• assignment
Value assignment of a program variable is usually done by ‘=’. There are special
assignments combined with arithmetic operations. (‘+=’, ‘-=’, ‘*=’, ‘/=’, ‘^=’)

A = 2 A *= 3 (the same as A = A*3; The others are alike.)

• function call
A function call is also an expression.

• ‘++’, ‘--’
These operators are attached to or before a program variable, and denote special op-
erations and values.

A++ the expression value is the previous value of A, and A = A+1
A-- the expression value is the previous value of A, and A = A-1
++A A = A+1, and the value is the one after increment of A
--A A = A-1, and the value is the one after decrement of A

4.2.11 preprocessor

he Asir user language imitates C language. A typical features of C language include macro
expansion and file inclusion by the preprocessor cpp. Also, Asir read in user program files
through cpp. This enables Asir user to use #include, #define, #if etc. in his programs.
• #include

Include files are searched within the same directory as the file containing #include so
that no arguments are passed to cpp.

• #define
This can be used just as in C language.

• #if
This is conveniently used to comment out a large part of a user program that may
contain comments by /* and */, because such comments cannot be nested.

the following are the macro definitions in ‘defs.h’.
#define ZERO 0
#define NUM 1
#define POLY 2
#define RAT 3
#define LIST 4
#define VECT 5
#define MAT 6
#define STR 7
#define N_Q 0
#define N_R 1
#define N_A 2
#define N_B 3
#define N_C 4
#define V_IND 0
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#define V_UC 1
#define V_PF 2
#define V_SR 3
#define isnum(a) (type(a)==NUM)
#define ispoly(a) (type(a)==POLY)
#define israt(a) (type(a)==RAT)
#define islist(a) (type(a)==LIST)
#define isvect(a) (type(a)==VECT)
#define ismat(a) (type(a)==MAT)
#define isstr(a) (type(a)==STR)
#define FIRST(L) (car(L))
#define SECOND(L) (car(cdr(L)))
#define THIRD(L) (car(cdr(cdr(L))))
#define FOURTH(L) (car(cdr(cdr(cdr(L)))))
#define DEG(a) deg(a,var(a))
#define LCOEF(a) coef(a,deg(a,var(a)))
#define LTERM(a) coef(a,deg(a,var(a)))*var(a)^deg(a,var(a))
#define TT(a) car(car(a))
#define TS(a) car(cdr(car(a)))
#define MAX(a,b) ((a)>(b)?(a):(b))

Since we are utilizing the C preprocessor, it cannot properly preprocess expressions with $.
For example, even if LIST is defined, LIST in the expression LIST$ is not replaced. Add a
blank before $, i.e., write as LIST $ to make the proprocessor replace it properly.

4.2.12 option

If a user defined function is declared with N arguments, then the function is callable
with N arguments only.

[0] def factor(A) { return fctr(A); }
[1] factor(x^5-1,3);
evalf : argument mismatch in factor()
return to toplevel

A function with indefinite number of arguments can be realized by using a list or an
array as its argument. Another method is available as follows:

% cat factor
def factor(F)
{

Mod = getopt(mod);
ModType = type(Mod);
if ( ModType == 1 ) /* ’mod’ is not specified. */

return fctr(F);
else if ( ModType == 0 ) /* ’mod’ is a number */

return modfctr(F,Mod);
}

[0] load("factor")$
[1] factor(x^5-1);
[[1,1],[x-1,1],[x^4+x^3+x^2+x+1,1]]
[2] factor(x^5-1|mod=11);
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[[1,1],[x+6,1],[x+2,1],[x+10,1],[x+7,1],[x+8,1]]

In the second call of factor(), |mod=11 is placed after the argument x^5-1, which
appears in the declaration of factor(). This means that the value 11 is assigned to the
keyword mod when the function is executed. The value can be retrieved by getopt(mod).
We call such machinery option. If the option for mod is not specified, getopt(mod) returns
an object whose type is -1. By this feature, one can describe the behaviour of the function
when the option is not specified by if statements. After ‘|’ one can append any number of
options seperated by ‘,’.

[100] xxx(1,2,x^2-1,[1,2,3]|proc=1,index=5);

Optinal arguments may be given as a list with the key word option_list as option_
list=[["key1",value1],["key2",value2],...]. It is equivalent to pass the optional
arguments as key1=value1,key2=value2,....

[101] dp_gr_main([x^2+y^2-1,x*y-1]|option_list=[["v",[x,y]],["order",[[x,5,y,1]]]]);

Since getopt() returns an option list, the optional argument option_list=... is useful
when we call functions with optional arguments from a function with optional arguments
to pass the all optional parameters.

% cat foo.rr
def foo(F)
{

OPTS=getopt();
return factor(F|option_list=OPTS);

}

[3] load("foo.rr")$
[4] foo(x^5-1|mod=11);
[[1,1],[x+6,1],[x+2,1],[x+10,1],[x+7,1],[x+8,1]]

4.2.13 module

Function names and variables in a library may be encapsulated by module. Let us see
an example of using module

module stack;

static Sp $
Sp = 0$
static Ssize$
Ssize = 100$
static Stack $
Stack = newvect(Ssize)$
localf push $
localf pop $

def push(A) {
if (Sp >= Ssize) {print("Warning: Stack overflow\nDiscard the top"); pop();}
Stack[Sp] = A;
Sp++;

}
def pop() {
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local A;
if (Sp <= 0) {print("Stack underflow"); return 0;}
Sp--;
A = Stack[Sp];
return A;

}
endmodule;

def demo() {
stack.push(1);
stack.push(2);
print(stack.pop());
print(stack.pop());

}

Module is encapsulated by the sentences module module name and endmodule. A vari-
able of a module is declared with the key word static. The static variables cannot be
refered nor changed out of the module, but it can be refered and changed in any functions
in the module. The static variables must be declared before the definitions of functions,
because the one-path parser of asir automatically assume variables as local variables if there
is no declaration for them. A global variable which can be refered and changed in or out of
the module is declared with the key word extern.

Any function defined in a module must be declared forward with the keyword localf.
In the example above, push and pop are declared. This declaration is necessary.

A function functionName defined in a module moduleName can be called by the expres-
sion moduleName.functioName(arg1, arg2, ...) out of the module. Inside the module,
moduleName. is not necessary. In the example below, the functions push and pop defined
in the module stack are called out of the module.

stack.push(2);
print( stack.pop() );
2

Any function name defined in a module is local. In other words, the same function name
may be used out of the module to define a different function.

The module structure of asir is introduced to develop large libraries. In order to load
libraries on demand, the command module_definedp will be useful. The below is an
example of demand loading.

if (!module_definedp("stack")) load("stack.rr") $

It is not necessary to declare local variables in asir. As you see in the example of the
stack module, we may declare local variables by the key word local. Once this key word
is used, asir requires to declare all the variables. In order to avoid some troubles to develop
a large libraries, it is recommended to use local declarations.

When we need to call a function in a module before the module is defined, we must make
a prototype declaration as the example below.

/* Prototype declaration of the module stack */
module stack;
localf push $
localf pop $
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endmodule;

def demo() {
print("----------------");
stack.push(1);
print(stack.pop());
print("---------------");

}

module stack;
/* The body of the module stack */

endmodule;

In order to call functions defined in the top level from the inside of a module, we use ::
as in the example below.

def afo() {
S = "afo, afo";
return S;

}
module abc;
localf foo,afo $

def foo() {
G = ::afo();
return G;

}
def afo() {
return "afo, afo in abc";

}
endmodule;
end$

[1200] abc.foo();
afo, afo
[1201] abc.afo();
afo, afo in abc

References
Section 6.12.1 [module_list], page 87, Section 6.12.2 [module_definedp],
page 87, Section 6.12.3 [remove_module], page 87.



Chapter 5: Debugger 30

5 Debugger

5.1 What is Debugger

A debugger dbx is available for C programs on Sun, VAX etc. In dbx, one can use commands
such as setting break-point on a source line, stepwise execution, inspecting a variable’s value
etc. Asir provides such a dbx-like debugger. In addition to such commands, we adopted
several useful commands from gdb. In order to enter the debug-mode, type debug; at the
top level of Asir.

[10] debug;
(debug)

Asir also enters the debug-mode by the following means or in the following situations.
• When it reaches a break point while executing a program.
• When the ‘d’ option is selected at an interruption.
• When it detects errors while executing a program.

In this case, to continue the execution of the program is impossible. But because it
reports the statement in the user defined function that caused the error, then enters
the debug-mode, user can inspect the values of variables at the error state. This helps
to analyze the error and debug the program.

• When built-in function error() is called.

5.2 Debugger commands

Only indispensable commands of dbx are supported in the current version. Generally, the
effect of a command is the same as that of dbx. There are, however, slight differences:
Commands step and next execute the next statement, but not the next line; therefore, if
there are multiple statements in one line, one should issue such commands several times to
proceed the next line. The debugger reads in ‘.dbxinit’, which allows the same aliases as
is used in dbx.

step Executes the next statement; if the next statement contains a function call,
then enters the function.

next Executes the next statement.

finish Enter the debug-mode again after finishing the execuction of the current func-
tion. This is useful when an unnecessary step has been executed.

cont
quit Exits from the debug-mode and continues execution.

up [n] Move up the call stack one level. Move up the call stack n levels if n is specified.

down [n] Move down the call stack one level. Move down the call stack n levels if n is
specified.

frame [n] Print the current stack frame with no argument. n specifies the stack frame
number to be selected. Here the stack frame number is a number at the top of
lines displayed by executing where.
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list [startline]
list function

Displays ten lines in a source file from startline, the current line if the startline
is not specified, or from the top line of current target function.

print expr
Displays expr.

func function
Set the target function to function.

stop at sourceline [if cond]
stop in function

Set a break-point at the sourceline-th line of the source file, or at the top of the
target function. Break-points are removed whenever the relevant function is
redefined. When if statements are repeatedly encountered, Asir enters debug-
mode only when the corresponding cond parts are evaluated to a non-zero value.

trace expr at sourceline [if cond]

trace expr in function
These are similar to stop. trace simply displays the value of expr and without
entering the debug-mode.

delete n Remove the break point specified by a number n, which can be known by the
status command.

status Displays a list of the break-points.

where Displays the calling sequence of functions from the top level through the current
level.

alias alias command
Create an alias alias for command

The debugger command print can take almost all expressions as its argument. The ordinary
usage is to print the values of (programming) variables. However, the following usage is
worth to remember.
• overwriting the variable

One might sometimes wish to continue the execution with several values of variables
modified. For such an purpose, take the following procedure.

(debug) print A
A = 2
(debug) print A=1
A=1 = 1
(debug) print A
A = 1

• function call

A function call is also an expression, therefore, it can appear at the argument place of
print.

(debug) print length(List)
length(List) = 14
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In this example, the length of the list assigned to the variable List is examined by a
function length().

(debug) print ctrl("cputime",1)
ctrl("cputime",1) = 1

This example shows such a usage where measuring CPU time is activated from within
the debug-mode, even if one might have forgotten to specify the activation of CPU
time measurement.
It is also useful to save intermediate results to files from within the debug-mode by the
built-in function bsave() when one is forced to quit the computation by any reason.

(debug) print bsave(A,"savefile")
bsave(A,"savefile") = 1

Note that continuation of the parent function will be impossible if an error will occur
in the function call from within the debug-mode.

5.3 Execution example of debugger

Here, the usage of the Debugger is explained by showing an example for debugging a
program which computes the integer factorial by a recursive definition.

% asir
[0] load("fac")$
[3] debug$
(debug) list factorial
1 def factorial(X) {
2 if ( !X )
3 return 1;
4 else
5 return X * factorial(X - 1);
6 }
7 end$
(debug) stop at 5 <-- setting a break point
(0) stop at "./fac":5
(debug) quit <-- leaving the debug-mode
[4] factorial(6); <-- call for factorial(6)
stopped in factorial at line 5 in file "./fac"
5 return X * factorial(X - 1);
(debug) where <-- display the calling sequence
factorial(), line 5 in "./fac" up to this break point
(debug) print X <-- Display the value of X
X = 6
(debug) step <-- step execution

(enters function)
stopped in factorial at line 2 in file "./fac"
2 if ( !X )
(debug) where
factorial(), line 2 in "./fac"
factorial(), line 5 in "./fac"
(debug) print X
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X = 5
(debug) delete 0 <-- delete the break point 0
(debug) cont <-- continue execution
720 <-- result = 6!
[5] quit;

5.4 Sample file of initialization file for Debugger

As is previously mentioned, Asir reads in the file ‘$HOME/.dbxinit’ at its invocation. This
file is originally used to define various initializing commands for dbx debugger, but Asir
recognizes only alias lines. For example, by the setting

% cat ~/.dbxinit
alias n next
alias c cont
alias p print
alias s step
alias d delete
alias r run
alias l list
alias q quit

one can use short aliases, e.g., p, c etc., for frequently used commands such as print, cont
etc. One can create new aliases in the debug-mode during an execution.

lex_hensel(La,[a,b,c],0,[a,b,c],0);
stopped in gennf at line 226 in file "/home/usr3/noro/asir/gr"
226 N = length(V); Len = length(G); dp_ord(O); PS = newvect(Len);
(debug) p V
V = [a,b,c]
(debug) c
...
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6 Built-in Function

6.1 Numbers

6.1.1 idiv, irem

idiv(i1,i2)
:: Integer quotient of i1 divided by i2.

irem(i1,i2)
:: Integer remainder of i1 divided by i2.

return integer

i1 i2 integer
• Integer quotient and remainder of i1 divided by i2.
• i2 must not be 0.
• If the dividend is negative, the results are obtained by changing the sign of the results

for absolute values of the dividend.
• One can use i1 % i2 for replacement of irem() which only differs in the point that the

result is always normalized to non-negative values.
• Use sdiv(), srem() for polynomial quotient.

[0] idiv(100,7);
14
[0] idiv(-100,7);
-14
[1] irem(100,7);
2
[1] irem(-100,7);
-2

References
Section 6.3.8 [sdiv sdivm srem sremm sqr sqrm], page 48, Section 6.3.10 [%],
page 50.

6.1.2 fac

fac(i) :: The factorial of i.

return integer

i integer
• The factorial of i.
• Returns 0 if the argument i is negative.

[0] fac(50);
30414093201713378043612608166064768844377641568960512000000000000
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6.1.3 igcd,igcdcntl

igcd(i1,i2)
:: The integer greatest common divisor of i1 and i2.

igcdcntl([i])
:: Selects an algorithm for integer GCD.

return integer

i1 i2 i integer

• Function igcd() returns the integer greatest common divisor of the given two integers.

• An error will result if the argument is not an integer; the result is not valid even if one
is returned.

• Use gcd(), gcdz() for polynomial GCD.

• Various method of integer GCD computation are implemented and they can be selected
by igcdcntl.

0 Euclid algorithm (default)

1 binary GCD

2 bmod GCD

3 accelerated integer GCD

2, 3 are due to [Weber].

In most cases 3 is the fastest, but there are exceptions.

[0] A=lrandom(10^4)$
[1] B=lrandom(10^4)$
[2] C=lrandom(10^4)$
[3] D=A*C$
[4] E=A*B$
[5] cputime(1)$
[6] igcd(D,E)$
0.6sec + gc : 1.93sec(2.531sec)
[7] igcdcntl(1)$
[8] igcd(D,E)$
0.27sec(0.2635sec)
[9] igcdcntl(2)$
[10] igcd(D,E)$
0.19sec(0.1928sec)
[11] igcdcntl(3)$
[12] igcd(D,E)$
0.08sec(0.08023sec)

References
Section 6.3.20 [gcd gcdz], page 56.
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6.1.4 ilcm

ilcm(i1,i2)
:: The integer least common multiple of i1 and i2.

return integer

i1 i2 integer
• This function computes the integer least common multiple of i1, i2.
• If one of argument is equal to 0, the return 0.

References
Section 6.1.3 [igcd igcdcntl], page 35, Section 6.1.10 [mt_save mt_load],
page 38.

6.1.5 isqrt

isqrt(n) :: The integer square root of n.

return non-negative integer

n non-negative integer

6.1.6 inv

inv(i,m) :: the inverse (reciprocal) of i modulo m.

return integer

i m integer
• This function computes an integer such that ia ≡ 1 mod (m).
• The integer i and m must be mutually prime. However, inv() does not check it.

[71] igcd(1234,4321);
1
[72] inv(1234,4321);
3239
[73] irem(3239*1234,4321);
1

References
Section 6.1.3 [igcd igcdcntl], page 35.

6.1.7 prime, lprime

prime(index)

lprime(index)
:: Returns a prime number.

return integer

index integer
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• The two functions, prime() and lprime(), returns an element stored in the system
table of prime numbers. Here, index is a non-negative integer and be used as an index
for the prime tables. The function prime() can return one of 1900 primes up to 16381
indexed so that the smaller one has smaller index. The function lprime() can return
one of 999 primes which are 8 digit sized and indexed so that the larger one has the
smaller index. The two function always returns 0 for other indices.

• For more general function for prime generation, there is a PARI function
pari(nextprime,number).
[95] prime(0);
2
[96] prime(1228);
9973
[97] lprime(0);
99999989
[98] lprime(999);
0

References
Section 6.1.14 [pari], page 40.

6.1.8 random

random([seed])

seed
return non-negative integer
• Generates a random number which is a non-negative integer less than 2^32.
• If a non zero argument is specified, then after setting it as a random seed, a random

number is generated.
• As the default seed is fixed, the sequence of the random numbers is always the same if

a seed is not set.
• The algorithm is Mersenne Twister (http://www.math.keio.ac.jp/matsumoto/mt.html)

by M. Matsumoto and T. Nishimura. The implementation is done also by themselves.
• The period of the random number sequence is 2^19937-1.
• One can save the state of the random number generator with mt_save. By loading the

state file with mt_load, one can trace a single random number sequence arcoss multiple
sessions.

References
Section 6.1.9 [lrandom], page 37, Section 6.1.10 [mt_save mt_load], page 38.

6.1.9 lrandom

lrandom(bit)
:: Generates a long random number.

bit
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return integer
• Generates a non-negative integer of at most bit bits.
• The result is a concatination of outputs of random.

References
Section 6.1.8 [random], page 37, Section 6.1.10 [mt_save mt_load], page 38.

6.1.10 mt_save, mt_load

mt_save(fname)
:: Saves the state of the random number generator.

mt_load(fname)
:: Loads a saved state of the random number generator.

return 0 or 1

fname string
• One can save the state of the random number generator with mt_save. By loading the

state file with mt_load, one can trace a single random number sequence arcoss multiple
Asir sessions.
[340] random();
3510405877
[341] mt_save("/tmp/mt_state");
1
[342] random();
4290933890
[343] quit;
% asir
This is Asir, Version 991108.
Copyright (C) FUJITSU LABORATORIES LIMITED.
3 March 1994. All rights reserved.
[340] mt_load("/tmp/mt_state");
1
[341] random();
4290933890

References
Section 6.1.8 [random], page 37, Section 6.1.9 [lrandom], page 37.

6.1.11 nm, dn

nm(rat) :: Numerator of rat.

dn(rat) :: Denominator of rat.

return integer or polynomial

rat rational number or rational expression
• Numerator and denominator of a given rational expression.
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• For a rational number, they return its numerator and denominator, respectively. For a
rational expression whose numerator and denominator may contain rational numbers,
they do not separate those rational coefficients to numerators and denominators.

• For a rational number, the denominator is always kept positive, and the sign is con-
tained in the numerator.

• Risa/Asir does not cancel the common divisors unless otherwise explicitly specified by
the user. Therefore, nm() and dn() return the numerator and the denominator as it
is, respectively.
[2] [nm(-43/8),dn(-43/8)];
[-43,8]
[3] dn((x*z)/(x*y));
y*x
[3] dn(red((x*z)/(x*y)));
y

References
Section 6.3.21 [red], page 57.

6.1.12 conj, real, imag

real(comp)
:: Real part of comp.

imag(comp)
:: Imaginary part of comp.

conj(comp)
:: Complex conjugate of comp.

return comp
complex number

• Basic operations for complex numbers.
• These functions works also for polynomials with complex coefficients.

[111] A=(2+@i)^3;
(2+11*@i)
[112] [real(A),imag(A),conj(A)];
[2,11,(2-11*@i)]

6.1.13 eval, deval

eval(obj[,prec])

deval(obj)
:: Evaluate obj numerically.

return number or expression

obj general expression

prec integer
• Evaluates the value of the functions contained in obj as far as possible.
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• deval returns double float. Rational numbers remain unchanged in results from eval.
• In eval the computation is done by PARI. (See Section 6.1.14 [pari], page 40.) In

deval the computation is done by the C math library.
• deval cannot handle complex numbers.
• When prec is specified, computation will be performed with a precision of about prec-

digits. If prec is not specified, computation is performed with the precision set currently.
(See Section 6.1.15 [setprec], page 41.)

• Currently available numerical functions are listed below. Note they are only a small
part of whole PARI functions.

sin, cos, tan,
asin, acos, atan,
sinh, cosh, tanh, asinh, acosh, atanh,
exp, log, pow(a,b) (a^b)

• Symbols for special values are as the followings. Note that @i cannot be handled by
deval.

@i unit of imaginary number

@pi the number pi, the ratio of circumference to diameter

@e Napier’s number (exp(1))
[118] eval(exp(@pi*@i));
-1.0000000000000000000000000000
[119] eval(2^(1/2));
1.414213562373095048763788073031
[120] eval(sin(@pi/3));
0.86602540378443864674620506632
[121] eval(sin(@pi/3)-3^(1/2)/2,50);
-2.78791084448179148471 E-58
[122] eval(1/2);
1/2
[123] deval(sin(1)^2+cos(1)^2);
1

References
Section 6.14.1 [ctrl], page 89, Section 6.1.15 [setprec], page 41, Section 6.1.14
[pari], page 40.

6.1.14 pari

pari(func,arg,prec)
:: Call PARI function func.

return Depends on func.

func Function name of PARI.

arg Arguments of func.

prec integer
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• This command connects Asir to PARI system so that several functions of PARI can
be conveniently used from Risa/Asir.

• PARI [Batut et al.] is developed at Bordeaux University, and distributed as a free
software. Though it has a certain facility to computer algebra, its major target is the
operation of numbers (bignum, bigfloat) related to the number theory. It facilitates
various function evaluations as well as arithmetic operations at a remarkable speed.
It can also be used from other external programs as a library. It provides a language
interface named ‘gp’ to its library, which enables a user to use PARI as a calculator
which runs on UNIX. The current version is 2.0.17beta. It can be obtained by several
ftp sites. (For example, ftp://megrez.ceremab.u-bordeaux.fr/pub/pari.)

• The last argument (optional) int specifies the precision in digits for bigfloat operation.
If the precision is not explicitly specified, operation will be performed with the precision
set by setprec().

• Currently available functions of PARI system are as follows. Note these are only a
part of functions in PARI system. For details of individual functions, refer to the
PARI manual. (Some of them can be seen in the following example.)
abs, adj, arg, bigomega, binary, ceil, centerlift, cf, classno, classno2,
conj, content, denom, det, det2, detr, dilog, disc, discf, divisors,
eigen, eintg1, erfc, eta, floor, frac, galois, galoisconj, gamh, gamma,
hclassno, hermite, hess, imag, image, image2, indexrank, indsort, initalg,
isfund, isprime, ispsp, isqrt, issqfree, issquare, jacobi, jell, ker,
keri, kerint, kerintg1, kerint2, kerr, length, lexsort, lift, lindep, lll,
lllg1, lllgen, lllgram, lllgramg1, lllgramgen, lllgramint, lllgramkerim,
lllgramkerimgen, lllint, lllkerim, lllkerimgen, lllrat, lngamma, logagm, mat,
matrixqz2, matrixqz3, matsize, modreverse, mu, nextprime, norm, norml2, numdiv,
numer, omega, order, ordred, phi, pnqn, polred, polred2, primroot, psi, quadgen,
quadpoly, real, recip, redcomp, redreal, regula, reorder, reverse, rhoreal,
roots, rootslong, round, sigma, signat, simplify, smalldiscf, smallfact,
smallpolred, smallpolred2, smith, smith2, sort, sqr, sqred, sqrt, supplement,
trace, trans, trunc, type, unit, vec, wf, wf2, zeta

• Asir currently uses only a very small subset of PARI. We will improve Asir so that it
can provide more functions of PARI.
/* Eigen vectors of a numerical matrix */
[0] pari(eigen,newmat(2,2,[[1,1],[1,2]]));
[ -1.61803398874989484819771921990 0.61803398874989484826 ]
[ 1 1 ]
/* Roots of a polynomial */
[1] pari(roots,t^2-2);
[ -1.41421356237309504876 1.41421356237309504876 ]

References
Section 6.1.15 [setprec], page 41.

6.1.15 setprec

setprec([n])
:: Sets the precision for bigfloat operations to n digits.
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return integer

n integer

• When an argument is given, it sets the precision for bigfloat operations to n digits. The
return value is always the previous precision in digits regardless of the existence of an
argument.

• Bigfloat operations are done by PARI. (See Section 6.1.14 [pari], page 40.)

• This is effective for computations in bigfloat. Refer to ctrl() for turning on the
‘bigfloat flag.’

• There is no upper limit for precision digits. It sets the precision to some digits around
the specified precision. Therefore, it is safe to specify a larger value.
[1] setprec();
9
[2] setprec(100);
9
[3] setprec(100);
96

Section 6.14.1 [ctrl], page 89, Section 6.1.13 [eval deval], page 39,
Section 6.1.14 [pari], page 40.

6.1.16 setmod

setmod([p])
:: Sets the ground field to GF(p).

return integer

n prime less than 2^27

• Sets the ground field to GF(p) and returns the value p.

• A member of a finite field does not have any information about the field and the
arithmetic operations over GF(p) are applied with p set at the time.

• As for large finite fields, see Chapter 10 [Finite fields], page 165.
[0] A=dp_mod(dp_ptod(2*x,[x]),3,[]);
(2)*<<1>>
[1] A+A;
addmi : invalid modulus
return to toplevel
[1] setmod(3);
3
[2] A+A;
(1)*<<1>>

References
Section 8.10.13 [dp_mod dp_rat], page 138, Section 3.2 [Types of numbers],
page 13.
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6.1.17 ntoint32, int32ton

ntoint32(n)
int32ton(int32)

:: Type-conversion between a non-negative integer and an unsigned 32bit inte-
ger.

return unsigned 32bit integer or non-negative integer

n non-negative interger less than 2^32

int32 unsigned 32bit integer
• These functions do conversions between non-negative integers (the type id 1) and un-

signed 32bit integers (the type id 10).
• An unsigned 32bit integer is a fundamental construct of OpenXM and one often has

to send an integer to a server as an unsigned 32bit integer. These functions are used
in such a case.

References
Chapter 7 [Distributed computation], page 99, Section 3.2 [Types of
numbers], page 13.

6.2 Bit operations

6.2.1 iand, ior, ixor

iand(i1,i2)
:: bitwise and

ior(i1,i2)
:: bitwise or

ixor(i1,i2)
:: bitwise xor

return integer

i1 i2 integer
• The absolute value of the argument is regarded as a bit string.
• The sign of the argument is ignored and a non-negative integer is returned.

[0] ctrl("hex",1);
0x1
[1] iand(0xeeeeeeeeeeeeeeee,0x2984723234812312312);
0x4622224802202202
[2] ior(0xa0a0a0a0a0a0a0a0,0xb0c0b0b0b0b0b0b);
0xabacabababababab
[3] ixor(0xfffffffffff,0x234234234234);
0x2cbdcbdcbdcb

References
Section 6.2.2 [ishift], page 44.
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6.2.2 ishift

ishift(i,count)
:: bit shift

return integer

i count integer

• The absolute value of i is regarded as a bit string.

• The sign of i is ignored and a non-negative integer is returned.

• If count is positive, then i is shifted to the right. If count is negative, then i is shifted
to the left.
[0] ctrl("hex",1);
0x1
[1] ishift(0x1000000,12);
0x1000
[2] ishift(0x1000,-12);
0x1000000
[3] ixor(0x1248,ishift(1,-16)-1);

References
Section 6.2.1 [iand ior ixor], page 43.

6.3 operations with polynomials and rational expressions

6.3.1 var

var(rat) :: Main variable (indeterminate) of rat.

return indeterminate

rat rational expression

• See Section 3.1 [Types in Asir], page 10 for main variable.

• Indeterminates (variables) are ordered by default as follows.

x, y, z, u, v, w, p, q, r, s, t, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o. The other variables
will be ordered after the above noted variables so that the first comer will be ordered
prior to the followers.
[0] var(x^2+y^2+a^2);
x
[1] var(a*b*c*d*e);
a
[2] var(3/abc+2*xy/efg);
abc

References
Section 6.3.7 [ord], page 47, Section 6.3.2 [vars], page 45.
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6.3.2 vars

vars(obj) :: A list of variables (indeterminates) in an expression obj.

return list

obj arbitrary

• Returns a list of variables (indeterminates) contained in a given expression.

• Lists variables according to the variable ordering.
[0] vars(x^2+y^2+a^2);
[x,y,a]
[1] vars(3/abc+2*xy/efg);
[abc,xy,efg]
[2] vars([x,y,z]);
[x,y,z]

References
Section 6.3.1 [var], page 44, Section 6.3.3 [uc], page 45, Section 6.3.7 [ord],
page 47.

6.3.3 uc

uc() :: Create a new indeterminate for an undermined coeficient.

return indeterminate with its vtype 1.

• At every evaluation of command uc(), a new indeterminate in the sequence of inde-
terminates _0, _1, _2, . . . is created successively.

• Indeterminates created by uc() cannot be input on the keyboard. By this property,
you are free, no matter how many indeterminates you will create dynamically by a
program, from collision of created names with indeterminates input from the keyboard
or from program files.

• Functions, rtostr() and strtov(), are used to create ordinary indeterminates (inde-
terminates having 0 for their vtype).

• Kernel sub-type of indeterminates created by uc() is 1. (vtype(uc())=1)
[0] A=uc();
_0
[1] B=uc();
_1
[2] (uc()+uc())^2;
_2^2+2*_3*_2+_3^2
[3] (A+B)^2;
_0^2+2*_1*_0+_1^2

References
Section 6.8.3 [vtype], page 76, Section 6.10.1 [rtostr], page 77, Section 6.10.2
[strtov], page 78.



Chapter 6: Built-in Function 46

6.3.4 coef

coef(poly,deg[,var])
:: The coefficient of a polynomial poly at degree deg with respect to the variable
var (main variable if unspecified).

return polynomial

poly polynomial

var indeterminate

deg non-negative integer
• The coefficient of a polynomial poly at degree deg with respect to the variable var.
• The default value for var is the main variable, i.e., var(poly).
• For multi-variate polynomials, access to coefficients depends on the specified indeter-

minates. For example, taking coef for the main variable is much faster than for other
variables.
[0] A = (x+y+z)^3;
x^3+(3*y+3*z)*x^2+(3*y^2+6*z*y+3*z^2)*x+y^3+3*z*y^2+3*z^2*y+z^3
[1] coef(A,1,y);
3*x^2+6*z*x+3*z^2
[2] coef(A,0);
y^3+3*z*y^2+3*z^2*y+z^3

References
Section 6.3.1 [var], page 44, Section 6.3.5 [deg mindeg], page 46.

6.3.5 deg, mindeg

deg(poly,var)
:: The degree of a polynomial poly with respect to variable.

mindeg(poly,var)
:: The least exponent of the terms with non-zero coefficients in a polynomial
poly with respect to the variable var. In this manual, this quantity is sometimes
referred to the minimum degree of a polynomial for short.

return non-negative integer

poly polynomial

var indeterminate
• The least exponent of the terms with non-zero coefficients in a polynomial poly with

respect to the variable var. In this manual, this quantity is sometimes referred to the
minimum degree of a polynomial for short.

• Variable var must be specified.
[0] deg((x+y+z)^10,x);
10
[1] deg((x+y+z)^10,w);
0
[75] mindeg(x^2+3*x*y,x);
1
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6.3.6 nmono

nmono(rat)
:: Number of monomials in rational expression rat.

return non-negative integer

rat rational expression
• Number of monomials with non-zero number coefficients in the full expanded form of

the given polynomial.
• For a rational expression, the sum of the numbers of monomials of the numerator and

denominator.
• A function form is regarded as a single indeterminate no matter how complex arguments

it has.
[0] nmono((x+y)^10);
11
[1] nmono((x+y)^10/(x+z)^10);
22
[2] nmono(sin((x+y)^10));
1

References
Section 6.8.3 [vtype], page 76.

6.3.7 ord

ord([varlist])
:: It sets the ordering of indeterminates (variables).

return list of indeterminates

varlist list of indeterminates
• When an argument is given, this function rearranges the ordering of variables (inde-

terminates) so that the indeterminates in the argument varlist precede and the other
indeterminates follow in the system’s variable ordering. Regardless of the existence of
an argument, it always returns the final variable ordering.

• Note that no change will be made to the variable ordering of internal forms of objects
which already exists in the system, no matter what reordering you specify. Therefore,
the reordering should be limited to the time just after starting Asir, or to the time when
one has decided himself to start a totally new computation which has no relation with
the previous results. Note that unexpected results may be obtained from operations
between objects which are created under different variable ordering.
[0] ord();
[x,y,z,u,v,w,p,q,r,s,t,a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,_x,_y,_z,_u,_v,
_w,_p,_q,_r,_s,_t,_a,_b,_c,_d,_e,_f,_g,_h,_i,_j,_k,_l,_m,_n,_o,
exp(_x),(_x)^(_y),log(_x),(_x)^(_y-1),cos(_x),sin(_x),tan(_x),
(-_x^2+1)^(-1/2),cosh(_x),sinh(_x),tanh(_x),
(_x^2+1)^(-1/2),(_x^2-1)^(-1/2)]
[1] ord([dx,dy,dz,a,b,c]);



Chapter 6: Built-in Function 48

[dx,dy,dz,a,b,c,x,y,z,u,v,w,p,q,r,s,t,d,e,f,g,h,i,j,k,l,m,n,o,_x,_y,
_z,_u,_v,_w,_p,_q,_r,_s,_t,_a,_b,_c,_d,_e,_f,_g,_h,_i,_j,_k,_l,_m,_n,
_o,exp(_x),(_x)^(_y),log(_x),(_x)^(_y-1),cos(_x),sin(_x),tan(_x),
(-_x^2+1)^(-1/2),cosh(_x),sinh(_x),tanh(_x),
(_x^2+1)^(-1/2),(_x^2-1)^(-1/2)]

6.3.8 sdiv, sdivm, srem, sremm, sqr, sqrm

sdiv(poly1,poly2[,v])
sdivm(poly1,poly2,mod[,v])

:: Quotient of poly1 divided by poly2 provided that the division can be per-
formed within polynomial arithmetic over the rationals.

srem(poly1,poly2[,v])

sremm(poly1,poly2,mod[,v])
:: Remainder of poly1 divided by poly2 provided that the division can be
performed within polynomial arithmetic over the rationals.

sqr(poly1,poly2[,v])

sqrm(poly1,poly2,mod[,v])
:: Quotient and remainder of poly1 divided by poly2 provided that the division
can be performed within polynomial arithmetic over the rationals.

return sdiv(), sdivm(), srem(), sremm() : polynomial sqr(), sqrm() : a list
[quotient,remainder]

poly1 poly2
polynomial

v indeterminate

mod prime
• Regarding poly1 as an uni-variate polynomial in the main variable of poly2, i.e.

var(poly2) (v if specified), sdiv() and srem() compute the polynomial quotient and
remainder of poly1 divided by poly2.

• sdivm(), sremm(), sqrm() execute the same operation over GF(mod).
• Division operation of polynomials is performed by the following steps: (1) obtain the

quotient of leading coefficients; let it be Q; (2) remove the leading term of poly1 by
subtracting, from poly1, the product of Q with some powers of main variable and poly2;
obtain a new poly1; (3) repeat the above step until the degree of poly1 become smaller
than that of poly2. For fulfillment, by operating in polynomials, of this procedure,
the divisions at step (1) in every repetition must be an exact division of polynomials.
This is the true meaning of what we say “division can be performed within polynomial
arithmetic over the rationals.”

• There are typical cases where the division is possible: leading coefficient of poly2 is a
rational number; poly2 is a factor of poly1.

• Use sqr() to get both the quotient and remainder at once.
• Use idiv(), irem() for integer quotient.
• For remainder operation on all integer coefficients, use %.
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[0] sdiv((x+y+z)^3,x^2+y+a);
x+3*y+3*z
[1] srem((x+y+z)^2,x^2+y+a);
(2*y+2*z)*x+y^2+(2*z-1)*y+z^2-a
[2] X=(x+y+z)*(x-y-z)^2;
x^3+(-y-z)*x^2+(-y^2-2*z*y-z^2)*x+y^3+3*z*y^2+3*z^2*y+z^3
[3] Y=(x+y+z)^2*(x-y-z);
x^3+(y+z)*x^2+(-y^2-2*z*y-z^2)*x-y^3-3*z*y^2-3*z^2*y-z^3
[4] G=gcd(X,Y);
x^2-y^2-2*z*y-z^2
[5] sqr(X,G);
[x-y-z,0]
[6] sqr(Y,G);
[x+y+z,0]
[7] sdiv(y*x^3+x+1,y*x+1);
divsp: cannot happen
return to toplevel

References
Section 6.1.1 [idiv irem], page 34, Section 6.3.10 [%], page 50.

6.3.9 tdiv

tdiv(poly1,poly2)
:: Tests whether poly2 divides poly1.

return Quotient if poly2 divides poly1, 0 otherwise.

poly1 poly2
polynomial

• Tests whether poly2 divides poly1 in polynomial ring.

• One application of this function: Consider the case where a polynomial is certainly an
irreducible factor of the other polynomial, but the multiplicity of the factor is unknown.
Application of tdiv() to the polynomials repeatedly yields the multiplicity.
[11] Y=(x+y+z)^5*(x-y-z)^3;
x^8+(2*y+2*z)*x^7+(-2*y^2-4*z*y-2*z^2)*x^6
+(-6*y^3-18*z*y^2-18*z^2*y-6*z^3)*x^5
+(6*y^5+30*z*y^4+60*z^2*y^3+60*z^3*y^2+30*z^4*y+6*z^5)*x^3
+(2*y^6+12*z*y^5+30*z^2*y^4+40*z^3*y^3+30*z^4*y^2+12*z^5*y+2*z^6)*x^2
+(-2*y^7-14*z*y^6-42*z^2*y^5-70*z^3*y^4-70*z^4*y^3-42*z^5*y^2
-14*z^6*y-2*z^7)*x-y^8-8*z*y^7-28*z^2*y^6-56*z^3*y^5-70*z^4*y^4
-56*z^5*y^3-28*z^6*y^2-8*z^7*y-z^8
[12] for(I=0,F=x+y+z,T=Y; T=tdiv(T,F); I++);
[13] I;
5

References
Section 6.3.8 [sdiv sdivm srem sremm sqr sqrm], page 48.
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6.3.10 %

poly % m :: integer remainder to all integer coefficients of the polynomial.

return integer or polynomial

poly integer or polynomial with integer coefficients

m intger

• Returns a polynomial whose coefficients are remainders of the coefficients of the input
polynomial divided by m.

• The resulting coefficients are all normalized to non-negative integers.

• An integer is allowed for poly. This can be used for an alternative for irem() except
that the result is normalized to a non-negative integer.

• Coefficients of poly and m must all be integers, though the type checking is not done.
[0] (x+2)^5 % 3;
x^5+x^4+x^3+2*x^2+2*x+2
[1] (x-2)^5 % 3;
x^5+2*x^4+x^3+x^2+2*x+1
[2] (-5) % 4;
3
[3] irem(-5,4);
-1

References
Section 6.1.1 [idiv irem], page 34.

6.3.11 subst, psubst

subst(rat[,varn,ratn]*)

psubst(rat[,var,rat]*)
:: Substitute ratn for varn in expression rat. (n=1,2,. . . . Substitution will be
done successively from left to right if arguments are repeated.)

return rational expression

rat ratn rational expression

varn indeterminate

• Substitutes rational expressions for specified kernels in a rational expression.

• subst(r,v1,r1,v2,r2,. . . ) has the same effect as subst(subst(r,v1,r1),v2,r2,. . . ).

• Note that repeated substitution is done from left to right successively. You may get
different result by changing the specification order.

• Ordinary subst() performs substitution at all levels of a scalar algebraic expression
creeping into arguments of function forms recursively. Function psubst() regards
such a function form as an independent indeterminate, and does not attempt to apply
substitution to its arguments. (The name comes after Partial SUBSTitution.)
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• Since Asir does not reduce common divisors of a rational expression automatically,
substitution of a rational expression to an expression may cause unexpected increase
of computation time. Thus, it is often necessary to write a special function to meet
the individual problem so that the denominator and the numerator do not become too
large.

• The same applies to substitution by rational numbers.
[0] subst(x^3-3*y*x^2+3*y^2*x-y^3,y,2);
x^3-6*x^2+12*x-8
[1] subst(@@,x,-1);
-27
[2] subst(x^3-3*y*x^2+3*y^2*x-y^3,y,2,x,-1);
-27
[3] subst(x*y^3,x,y,y,x);
x^4
[4] subst(x*y^3,y,x,x,y);
y^4
[5] subst(x*y^3,x,t,y,x,t,y);
y*x^3
[6] subst(x*sin(x),x,t);
sint(t)*t
[7] psubst(x*sin(x),x,t);
sin(x)*t

6.3.12 diff

diff(rat[,varn]*)

diff(rat,varlist)
:: Differentiate rat successively by var’s for the first form, or by variables in
varlist for the second form.

return expression

rat rational expression which contains elementary functions.

varn indeterminate

varlist list of indeterminates
• Differentiate rat successively by var’s for the first form, or by variables in varlist for

the second form.
• differentiation is performed by the specified indeterminates (variables) from left to

right. diff(rat,x,y) is the same as diff(diff(rat,x),y).
[0] diff((x+2*y)^2,x);
2*x+4*y
[1] diff((x+2*y)^2,x,y);
4
[2] diff(x/sin(log(x)+1),x);
(sin(log(x)+1)-cos(log(x)+1))/(sin(log(x)+1)^2)
[3] diff(sin(x),[x,x,x,x]);
sin(x)
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6.3.13 ediff

ediff(poly[,varn]*)

ediff(poly,varlist)
:: Differentiate poly successively by Euler operators of var’s for the first form,
or by Euler operators of variables in varlist for the second form.

return polynomial

poly polynomial

varn indeterminate

varlist list of indeterminates
• differentiation is performed by the specified indeterminates (variables) from left to

right. ediff(poly,x,y) is the same as ediff(ediff(poly,x),y).
[0] ediff((x+2*y)^2,x);
2*x^2+4*y*x
[1] ediff((x+2*y)^2,x,y);
4*y*x

6.3.14 res

res(var,poly1,poly2[,mod])
:: Resultant of poly1 and poly2 with respect to var.

return polynomial

var indeterminate

poly1 poly2
polynomial

mod prime
• Resultant of two polynomials poly1 and poly2 with respect to var.
• Sub-resultant algorithm is used to compute the resultant.
• The computation is done over GF(mod) if mod is specified.

[0] res(t,(t^3+1)*x+1,(t^3+1)*y+t);
-x^3-x^2-y^3

6.3.15 fctr, sqfr

fctr(poly)
:: Factorize polynomial poly over the rationals.

sqfr(poly)
:: Gets a square-free factorization of polynomial poly.

return list

poly polynomial with rational coefficients



Chapter 6: Built-in Function 53

• Factorizes polynomial poly over the rationals. fctr() for irreducible factorization;
sqfr() for square-free factorization.

• The result is represented by a list, whose elements are a pair represented as
[[num,1],[factor,multiplicity],...].

• Products of all factor^multiplicity and num is equal to poly.
• The number num is determined so that (poly/num) is an integral polynomial and its

content (GCD of all coefficients) is 1. (See Section 6.3.18 [ptozp], page 55.)
[0] fctr(x^10-1);
[[1,1],[x-1,1],[x+1,1],[x^4+x^3+x^2+x+1,1],[x^4-x^3+x^2-x+1,1]]
[1] fctr(x^3+y^3+(z/3)^3-x*y*z);
[[1/27,1],[9*x^2+(-9*y-3*z)*x+9*y^2-3*z*y+z^2,1],[3*x+3*y+z,1]]
[2] A=(a+b+c+d)^2;
a^2+(2*b+2*c+2*d)*a+b^2+(2*c+2*d)*b+c^2+2*d*c+d^2
[3] fctr(A);
[[1,1],[a+b+c+d,2]]
[4] A=(x+1)*(x^2-y^2)^2;
x^5+x^4-2*y^2*x^3-2*y^2*x^2+y^4*x+y^4
[5] sqfr(A);
[[1,1],[x+1,1],[-x^2+y^2,2]]
[6] fctr(A);
[[1,1],[x+1,1],[-x-y,2],[x-y,2]]

References
Section 6.3.16 [ufctrhint], page 53.

6.3.16 ufctrhint

ufctrhint(poly,hint)
:: Factorizes uni-variate polynomial poly over the rational number field when
the degrees of its factors are known to be some integer multiples of hint.

return list

poly uni-variate polynomial with rational coefficients

hint non-negative integer
• By any reason, if the degree of all the irreducible factors of poly is known to be some

multiples of hint, factors can be computed more efficiently by the knowledge than
fctr().

• When hint is 1, ufctrhint() is the same as fctr() for uni-variate polynomials. An
typical application where ufctrhint() is effective: Consider the case where poly is
a norm (Chapter 9 [Algebraic numbers], page 152) of a certain polynomial over an
extension field with its extension degree d, and it is square free; Then, every irreducible
factor has a degree that is a multiple of d.
[10] A=t^9-15*t^6-87*t^3-125;
t^9-15*t^6-87*t^3-125
0msec
[11] N=res(t,subst(A,t,x-2*t),A);
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-x^81+1215*x^78-567405*x^75+139519665*x^72-19360343142*x^69
+1720634125410*x^66-88249977024390*x^63-4856095669551930*x^60
+1999385245240571421*x^57-15579689952590251515*x^54
+15956967531741971462865*x^51
...
+140395588720353973535526123612661444550659875*x^6
+10122324287343155430042768923500799484375*x^3
+139262743444407310133459021182733314453125
980msec + gc : 250msec
[12] sqfr(N);
[[-1,1],[x^81-1215*x^78+567405*x^75-139519665*x^72+19360343142*x^69
-1720634125410*x^66+88249977024390*x^63+4856095669551930*x^60
-1999385245240571421*x^57+15579689952590251515*x^54
...
-10122324287343155430042768923500799484375*x^3
-139262743444407310133459021182733314453125,1]]
20msec
[13] fctr(N);
[[-1,1],[x^9-405*x^6-63423*x^3-2460375,1],
[x^18-486*x^15+98739*x^12-9316620*x^9+945468531*x^6-12368049246*x^3
+296607516309,1],[x^18-8667*x^12+19842651*x^6+19683,1],
[x^18-324*x^15+44469*x^12-1180980*x^9+427455711*x^6+2793253896*x^3
+31524548679,1],
[x^18+10773*x^12+2784051*x^6+307546875,1]]
167.050sec + gc : 1.890sec
[14] ufctrhint(N,9);
[[-1,1],[x^9-405*x^6-63423*x^3-2460375,1],
[x^18-486*x^15+98739*x^12-9316620*x^9+945468531*x^6-12368049246*x^3
+296607516309,1],[x^18-8667*x^12+19842651*x^6+19683,1],
[x^18-324*x^15+44469*x^12-1180980*x^9+427455711*x^6+2793253896*x^3
+31524548679,1],
[x^18+10773*x^12+2784051*x^6+307546875,1]]
119.340sec + gc : 1.300sec

References
Section 6.3.15 [fctr sqfr], page 52.

6.3.17 modfctr

modfctr(poly,mod)
:: Factorizer over small finite fields

return list

poly Polynomial with integer coefficients

mod non-negative integer
• This function factorizes a polynomial poly over the finite prime field of characteristic

mod, where mod must be smaller than 2^29.
• The result is represented by a list, whose elements are a pair represented as

[[num,1],[factor,multiplicity],...].



Chapter 6: Built-in Function 55

• Products of all factor^multiplicity and num is equal to poly.
• To factorize polynomials over large finite fields, use fctr_ff (see Chapter 10 [Finite

fields], page 165,Section 10.5.16 [fctr ff], page 175).
[0] modfctr(x^10+x^2+1,2147483647);
[[1,1],[x+1513477736,1],[x+2055628767,1],[x+91854880,1],
[x+634005911,1],[x+1513477735,1],[x+634005912,1],
[x^4+1759639395*x^2+2045307031,1]]
[1] modfctr(2*x^6+(y^2+z*y)*x^4+2*z*y^3*x^2+(2*z^2*y^2+z^3*y)*x+z^4,3);
[[2,1],[2*x^3+z*y*x+z^2,1],[2*x^3+y^2*x+2*z^2,1]]

References
Section 6.3.15 [fctr sqfr], page 52.

6.3.18 ptozp

ptozp(poly)
:: Converts a polynomial poly with rational coefficients into an integral poly-
nomial such that GCD of all its coefficients is 1.

return polynomial

poly polynomial
• Converts the given polynomial by multiplying some rational number into an integral

polynomial such that GCD of all its coefficients is 1.
• In general, operations on polynomials can be performed faster for integer coefficients

than for rational number coefficients. Therefore, this function is conveniently used to
improve efficiency.

• Function red does not convert rational coefficients of the numerator. You cannot
obtain an integral polynomial by direct use of the function nm(). The function nm()
returns the numerator of its argument, and a polynomial with rational coefficients is
the numerator of itself and will be returned as it is.

• When the option factor is set, the return value is a list [g,c]. Here, c is a rational
number, g is an integral polynomial and poly = c*g holds.
[0] ptozp(2*x+5/3);
6*x+5
[1] nm(2*x+5/3);
2*x+5/3

References
Section 6.1.11 [nm dn], page 38.

6.3.19 prim, cont

prim(poly[,v])
:: Primitive part of poly.

cont(poly[,v])
:: Content of poly.
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return poly
polynomial over the rationals

v indeterminate
• The primitive part and the content of a polynomial poly with respect to its main

variable (v if specified).
[0] E=(y-z)*(x+y)*(x-z)*(2*x-y);
(2*y-2*z)*x^3+(y^2-3*z*y+2*z^2)*x^2+(-y^3+z^2*y)*x+z*y^3-z^2*y^2
[1] prim(E);
2*x^3+(y-2*z)*x^2+(-y^2-z*y)*x+z*y^2
[2] cont(E);
y-z
[3] prim(E,z);
(y-z)*x-z*y+z^2

References
Section 6.3.1 [var], page 44, Section 6.3.7 [ord], page 47.

6.3.20 gcd, gcdz

gcd(poly1,poly2[,mod])

gcdz(poly1,poly2)
:: The polynomial greatest common divisor of poly1 and poly2.

return polynomial

poly1 poly2
polynomial

mod prime
• Functions gcd() and gcdz() return the greatest common divisor (GCD) of the given

two polynomials.
• Function gcd() returns an integral polynomial GCD over the rational number field.

The coefficients are normalized such that their GCD is 1. It returns 1 in case that the
given polynomials are mutually prime.

• Function gcdz() works for arguments of integral polynomials, and returns a polynomial
GCD over the integer ring, that is, it returns gcd() multiplied by the contents of all
coefficients of the two input polynomials.

• gcd() computes the GCD over GF(mod) if mod is specified.
• Polynomial GCD is computed by an improved algorithm based on Extended Zassenhaus

algorithm.
• GCD over a finite field is computed by PRS algorithm and it may not be efficient for

large inputs and co-prime inputs.
[0] gcd(12*(x^2+2*x+1)^2,18*(x^2+(y+1)*x+y)^3);
x^3+3*x^2+3*x+1
[1] gcdz(12*(x^2+2*x+1)^2,18*(x^2+(y+1)*x+y)^3);
6*x^3+18*x^2+18*x+6
[2] gcd((x+y)*(x-y)^2,(x+y)^2*(x-y));
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x^2-y^2
[3] gcd((x+y)*(x-y)^2,(x+y)^2*(x-y),2);
x^3+y*x^2+y^2*x+y^3

References
Section 6.1.3 [igcd igcdcntl], page 35.

6.3.21 red

red(rat) :: Reduced form of rat by canceling common divisors.

return rational expression

rat rational expression
• Asir automatically performs cancellation of common divisors of rational numb ers.

But, without an explicit command, it does not cancel common polynomial divisors of
rational expressions. (Reduction of rational expressions to a common denominator will
be always done.) Use command red() to perform this cancellation.

• Cancel the common divisors of the numerator and the denominator of a rational ex-
pression rat by computing their GCD.

• The denominator polynomial of the result is an integral polynomial which has no com-
mon divisors in its coefficients, while the numerator may have rational coefficients.

• Since GCD computation is a very hard operation, it is desirable to detect and remove
by any means common divisors as far as possible. Furthermore, a call to this function
after swelling of the denominator and the numerator shall usually take a very long
time. Therefore, often, to some extent, reduction of common divisors is inevitable for
operations of rational expressions.
[0] (x^3-1)/(x-1);
(x^3-1)/(x-1)
[1] red((x^3-1)/(x-1));
x^2+x+1
[2] red((x^3+y^3+z^3-3*x*y*z)/(x+y+z));
x^2+(-y-z)*x+y^2-z*y+z^2
[3] red((3*x*y)/(12*x^2+21*y^3*x));
(y)/(4*x+7*y^3)
[4] red((3/4*x^2+5/6*x)/(2*y*x+4/3*x));
(9/8*x+5/4)/(3*y+2)

References
Section 6.1.11 [nm dn], page 38, Section 6.3.20 [gcd gcdz], page 56,
Section 6.3.18 [ptozp], page 55.

6.4 Univariate polynomials

6.4.1 umul, umul_ff, usquare, usquare_ff, utmul, utmul_ff

umul(p1,p2)
umul_ff(p1,p2)

:: Fast multiplication of univariate polynomials
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usquare(p1)
usquare_ff(p1)

:: Fast squaring of a univariate polynomial

utmul(p1,p2,d)
utmul_ff(p1,p2,d)

:: Fast multiplication of univariate polynomials with truncation

return univariate polynomial

p1 p2 univariate polynomial

d non-negative integer
• These functions compute products of univariate polynomials by selecting an appropriate

algorithm depending on the degrees of inputs.
• umul(), usquare(), utmul() compute products over the integers. Coefficients in GF(p)

are regarded as non-negative integers less than p.
• umul_ff(), usquare_ff(), utmul_ff() compute products over a finite field. However,

if some of the coefficients of the inputs are integral, the result may be an integral
polynomial. So if one wants to assure that the result is a polynomial over the finite
field, apply simp_ff() to the inputs.

• umul_ff(), usquare_ff(), utmul_ff() cannot take polynomials over GF(2^n) as their
inputs.

• umul(), umul_ff() produce p1*p2. usquare(), usquare_ff() produce p1^2.
utmul(), utmul_ff() produce p1*p2 mod v^(d+1), where v is the variable of p1, p2.

• If the degrees of the inputs are less than or equal to the value returned by set_upkara()
(set_uptkara() for utmul, utmul_ff), usual pencil and paper method is used. If the
degrees of the inputs are less than or equall to the value returned by set_upfft(),
Karatsuba algorithm is used. If the degrees of the inputs exceed it, a combination of
FFT and Chinese remainder theorem is used. First of all sufficiently many primes mi
within 1 machine word are prepared. Then p1*p2 mod mi is computed by FFT for
each mi. Finally they are combined by Chinese remainder theorem. The functions over
finite fields use an improvement by V. Shoup [Shoup].
[176] load("fff")$
[177] cputime(1)$
0sec(1.407e-05sec)
[178] setmod_ff(2^160-47);
1461501637330902918203684832716283019655932542929
0sec(0.00028sec)
[179] A=randpoly_ff(100,x)$
0sec(0.001422sec)
[180] B=randpoly_ff(100,x)$
0sec(0.00107sec)
[181] for(I=0;I<100;I++)A*B;
7.77sec + gc : 8.38sec(16.15sec)
[182] for(I=0;I<100;I++)umul(A,B);
2.24sec + gc : 1.52sec(3.767sec)
[183] for(I=0;I<100;I++)umul_ff(A,B);
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1.42sec + gc : 0.24sec(1.653sec)
[184] for(I=0;I<100;I++)usquare_ff(A);
1.08sec + gc : 0.21sec(1.297sec)
[185] for(I=0;I<100;I++)utmul_ff(A,B,100);
1.2sec + gc : 0.17sec(1.366sec)
[186] deg(utmul_ff(A,B,100),x);
100

References
Section 6.4.3 [set_upkara set_uptkara set_upfft], page 59, Section 6.4.2
[kmul ksquare ktmul], page 59.

6.4.2 kmul, ksquare, ktmul

kmul(p1,p2)
:: Fast multiplication of univariate polynomials

ksquare(p1)
:: Fast squaring of a univariate polynomial

ktmul(p1,p2,d)
:: Fast multiplication of univariate polynomials with truncation

return univariate polynomial

p1 p2 univariate polynomial

d non-negative integer

These functions compute products of univariate polynomials by Karatsuba algorithm.
• These functions do not apply FFT for large degree inputs.
• These functions can compute products over GF(2^n).

[0] load("code/fff");
1
[34] setmod_ff(defpoly_mod2(160));
x^160+x^5+x^3+x^2+1
[35] A=randpoly_ff(100,x)$
[36] B=randpoly_ff(100,x)$
[37] umul(A,B)$
umul : invalid argument
return to toplevel
[37] kmul(A,B)$

6.4.3 set_upkara, set_uptkara, set_upfft

set_upkara([threshold])
set_uptkara([threshold])
set_upfft([threshold])

:: Set thresholds in the selection of an algorithm from N^2, Karatsuba, FFT
algorithms for univariate polynomial multiplication.

return value currently set
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threshold non-negative integer
• These functions set thresholds in the selection of an algorithm from N^2, Karatsuba,

FFT algorithms for univariate polynomial multiplication.
• Products of univariate polynomials are computed by N^2, Karatsuba, FFT algorithms.

The algorithm selection is done according to the degrees of input polynomials and the
thresholds.

• See the description of each function for details.

References
Section 6.4.2 [kmul ksquare ktmul], page 59, Section 6.4.1 [umul umul_ff
usquare usquare_ff utmul utmul_ff], page 57.

6.4.4 utrunc, udecomp, ureverse

utrunc(p,d)
udecomp(p,d)
ureverse(p)

:: Operations on polynomials

return univariate polynomial or list of univariate polynomials

p univariate polynomial

d non-negative integer
• Let x be the variable of p. Then p can be decomposed as p = p1+x^(d+1)p2, where

the degree of p1 is less than or equal to d. Under the decomposition, utrunc() returns
p1 and udecomp() returns [p1,p2].

• Let e be the degree of p and p[i] the coefficient of p at degree i. Then ureverse()
returns p[e]+p[e-1]x+....
[132] utrunc((x+1)^10,5);
252*x^5+210*x^4+120*x^3+45*x^2+10*x+1
[133] udecomp((x+1)^10,5);
[252*x^5+210*x^4+120*x^3+45*x^2+10*x+1,x^4+10*x^3+45*x^2+120*x+210]
[134] ureverse(3*x^3+x^2+2*x);
2*x^2+x+3

References
Section 6.4.6 [udiv urem urembymul urembymul_precomp ugcd], page 61.

6.4.5 uinv_as_power_series, ureverse_inv_as_power_series

uinv_as_power_series(p,d)
ureverse_inv_as_power_series(p,d)

:: Computes the truncated inverse as a power series.

return univariate polynomial

p univariate polynomial

d non-negative integer
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• For a polynomial p with a non zero constant term, uinv_as_power_series(p,d) com-
putes a polynomial r whose degree is at most d such that p*r = 1 mod x^(d+1), where
x is the variable of p.

• Let e be the degree of p. ureverse_inv_as_power_series(p,d) computes uinv_as_
power_series(p1,d) for p1=ureverse(p,e).

• The output of ureverse_inv_as_power_series() can be used as the input of
rembymul_precomp().
[123] A=(x+1)^5;
x^5+5*x^4+10*x^3+10*x^2+5*x+1
[124] uinv_as_power_series(A,5);
-126*x^5+70*x^4-35*x^3+15*x^2-5*x+1
[126] A*R;
-126*x^10-560*x^9-945*x^8-720*x^7-210*x^6+1
[127] A=x^10+x^9;
x^10+x^9
[128] R=ureverse_inv_as_power_series(A,5);
-x^5+x^4-x^3+x^2-x+1
[129] ureverse(A)*R;
-x^6+1

References
Section 6.4.4 [utrunc udecomp ureverse], page 60, Section 6.4.6 [udiv urem
urembymul urembymul_precomp ugcd], page 61.

6.4.6 udiv, urem, urembymul, urembymul_precomp, ugcd

udiv(p1,p2)

urem(p1,p2)

urembymul(p1,p2)

urembymul_precomp(p1,p2,inv)

ugcd(p1,p2)
:: Division and GCD for univariate polynomials.

return univariate polynomial

p1 p2 inv univariate polynomial
• For univariate polynomials p1 and p2, there exist polynomials q and r such that

p1=q*p2+r and the degree of r is less than that of p2. Then udiv returns q, urem
and urembymul return r. ugcd returns the polynomial GCD of p1 and p2. These
functions are specially tuned up for dense univariate polynomials. In urembymul the
division by p2 is replaced with the inverse computation of p2 as a power series and two
polynomial multiplications. It speeds up the computation when the degrees of inputs
are large.

• urembymul_precomp is efficient when one repeats divisions by a fixed polynomial. One
has to compute the third argument by ureverse_inv_as_power_series().
[177] setmod_ff(2^160-47);
1461501637330902918203684832716283019655932542929
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[178] A=randpoly_ff(200,x)$
[179] B=randpoly_ff(101,x)$
[180] cputime(1)$
0sec(1.597e-05sec)
[181] srem(A,B)$
0.15sec + gc : 0.15sec(0.3035sec)
[182] urem(A,B)$
0.11sec + gc : 0.12sec(0.2347sec)
[183] urembymul(A,B)$
0.08sec + gc : 0.09sec(0.1651sec)
[184] R=ureverse_inv_as_power_series(B,101)$
0.04sec + gc : 0.03sec(0.063sec)
[185] urembymul_precomp(A,B,R)$
0.03sec(0.02501sec)

References
Section 6.4.5 [uinv_as_power_series ureverse_inv_as_power_series],
page 60.

6.5 Lists

6.5.1 car, cdr, cons, append, reverse, length

car(list) :: The first element of the given non-null list list.

cdr(list) :: A list obtained by removing the first element of the given non-null list list.

cons(obj,list)
:: A list obtained by adding an element obj to the top of the given list list.

append(list1,list2)
:: A list obtained by adding all elements in the list list2 according to the order
as it is to the last element in the list list1.

reverse(list)
:: reversed list of list.

length(list|vect)
:: Number of elements in a list list and a vector vect.

return car() : arbitrary, cdr(), cons(), append(), reverse() : list, length() :
non-negative integer

list list1 list2
list

obj arbitrary
• A list is written in Asir as [obj1,obj2,. . .]. Here, obj1 is the first element.
• Function car() outputs the first element of a non-null list. For a null list, the result

should be undefined. In the current implementation, however, it outputs a null list.
This treatment for a null list may subject to change in future, and users are suggested
not to use the tentative treatment for a null list for serious programming.
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• Function cdr() outputs a list obtained by removing the first element from the input
non-null list. For a null list, the result should be undefined. In the current implemen-
tation, however, it outputs a null list. This treatment for a null list may subject to
change in future, and users are suggested not to use the tentative treatment for a null
list for serious programming.

• Function cons() composes a new list from the input list list and an arbitrary object
obj by adding obj to the top of list.

• Function append() composes a new list, which has all elements of list1 in the same
ordering followed by all elements of list2 in the same ordering.

• Function reverse() returns a reversed list of list.
• Function length() returns a non-negative integer which is the number of elements in

the input list list and the input vector vect. Note that function size should be used
for counting elements of matrix.

• Lists are read-only objects in Asir. There elements cannot be modified.
• The n-th element in a list can be referred to by applying the function cdr() n times

repeatedly and cdr() at last. A more convenient way to access to the n-th element is
the use of bracket notation, that is, to attach an index [n] like vectors and matrices.
The system, however, follow the n pointers to access the desired element. Subsequently,
much time is spent for an element located far from the top of the list.

• Function cdr() does not create a new cell (a memory quantity). Function append(), as
a matter of fact, repeats cons() for as many as the length of list1 the first argument.
Subsequently, append() consumes much memory space if its first argument is long.
Similar argument applies to function reverse().
[0] L = [[1,2,3],4,[5,6]];
[[1,2,3],4,[5,6]]
[1] car(L);
[1,2,3]
[2] cdr(L);
[4,[5,6]]
[3] cons(x*y,L);
[y*x,[1,2,3],4,[5,6]]
[4] append([a,b,c],[d]);
[a,b,c,d]
[5] reverse([a,b,c,d]);
[d,c,b,a]
[6] length(L);
3
[7] length(ltov(L));
3
[8] L[2][0];
5

6.6 Arrays

6.6.1 newvect, vector, vect
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newvect(len[,list])

vector(len[,list])
:: Creates a new vector object with its length len.

vect([elements])
:: Creates a new vector object by elements.

return vector

len non-negative integer

list list

elements elements of the vector
• vect creates a new vector object by its elements.
• vector is an alias of newvect.
• newvect creates a new vector object with its length len and its elements all cleared

to value 0. If the second argument, a list, is given, the vector is initialized by the list
elements. Elements are used from the first through the last. If the list is short for
initializing the full vector, 0’s are filled in the remaining vector elements.

• Elements are indexed from 0 through len-1. Note that the first element has not index
1.

• List and vector are different types in Asir. Lists are conveniently used for representing
many data objects whose size varies dynamically as computation proceeds. By its
flexible expressive power, it is also conveniently used to describe initial values for other
structured objects as you see for vectors. Access for an element of a list is performed
by following pointers to next elements. By this, access costs for list elements differ
for each element. In contrast to lists, vector elements can be accessed in a same time,
because they are accessed by computing displacements from the top memory location
of the vector object.
Note also, in Asir, modification of an element of a vector causes modification of the
whole vector itself, while modification of a list element does not cause the modification
of the whole list object.
By this, in Asir language, a vector element designator can be a left value of assign-
ment statement, but a list element designator can NOT be a left value of assignment
statement.

• No distinction of column vectors and row vectors in Asir. If a matrix is applied to a
vector from left, the vector shall be taken as a column vector, and if from right it shall
be taken as a row vector.

• The length (or size or dimension) of a vector is given by function size().
• When a vector is passed to a function as its argument (actual parameter), the vector

element can be modified in that function.
• A vector is displayed in a similar format as for a list. Note, however, there is a distinc-

tion: Elements of a vector are separated simply by a ‘blank space’, while those of a list
by a ‘comma.’
[0] A=newvect(5);
[ 0 0 0 0 0 ]
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[1] A=newvect(5,[1,2,3,4,[5,6]]);
[ 1 2 3 4 [5,6] ]
[2] A[0];
1
[3] A[4];
[5,6]
[4] size(A);
[5]
[5] length(A);
5
[6] vect(1,2,3,4,[5,6]);
[ 1 2 3 4 [5,6] ]
[7] def afo(V) { V[0] = x; }
[8] afo(A)$
[9] A;
[ x 2 3 4 [5,6] ]

References
Section 6.6.5 [newmat matrix], page 66, Section 6.6.7 [size], page 68, Sec-
tion 6.6.2 [ltov], page 65, Section 6.6.3 [vtol], page 65.

6.6.2 ltov

ltov(list) :: Converts a list into a vector.

return vector

list list
• Converts a list list into a vector of same length. See also newvect().

[3] A=[1,2,3];
[4] ltov(A);
[ 1 2 3 ]

References
Section 6.6.1 [newvect vector vect], page 63, Section 6.6.3 [vtol], page 65.

6.6.3 vtol

vtol(vect)
:: Converts a vector into a list.

return list

vect vector
• Converts a vector vect of length n into a list [vect[0],...,vect[n-1]].
• A conversion from a list to a vector is done by newvect().

[3] A=newvect(3,[1,2,3]);
[ 1 2 3 ]
[4] vtol(A);
[1,2,3]
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References
Section 6.6.1 [newvect vector vect], page 63, Section 6.6.2 [ltov], page 65.

6.6.4 newbytearray

newbytearray(len,[listorstring])
:: Creates a new byte array.

return byte array

len non-negative integer

listorstring
list or string

• This function generates a byte array. The specification is similar to that of newvect.
• The initial value can be specified by a character string.
• One can access elements of a byte array just as an array.

[182] A=newbytearray(3);
|00 00 00|
[183] A=newbytearray(3,[1,2,3]);
|01 02 03|
[184] A=newbytearray(3,"abc");
|61 62 63|
[185] A[0];
97
[186] A[1]=123;
123
[187] A;
|61 7b 63|

References
Section 6.6.1 [newvect vector vect], page 63.

6.6.5 newmat, matrix

newmat(row,col [,[[a,b,...],[c,d,...],...]])

matrix(row,col [,[[a,b,...],[c,d,...],...]])
:: Creates a new matrix with row rows and col columns.

return matrix

row col non-negative integer

a b c d arbitrary
• matrix is an alias of newmat.
• If the third argument, a list, is given, the newly created matrix is initialized so that each

element of the list (again a list) initializes each of the rows of the matrix. Elements are
used from the first through the last. If the list is short, 0’s are filled in the remaining
matrix elements. If no third argument is given all the elements are cleared to 0.

• The size of a matrix is given by function size().
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• Let M be a program variable assigned to a matrix. Then, M[I] denotes a (row) vector
which corresponds with the I-th row of the matrix. Note that the vector shares its
element with the original matrix. Subsequently, if an element of the vector is modified,
then the corresponding matrix element is also modified.

• When a matrix is passed to a function as its argument (actual parameter), the matrix
element can be modified within that function.
[0] A = newmat(3,3,[[1,1,1],[x,y],[x^2]]);
[ 1 1 1 ]
[ x y 0 ]
[ x^2 0 0 ]
[1] det(A);
-y*x^2
[2] size(A);
[3,3]
[3] A[1];
[ x y 0 ]
[4] A[1][3];
getarray : Out of range
return to toplevel

References
Section 6.6.1 [newvect vector vect], page 63, Section 6.6.7 [size], page 68,
Section 6.6.8 [det nd_det invmat], page 68.

6.6.6 mat, matr, matc

mat(vector[,...])

matr(vector[,...])
:: Creates a new matrix by list of row vectors.

matc(vector[,...])
:: Creates a new matrix by list of column vectors.

return matrix

vector array or list
• mat is an alias of matr.
• Each vector has same length. Elements are used from the first through the last. If the

list is short, 0’s are filled in the remaining matrix elements.
[0] matr([1,2,3],[4,5,6],[7,8]);
[ 1 2 3 ]
[ 4 5 6 ]
[ 7 8 0 ]
[1] matc([1,2,3],[4,5,6],[7,8]);
[ 1 4 7 ]
[ 2 5 8 ]
[ 3 6 0 ]

References
Section 6.6.5 [newmat matrix], page 66
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6.6.7 size

size(vect|mat)
:: A list containing the number of elements of the given vector, [size of vect],
or a list containing row size and column size of the given matrix, [row size of
mat, column size of mat].

return list

vect vector

mat matrix
• Return a list consisting of the dimension of the vector vect, or a list consisting of the

row size and column size of the matrix matrix.
• Use length() for the size of list, and nmono() for the number of monomials with

non-zero coefficients in a rational expression.
[0] A = newvect(4);
[ 0 0 0 0 ]
[1] size(A);
[4]
[2] length(A);
4
[3] B = newmat(2,3,[[1,2,3],[4,5,6]]);
[ 1 2 3 ]
[ 4 5 6 ]
[4] size(B);
[2,3]

References
Section 6.5.1 [car cdr cons append reverse length], page 62, Section 6.3.6
[nmono], page 47.

6.6.8 det, nd_det, invmat

det(mat[,mod])
nd_det(mat[,mod])

:: Determinant of mat.

invmat(mat)
:: Inverse matrix of mat.

return det: expression, invmat: list

mat matrix

mod prime
• det and nd_det compute the determinant of matrix mat. invmat computes the inverse

matrix of matrix mat. invmat returns a list [num,den], where num is a matrix and
num/den represents the inverse matrix.

• The computation is done over GF(mod) if mod is specitied.
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• The fraction free Gaussian algorithm is employed. For matrices with multi-variate
polynomial entries, minor expansion algorithm sometimes is more efficient than the
fraction free Gaussian algorithm.

• nd_det can be used for computing the determinant of a matrix with polynomial entries
over the rationals or finite fields. The algorithm is an improved vesion of the fraction
free Gaussian algorithm and it computes the determinant faster than det.
[91] A=newmat(5,5)$
[92] V=[x,y,z,u,v];
[x,y,z,u,v]
[93] for(I=0;I<5;I++)for(J=0,B=A[I],W=V[I];J<5;J++)B[J]=W^J;
[94] A;
[ 1 x x^2 x^3 x^4 ]
[ 1 y y^2 y^3 y^4 ]
[ 1 z z^2 z^3 z^4 ]
[ 1 u u^2 u^3 u^4 ]
[ 1 v v^2 v^3 v^4 ]
[95] fctr(det(A));
[[1,1],[u-v,1],[-z+v,1],[-z+u,1],[-y+u,1],[y-v,1],[-y+z,1],[-x+u,1],
[-x+z,1],[-x+v,1],[-x+y,1]]
[96] A = newmat(3,3)$
[97] for(I=0;I<3;I++)for(J=0,B=A[I],W=V[I];J<3;J++)B[J]=W^J;
[98] A;
[ 1 x x^2 ]
[ 1 y y^2 ]
[ 1 z z^2 ]
[99] invmat(A);
[[ -z*y^2+z^2*y z*x^2-z^2*x -y*x^2+y^2*x ]
[ y^2-z^2 -x^2+z^2 x^2-y^2 ]
[ -y+z x-z -x+y ],(-y+z)*x^2+(y^2-z^2)*x-z*y^2+z^2*y]
[100] A*B[0];
[ (-y+z)*x^2+(y^2-z^2)*x-z*y^2+z^2*y 0 0 ]
[ 0 (-y+z)*x^2+(y^2-z^2)*x-z*y^2+z^2*y 0 ]
[ 0 0 (-y+z)*x^2+(y^2-z^2)*x-z*y^2+z^2*y ]
[101] map(red,A*B[0]/B[1]);
[ 1 0 0 ]
[ 0 1 0 ]
[ 0 0 1 ]

References
Section 6.6.5 [newmat matrix], page 66.

6.6.9 qsort

qsort(array[,func])
:: Sorts an array array.

return array (The same as the input; Only the elements are exchanged.)

array array

func function for comparison
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• This function sorts an array by quick sort.
• If func is not specified, the built-in comparison function is used and the array is sorted

in increasing order.
• If a function of two arguments func which returns 0, 1, or -1 is provided, then an

ordering is detemined so that A<B if func(A,B)=1 holds, and the array is sorted in
increasing order with respect to the ordering.

• The returned array is the same as the input. Only the elements are exchanged.
[0] qsort(newvect(10,[1,4,6,7,3,2,9,6,0,-1]));
[ -1 0 1 2 3 4 6 6 7 9 ]
[1] def rev(A,B) { return A>B?-1:(A<B?1:0); }
[2] qsort(newvect(10,[1,4,6,7,3,2,9,6,0,-1]),rev);
[ 9 7 6 6 4 3 2 1 0 -1 ]

References
Section 6.3.7 [ord], page 47, Section 6.3.2 [vars], page 45.

6.6.10 rowx, rowm, rowa, colx, colm, cola

rowx(matrix,i,j)
:: Exchanges the i-th and j-th rows.

rowm(matrix,i,c)
:: Multiplies the i-th row by c.

rowa(matrix,i,c)
:: Appends c times the j-th row to the j-th row.

colx(matrix,i,j)
:: Exchanges the i-th and j-th columns.

colm(matrix,i,c)
:: Multiplies the i-th column by c.

cola(matrix,i,c)
:: Appends c times the j-th column to the j-th column.

return matrix

i, j integers

c coefficient
• These operations are destructive for the matrix.

[0] A=newmat(3,3,[[1,2,3],[4,5,6],[7,8,9]]);
[ 1 2 3 ]
[ 4 5 6 ]
[ 7 8 9 ]
[1] rowx(A,1,2)$
[2] A;
[ 1 2 3 ]
[ 7 8 9 ]
[ 4 5 6 ]
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[3] rowm(A,2,x);
[ 1 2 3 ]
[ 7 8 9 ]
[ 4*x 5*x 6*x ]
[4] rowa(A,0,1,z);
[ 7*z+1 8*z+2 9*z+3 ]
[ 7 8 9 ]
[ 4*x 5*x 6*x ]

References
Section 6.6.5 [newmat matrix], page 66

6.7 Structures

6.7.1 newstruct

newstruct(name)
:: Creates a new structure object whose name is name.

return structure

name string
• This function creates an new structure object whose name is name.
• A structure named name should be defined in advance.
• Each member of a structure is specified by its name using the operator ->. If the

specified member is also an structure, the specification by -> can be nested.
[0] struct list {h,t};
0
[1] A=newstruct(list);
{0,0}
[2] A->t = newstruct(list);
{0,0}
[3] A;
{0,{0,0}}
[4] A->h = 1;
1
[5] A->t->h = 2;
2
[6] A->t->t = 3;
3
[7] A;
{1,{2,3}}

References
Section 6.7.2 [arfreg], page 71, Section 4.2.9 [structure definition], page 24

6.7.2 arfreg
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arfreg(name,add,sub,mul,div,pwr,chsgn,comp)
:: Registers a set of fundamental operations for a type of structure.

return 1

name string

add sub mul div pwr chsgn comp
user defined functions

• This function registers a set of fundamental operations for a type of structure whose
name is name.

• The specification of each function is as follows.

add(A,B) A+B

sub(A,B) A-B

mul(A,B) A*B

div(A,B) A/B

pwr(A,B) A^B

chsgn(A) -A

comp(A,B)
1,0,-1 according to the result of a comparison between A and B.

% cat test
struct a {id,body}$

def add(A,B)
{
C = newstruct(a);
C->id = A->id; C->body = A->body+B->body;
return C;

}

def sub(A,B)
{
C = newstruct(a);
C->id = A->id; C->body = A->body-B->body;
return C;

}

def mul(A,B)
{
C = newstruct(a);
C->id = A->id; C->body = A->body*B->body;
return C;

}

def div(A,B)
{
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C = newstruct(a);
C->id = A->id; C->body = A->body/B->body;
return C;

}

def pwr(A,B)
{
C = newstruct(a);
C->id = A->id; C->body = A->body^B;
return C;

}

def chsgn(A)
{
C = newstruct(a);
C->id = A->id; C->body = -A->body;
return C;

}

def comp(A,B)
{
if ( A->body > B->body )
return 1;

else if ( A->body < B->body )
return -1;

else
return 0;

}

arfreg("a",add,sub,mul,div,pwr,chsgn,comp)$
end$
% asir
This is Risa/Asir, Version 20000908.
Copyright (C) FUJITSU LABORATORIES LIMITED.
1994-2000. All rights reserved.
[0] load("./test")$
[11] A=newstruct(a);
{0,0}
[12] B=newstruct(a);
{0,0}
[13] A->body = 3;
3
[14] B->body = 4;
4
[15] A*B;
{0,12}

References
Section 6.7.1 [newstruct], page 71, Section 4.2.9 [structure definition],
page 24
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6.7.3 struct_type

struct_type(name|object)
:: Get an identity number of the structure of object and name.

return an integer

name string

object a structure
• struct_type() returns an identity number of the structure or -1 (if an error occurs).

[10] struct list {h,t};
0
[11] A=newstruct(list);
{0,0}
[12] struct_type(A);
3
[13] struct_type("list");
3

References
Section 6.7.1 [newstruct], page 71, Section 4.2.9 [structure definition],
page 24

6.8 Types

6.8.1 type

type(obj) :: Returns an integer which identifies the type of the object obj in question.

return integer

obj arbitrary
• Current assignment of integers for object types is listed below.

0 0

1 number

2 polynomial (not number)

3 rational expression (not polynomial)

4 list

5 vector

6 matrix

7 string

8 structure

9 distributed polynomial
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10 32bit unsigned integer

11 error object

12 matrix over GF(2)

13 MATHCAP object

14 first order formula

-1 VOID object
• For further classification of number, use ntype(). For further classification of variable,

use vtype().

References
Section 6.8.2 [ntype], page 75, Section 6.8.3 [vtype], page 76.

6.8.2 ntype

ntype(num)
:: Classifier of type num. Returns a sub-type number, an integer, for obj.

return integer

obj number
• Sub-types for type number are listed below.

0 rational number

1 floating double (double precision floating point number)

2 algebraic number over rational number field

3 arbitrary precision floating point number (bigfloat)

4 complex number

5 element of a finite field

6 element of a large finite prime field

7 element of a finite field of characteristic 2
• When arithmetic operations for numbers are performed, type coercion will be taken if

their number sub-types are different so that the object having smaller sub-type number
will be transformed to match the other object, except for algebraic numbers.

• A number object created by newalg(x^2+1) and the unit of imaginary number @i have
different number sub-types, and it is treated independently.

• See Chapter 9 [Algebraic numbers], page 152 for algebraic numbers.
[0] [10/37,ntype(10/37)];
[10/37,0]
[1] [10.0/37.0,ntype(10.0/37.0)];
[0.27027,1]
[2] [newalg(x^2+1)+1,ntype(newalg(x^2+1)+1)];
[(#0+1),2]
[3] [eval(sin(@pi/6)),ntype(eval(sin(@pi/6)))];
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[0.49999999999999999991,3]
[4] [@i+1,ntype(@i+1)];
[(1+1*@i),4]

References
Section 6.8.1 [type], page 74.

6.8.3 vtype

vtype(var)
:: Type of indetarminates var.

return integer

var indeterminate
• Classify indeterminates into sub-types by giving an integer value as follows. For details

See Section 3.3 [Types of indeterminates], page 15.

0 ordinary indeterminate, which can be directly typed in on a keyboard
(a,b,x,afo,bfo,...,etc.)

1 Special indeterminate, created by uc() (_0, _1, _2, ... etc.)

2 function form (sin(x), log(a+1), acosh(1), @pi, @e, ... etc.)

3 functor (built-in functor name, user defined functor, functor for the ele-
mentary functions) : sin, log, ... etc)

• Note: An input ‘a();’ will cause an error, but it changes the system database for
identifiers. After this error, you will find ‘vtype(a)’ will result 3. (Identifier a is
registered as a user defined functor).

• Usually @pi and @e are treated as indeterminates, whereas they are treated as numbers
within functions eval() and pari().

References
Section 6.8.1 [type], page 74, Section 6.8.2 [ntype], page 75, Section 6.3.3 [uc],
page 45.

6.9 Operations on functions

6.9.1 call

call(name, args)
:: Call the function name with args.

return a return value of name().

name indefinite (function name)

args a list of arguments
• See Section 6.8.3 [vtype], page 76 for function form.
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[0] A=igcd;
igcd
[1] call(A,[4,6]);
2
[2] (*A)(4,6);
2

References
Section 6.8.3 [vtype], page 76.

6.9.2 functor, args, funargs

functor(func)
:: Functor of function form func.

args(func)
:: List of arguments of function form func.

funargs(func)
:: cons(functor(func),args(func)).

return functor() : indeterminate, args(), funargs() : list

func function form
• See Section 6.8.3 [vtype], page 76 for function form.
• Extract the functor and the arguments of function form func.
• Assign a program variable, say F, to the functor obtained by functor(). Then, you

can type (*F)(x) (, or (*F)(x,y,...) depending on the arity,) to input a function form
with argument x.
[0] functor(sin(x));
sin
[0] args(sin(x));
[x]
[0] funargs(sin(3*cos(y)));
[sin,3*cos(y)]
[1] for (L=[sin,cos,tan];L!=[];L=cdr(L)) {A=car(L);
print(eval((*A)(@pi/3)));}
0.86602540349122136831
0.5000000002
1.7320508058

References
Section 6.8.3 [vtype], page 76.

6.10 Strings

6.10.1 rtostr

rtostr(obj)
:: Convert obj into a string.
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return string

obj arbitrary
• Convert an arbitrary object obj into a string.
• This function is convenient to create variables with numbered (or indexed) names by

converting integers into strings and appending them to some name strings.
• Use strtov() for inverse conversion from string to indeterminate.

[0] A=afo;
afo
[1] type(A);
2
[2] B=rtostr(A);
afo
[3] type(B);
7
[4] B+"1";
afo1

References
Section 6.10.2 [strtov], page 78, Section 6.8.1 [type], page 74.

6.10.2 strtov

strtov(str)
:: Convert a string str into an indeterminate.

return intederminate

str string which is valid to constitute an indeterminate.
• Convert a string that is valid for an indeterminate into an indeterminate which have

str as its print name.
• The valid string for an indeterminate is such a string that begins with a small alpha-

betical letter possibly followed by any string composed of alphabetical letters, digits or
a symbol ‘_’.

• Use the command to create indeterminates dynamically in programs.
[0] A="afo";
afo
[1] for (I=0;I<3;I++) {B=strtov(A+rtostr(I)); print([B,type(B)]);}
[afo0,2]
[afo1,2]
[afo2,2]

References
Section 6.10.1 [rtostr], page 77, Section 6.8.1 [type], page 74, Section 6.3.3
[uc], page 45.

6.10.3 eval_str
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eval_str(str)
:: Evaluates a string str.

return object

str string which can be accepted by Asir parser
• This function evaluates a string which can be accepted by Asir parser and returns the

result.
• The input string should represent an expression.
• This functions is the inversion function of rtostr().

[0] eval_str("1+2");
3
[1] fctr(eval_str(rtostr((x+y)^10)));
[[1,1],[x+y,10]]

References
Section 6.10.1 [rtostr], page 77

6.10.4 strtoascii, asciitostr

strtoascii(str)
:: Converts a string into a sequence of ASCII codes.

asciitostr(list)
:: Converts a sequence of ASCII codes into a string.

return strtoascii():list; asciitostr():string

str string

list list containing positive integers less than 256.
• strtoascii() converts a string into a list of integers which is a representation of the

string by the ASCII code.
• asciitostr() is the inverse of asciitostr().

[0] strtoascii("abcxyz");
[97,98,99,120,121,122]
[1] asciitostr(@);
abcxyz
[2] asciitostr([256]);
asciitostr : argument out of range
return to toplevel

6.10.5 str_len, str_chr, sub_str

str_len(str)
:: Returns the length of a string.

str_chr(str,start,c)
:: Returns the position of the first occurrence of a character in a string.

sub_str(str,start,end)
:: Returns a substring of a string.
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return str_len(), str_chr():integer; sub_str():string

str c string

start end non-negative integer
• str_len() returns the length of a string.
• str_chr() scans a string str from the start-th character and returns the position of

the first occurrence of the first character of a string c. Note that the top of a string is
the 0-th charater. It returns -1 if the character does not appear.

• sub_str() generates a substring of str containing characters from the start-th one to
the end-th one.
[185] Line="123 456 (x+y)^3";
123 456 (x+y)^3
[186] Sp1 = str_chr(Line,0," ");
3
[187] D0 = eval_str(sub_str(Line,0,Sp1-1));
123
[188] Sp2 = str_chr(Line,Sp1+1," ");
7
[189] D1 = eval_str(sub_str(Line,Sp1+1,Sp2-1));
456
[190] C = eval_str(sub_str(Line,Sp2+1,str_len(Line)-1));
x^3+3*y*x^2+3*y^2*x+y^3

6.11 Inputs and Outputs

6.11.1 end, quit

end, quit
:: Close the currently reading file. At the top level, terminate the Asir session.

• These two functions take no arguments. These functions can be called without a ‘()’.
Either function close the current input file. This means the termination of the Asir
session at the top level.

• An input file will be automatically closed if it is read to its end. However, if no end$
is written at the last of the input file, the control will be returned to the top level
and Asir will be waiting for an input without any prompting. Thus, in order to avoid
confusion, putting a end$ at the last line of the input file is strongly recommended.
[6] quit;
%

References
Section 6.11.2 [load], page 80.

6.11.2 load

load("filename")
:: Reads a program file filename.
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return (1|0)

filename file (path) name
• See Chapter 4 [User language Asir], page 17 for practical programming. Since text

files are read through cpp, the user can use, as in C programs, #include and #define
in Asir program source codes. The cpp which is installed to the system with a C
compler is used in the unix version. The mcpp http://mcpp.sourceforge.net is
used in the Windows version. Note that the length of a line has a limit for an in-
put mcpp. The OpenXM/bin/ox_cpp is used in the unix/OpenXM version (including
cfep/asir for MacOS X). This is the cpp distributed with the Portable C compiler
http://pcc.ludd.ltu.se.

• It returns 1 if the designated file exists, 0 otherwise.
• If the filename begins with ‘/’, it is understood as an absolute path name; with ‘.’,

relative path name from current directory; otherwise, the file is searched first from
directories assigned to an environmental variable ASIRLOADPATH, then if the search ends
up in failure, the standard library directory (or directories assigned to ASIR_LIBDIR)
shall be searched. On Windows, get_rootdir()/lib is searched if ASIR_LIBDIR is not
set.

• We recommend to write an end command at the last line of your program. If not, Asir
will not give you a prompt after it will have executed load command. (Escape with
an interrupt character (Section 2.7 [Interruption], page 8), if you have lost yourself.)
Even in such a situation, Asir itself is still ready to read keyboard inputs as usual. It
is, however, embarrassing and may cause other errors. Therefore, to put an end$ at
the last line is desirable. (Command end; will work as well, but it also returns and
displays verbose.)

• On Windows one has to use ‘/’ as the separator of directory names.

References
Section 6.11.1 [end quit], page 80, Section 6.11.3 [which], page 81,
Section 6.14.16 [get_rootdir], page 97.

6.11.3 which

which("filename")
:: This returns the path name for the filename which load() will read.

return path name

filename filename (path name) or 0
• This function searches directory trees according to the same procedure as load() will

do. Then, returns a string, the path name to the file if the named file exists; 0 unless
otherwise.

• For details of searching procedure, refer to the description about load().
• On Windows one has to use ‘/’ as the separator of directory names.

[0] which("gr");
./gb/gr
[1] which("/usr/local/lib/gr");
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0
[2] which("/usr/local/lib/asir/gr");
/usr/local/lib/asir/gr

References
Section 6.11.2 [load], page 80.

6.11.4 output

output(["filename"])
:: Writes the return values and prompt onto file filename.

return 1

filename filename
• Standard output stream of Asir is redirected to the specified file. While Asir is writ-

ing its outputs onto a file, no outputs, except for keyboard inputs and some of error
messages, are written onto the standard output. (You cannot see the result on the
display.)

• To direct the Asir outputs to the standard output, issue the command without argu-
ment, i.e., output().

• If the specified file already exists, new outputs will be added to the tail of the file. If
not, a file is newly created and the outputs will be written onto the file.

• When file name is specified without double quotes (""), or when protected file is spec-
ified, an error occurs and the system returns to the top level.

• If you want to write inputs from the key board onto the file as well as Asir outputs,
put command ctrl("echo",1), and then redirect the standard output to your desired
file.

• Contents which are written onto the standard error output, CPU time etc., are not
written onto the file.

• Reading and writing algebraic expressions which contain neither functional forms nor
unknown coefficients (vtype() References) are performed more efficiently, with respect
to both time and space, by bload() and bsave().

• On Windows one has to use ‘/’ as the separator of directory names.
[83] output("afo");
fctr(x^2-y^2);
print("afo");
output();
1
[87] quit;
% cat afo
1
[84] [[1,1],[x+y,1],[x-y,1]]
[85] afo
0
[86]

References
Section 6.14.1 [ctrl], page 89, Section 6.11.5 [bsave bload], page 83.
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6.11.5 bsave, bload

bsave(obj,"filename")
:: This function writes obj onto filename in binary form.

bload("filename")
:: This function reads an expression from filename in binary form.

return bsave() : 1, bload() : the expression read

obj arbitrary expression which does not contain neither function forms nor unknown
coefficients.

filename filename
• Function bsave() writes an object onto a file in its internal form (not exact internal

form but very similar). Function bload() read the expression from files which is written
by bsave(). Current implementation support arbitrary expressions, including lists,
arrays (i.e., vectors and matrices), except for function forms and unknown coefficients
(vtype() References.)

• The parser is activated to retrieve expressions written by output() , whereas internal
forms are directly reconstructed by bload() from the bsave()’ed object in the file.
The latter is much more efficient with respect to both time and space.

• It may happen that the variable ordering at reading is changed from that at writing. In
such a case, the variable ordering in the internal expression is automatically rearranged
according to the current variable ordering.

• On Windows one has to use ‘/’ as the separator of directory names.
[0] A=(x+y+z+u+v+w)^20$
[1] bsave(A,"afo");
1
[2] B = bload("afo")$
[3] A == B;
1
[4] X=(x+y)^2;
x^2+2*y*x+y^2
[5] bsave(X,"afo")$
[6] quit;
% asir
[0] ord([y,x])$
[1] bload("afo");
y^2+2*x*y+x^2

References
Section 6.11.4 [output], page 82.

6.11.6 bload27

bload27("filename")
:: Reads bsaved file created by older version of Asir.

return expression read
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filename filename

• In older versions an arbitrary precision integer is represented as an array of 27bit
integers. In the current version it is represented as an array of 32bit integers. By this
incompatibility the bsaved file created by older versions cannot be read in the current
version by bload. bload27 is used to read such files.

• On Windows one has to use ‘/’ as the separator of directory names.

References
Section 6.11.5 [bsave bload], page 83.

6.11.7 print

print(obj [,nl])
:: Displays (or outputs) obj.

return 0

obj arbitrary

nl flag (arbitrary)

• Displays (or outputs) obj.

• It normally adds linefeed code to cause the cursor moving to the next line. If 0 or 2 is
given as the second argument, it does not add a linefeed. If the second argument is 0,
the output is simply written in the buffer. If the second argument is 2, the output is
flushed.

• The return value of this function is 0. If command print(rat); is performed at the
top level, first the value of rat will be printed, followed by a linefeed, followed by a 0
which is the value of the function and followed by a linefeed and the next prompt. (If
the command is terminated by a ‘$’, e.g., print(rat)$, The last 0 will not be printed.
)

• Formatted outputs are not currently supported. If one wishes to output multiple objects
by a single print() command, use list like [obj1,...], which is not so beautiful, but
convenient to minimize programming efforts.
[8] def cat(L) { while ( L != [] ) { print(car(L),0); L = cdr(L);}
print(""); }
[9] cat([xyz,123,"gahaha"])$
xyz123gahaha

6.11.8 access

access(file)
:: testing an existence of file.

return (1|0)

file filename
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6.11.9 remove_file

remove_file(file)
:: Delete an file file.

return 1

file filename

6.11.10 open_file, close_file, get_line, get_byte, put_byte, purge_
stdin

open_file("filename"[,"mode"])
:: Opens filename for reading.

close_file(num)
:: Closes the file indicated by a descriptor num.

get_line([num])
:: Reads a line from the file indicated by a descriptor num.

get_byte(num)
:: Reads a byte from the file indicated by a descriptor num.

put_byte(num,c)
:: Writes a byte c to the file indicated by a descriptor num.

purge_stdin()
:: Clears the buffer for the standard input.

return open_file() : integer (fild id); close_file() : 1; get_line() : string; get_
byte(), put_byte() : integer

filename file (path) name

mode string

num non-negative integer (file descriptor)
• open_file() opens a file. If mode is not specified, a file is opened for reading. If mode

is specified, it is used as the mode specification for C standard I/O function fopen().
For example "w" requests that the file is truncated to zero length or created for writing.
"a" requests that the file is opened for writing or created if it does not exist. The stream
pointer is set at the end of the file. If successful, it returns a non-negative integer as the
file descriptor. Otherwise the system error function is called. Unnecessary files should
be closed by close_file(). If the special file name unix://stdin or unix://stdout
or unix://stderr is given, it returns the file descriptor for the standard input or the
standard output or the standard error stream respectively. The mode argument is
ignored in this case.

• get_line() reads a line from an opened file and returns the line as a string. If no
argument is supplied, it reads a line from the standard input.

• get_byte() reads a byte from an opened file and returns the it as an integer.
• put_byte() writes a byte from an opened file and returns the the byte as an integer.
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• A get_line() call after reading the end of file returns an integer 0.

• Strings can be converted into internal forms with string manipulation functions such
as sub_str(), eval_str().

• purge_stdin() clears the buffer for the standard input. When a function receives a
character string from get_line(), this functions should be called in advance in order
to avoid an incorrect behavior which is caused by the characters already exists in the
buffer.
[185] Id = open_file("test");
0
[186] get_line(Id);
12345

[187] get_line(Id);
67890

[188] get_line(Id);
0
[189] type(@@);
0
[190] close_file(Id);
1
[191] open_file("test");
1
[192] get_line(1);
12345

[193] get_byte(1);
54 /* the ASCII code of ’6’ */
[194] get_line(1);
7890 /* the rest of the last line */
[195] def test() { return get_line(); }
[196] def test1() { purge_stdin(); return get_line(); }
[197] test();

/* a remaining newline character has been read */
/* returns immediately */

[198] test1();
123; /* input from a keyboard */
123; /* returned value */

[199]

References
Section 6.10.3 [eval_str], page 78, Section 6.10.5 [str_len str_chr sub_str],
page 79.

6.12 Operations for modules
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6.12.1 module_list

module_list()
:: Get the list of loaded modules.

return The list of loaded modules.
[1040] module_list();
[gr,primdec,bfct,sm1,gnuplot,tigers,phc]

References
See Section 4.2.13 [module], page 27.

6.12.2 module_definedp

module_definedp(name)
:: Testing an existense of the module name.

return (1|0)

name a module name
• If the module name exists, then module_definedp returns 1. othewise 0.

[100] module_definedp("gr");
1

References
Section 6.12.1 [module_list], page 87, See Section 4.2.13 [module], page 27.

6.12.3 remove_module

remove_module(name)
:: Remove the module name.

return (1|0)

name a module name
•

[100] remove_module("gr");
1

References
See Section 4.2.13 [module], page 27.

6.13 Numerical functions

6.13.1 dacos, dasin, datan, dcos, dsin, dtan

dacos(num)
:: Get the value of Arccos of num.

dasin(num)
:: Get the value of Arcsin of num.
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datan(num)
:: Get the value of Arctan of num.

dcos(num)
:: Get the value of cos of num.

dsin(num)
:: Get the value of sin of num.

dtan(num)
:: Get the value of tan of num.

return floating point number

num number
• Compute numerical values of trigonometric functions.
• These functions use the standard mathematical library of C language. So results depend

on operating systems and a C compilers.
[0] 4*datan(1);
3.14159

6.13.2 dabs, dexp, dlog, dsqrt

dabs(num)
:: Get the absolute value of num.

dexp(num)
:: Get the value of expornent of num.

dlog(num)
:: Get the value of logarithm of num.

dsqrt(num)
:: Get the value of square root of num.

return floating point number

num number
• Compute numerical values of elementary functions.
• These functions use the standard mathematical library of C language. So results depend

on operating systems and a C compilers.
[0] dexp(1);
2.71828

6.13.3 ceil, floor, rint, dceil, dfloor, drint

ceil(num)

dceil(num)
:: Get the ceiling integer of num.

floor(num)
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dfloor(num)
:: Get the floor integer of num.

rint(num)

drint(num)
:: Get the round integer of num.

return integer

num number
[0] dceil(1.1);
1

6.14 Miscellaneouses

6.14.1 ctrl

ctrl("switch"[,obj])
:: Sets the value of switch.

return value of switch

switch switch name

obj parameter
• This function is used to set or to get the values of switches. The switches are used to

control an execution of Asir.
• If obj is not specified, the value of switch is returned.
• If obj is specified, the value of switch is set to obj.
• Switches are specified by strings, namely, enclosed by two double quotes.
• Here are of switches of Asir.

cputime If ‘on’, CPU time and GC time is displayed at every top level evaluation
of Asir command; if ‘off’, not displayed. See Section 6.14.6 [cputime tstart
tstop], page 93. (The switch is also set by command cputime(1), and reset
by cputime(0).)

nez Selection for EZGCD algorithm. It is set to 1 by default. Ordinary users
need not change this setting.

echo If ‘on’, inputs from the standard input will be echoed onto the standard
output. When executing to load a file, the contents of the file will be
written onto the standard output. If ‘off’, the inputs will not be echoed.
This command will be useful when used with command output.

bigfloat If ‘on’, floating operations will be done by PARI system with arbitrary
precision floating point operations. Default precision is set to 9 digits. To
change the precision, use command setprec. If ‘off’, floating operations
will be done by Asir’s own floating operation routines with a fixed precision
operations of standard floating double.
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adj Sets the frequency of garbage collection. A rational number greater than or
equal to 1 can be specified. The default value is 3. If a value closer to 1 is
specified, larger heap is allocated and as a result, the frequency of garbage
collection decreases. See Section 2.4 [Command line options], page 5.

verbose If ‘on’ a warning messages is displayed when a function is redefined.

quiet_mode
If 1 is set, the copyright notice has been displayed at boot time.

prompt If the value is 0, then prompt is not output. If the value is 1,
then the standard prompt is output. Asir prompt can be cus-
tomized by giving a C-style format string. Example (for unix asir);
ctrl("prompt","\033[32m[%d]:= \033[0m")

hex If 1 is set, integers are displayed as hexadecimal numbers with prefix 0x.
if -1 is set, hexadecimal numbers are displayed with ‘|’ inserted at every 8
hexadecimal digits.

real_digit
Sets the number of digits used to print a floating double.

double_output
If set to 1, any floating double is printed in the style ddd.ddd.

fortran_output
If ‘on’ polynomials are displayed in FORTRAN style. That is, a power is
represented by ‘**’ instead of ‘^’. The default value is ’off.

ox_batch If ’on’, the OpenXM send buffer is flushed only when the buffer is full. If
’off’, the buffer is always flushed at each sending of data or command. The
default value is ’off’. See Chapter 7 [Distributed computation], page 99.

ox_check If ’on’ the check by mathcap is done before sending data. The default value
is ’on’. See Chapter 7 [Distributed computation], page 99.

ox_exchange_mathcap
If ’on’ Asir forces the exchange of mathcaps at the communication startup.
The default value is ’on’. See Chapter 7 [Distributed computation], page 99.

References
Section 6.14.6 [cputime tstart tstop], page 93, Section 6.11.4 [output],
page 82, Section 6.1.14 [pari], page 40, Section 6.1.15 [setprec], page 41,
Section 6.1.13 [eval deval], page 39.

6.14.2 debug

debug :: Forces to enter into debugging mode.

Function debug is a function with no argument. It can be called without ‘()’.
• In the debug-mode, you are prompted by (debug) and the debugger is ready for com-

mands. Typing in quit (Note! without a semicolon.) brings you to exit the debug-
mode.
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• See Chapter 5 [Debugger], page 30 for details.
[1] debug;
(debug) quit
0
[2]

6.14.3 error

error(message)
:: Forces Asir to cause an error and enter debugging mode.

message string
• When Asir encounters a serious error such that it finds difficult to continue execution,

it, in general, tries to enter debugging mode before it returns to top level. The command
error() forces a similar behavior in a user program.

• The argument is a string which will be displayed when error() will be executed.
• You can enter the debug-mode when your program encounters an illegal value for a

program variable, if you have written the program so as to call error() upon finding
such an error in your program text.
% cat mod3
def mod3(A) {

if ( type(A) >= 2 )
error("invalid argument");

else
return A % 3;

}
end$
% asir
[0] load("mod3");
1
[3] mod3(5);
2
[4] mod3(x);
invalid argument
stopped in mod3 at line 3 in file "./mod3"
3 error("invalid argument");
(debug) print A
A = x
(debug) quit
return to toplevel
[4]

References
Section 6.14.2 [debug], page 90.

6.14.4 help

help(["function"])
:: Displays the description of function function.
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return 0

function function name
• If invoked without argument, it displays rough usage of Asir.
• If a function name is given and if there exists a file with the same name in the directory

‘help’ under standard library directory, the file is displayed by a command set to the
environmental variable PAGER or else command ‘more’.

• If the LANG environment variable is set and its value begins with "japan" or "ja_JP",
then the file in ‘help-ja’ is displayed. If its value does not begin with "japan" or
"ja_JP", then the file in ‘help-en’ is displayed.

• On Windows HTML-style help is available from the menu.

6.14.5 time

time() :: Returns a four element list consisting of total CPU time, GC time, the elapsed
time and also total memory quantities requested from the start of current Asir
session.

return list
• These are commands regarding CPU time and GC time.
• The GC time is the time regarded to spent by the garbage collector, and the CPU

time is the time defined by subtracting the GC time from the total time consumed by
command Asir. Their unit is ‘second.’

• Command time() returns total CPU time and GC time measured from the start of
current Asir session. It also returns the elapsed time. Time unit is ‘second.’ Moreover,
it returns total memory quantities in words (usually 4 bytes) which are requested to
the memory manager from the beginning of the current session. The return value is a
list and the format is [CPU time, GC time, Memory, Elapsed time].

• You can find the CPU time and GC time for some computation by taking the difference
of the figure reported by time() at the beginning and the ending of the computation.

• Since arbitrary precision integers are NOT used for counting the total amount of mem-
ory request, the number will eventually happen to become meaningless due to integer
overflow.

• When cputime switch is active by ctrl() or by cputime(), the execution time will be
displayed after every evaluation of top level statement. In a program, however, in order
to know the execution time for a sequence of computations, you have to use time()
command, for an example.

• On UNIX, if getrusage() is available, time() reports reliable figures. On Windows
NT it also gives reliable CPU time. However, on Windows 95/98, the reported time
is nothing but the elapsed time of the real world. Therefore, the time elapsed in the
debug-mode and the time of waiting for a reply to interruption prompting are added
to the elapsed time.
[72] T0=time();
[2.390885,0.484358,46560,9.157768]
[73] G=hgr(katsura(4),[u4,u3,u2,u1,u0],2)$
[74] T1=time();
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[8.968048,7.705907,1514833,63.359717]
[75] ["CPU",T1[0]-T0[0],"GC",T1[1]-T0[1]];
[CPU,6.577163,GC,7.221549]

References
Section 6.14.6 [cputime tstart tstop], page 93, Section 6.14.8 [currenttime],
page 94.

6.14.6 cputime, tstart, tstop

cputime(onoff )
:: Stop displaying cputime if its argument is 0, otherwise start displaying
cputime after every top level evaluation of Asir command.

tstart() :: Resets and starts timer for CPU time and GC time.

tstop() :: Stops timer and then displays CPU time GC time elapsed from the last time
when timer was started.

return 0

onoff flag (arbitrary)

• Command cputime() with NON-ZERO argument enables Asir to display CPU time
and GC time after every evaluation of top level Asir command. The command with
argument 0 disables displaying them.

• Command tstart() starts measuring CPU time and GC time without arguments. The
parentheses ‘()’ may be omitted.

• Command tstop() stops measuring CPU time and GC time and displays them without
arguments. The parentheses ‘()’ may be omitted.

• Command cputime(onoff ) has same meaning as ctrl("cputime",onoff ).

• Nested use of tstart() and tstop() is not expected. If such an effect is desired, use
time().

• On and off states by cputime() have effects only to displaying mode. Time for eval-
uation of every top level statement is always measured. Therefore, even after a com-
putation has already started, you can let Asir display the timings, whenever you enter
the debug-mode and execute cputime(1).

[49] tstart$
[50] fctr(x^10-y^10);
[[1,1],[x+y,1],[x^4-y*x^3+y^2*x^2-y^3*x+y^4,1],[x-y,1],
[x^4+y*x^3+y^2*x^2+y^3*x+y^4,1]]
[51] tstop$
80msec + gc : 40msec

References
Section 6.14.5 [time], page 92, Section 6.14.8 [currenttime], page 94, Sec-
tion 6.14.1 [ctrl], page 89.
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6.14.7 timer

timer(interval,expr,val)
:: Compute an expression under the interval timer.

return result

interval interval (second)

expr expression to be computed

val a value to be returned when the timer is expired

• timer() computes an expression under the interval timer. If the computation finishes
within the specified interval, it returns the result of the computation. Otherwise it
returns the third argument.

• The third argument should be distinguishable from the result on success.

[0] load("cyclic");
1
[10] timer(10,dp_gr_main(cyclic(7),[c0,c1,c2,c3,c4,c5,c6],1,1,0),0);
interval timer expired (VTALRM)
0
[11]

6.14.8 currenttime

currenttime()
:: Get current time.

return UNIX time.

• See also time(3) in UNIX manuals.

[0] currenttime();
1071639228
[1]

6.14.9 sleep

sleep(interval)
:: Suspend computation for an interval.

return 1

interval interval (micro second)

• See also usleep(3) in UNIX manuals.

[0] sleep(1000);
1
[1]
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6.14.10 heap

heap() :: Heap area size currently in use.

return non-negative integer

• Command heap() returns an integer which is the byte size of current Asir heap area.

Heap is a memory area where various data for expressions and user programs of Asir
and is managed by the garbage collector. While Asir is running, size of the heap is
monotonously non-decreasing against the time elapsed. If it happens to exceed the real
memory size, most (real world) time is consumed for swapping between real memory
and disk memory.

• For a platform with little real memory, it is recommended to set up Asir configuration
tuned for GC functions by -adj option at the activation of Asir. (See Section 2.4
[Command line options], page 5.)
% asir -adj 16
[0] load("fctrdata")$
0
[97] cputime(1)$
0msec
[98] heap();
524288
0msec
[99] fctr(Wang[8])$
3.190sec + gc : 3.420sec
[100] heap();
1118208
0msec
[101] quit;
% asir
[0] load("fctrdata")$
0
[97] cputime(1)$
0msec
[98] heap();
827392
0msec
[99] fctr(Wang[8])$
3.000sec + gc : 1.180sec
[100] heap();
1626112
0msec
[101] quit;

References
Section 2.4 [Command line options], page 5.

6.14.11 version
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version()
:: Version identification number of Asir.

return integer
• Command version() returns the version identification number, an integer of Asir in

use.
[0] version();
991214

6.14.12 shell

shell(command)
:: Execute shell commands described by a string command.

return integer

command string

Execute shell commands described by a string command by a C function system().
This returns the exit status of shell as its return value.
[0] shell("ls");
alg da katsura ralg suit
algt defs.h kimura ratint test
alpi edet kimura3 robot texput.log
asir.o fee mfee sasa wang
asir_symtab gr mksym shira wang_data
base gr.h mp snf1 wt
bgk help msubst solve
chou hom p sp
const ifplot proot strum
cyclic is r sugar
0
[1]

6.14.13 map

map(function,arg0,arg1,...)
:: Applies a function to each member of a list or an array.

return an object of the same type as arg0.

function the name of a function

arg0 list, vector or matrix

arg1 ... arbitrary (the rest of arguments)
• Returns an object of the same type as arg0. Each member of the returned object is

the return value of a function call where the first argument is the member of arg0
corresponding to the member in the returned object and the rest of the argument are
arg1, . . . .

• function is a function name itself without ‘"’.
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• A program variable cannot be used as function.
• If arg0 is neither list nor array this function simply returns the value of

function(arg0,arg1,. . . ).
[82] def afo(X) { return X^3; }
[83] map(afo,[1,2,3]);
[1,8,27]

6.14.14 flist

flist() :: Returns the list of function names currently defined.

return list of character strings
• Returns the list of names of built-in functions and user defined functions currently

defined. The return value is a list of character strings.
• The names of built-in functions are followed by those of user defined functions.

[77] flist();
[defpoly,newalg,mainalg,algtorat,rattoalg,getalg,alg,algv,...]

6.14.15 delete_history

delete_history([index])
:: Deletes the history.

return 0

index Index of history to be deleted.
• Deletes all the histories without an argument.
• Deletes the history with index index if specified.
• A history is an expression which has been obtained by evaluating an input given for a

prompt with an index. It can be taken out by @index, which means that the expression
survives garbage collections.

• A large history may do harm in the subsequent memory management and deleting the
history by delete_history(), after saving it in a file by bsave(), is often effective.
[0] (x+y+z)^100$
[1] @0;
...
[2] delete_history(0);
[3] @0;
0

6.14.16 get_rootdir

get_rootdir()
:: Gets the name of Asir root directory.

return string
• On UNIX it returns the value of an environment variable ASIR_LIBDIR or

‘/usr/local/lib/asir’ if ASIR_LIBDIR is not set.
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• On Windows the name of Asir root directory is returned.
• By using relative path names from the value of this function, one can write programs

which contain file operations independent of the install directory.

6.14.17 getopt

getopt([key])
:: Returns the value of an option.

return object
• When a user defined function is called, the number of arguments must be equal to that

in the declaration of the function. A function with indefinite number of arguments
can be realized by using options (see Section 4.2.12 [option], page 26). The value of a
specified option is retrieved by getopt.

• If getopt() is called with no argument, then it returns a list [[key1,value1],
[key2,value2],...]. In the list, each key is an option which was specified when the
function executing getopt was invoked, and value is the value of the option.

• If an option key is specified upon a function call, getopt return the value of the option.
If such an option is not specified, the it returns an object of VOID type whose object
identifier is -1. By examining the type of the returned value with type(), one knows
whether the option is set or not.

• Options are specified as follows:
xxx(A,B,C,D|x=X,y=Y,z=Z)

That is, the options are specified by a sequence of key=value seperated by ‘,’, after
‘|’.

References
Section 4.2.12 [option], page 26, Section 6.8.1 [type], page 74.

6.14.18 getenv

getenv(name)
:: Returns the value of an environment variable.

return
name string
• Returns the value of an environment variable name.

[0] getenv("HOME");
/home/pcrf/noro
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7 Distributed computation

7.1 OpenXM

On Asir distributed computations are done under OpenXM (Open message eXchange
protocol for Mathematics), which is a protocol for exchanging mainly mathematical objects
between processes. See http://www.math.sci.kobe-u.ac.jp/OpenXM/ for the details of
OpenXM. In OpenXM a distributed computation is done as follows:

1. A client requests something to a server.

2. The server does works according to the request.

3. The client requests to send data to the server.

4. The server sends the data to the client and the client gets the data.

The server is a stack machine. That is data objects sent by the client are pushed to the
stack of the server. If the server gets a command, then the data are popped form the stack
and they are used as arguments of a function call.

In OpenXM, the result of a computation done in the server is simply pushed to the stack
and the data is not written to the communication stream without requests from the client.

OpenXM protocol consists of two components: CMO (Common Mathematical Object
format) which determines a common format of data representations and SM (StackMachine
command) which specifies actions on servers. These are wrapped as OX expressions to
indicate the sort of data when they are sent.

To execute a distributed computation by OpenXM, one has to invoke OpenXM servers
and to establish communications between the client and the servers. ox_launch(), ox_
launch_nox(), ox_launch_generic() are preprared for such purposes. Furthermore the
following functions are available.

ox_push_cmo()
It requests a server to push an object to the stack of a server.

ox_pop_cmo()
It request a server to pop an object from the stack of a server.

ox_cmo_rpc()
It requests to execute a function on a server. The result is pushed to the stack
of the server.

ox_execute_string()
It requests a server to parse and execute a string by the parser and the evaluater
of the server. The result is pushed to the stack of the server.

ox_push_cmd()
It requests a server to execute a command.

ox_get()

It gets an object from a data stream.
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7.2 Mathcap

A server or a client does not necessarily implement full specifications of OpenXM. If a
program sends data unknown to its peer, an unrecoverable error may occur. To avoid such
a case OpenXM provides a scheme not to send data unknown to peers. It is realized by
exchanging the list of supported CMO and SM. The list is called mathcap. Mathcap is also
defined as a CMO and the elements are 32bit integers or strings. The format of mathcap
is as follows.

[[version number, server name],SMtaglist, [[OXtag,CMOtaglist],[OXtag,CMOtaglist],...]]

[OXtag,CMOtaglist] indicates that available object tags for a category of data specified
by OXtag. For example ‘ox_asir’ accepts the local object format used by Asir and the
mathcap from ‘ox_asir’ reflects the fact.

If "ox_check" switch of ctrl is set to 1, the check by a mathcap is done before data is
sent. If "ox_check" switch of ctrl is set to 0, the check is not done. By default it is set to
1.

7.3 Stackmachine commands

The stackmachine commands are provided to request a server to execute various opera-
tions. They are automatically sent by built-in functions of Asir, but one often has to send
them manually. They are represented by 32bit integers. One can send them by calling
ox_push_cmd(). Typical stackmachine commands are as follows. SM xxx=yyy means that
SM xxx is a mnemonic and that yyy is its value.

SM popSerializedLocalObject=258
An object not necessarily defined as CMO is popped from the stack and is sent
to the client. This is available only on ‘ox_asir’.

SM popCMO=262
A CMO object is popped from the stack and is sent to the client.

SM popString=263
An object is popped from the stack and is sent to the client as a readable string.

SM mathcap=264
The server’s mathcap is pushed to the stack.

SM pops=265
Objects are removed from the stack. The number of object to be removed is
specified by the object at the top of the stack.

SM setName=266
A variable name is popped form the stack. Then an object is popped and it is
assigned to the variable. This assignment is done by the local language of the
server.

SM evalName=267
A variable name is popped from the stack. Then the value of the variable is
pushed to the stack.
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SM executeStringByLocalParser=268
A string popped from the stack is parsed and evaluated. The result is pushed
to the stack.

SM executeFunction=269
A function name, the number of arguments and the arguments are popped from
the stack. Then the function is executed and the result is pushed to the stack.

SM beginBlock=270
It indicates the beginning of a block.

SM endBlock=271
It indicates the end of a block.

SM shutdown=272
It shuts down communications and terminates servers.

SM setMathcap=273
It requests a server to register the data at the top of the stack as the client’s
mathcap.

SM getsp=275
The number of objects in the current stack is pushed to the stack.

SM dupErrors=276
The list of all the error objects in the current stack is pushed to the stack.

SM nop=300
Nothing is done.

7.4 Debugging

In general, it is difficult to debug distributed computations. ‘ox_asir’ provides several
functions for debugging.

7.4.1 Error object

When an error has occurred on an OpenXM server, an error object is pushed to the
stack instead of a result of the computation. The error object consists of the serial number
of the SM command which caused the error, and an error message.

[340] ox_launch();
0
[341] ox_rpc(0,"fctr",1.2*x);
0
[342] ox_pop_cmo(0);
error([8,fctrp : invalid argument])

7.4.2 Resetting a server

ox_reset() resets a process whose identifier is number. After its execution the process
is ready for receiving data. This function corresponds to the keyboard interrupt on an usual
Asir session. It often happens that a request of a client does not correspond correctly to the
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result from a server. It is caused by remaining data on data streams. ox_reset is effective
for such cases.

7.4.3 Pop-up command window for debugging

As a server does not have any standard input device such as a keyboard, it is difficult to
debug user programs running on the server. ‘ox_asir’ pops up a small command window
to input debug commands when an error has occurred during user a program execution or
ox_rpc(id,"debug") has been executed. The responses to commands are shown in ‘xterm’
to display standard outputs from the server. To close the small window, input quit.

7.5 Functions for distributed computation

7.5.1 ox_launch, ox_launch_nox, ox_shutdown

ox_launch([host[,dir],command])
ox_launch_nox([host[,dir],command])

:: Initialize OpenXM servers.

ox_shutdown(id)
:: Terminates OpenXM servers.

return integer

host string or 0

dir command
string

id integer

• Function ox_launch() invokes a process to execute command on a host host and
enables Asir to communicate with that process. If the number of arguments is 3,
‘ox_launch’ in dir is invoked on host. Then ‘ox_launch’ invokes command. If host is
equal to 0, all the commands are invoked on the same machine as the Asir is running.
If no arguments are specified, host, dir and command are regarded as 0, the value of
get_rootdir() and ‘ox_asir’ in the same directory respectively.

• If host is equal to 0, then dir can be omitted. In such a case dir is regarded as the
value of get_rootdir().

• If command begins with ‘/’, it is regarded as an absolute pathname. Otherwise it is
regarded as a relative pathname from dir.

• On UNIX, ox_launch() invokes ‘xterm’ to display standard outputs from command.
If X11 is not available or one wants to invoke servers without ‘xterm’, use ox_launch_
nox(), where the outputs of command are redirected to ‘/dev/null’. If the environ-
ment variable DISPLAY is not set, ox_launch() and ox_launch_nox() behave identi-
cally.

• The returned value is used as the identifier for communication.
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• The peers communicating with Asir are not necessarily processes running on the same
machine. The communication will be successful even if the byte order is different from
those of the peer processes, because the byte order for the communication is determined
by a negotiation between a client and a server.

• The following preparations are necessary. Here, Let A be the host on which Asir is
running, and B the host on which the peer process will run.

1. Register the hostname of the host A to the ‘~/.rhosts’ of the host B. That is, you
should be allowed to access the host B from A without supplying a password.

2. For cases where connection to X is also used, let Xserver authorize the relevant
hosts. Adding the hosts can be done by command xhost.

3. If an environment variable ASIR_RSH is set, the content of this variable is used as
a promgram to invoke remote servers instead of rsh. For example,

% setenv ASIR_RSH "ssh -f -X -A "

implies that remote servers are invoked by ‘ssh’ and that X11 forwarding is en-
abled. See the manual of ‘ssh’ for the detail.

4. Some command’s consume much stack space. You are recommended to set the
stack size to about 16MB large in ‘.cshrc’ for safe. To specify the size, put limit
stacksize 16m for an example.

• When command opens a window on X, it uses the string specified for display ; if the
specification is omitted, it uses the value set for the environment variable DISPLAY.

• ox_shutdown() terminates OpenXM servers whose identifier is id.

• When Asir is terminated successfully, all I/O streams are automatically closed, and all
the processes invoked are also terminated. However, some remote processes may not
terminated when Asir is terminated abnormally. If ever Asir is terminated abnormally,
you have to kill all the unterminated process invoked by Asir on every remote host.
Check by ps command on the remote hosts to see if such processed are alive.

• ‘xterm’ for displaying the outputs from command is invoked with ‘-name ox_term’ op-
tion. Thus, by specifying resources for the resource name ‘ox_term’, only the behaviour
of the ‘xterm’ can be customized.

/* iconify on start */
ox_xterm*iconic:on
/* activate the scroll bar */
ox_xterm*scrollBar:on
/* 1000 lines can be shown by the scrollbar */
ox_xterm*saveLines:1000

[219] ox_launch();
0
[220] ox_rpc(0,"fctr",x^10-y^10);
0
[221] ox_pop_local(0);
[[1,1],[x^4+y*x^3+y^2*x^2+y^3*x+y^4,1],
[x^4-y*x^3+y^2*x^2-y^3*x+y^4,1],[x-y,1],[x+y,1]]
[222] ox_shutdown(0);
0
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References
Section 7.5.5 [ox_rpc ox_cmo_rpc ox_execute_string], page 106, Sec-
tion 7.5.8 [ox_pop_cmo ox_pop_local], page 109, Section 7.5.15 [ifplot
conplot plot polarplot plotover], page 113

7.5.2 ox_launch_generic

ox_launch_generic(host,launch,server,use unix,use ssh,use x,conn to serv)
:: Initialize OpenXM servers.

return integer

host string or 0

launcher server
string

use unix use ssh use x conn to serv
integer

• ox_launch_generic() invokes a control process launch and a server process server on
host. The other arguments are switches for protocol family selection, on/off of the X
environment, method of process invocation and selection of connection type.

• If host is equal to 0, processes are invoked on the same machine as the Asir is running.
In this case UNIX internal protocol is always used.

• If use unix is equal to 1, UNIX internal protocol is used. If use unix is equal to 0,
Internet protocol is used.

• If use ssh is equal to 1,‘ssh’ (Secure Shell) is used to invoke processes. If one does
not use ‘ssh-agent’, a password (passphrase) is required. If ‘sshd’ is not running on
the target machine, ‘rsh’ is used instead. But it will immediately fail if a password is
required.

• If use x is equal to 1, it is assumed that X environment is available. In such a case
server is invoked under ‘xterm’ by using the current DISPLAY variable. If DISPLAY is
not set, it is invoked without X. Note that the processes will hang up if DISPLAY is
incorrectly set.

• If conn to serv is equal to 1, Asir (client) executes bind and listen, and the invoked
processes execute connect. If conn to serv is equal to 0, Asir (client) the invoked
processes execute bind and listen, and the client executes connect.
[342] LIB=get_rootdir();
/export/home/noro/ca/Kobe/build/OpenXM/lib/asir
[343] ox_launch_generic(0,LIB+"/ox_launch",LIB+"/ox_asir",0,0,0,0);
1
[344] ox_launch_generic(0,LIB+"/ox_launch",LIB+"/ox_asir",1,0,0,0);
2
[345] ox_launch_generic(0,LIB+"/ox_launch",LIB+"/ox_asir",1,1,0,0);
3
[346] ox_launch_generic(0,LIB+"/ox_launch",LIB+"/ox_asir",1,1,1,0);
4
[347] ox_launch_generic(0,LIB+"/ox_launch",LIB+"/ox_asir",1,1,1,1);
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5
[348] ox_launch_generic(0,LIB+"/ox_launch",LIB+"/ox_asir",1,1,0,1);
6

References
Section 7.5.1 [ox_launch ox_launch_nox ox_shutdown], page 102,
Section 7.5.2 [ox_launch_generic], page 104

7.5.3 generate_port, try_bind_listen, try_connect, try_accept,
register_server

generate_port([use unix])
:: Generates a port number.

try_bind_listen(port)
:: Binds and listens on a port.

try_connect(host,port)
:: Connects to a port.

try_accept(socket,port)
:: Accepts a connection request.

register_server(control socket,control port,server socket,server port)
:: Registers the sockets for which connections are established.

return integer or string for generate_port(), integer for the others

use unix 0 or 1

host string

port control port server port
integer or string

socket control socket server socket
integer

• These functions are primitives to establish communications between a client and servers.
• generate_port() generates a port name for communication. If the argument is not

specified or equal to 0, a port number for Internet domain socket is generated randomly.
Otherwise a file name for UNIX domain (host-internal protocol) is generated. Note that
it is not assured that the generated port is not in use.

• try_bind_listen() creates a socket according to the protocol family indicated by the
given port and executes bind and listen. It returns a socket identifier if it is successful.
-1 indicates an error.

• try_connect() tries to connect to a port port on a host host. It returns a socket
identifier if it is successful. -1 indicates an error.

• try_accept() accepts a connection request to a socket socket. It returns a new socket
identifier if it is successful. -1 indicates an error. In any case socket is automatically
closed. port is specified to distinguish the protocol family of socket.

• register_server() registers a pair of a control socket and a server socket. A process
identifier indicating the pair is returned. The process identifier is used as an argument
of ox functions such as ox_push_cmo().
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• Servers are invoked by using shell(), or manually.
[340] CPort=generate_port();
39896
[341] SPort=generate_port();
37222
[342] CSocket=try_bind_listen(CPort);
3
[343] SSocket=try_bind_listen(SPort);
5

/*
ox_launch is invoked here :
% ox_launch "127.1" 0 39716 37043 ox_asir "shio:0"
*/

[344] CSocket=try_accept(CSocket,CPort);
6
[345] SSocket=try_accept(SSocket,SPort);
3
[346] register_server(CSocket,CPort,SSocket,SPort);
0

References
Section 7.5.1 [ox_launch ox_launch_nox ox_shutdown], page 102, Sec-
tion 7.5.2 [ox_launch_generic], page 104, Section 6.14.12 [shell], page 96,
Section 7.5.7 [ox_push_cmo ox_push_local], page 108

7.5.4 ‘ox_asir’

‘ox_asir’ provides almost all the functionalities of Asir as an OpenXM server. ‘ox_asir’
is invoked by ox_launch or ox_launch_nox. If X environment is not available or is not
necessary, one can use ox_launch_nox.

[5] ox_launch();
0

[5] ox_launch_nox("127.0.0.1","/usr/local/lib/asir",
"/usr/local/lib/asir/ox_asir");
0

[7] RemoteLibDir = "/usr/local/lib/asir/"$
[8] Machines = ["sumire","rokkaku","genkotsu","shinpuku"];
[sumire,rokkaku,genkotsu,shinpuku]
[9] Servers = map(ox_launch,Machines,RemoteLibDir,
RemoteLibDir+"ox_asir");
[0,1,2,3]

References
Section 7.5.1 [ox_launch ox_launch_nox ox_shutdown], page 102

7.5.5 ox_rpc, ox_cmo_rpc, ox_execute_string
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ox_rpc(number,"func",arg0,...)
ox_cmo_rpc(number,"func",arg0,...)
ox_execute_string(number,"command",...)

:: Calls a function on an OpenXM server

return 0

number integer (process identifier)

func function name

command string

arg0 ... arbitrary (arguments)
• Calls a function on an OpenXM server whose identifier is number.
• It returns 0 immediately. It does not wait the termination of the function call.
• ox_rpc() can be used when the server is ‘ox_asir’. Otherwise ox_cmo_rpc() should

be used.
• The result of the function call is put on the stack of the server. It can be received by

ox_pop_local() or ox_pop_cmo().
• If the server is not ‘ox_asir’, only data defined in OpenXM can be sent.
• ox_execute_string requests the server to parse and execute command by the parser

and the evaluater of the server. The result is pushed to the stack.
[234] ox_cmo_rpc(0,"dp_ht",dp_ptod((x+y)^10,[x,y]));
0
[235] ox_pop_cmo(0);
(1)*<<10,0>>
[236] ox_execute_string(0,"12345 % 678;");
0
[237] ox_pop_cmo(0);
141

References
Section 7.5.8 [ox_pop_cmo ox_pop_local], page 109

7.5.6 ox_reset,ox_intr,register_handler

ox_reset(number)
:: Resets an OpenXM server

ox_intr(number)
:: Sends SIGINT to an OpenXM server

register_handler(func)
:: Registers a function callable on a keyboard interrupt.

return 1

number integer(process identifier)

func functor or 0
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• ox_reset() resets a process whose identifier is number. After its execution the process
is ready for receiving data.

• After executing ox_reset(), sending/receiving buffers and stream buffers are assured
to be empty.

• Even if a process is running, the execution is safely stopped.
• ox_reset() may be used prior to a distirbuted computation. It can be also used to

interrupt a distributed computation.
• ox_intr() sends SIGINT to a process whose identifier is number. The action of a server

against SIGINT is not specified in OpenXM. ‘ox_asir’ immediately enters the debug
mode and pops up an window to input debug commands on X window system.

• register_handler() registers a function func(). If u is specified on a keybord inter-
rupt, func() is executed before returning the toplevel. If ox_reset() calls are included
in func(), one can automatically reset OpenXM servers on a keyboard interrupt.

• If func is equal to 0, the setting is reset.
[10] ox_launch();
0
[11] ox_rpc(0,"fctr",x^100-y^100);
0
[12] ox_reset(0); /* usr1 : return to toplevel by SIGUSR1 */
1 /* is displayed on the xterm. */

[340] Procs=[ox_launch(),ox_launch()];
[0,1]
[341] def reset() { extern Procs; map(ox_reset,Procs);}
[342] map(ox_rpc,Procs,"fctr",x^100-y^100);
[0,0]
[343] register_handler(reset);
1
[344] interrupt ?(q/t/c/d/u/w/?) u
Abort this computation? (y or n) y
Calling the registered exception handler...done.
return to toplevel

References
Section 7.5.5 [ox_rpc ox_cmo_rpc ox_execute_string], page 106

7.5.7 ox_push_cmo, ox_push_local

ox_push_cmo(number,obj)
ox_push_local(number,obj)

:: Sends obj to a process whose identifier is number.

return 0

number integer(process identifier)

obj object
• Sends obj to a process whose identifier is number.
• ox_push_cmo is used to send data to an Open XM other than ‘ox_asir’ and ‘ox_plot’.
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• ox_push_local is used to send data to ‘ox_asir’ and ‘ox_plot’.
• The call immediately returns unless the stream buffer is full.

References
Section 7.5.5 [ox_rpc ox_cmo_rpc ox_execute_string], page 106,
Section 7.5.8 [ox_pop_cmo ox_pop_local], page 109

7.5.8 ox_pop_cmo, ox_pop_local

ox_pop_local(number)
:: Receives data from a process whose identifier is number.

return received data

number integer(process identifier)
• Receives data from a process whose identifier is number.
• ox_pop_cmo can be used to receive data form an OpenXM server other than ‘ox_asir’

and ‘ox_plot’.
• ox_pop_local can be used to receive data from ‘ox_asir’, ‘ox_plot’.
• If no data is available, these functions block. To avoid it, send SM_popCMO (262) or

SM_popSerializedLocalObject (258). Then check the process status by ox_select.
Finally call ox_get for a ready process.
[341] ox_cmo_rpc(0,"fctr",x^2-1);
0
[342] ox_pop_cmo(0);
[[1,1],[x-1,1],[x+1,1]]
[343] ox_cmo_rpc(0,"newvect",3);
0
[344] ox_pop_cmo(0);
error([41,cannot convert to CMO object])
[345] ox_pop_local(0);
[ 0 0 0 ]

References
Section 7.5.5 [ox_rpc ox_cmo_rpc ox_execute_string], page 106, Sec-
tion 7.5.9 [ox_push_cmd ox_sync], page 109, Section 7.5.12 [ox_select],
page 111, Section 7.5.10 [ox_get], page 110

7.5.9 ox_push_cmd, ox_sync

ox_push_cmd(number,command)
:: Sends a command command to a process whose identifier is number.

ox_sync(number)
:: Sends OX SYNC BALL to a process whose identifier is number.

return 0

number integer(process identifier)

command integer(command identifier)
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• Sends a command or OX SYNC BALL to a process whose identifier is number.
• Data in OpenXM are categorized into three types: OX DATA, OX COMMAND,

OX SYNC BALL. Usually OX COMMAND and OX SYNC BALL are sent implic-
itly with high level operations, but these functions are prepared to send these data
explicitly.

• OX SYNC BALL is used on the reseting operation by ox_reset. Usually
OX SYNC BALL will be ignored by the peer.
[3] ox_rpc(0,"fctr",x^100-y^100);
0
[4] ox_push_cmd(0,258);
0
[5] ox_select([0]);
[0]
[6] ox_get(0);
[[1,1],[x^2+y^2,1],[x^4-y*x^3+y^2*x^2-y^3*x+y^4,1],...]

References
Section 7.5.5 [ox_rpc ox_cmo_rpc ox_execute_string], page 106,
Section 7.5.6 [ox_reset ox_intr register_handler], page 107

7.5.10 ox_get

ox_get(number)
:: Receives data form a process whose identifer is number.

return

number integer(process identifier)
• Receives data form a process whose identifer is number.
• One may use this function with ox_push_cmd.
• ox_pop_cmo and ox_pop_local is realized as combinations of ox_push_cmd and ox_

get.
[11] ox_push_cmo(0,123);
0
[12] ox_push_cmd(0,262); /* 262=OX_popCMO */
0
[13] ox_get(0);
123

References
Section 7.5.8 [ox_pop_cmo ox_pop_local], page 109, Section 7.5.9 [ox_push_
cmd ox_sync], page 109

7.5.11 ox_pops

ox_pops(number[,nitem])
:: Removes data form the stack of a process whose identifier is number.

return 0
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number integer(process identifier)

nitem non-negative integer
• Removes data form the stack of a process whose identifier is number. If nitem is

specified, nitem items are removed. If nitem is not specified, 1 item is removed.
[69] for(I=1;I<=10;I++)ox_push_cmo(0,I);
[70] ox_pops(0,4);
0
[71] ox_pop_cmo(0);
6

References
Section 7.5.8 [ox_pop_cmo ox_pop_local], page 109

7.5.12 ox_select

ox_select(nlist[,timeout])
:: Returns the list of process identifiers on which data is available.

return list

nlist list of integers (process identifier)

timeout number
• Returns the list of process identifiers on which data is available.
• If all the processes in nlist are running, it blocks until one of the processes returns data.

If timeout is specified, it waits for only timeout seconds.
• By sending SM_popCMO or SM_popSerializedLocalObject with ox_push_cmd() in ad-

vance and by examining the process status with ox_select(), one can avoid a hanging
up caused by ox_pop_local() or ox_pop_cmo(). In such a case, data can be received
by ox_get().
ox_launch();
0
[220] ox_launch();
1
[221] ox_launch();
2
[222] ox_rpc(2,"fctr",x^500-y^500);
0
[223] ox_rpc(1,"fctr",x^100-y^100);
0
[224] ox_rpc(0,"fctr",x^10-y^10);
0
[225] P=[0,1,2];
[0,1,2]
[226] map(ox_push_cmd,P,258);
[0,0,0]
[227] ox_select(P);
[0]
[228] ox_get(0);
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[[1,1],[x^4+y*x^3+y^2*x^2+y^3*x+y^4,1],
[x^4-y*x^3+y^2*x^2-y^3*x+y^4,1],[x-y,1],[x+y,1]]

References
Section 7.5.8 [ox_pop_cmo ox_pop_local], page 109, Section 7.5.9 [ox_push_
cmd ox_sync], page 109, Section 7.5.10 [ox_get], page 110

7.5.13 ox_flush

ox_flush(id)
:: Flushes the sending buffer.

return 1

id process identifier
• By default the batch mode is off and the sending buffer is flushed at every sending

operation of data and command.
• The batch mode is set by "ox_batch" switch of "ctrl".
• If one wants to send many pieces of small data, ctrl("ox_batch",1) may decrease

the overhead of flush operations. Of course, one has to call ox_flush(id) at the end
of the sending operations.

• Functions such as ox_pop_cmo and ox_pop_local enter a waiting mode immediately
after sending a command. These functions always flush the sending buffer.
[340] ox_launch_nox();
0
[341] cputime(1);
0
7e-05sec + gc : 4.8e-05sec(0.000119sec)
[342] for(I=0;I<10000;I++)ox_push_cmo(0,I);
0.232sec + gc : 0.006821sec(0.6878sec)
[343] ctrl("ox_batch",1);
1
4.5e-05sec(3.302e-05sec)
[344] for(I=0;I<10000;I++)ox_push_cmo(0,I); ox_flush(0);
0.08063sec + gc : 0.06388sec(0.4408sec)
[345] 1
9.6e-05sec(0.01317sec)

References
Section 7.5.8 [ox_pop_cmo ox_pop_local], page 109, Section 6.14.1 [ctrl],
page 89

7.5.14 ox_get_serverinfo

ox_get_serverinfo([id])
:: Gets server’s mathcap and proess id.

return list

id process identifier
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• If id is specified, the mathcap of the process whose identifier is id is returned.
• If id is not specified, the list of [id,Mathcap] is returned, where id is the identifier of

a currently active process, and Mathcap is the mathcap of the process. identifier id is
returned.
[343] ox_get_serverinfo(0);
[[199909080,Ox_system=ox_sm1.plain,Version=2.991118,HOSTTYPE=FreeBSD],
[262,263,264,265,266,268,269,272,273,275,276],
[[514],[2130706434,1,2,4,5,17,19,20,22,23,24,25,26,30,31,60,61,27,
33,40,16,34]]]
[344] ox_get_serverinfo();
[[0,[[199909080,Ox_system=ox_sm1.plain,Version=2.991118,
HOSTTYPE=FreeBSD],
[262,263,264,265,266,268,269,272,273,275,276],
[[514],[2130706434,1,2,4,5,17,19,20,22,23,24,25,26,30,31,60,61,27,33,
40,16,34]]]],
[1,[[199901160,ox_asir],
[276,275,258,262,263,266,267,268,274,269,272,265,264,273,300,270,271],
[[514,2144202544],
[1,2,3,4,5,2130706433,2130706434,17,19,20,21,22,24,25,26,31,27,33,60],
[0,1]]]]]

References
Section 7.2 [Mathcap], page 100.

7.5.15 ifplot, conplot, plot, polarplot, plotover

ifplot(func [,geometry] [,xrange] [,yrange] [,id] [,name])
:: Displays real zeros of a bi-variate function.

conplot(func [,geometry] [,xrange] [,yrange] [,zrange] [,id] [,name])
:: Displays real contour lines of a bi-variate function.

plot(func [,geometry] [,xrange] [,id] [,name])
:: Displays the graph of a univariate function.

polarplot(func [,geometry] [,thetarange] [,id] [,name])
:: Displays the graph of a curve given in polar form.

plotover(func,id,number)
Plots on the existing window real zeros of a bivariate function.

return integer

func polynomial

geometry xrange yrange zrange
list

id number integer

name string
• Function ifplot() draws a graph of real zeros of a bi-variate function. Function

conplot() plots the contour lines for a same argument. Function plot() draws the
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graph of a uninivariate function. Function polarplot() draws the graph of a curve
given in polar form r=f (theta).

• The plotting functions are realized by an OpenXM server. On UNIX it is ‘ox_plot’
in Asir root directory. On Windows ‘engine’ acts as ‘ox_plot’. Of course, it must be
activated by ox_launch() ox_launch_nox(). If the identifier of an active ‘ox_plot’
is specified as id, the server is used for drawing pictures. If id is not specified, an
available ‘ox_plot’ server is used if it exists. If no ‘ox_plot’ server is available, then
ox_launch_nox() is automatically executed to invoke ‘ox_plot’.

• Argument func is indispensable. Other arguments are optional. The format of optional
arguments and their default values (parenthesized) are listed below.

geometry Window size is specified by [x,y ] in unit ‘dot.’ [300,300] for UNIX version;

xrange yrange
Value ranges of the variables are specified by [v,vmin,vmax]. ([v,-2,2] for
each variable.) If this specification is omitted, the indeterminate having
the higher order in func is taken for ‘x’ and the one with lower order is
taken for ‘y’. To change this selection, specify explicitly by xrange and/or
yrange. For an uni-variate function, the specification is mandatory.

zrange This specification applies only to conplot(). The format is [v,vmin,vmax
[,step ]]. If step is specified, the height difference of contours is set to
(vmax-vmin)/step. ([z,-2,2,16].)

id This specifies the number of the remote process by which you wish to draw
a graph. (The number for the newest active process.)

name The name of the window. (Plot.) The created window is titled name:n/m
which means the m-th window of the process with process number n. These
numbers are used for plotover().

• The maximum number of the windows that can be created on a process is 128.
• Function plotover() superposes reals zeros of its argument bi-variate function onto

the specified window.
• Enlarged plot can be obtained for rectangular area which is specified, on an already

existing window with a graph, by dragging cursor with the left button of mouse from
the upper-left corner to lower-right corner and then releasing it. Then, a new window
is created whose shape is similar to the specified area and whose size is determined so
that the largest side of the new window has the same size of the largest side of the
original window. If you wish to cancel the action, drag the cursor to any point above
or left of the starting point.
This facility is effective when precise button switch is inactive. If precise is selected
and active, the area specified by the cursor dragging will be rewritten on the same
window. This will be explained later.

• A click of the right button will display the current coordinates of the cursor at the
bottom area of the window.

• Place the cursor at any point in the right marker area on a window created by
conplot(), and drag the cursor with the middle mutton. Then you will find the
contour lines changing their colors depending on the movement of the cursor and the
corresponding height level displayed on the upper right corner of the window.
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• Several operations are available on the window: by button operations for UNIX version,
and pull-down menus for Windows version.

quit Destroys (kills) the window. While computing, quit the current computa-
tion. If one wants to interrupt the computation, use ox_reset().

wide (toggle)
Will display, on the same window, a new area enlarged by 10 times as
large as the current area for both width-direction and height-direction.
The current area will be indicated by a rectangle placed at the center.
Area specification by dragging the cursor will create a new window with a
plot of the graph in the specified area.

precise (toggle)
When selected and active, ox_plot redraws the specified area more pre-
cisely by integer arithmetic. This mode uses bisection method based on
Sturm sequence computation to locate real zeros precisely. More precise
plotting can be expected by this technique than by the default plotting
technique, at the expense of significant increase of computing time. As
you see by above explanation, this function is only effective to polynomials
with rational coefficients. (Check how they differ for (x^2+y^2-1)^2.)

formula Displays the expression for the graph.

noaxis (toggle)
Erase the coordinates.

• Program ‘ox_plot’ may consume much stack space depending on which machine it is
running. You are recommended to set the stack size to about 16MB as large in ‘.cshrc’
for safe. To specify the size, put limit stacksize 16m for an example.

• You can customize various resources of a window on X, e.g., coloring, shape of buttons
etc. The default setting of resources is shown below. For plot*form*shapeStyle you
can select among rectangle, oval, ellipse, and roundedRectangle.

plot*background:white
plot*form*shapeStyle:rectangle
plot*form*background:white
plot*form*quit*background:white
plot*form*wide*background:white
plot*form*precise*background:white
plot*form*formula*background:white
plot*form*noaxis*background:white
plot*form*xcoord*background:white
plot*form*ycoord*background:white
plot*form*level*background:white
plot*form*xdone*background:white
plot*form*ydone*background:white

References
Section 7.5.1 [ox_launch ox_launch_nox ox_shutdown], page 102,
Section 7.5.6 [ox_reset ox_intr register_handler], page 107
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7.5.16 open_canvas, clear_canvas, draw_obj, draw_string

open_canvas(id[,geometry])
:: Opens a canvas, which is a window for drawing objects.

clear_canvas(id,index)
:: Clears a canvas.

draw_obj(id,index,pointorsegment [,color])
:: Draws a point or a line segment on a canvas.

draw_string(id,index,[x,y],string [,color])
:: Draws a character string on a canvas.

return 0

id index color x y
integer

pointorsegment
list

string character string
• These functions are supplied by the OpenXM server ‘ox_plot’ (‘engine’ on Windows).
• open_canvas opens a canvas, which is a window for drawing objecgts. One can specifies

the size of a canvas in pixel by supplying geometry option [x,y ]. The default size is
[300,300]. This function pushes an integer value onto the stack of the OpenXM server.
The value is used to distiguish the opened canvas and one has to pop and maintain the
value by ox_pop_cmo for subsequent calls of draw_obj.

• clear_canvas clears a canvas specified by a server id id and a canvas id index.
• draw_obj draws a point or a line segment on a canvas specified by a server id id and a

canvas id index. If pointorsegment is [x,y ], it is regarded as a point. If pointorsegment
is [x,y,u,v ], it is regarded as a line segment which connects [x,y ] and [u,v ]. If color is
specified, color/65536 mod 256, color/256 mod 256, color mod 256 are regarded as the
vaules of Red, Green, Blue (Max. 255) respectively.

• draw_string draws a character string string on a canvas specified by a server id id
and a canvas id index. The position of the string is specified by [x,y ].
[182] Id=ox_launch_nox(0,"ox_plot");
0
[183] open_canvas(Id);
0
[184] Ind=ox_pop_cmo(Id);
0
[185] draw_obj(Id,Ind,[100,100]);
0
[186] draw_obj(Id,Ind,[200,200],0xffff);
0
[187] draw_obj(Id,Ind,[10,10,50,50],0xff00ff);
0
[187] draw_string(Id,Ind,[100,50],"hello",0xffff00);
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0
[189] clear_canvas(Id,Ind);
0

References
Section 7.5.1 [ox_launch ox_launch_nox ox_shutdown], page 102, Sec-
tion 7.5.6 [ox_reset ox_intr register_handler], page 107, Section 7.5.8
[ox_pop_cmo ox_pop_local], page 109.
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8 Groebner basis computation

8.1 Distributed polynomial

A distributed polynomial is a polynomial with a special internal representation different
from the ordinary one.

An ordinary polynomial (having type 2) is internally represented in a format, called
recursive representation. In fact, it is represented as an uni-variate polynomial with respect
to a fixed variable, called main variable of that polynomial, where the other variables
appear in the coefficients which may again polynomials in such variables other than the
previous main variable. A polynomial in the coefficients is again represented as an uni-
variate polynomial in a certain fixed variable, the main variable. Thus, by this recursive
structure of polynomial representation, it is called the ‘recursive representation.’

(x + y + z)2 = 1 · x2 + (2 · y + (2 · z)) · x + ((2 · z) · y + (1 · z2))

On the other hand, we call a representation the distributed representation of a polynomial,
if a polynomial is represented, according to its original meaning, as a sum of monomials,
where a monomial is the product of power product of variables and a coefficient. We call a
polynomial, represented in such an internal format, a distributed polynomial. (This naming
may sounds something strange.)

(x + y + z)2 = 1 · x2 + 2 · xy + 2 · xz + 1 · y2 + 2 · yz + 1 · z2

For computation of Groebner basis, efficient operation is expected if polynomials are rep-
resented in a distributed representation, because major operations for Groebner basis are
performed with respect to monomials. From this view point, we provide the object type
distributed polynomial with its object identification number 9, and objects having such a
type are available by Asir language.

Here, we provide several definitions for the later description.

term The power product of variables, i.e., a monomial with coefficient 1. In an Asir
session, it is displayed in the form like

<<0,1,2,3,4>>

and also can be input in such a form. This example shows a term in 5 vari-
ables. If we assume the 5 variables as a, b, c, d, and e, the term represents
b*c^2*d^3*e^4 in the ordinary expression.

term order
Terms are ordered according to a total order with the following properties.
1. For all t t > 1.
2. For all t, s, u t > s implies tu > su.

Such a total order is called a term ordering. A term ordering is specified by a
variable ordering (a list of variables) and a type of term ordering (an integer, a
list or a matrix).

monomial The product of a term and a coefficient. In an Asir session, it is displayed in
the form like
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2*<<0,1,2,3,4>>

and also can be input in such a form.
head monomial

head term
head coefficient

Monomials in a distributed polynomial is sorted by a total order. In such
representation, we call the monomial that is maximum with respect to the
order the head monomial, and its term and coefficient the head term and the
head coefficient respectively.

8.2 Reading files

Facilities for computing Groebner bases are dp_gr_main(), dp_gr_mod_main()and dp_gr_
f_main(). To call these functions, it is necessary to set several parameters correctly and it
is convenient to use a set of interface functions provided in the library file ‘gr’. The facilities
will be ready to use after you load the package by load(). The package ‘gr’ is placed in
the standard library directory of Asir.

[0] load("gr")$

8.3 Fundamental functions

There are many functions and options defined in the package ‘gr’. Usually not so many of
them are used. Top level functions for Groebner basis computation are the following three
functions.

In the following description, plist, vlist, order and p stand for a list of polynomials,
a list of variables (indeterminates), a type of term ordering and a prime less than 2^27
respectively.

gr(plist,vlist,order)
Function that computes Groebner bases over the rationals. The algorithm is
Buchberger algorithm with useless pair elimination criteria by Gebauer-Moeller,
sugar strategy and trace-lifting by Traverso. For ordinary computation, this
function is used.

hgr(plist,vlist,order)
After homogenizing the input polynomials a candidate of the \gr basis is com-
puted by trace-lifting. Then the candidate is dehomogenized and checked
whether it is indeed a Groebner basis of the input. Sugar strategy often causes
intermediate coefficient swells. It is empirically known that the combination of
homogenization and supresses the swells for such cases.

gr_mod(plist,vlist,order,p)
Function that computes Groebner bases over GF(p). The same algorithm as
gr() is used.
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8.4 Controlling Groebner basis computations

One can cotrol a Groebner basis computation by setting various parameters. These param-
eters can be set and examined by a built-in function dp_gr_flags(). Without argument it
returns the current settings.

[100] dp_gr_flags();
[Demand,0,NoSugar,0,NoCriB,0,NoGC,0,NoMC,0,NoRA,0,NoGCD,0,Top,0,
ShowMag,1,Print,1,Stat,0,Reverse,0,InterReduce,0,Multiple,0]
[101]

The return value is a list which contains the names of parameters and their values. The
meaning of the parameters are as follows. ‘on’ means that the parameter is not zero.

NoSugar If ‘on’, Buchberger’s normal strategy is used instead of sugar strategy.

NoCriB If ‘on’, criterion B among the Gebauer-Moeller’s criteria is not applied.

NoGC If ‘on’, the check that a Groebner basis candidate is indeed a Groebner basis,
is not executed.

NoMC If ‘on’, the check that the resulting polynomials generates the same ideal as the
ideal generated by the input, is not executed.

NoRA If ‘on’, the interreduction, which makes the Groebner basis reduced, is not
executed.

NoGCD If ‘on’, content removals are not executed during a Groebner basis computation
over a rational function field.

Top If ‘on’, Only the head term of the polynomial being reduced is reduced.

Reverse If ‘on’, the selection strategy of reducer in a normal form computation is such
that a newer reducer is used first.

Print If ‘on’, various informations during a Groebner basis computation is displayed.

PrintShort
If ‘on’ and Print is ‘off’, short information during a Groebner basis computation
is displayed.

Stat If ‘on’, a summary of informations is shown after a Groebner basis computation.
Note that the summary is always shown if Print is ‘on’.

ShowMag If ‘on’ and Print is ‘on’, the sum of bit length of coefficients of a generated basis
element, which we call magnitude, is shown after every normal computation.
After comleting the computation the maximal value among the sums is shown.

Content
Multiple If a non-zero rational number, in a normal form computation over the ratio-

nals, the integer content of the polynomial being reduced is removed when its
magnitude becomes Content times larger than a registered value, which is set
to the magnitude of the input polynomial. After each content removal the reg-
istered value is set to the magnitude of the resulting polynomial. Content is
equal to 1, the simiplification is done after every normal form computation. It
is empirically known that it is often efficient to set Content to 2 for the case
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where large integers appear during the computation. An integer value can be
set by the keyword Multiple for backward compatibility.

Demand

If the value (a character string) is a valid directory name, then generated basis
elements are put in the directory and are loaded on demand during normal
form computations. Each elements is saved in the binary form and its name
coincides with the index internally used in the computation. These binary files
are not removed automatically and one should remove them by hand.

If Print is ‘on’, the following informations are shown.
[93] gr(cyclic(4),[c0,c1,c2,c3],0)$
mod= 99999989, eval = []
(0)(0)<<0,2,0,0>>(2,3),nb=2,nab=5,rp=2,sugar=2,mag=4
(0)(0)<<0,1,2,0>>(1,2),nb=3,nab=6,rp=2,sugar=3,mag=4
(0)(0)<<0,1,1,2>>(0,1),nb=4,nab=7,rp=3,sugar=4,mag=6
.
(0)(0)<<0,0,3,2>>(5,6),nb=5,nab=8,rp=2,sugar=5,mag=4
(0)(0)<<0,1,0,4>>(4,6),nb=6,nab=9,rp=3,sugar=5,mag=4
(0)(0)<<0,0,2,4>>(6,8),nb=7,nab=10,rp=4,sugar=6,mag=6
....gb done
reduceall
.......
membercheck
(0,0)(0,0)(0,0)(0,0)
gbcheck total 8 pairs
........
UP=(0,0)SP=(0,0)SPM=(0,0)NF=(0,0)NFM=(0.010002,0)ZNFM=(0.010002,0)
PZ=(0,0)NP=(0,0)MP=(0,0)RA=(0,0)MC=(0,0)GC=(0,0)T=40,B=0 M=8 F=6
D=12 ZR=5 NZR=6 Max_mag=6
[94]

In this example mod and eval indicate moduli used in trace-lifting. mod is a prime and eval
is a list of integers used for evaluation when the ground field is a field of rational functions.

The following information is shown after every normal form computation.
(TNF)(TCONT)HT(INDEX),nb=NB,nab=NAB,rp=RP,sugar=S,mag=M

Meaning of each component is as follows.

TNF

CPU time for normal form computation (second)

TCONT

CPU time for content removal(second)

HT

Head term of the generated basis element

INDEX

Pair of indices which corresponds to the reduced S-polynomial
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NB

Number of basis elements after removing redundancy

NAB

Number of all the basis elements

RP

Number of remaining pairs

S

Sugar of the generated basis element

M

Magnitude of the genrated basis element (shown if ShowMag is ‘on’.)

The summary of the informations shown after a Groebner basis computation is as follows.
If a component shows timings and it contains two numbers, they are a pair of time for
computation and time for garbage colection.

UP

Time to manipulate the list of critical pairs

SP

Time to compute S-polynomials over the rationals

SPM

Time to compute S-polynomials over a finite field

NF

Time to compute normal forms over the rationals

NFM

Time to compute normal forms over a finite field

ZNFM

Time for zero reductions in NFM

PZ

Time to remove integer contets

NP

Time to compute remainders for coefficients of polynomials with coeffieints in
the rationals

MP

Time to select pairs from which S-polynomials are computed

RA

Time to interreduce the Groebner basis candidate

MC

Time to check that each input polynomial is a member of the ideal generated
by the Groebner basis candidate.
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GC

Time to check that the Groebner basis candidate is a Groebner basis

T

Number of critical pairs generated

B, M, F, D
Number of critical pairs removed by using each criterion

ZR

Number of S-polynomials reduced to 0

NZR

Number of S-polynomials reduced to non-zero results

Max_mag

Maximal magnitude among all the generated polynomials

8.5 Setting term orderings

A term is internally represented as an integer vector whose components are exponents with
respect to variables. A variable list specifies the correspondences between variables and
components. A type of term ordering specifies a total order for integer vectors. A type of
term ordering is represented by an integer, a list of integer or matrices.
There are following three fundamental types.

0 (DegRevLex; total degree reverse lexicographic ordering)
In general, computation by this ordering shows the fastest speed in most Groeb-
ner basis computations. However, for the purpose to solve polynomial equa-
tions, this type of ordering is, in general, not so suitable. The Groebner bases
obtained by this ordering is used for computing the number of solutions, solv-
ing ideal membership problem and seeds for conversion to other Groebner bases
under different ordering.

1 (DegLex; total degree lexicographic ordering)
By this type term ordering, Groebner bases are obtained fairly faster than
Lex (lexicographic) ordering, too. Alike the DegRevLex ordering, the result, in
general, cannot directly be used for solving polynomial equations. It is used,
however, in such a way that a Groebner basis is computed in this ordering after
homogenization to obtain the final lexicographic Groebner basis.

2 (Lex; lexicographic ordering)
Groebner bases computed by this ordering give the most convenient Groebner
bases for solving the polynomial equations. The only and serious shortcoming
is the enormously long computation time. It is often observed that the number
coefficients of the result becomes very very long integers, especially if the ideal
is 0-dimensional. For such a case, it is empirically true for many cases that i.e.,
computation by gr() and/or hgr() may be quite effective.

By combining these fundamental orderingl into a list, one can make various term ordering
called elimination orderings.
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[[O1,L1],[O2,L2],...]

In this example Oi indicates 0, 1 or 2 and Li indicates the number of variables subject to
the correspoinding orderings. This specification means the following.

The variable list is separated into sub lists from left to right where the i-th list contains
Li members and it corresponds to the ordering of type Oi. The result of a comparison is
equal to that for the leftmost different sub components. This type of ordering is called an
elimination ordering.
Furthermore one can specify a term ordering by a matix. Suppose that a real n, m matrix
M has the following properties.
1. For all integer verctors v of length m Mv=0 is equivalent to v=0.
2. For all non-negative integer vectors v the first non-zero component of Mv is non-negative.

Then we can define a term ordering such that, for two vectors t, s, t>s means that the first
non-zero component of M(t-s) is non-negative.
Types of term orderings are used as arguments of functions such as gr(). It is also set
internally by dp_ord() and is used during executions of various functions.
For concrete definitions of term ordering and more information about Groebner basis, refer
to, for example, the book [Becker,Weispfenning].
Note that the variable ordering have strong effects on the computation time as well as the
choice of types of term orderings.

[90] B=[x^10-t,x^8-z,x^31-x^6-x-y]$
[91] gr(B,[x,y,z,t],2);
[x^2-2*y^7+(-41*t^2-13*t-1)*y^2+(2*t^17-12*t^14+42*t^12+30*t^11-168*t^9
-40*t^8+70*t^7+252*t^6+30*t^5-140*t^4-168*t^3+2*t^2-12*t+16)*z^2*y
+(-12*t^16+72*t^13-28*t^11-180*t^10+112*t^8+240*t^7+28*t^6-127*t^5
-167*t^4-55*t^3+30*t^2+58*t-15)*z^4,
(y+t^2*z^2)*x+y^7+(20*t^2+6*t+1)*y^2+(-t^17+6*t^14-21*t^12-15*t^11
+84*t^9+20*t^8-35*t^7-126*t^6-15*t^5+70*t^4+84*t^3-t^2+5*t-9)*z^2*y
+(6*t^16-36*t^13+14*t^11+90*t^10-56*t^8-120*t^7-14*t^6+64*t^5+84*t^4
+27*t^3-16*t^2-30*t+7)*z^4,
(t^3-1)*x-y^6+(-6*t^13+24*t^10-20*t^8-36*t^7+40*t^5+24*t^4-6*t^3-20*t^2
-6*t-1)*y+(t^17-6*t^14+9*t^12+15*t^11-36*t^9-20*t^8-5*t^7+54*t^6+15*t^5
+10*t^4-36*t^3-11*t^2-5*t+9)*z^2,
-y^8-8*t*y^3+16*z^2*y^2+(-8*t^16+48*t^13-56*t^11-120*t^10+224*t^8+160*t^7
-56*t^6-336*t^5-112*t^4+112*t^3+224*t^2+24*t-56)*z^4*y+(t^24-8*t^21
+20*t^19+28*t^18-120*t^16-56*t^15+14*t^14+300*t^13+70*t^12-56*t^11
-400*t^10-84*t^9+84*t^8+268*t^7+84*t^6-56*t^5-63*t^4-36*t^3+46*t^2
-12*t+1)*z,2*t*y^5+z*y^2+(-2*t^11+8*t^8-20*t^6-12*t^5+40*t^3+8*t^2
-10*t-20)*z^3*y+8*t^14-32*t^11+48*t^8-t^7-32*t^5-6*t^4+9*t^2-t,
-z*y^3+(t^7-2*t^4+3*t^2+t)*y+(-2*t^6+4*t^3+2*t-2)*z^2,
2*t^2*y^3+z^2*y^2+(-2*t^5+4*t^2-6)*z^4*y
+(4*t^8-t^7-8*t^5+2*t^4-4*t^3+5*t^2-t)*z,
z^3*y^2+2*t^3*y+(-t^7+2*t^4+t^2-t)*z^2,
-t*z*y^2-2*z^3*y+t^8-2*t^5-t^3+t^2,
-t^3*y^2-2*t^2*z^2*y+(t^6-2*t^3-t+1)*z^4,z^5-t^4]
[93] gr(B,[t,z,y,x],2);
[x^10-t,x^8-z,x^31-x^6-x-y]
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As you see in the above example, the Groebner base under variable ordering [x,y,z,t] has
a lot of bases and each base itself is large. Under variable ordering [t,z,y,x], however, B
itself is already the Groebner basis. Roughly speaking, to obtain a Groebner base under
the lexicographic ordering is to express the variables on the left (having higher order) in
terms of variables on the right (having lower order). In the example, variables t, z, and
y are already expressed by variable x, and the above explanation justifies such a drastic
experimental results. In practice, however, optimum ordering for variables may not known
beforehand, and some heuristic trial may be inevitable.

8.6 Weight

Term orderings introduced in the previous section can be generalized by setting a weight
for each variable.

[0] dp_td(<<1,1,1>>);
3
[1] dp_set_weight([1,2,3])$
[2] dp_td(<<1,1,1>>);
6

By default, the total degree of a monomial is equal to the sum of all exponents. This
means that the weight for each variable is set to 1. In this example, the weights for the
first, the second and the third variable are set to 1, 2 and 3 respectively. Therefore the
total degree of <<1,1,1>> under this weight, which is called the weight of the monomial,
is 1*1+1*2+1*3=6. By setting weights, different term orderings can be set under a type of
term ordeing. In some case a polynomial can be made weighted homogeneous by setting an
appropriate weight.

A list of weights for all variables is called a weight vector. A weight vector is called a
sugar weight vector if its elements are all positive and it is used for computing a weighted
total degree of a monomial, because such a weight is used instead of total degree in sugar
strategy. On the other hand, a weight vector whose elements are not necessarily positive
cannot be set as a sugar weight, but it is useful for generalizing term order. In fact, such a
weight vector already appeared in a matrix order. That is, each row of a matrix defining a
term order is regarded as a weight vector. A block order is also considered as a refinement
of comparison by weight vectors. It compares two terms by using a weight vector whose
elements corresponding to variables in a block is 1 and 0 otherwise, then it applies a tie
breaker.

A weight vector can be set by using dp_set_weight(). However it is more preferable if
a weight vector can be set together with other parapmeters such as a type of term ordering
and a variable order. This is realized as follows.

[64] B=[x+y+z-6,x*y+y*z+z*x-11,x*y*z-6]$
[65] dp_gr_main(B|v=[x,y,z],sugarweight=[3,2,1],order=0);
[z^3-6*z^2+11*z-6,x+y+z-6,-y^2+(-z+6)*y-z^2+6*z-11]
[66] dp_gr_main(B|v=[y,z,x],order=[[1,1,0],[0,1,0],[0,0,1]]);
[x^3-6*x^2+11*x-6,x+y+z-6,-x^2+(-y+6)*x-y^2+6*y-11]
[67] dp_gr_main(B|v=[y,z,x],order=[[x,1,y,2,z,3]]);
[x+y+z-6,x^3-6*x^2+11*x-6,-x^2+(-y+6)*x-y^2+6*y-11]
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In each example, a term ordering is specified as options. In the first example, a vari-
able order, a sugar weight vector and a type of term ordering are specified by options v,
sugarweight and order respectively. In the second example, an option order is used to
set a matrix ordering. That is, the specified weight vectors are used from left to right for
comparing terms. The third example shows a variant of specifying a weight vector, where
each component of a weight vector is specified variable by variable, and unspecified compo-
nents are set to zero. In this example, a term order is not determined only by the specified
weight vector. In such a case a tie breaker by the graded reverse lexicographic ordering is
set automatically. This type of a term ordering specification can be applied only to builtin
functions such as dp_gr_main(), dp_gr_mod_main(), not to user defined functions such as
gr().

8.7 Groebner basis computation with rational function
coefficients

Such variables that appear within the input polynomials but not appearing in the input vari-
able list are automatically treated as elements in the coefficient field by top level functions,
such as gr().

[64] gr([a*x+b*y-c,d*x+e*y-f],[x,y],2);
[(-e*a+d*b)*x-f*b+e*c,(-e*a+d*b)*y+f*a-d*c]

In this example, variables a, b, c, and d are treated as elements in the coefficient field. In
this case, a Groebner basis is computed on a bi-variate polynomial ring F[x,y] over rational
function field F = Q(a,b,c,d). Notice that coefficients are considered as a member in a field.
As a consequence, polynomial factors common to the coefficients are removed so that the
result, in general, is different from the result that would be obtained when the problem is
considered as a computation of Groebner basis over a polynomial ring with rational function
coefficients. And note that coefficients of a distributed polynomial are limited to numbers
and polynomials because of efficiency.

8.8 Change of orderng

When we compute a lex order Groebner basis, it is often efficient to compute it via Groebner
basis with respect to another order such as degree reverse lex order, rather than to compute
it directory by gr() etc. If we know that an input is a Groebner basis with respect to
an order, we can apply special methods called change of ordering for a Groebner basis
computation with respect to another order, without using Buchberger algorithm. The
following two functions are ones for change of ordering such that they convert a Groebner
basis gbase with respect to the variable order vlist1 and the order type order into a lex
Groebner basis with respect to the variable order vlist2.

tolex(gbase,vlist1,order,vlist2)
This function can be used only when gbase is an ideal over the rationals. The
input gbase must be a Groebner basis with respect to the variable order vlist1
and the order type order. Moreover the ideal generated by gbase must be
zero-dimensional. This computes the lex Groebner basis of gbase by using the
modular change of ordering algorithm. The algorithm first computes the lex
Groebner basis over a finite field. Then each element in the lex Groebner basis
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over the rationals is computed with undetermined coefficient method and linear
equation solving by Hensel lifting.

tolex_tl(gbase,vlist1,order,vlist2,homo)
This function computes the lex Groebner basis of gbase. The input gbase must
be a Groebner basis with respect to the variable order vlist1 and the order
type order. Buchberger algorithm with trace lifting is used to compute the lex
Groebner basis, however the Groebner basis check and the ideal membership
check can be omitted by using several properties derived from the fact that
the input is a Groebner basis. So it is more efficient than simple repetition of
Buchberger algorithm. If the input is zero-dimensional, this function inserts
automatically a computation of Groebner basis with respect to an elimination
order, which makes the whole computation more efficient for many cases. If
homo is not equal to 0, homogenization is used in each step.

For zero-dimensional systems, there are several fuctions to compute the minimal polynomial
of a polynomial and or a more compact representation for zeros of the system. They are all
defined in ‘gr’. Refer to the sections for each functions.

8.9 Weyl algebra

So far we have explained Groebner basis computation in commutative polynomial rings.
However Groebner basis can be considered in more general non-commutative rings. Weyl
algebra is one of such rings and Risa/Asir implements fundamental operations in Weyl
algebra and Groebner basis computation in Weyl algebra.

The n dimensional Weyl algebra over a field K, D=K<x1,...,xn,D1,...,Dn> is a non-
commutative algebra which has the following fundamental relations:

xi*xj-xj*xi=0, Di*Dj-Dj*Di=0, Di*xj-xj*Di=0 (i!=j), Di*xi-xi*Di=1
D is the ring of differential operators whose coefficients are polynomials in K[x1,...,xn]

and Di denotes the differentiation with respect to xi. According to the commutation
relation, elements of D can be represented as a K-linear combination of monomials
x1^i1*...*xn^in*D1^j1*...*Dn^jn. In Risa/Asir, this type of monomial is represented
by <<i1,...,in,j1,...,jn>> as in the case of commutative polynomial. That is,
elements of D are represented by distributed polynomials. Addition and subtraction can
be done by +, -, but multiplication is done by calling dp_weyl_mul() because of the
non-commutativity of D.

[0] A=<<1,2,2,1>>;
(1)*<<1,2,2,1>>
[1] B=<<2,1,1,2>>;
(1)*<<2,1,1,2>>
[2] A*B;
(1)*<<3,3,3,3>>
[3] dp_weyl_mul(A,B);
(1)*<<3,3,3,3>>+(1)*<<3,2,3,2>>+(4)*<<2,3,2,3>>+(4)*<<2,2,2,2>>
+(2)*<<1,3,1,3>>+(2)*<<1,2,1,2>>

The following functions are avilable for Groebner basis computation in Weyl algebra: dp_
weyl_gr_main(), dp_weyl_gr_mod_main(), dp_weyl_gr_f_main(), dp_weyl_f4_main(),
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dp_weyl_f4_mod_main(). Computation of the global b function is implemented as an
application.

8.10 Functions for Groebner basis computation

8.10.1 gr, hgr, gr_mod, dgr

gr(plist,vlist,order)
hgr(plist,vlist,order)
gr_mod(plist,vlist,order,p)
dgr(plist,vlist,order,procs)

:: Groebner basis computation

return list

plist vlist procs
list

order number, list or matrix

p prime less than 2^27
• These functions are defined in ‘gr’ in the standard library directory.
• They compute a Groebner basis of a polynomial list plist with respect to the variable

order vlist and the order type order. gr() and hgr() compute a Groebner basis over
the rationals and gr_mod computes over GF(p).

• Variables not included in vlist are regarded as included in the ground field.
• gr() uses trace-lifting (an improvement by modular computation) and sugar strategy.

hgr() uses trace-lifting and a cured sugar strategy by using homogenization.
• dgr() executes gr(), dgr() simultaneously on two process in a child process list procs

and returns the result obtained first. The results returned from both the process should
be equal, but it is not known in advance which method is faster. Therefore this function
is useful to reduce the actual elapsed time.

• The CPU time shown after an exection of dgr() indicates that of the master process,
and most of the time corresponds to the time for communication.

• When the elements of plist are distributed polynomials, the result is also a list of
distributed polynomials. In this case, firstly the elements of plist is sorted by dp_sort
and the Grobner basis computation is started. Variables must be given in vlist even in
this case (these variables are dummy).
[0] load("gr")$
[64] load("cyclic")$
[74] G=gr(cyclic(5),[c0,c1,c2,c3,c4],2);
[c4^15+122*c4^10-122*c4^5-1,...]
[75] GM=gr_mod(cyclic(5),[c0,c1,c2,c3,c4],2,31991)$
24628*c4^15+29453*c4^10+2538*c4^5+7363
[76] (G[0]*24628-GM[0])%31991;
0
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References
Section 8.10.6 [dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main
dp_weyl_gr_mod_main dp_weyl_gr_f_main], page 133, Section 8.10.10 [dp_
ord], page 136.

8.10.2 lex_hensel, lex_tl, tolex, tolex_d, tolex_tl

lex_hensel(plist,vlist1,order,vlist2,homo)
lex_tl(plist,vlist1,order,vlist2,homo)

: Groebner basis computation with respect to a lex order by change of ordering

tolex(plist,vlist1,order,vlist2)
tolex_d(plist,vlist1,order,vlist2,procs)
tolex_tl(plist,vlist1,order,vlist2,homo)

:: Groebner basis computation with respect to a lex order by change of ordering,
starting from a Groebner basis

return list

plist vlist1 vlist2 procs
list

order number, list or matrix

homo flag
• These functions are defined in ‘gr’ in the standard library directory.
• lex_hensel() and lex_tl() first compute a Groebner basis with respect to the vari-

able order vlist1 and the order type order. Then the Groebner basis is converted into
a lex order Groebner basis with respect to the varable order vlist2.

• tolex() and tolex_tl() convert a Groebner basis plist with respect to the variable
order vlist1 and the order type order into a lex order Groebner basis with respect to
the varable order vlist2. tolex_d() does computations of basis elements in tolex()
in parallel on the processes in a child process list procs.

• In lex_hensel() and tolex_hensel() a lex order Groebner basis is computed as
follows.(Refer to [Noro,Yokoyama].)
1. Compute a Groebner basis G0 with respect to vlist1 and order. (Only in lex_

hensel(). )
2. Choose a prime which does not divide head coefficients of elements in G0 with

respect to vlist1 and order. Then compute a lex order Groebner basis Gp over
GF(p) with respect to vlist2.

3. Compute NF, the set of all the normal forms with respect to G0 of terms appearing
in Gp.

4. For each element f in Gp, replace coefficients and terms in f with undetermined
coefficients and the corresponding polynomials in NF respectively, and generate a
system of liear equation Lf by equating the coefficients of terms in the replaced
polynomial with 0.

5. Solve Lf by Hensel lifting, starting from the unique mod p solution.
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6. If all the linear equations generated from the elements in Gp could be solved, then
the set of solutions corresponds to a lex order Groebner basis. Otherwise redo the
whole process with another p.

• In lex_tl() and tolex_tl() a lex order Groebner basis is computed as follows.(Refer
to [Noro,Yokoyama].)
1. Compute a Groebner basis G0 with respect to vlist1 and order. (Only in lex_

tl(). )
2. If G0 is not zero-dimensional, choose a prime which does not divide head co-

efficients of elements in G0 with respect to vlist1 and order. Then compute a
candidate of a lex order Groebner basis via trace lifting with p. If it succeeds the
candidate is indeed a lex order Groebner basis without any check. Otherwise redo
the whole process with another p.

3.
If G0 is zero-dimensional, starting from G0, compute a Groebner basis G1 with
respect to an elimination order to eliminate variables other than the last varibale
in vlist2. Then compute a lex order Groebner basis stating from G1. These
computations are done by trace lifting and the selection of a mudulus p is the
same as in non zero-dimensional cases.

• Computations with rational function coefficients can be done only by lex_tl() and
tolex_tl().

• If homo is not equal to 0, homogenization is used in Buchberger algorithm.
• The CPU time shown after an execution of tolex_d() indicates that of the master

process, and it does not include the time in child processes.
[78] K=katsura(5)$
30msec + gc : 20msec
[79] V=[u5,u4,u3,u2,u1,u0]$
0msec
[80] G0=hgr(K,V,2)$
91.558sec + gc : 15.583sec
[81] G1=lex_hensel(K,V,0,V,0)$
49.049sec + gc : 9.961sec
[82] G2=lex_tl(K,V,0,V,1)$
31.186sec + gc : 3.500sec
[83] gb_comp(G0,G1);
1
10msec
[84] gb_comp(G0,G2);
1

References
Section 8.10.6 [dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main
dp_weyl_gr_mod_main dp_weyl_gr_f_main], page 133, Section 8.10.10 [dp_
ord], page 136, Chapter 7 [Distributed computation], page 99

8.10.3 lex_hensel_gsl, tolex_gsl, tolex_gsl_d



Chapter 8: Groebner basis computation 131

lex_hensel_gsl(plist,vlist1,order,vlist2,homo)
::Computation of an GSL form ideal basis

tolex_gsl(plist,vlist1,order,vlist2)
tolex_gsl_d(plist,vlist1,order,vlist2,procs)

:: Computation of an GSL form ideal basis stating from a Groebner basis

return list

plist vlist1 vlist2 procs
list

order number, list or matrix

homo flag
• lex_hensel_gsl() and lex_hensel() are variants of tolex_gsl() and tolex() re-

spectively. The results are Groebner basis or a kind of ideal basis, called GSL form.
tolex_gsl_d() does basis computations in parallel on child processes specified in
procs.

• If the input is zero-dimensional and a lex order Groebner basis has the form [f0,x1-
f1,...,xn-fn] (f0,...,fn are univariate polynomials of x0; SL form), then this these
functions return a list such as [[x1,g1,d1],...,[xn,gn,dn],[x0,f0,f0’]] (GSL
form). In this list gi is a univariate polynomial of x0 such that di*f0’*fi-gi divides
f0 and the roots of the input ideal is [x1=g1/(d1*f0’),...,xn=gn/(dn*f0’)] for x0
such that f0(x0)=0. If the lex order Groebner basis does not have the above form,
these functions return a lex order Groebner basis computed by tolex().

• Though an ideal basis represented as GSL form is not a Groebner basis we can expect
that the coefficients are much smaller than those in a Groebner basis and that the
computation is efficient. The CPU time shown after an execution of tolex_gsl_d()
indicates that of the master process, and it does not include the time in child processes.
[103] K=katsura(5)$
[104] V=[u5,u4,u3,u2,u1,u0]$
[105] G0=gr(K,V,0)$
[106] GSL=tolex_gsl(G0,V,0,V)$
[107] GSL[0];
[u1,8635837421130477667200000000*u0^31-...]
[108] GSL[1];
[u2,10352277157007342793600000000*u0^31-...]
[109] GSL[5];
[u0,11771021876193064124640000000*u0^32-...,
376672700038178051988480000000*u0^31-...]

References
Section 8.10.2 [lex_hensel lex_tl tolex tolex_d tolex_tl], page 129,
Chapter 7 [Distributed computation], page 99

8.10.4 gr_minipoly, minipoly

gr_minipoly(plist,vlist,order,poly,v,homo)
:: Computation of the minimal polynomial of a polynomial modulo an ideal
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minipoly(plist,vlist,order,poly,v)
:: Computation of the minimal polynomial of a polynomial modulo an ideal

return polynomial

plist vlist list

order number, list or matrix

poly polynomial

v indeterminate

homo flag
• gr_minipoly() begins by computing a Groebner basis. minipoly() regards an input

as a Groebner basis with respect to the variable order vlist and the order type order.
• Let K be a field. If an ideal I in K[X] is zero-dimensional, then, for a polynomial p

in K[X], the kernel of a homomorphism from K[v ] to K[X]/I which maps f(v) to f(p)
mod I is generated by a polynomial. The generator is called the minimal polynomial
of p modulo I.

• gr_minipoly() and minipoly() computes the minimal polynomial of a polynomial p
and returns it as a polynomial of v.

• The minimal polynomial can be computed as an element of a Groebner basis. But
if we are only interested in the minimal polynomial, minipoly() and gr_minipoly()
can compute it more efficiently than methods using Groebner basis computation.

• It is recommended to use a degree reverse lex order as a term order for gr_minipoly().
[117] G=tolex(G0,V,0,V)$
43.818sec + gc : 11.202sec
[118] GSL=tolex_gsl(G0,V,0,V)$
17.123sec + gc : 2.590sec
[119] MP=minipoly(G0,V,0,u0,z)$
4.370sec + gc : 780msec

References
Section 8.10.2 [lex_hensel lex_tl tolex tolex_d tolex_tl], page 129.

8.10.5 tolexm, minipolym

tolexm(plist,vlist1,order,vlist2,mod)
:: Groebner basis computation modulo mod by change of ordering.

minipolym(plist,vlist1,order,poly,v,mod)
:: Minimal polynomial computation modulo mod the same method as

return tolexm() : list, minipolym() : polynomial

plist vlist1 vlist2
list

order number, list or matrix

mod prime
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• An input plist must be a Groebner basis modulo mod with respect to the variable order
vlist1 and the order type order.

• minipolym() executes the same computation as in minipoly.
• tolexm() computes a lex order Groebner basis modulo mod with respect to the variable

order vlist2, by using FGLM algorithm.
[197] tolexm(G0,V,0,V,31991);
[8271*u0^31+10435*u0^30+816*u0^29+26809*u0^28+...,...]
[198] minipolym(G0,V,0,u0,z,31991);
z^32+11405*z^31+20868*z^30+21602*z^29+...

References
Section 8.10.2 [lex_hensel lex_tl tolex tolex_d tolex_tl], page 129, Sec-
tion 8.10.4 [gr_minipoly minipoly], page 131.

8.10.6 dp_gr_main, dp_gr_mod_main, dp_gr_f_main, dp_weyl_gr_main,
dp_weyl_gr_mod_main, dp_weyl_gr_f_main

dp_gr_main(plist,vlist,homo,modular,order)
dp_gr_mod_main(plist,vlist,homo,modular,order)
dp_gr_f_main(plist,vlist,homo,order)
dp_weyl_gr_main(plist,vlist,homo,modular,order)
dp_weyl_gr_mod_main(plist,vlist,homo,modular,order)
dp_weyl_gr_f_main(plist,vlist,homo,order)

:: Groebner basis computation (built-in functions)

return list

plist vlist list

order number, list or matrix

homo flag

modular flag or prime
• These functions are fundamental built-in functions for Groebner basis computation and

gr(),hgr() and gr_mod() are all interfaces to these functions. Functions whose names
contain weyl are those for computation in Weyl algebra.

• dp_gr_f_main() and dp_weyl_gr_f_main() are functions for Groebner basis compu-
tation over various finite fields. Coefficients of input polynomials must be converted to
elements of a finite field currently specified by setmod_ff().

• If homo is not equal to 0, homogenization is applied before entering Buchberger algo-
rithm

• For dp_gr_mod_main(), modular means a computation over GF(modular). For dp_
gr_main(), modular has the following mean.
1. If modular is 1 , trace lifting is used. Primes for trace lifting are generated by

lprime(), starting from lprime(0), until the computation succeeds.
2. If modular is an integer greater than 1, the integer is regarded as a prime and trace

lifting is executed by using the prime. If the computation fails then 0 is returned.



Chapter 8: Groebner basis computation 134

3. If modular is negative, the above rule is applied for -modular but the Groebner
basis check and ideal-membership check are omitted in the last stage of trace
lifting.

• gr(P,V,O), hgr(P,V,O) and gr_mod(P,V,O,M) execute dp_gr_main(P,V,0,1,O), dp_
gr_main(P,V,1,1,O) and dp_gr_mod_main(P,V,0,M,O) respectively.

• Actual computation is controlled by various parameters set by dp_gr_flags(), other
then by homo and modular.

References
Section 8.10.10 [dp_ord], page 136, Section 8.10.9 [dp_gr_flags dp_gr_print],
page 135, Section 8.10.1 [gr hgr gr_mod], page 128, Section 10.5.1 [setmod_ff],
page 167, Section 8.4 [Controlling Groebner basis computations], page 120

8.10.7 dp_f4_main, dp_f4_mod_main, dp_weyl_f4_main, dp_weyl_f4_
mod_main

dp_f4_main(plist,vlist,order)
dp_f4_mod_main(plist,vlist,order)
dp_weyl_f4_main(plist,vlist,order)
dp_weyl_f4_mod_main(plist,vlist,order)

:: Groebner basis computation by F4 algorithm (built-in functions)

return list

plist vlist list

order number, list or matrix
• These functions compute Groebner bases by F4 algorithm.
• F4 is a new generation algorithm for Groebner basis computation invented by J.C.

Faugere. The current implementation of dp_f4_main() uses Chinese Remainder theo-
rem and not highly optimized.

• Arguments and actions are the same as those of dp_gr_main(), dp_gr_mod_main(),
dp_weyl_gr_main(), dp_weyl_gr_mod_main(), except for lack of the argument for
controlling homogenization.

References
Section 8.10.10 [dp_ord], page 136, Section 8.10.9 [dp_gr_flags dp_gr_print],
page 135, Section 8.10.1 [gr hgr gr_mod], page 128, Section 8.4 [Controlling
Groebner basis computations], page 120

8.10.8 nd_gr, nd_gr_trace, nd_f4, nd_f4_trace, nd_weyl_gr, nd_weyl_
gr_trace

nd_gr(plist,vlist,p,order)
nd_gr_trace(plist,vlist,homo,p,order)
nd_f4(plist,vlist,modular,order)
nd_f4_trace(plist,vlist,homo,p,order)

nd_weyl_gr(plist,vlist,p,order)
nd_weyl_gr_trace(plist,vlist,homo,p,order)

:: Groebner basis computation (built-in functions)
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return list

plist vlist list

order number, list or matrix

homo flag

modular flag or prime
• These functions are new implementations for computing Groebner bases.
• nd_gr executes Buchberger algorithm over the rationals if p is 0, and that over GF(p)

if p is a prime.
• nd_gr_trace executes the trace algorithm over the rationals. If p is 0 or 1, the trace

algorithm is executed until it succeeds by using automatically chosen primes. If p
a positive prime, the trace is comuted over GF(p). If the trace algorithm fails 0 is
returned. If p is negative, the Groebner basis check and ideal-membership check are
omitted. In this case, an automatically chosen prime if p is 1, otherwise the specified
prime is used to compute a Groebner basis candidate. Execution of nd_f4_trace is
done as follows: For each total degree, an F4-reduction of S-polynomials over a finite
field is done, and S-polynomials which give non-zero basis elements are gathered. Then
F4-reduction over Q is done for the gathered S-polynomials. The obtained polynomial
set is a Groebner basis candidate and the same check procedure as in the case of
nd_gr_trace is done.

• nd_f4 executes F4 algorithm over Q if modular is equal to 0, or over a finite field
GF(modular) if modular is a prime number of machine size (<2^29).

• nd_weyl_gr, nd_weyl_gr_trace are for Weyl algebra computation.
• Each function cannot handle rational function coefficient cases.
• In general these functions are more efficient than dp_gr_main, dp_gr_mod_main, espe-

cially over finite fields.
[38] load("cyclic")$
[49] C=cyclic(7)$
[50] V=vars(C)$
[51] cputime(1)$
[52] dp_gr_mod_main(C,V,0,31991,0)$
26.06sec + gc : 0.313sec(26.4sec)
[53] nd_gr(C,V,31991,0)$
ndv_alloc=1477188
5.737sec + gc : 0.1837sec(5.921sec)
[54] dp_f4_mod_main(C,V,31991,0)$
3.51sec + gc : 0.7109sec(4.221sec)
[55] nd_f4(C,V,31991,0)$
1.906sec + gc : 0.126sec(2.032sec)

References
Section 8.10.10 [dp_ord], page 136, Section 8.10.9 [dp_gr_flags dp_gr_print],
page 135, Section 8.4 [Controlling Groebner basis computations], page 120

8.10.9 dp_gr_flags, dp_gr_print



Chapter 8: Groebner basis computation 136

dp_gr_flags([list])
dp_gr_print([i])

and showing informations.

return value currently set

list list

i integer

• dp_gr_flags() sets and shows various parameters for Groebner basis computation.

• If no argument is specified the current settings are returned.

• Arguments must be specified as a list such as ["Print",1,"NoSugar",1,...]. Names
of parameters must be character strings.

• dp_gr_print() is used to set and show the value of a parameter Print and PrintShort.

i=0 Print=0, PrintShort=0

i=1 Print=1, PrintShort=0

i=2 Print=0, PrintShort=1

This functions is prepared to get quickly the value when a user defined function calling
dp_gr_main() etc. uses the value as a flag for showing intermediate informations.

References
Section 8.4 [Controlling Groebner basis computations], page 120

8.10.10 dp_ord

dp_ord([order])
:: Set and show the ordering type.

return ordering type (number, list or matrix)

order number, list or matrix

• If an argument is specified, the function sets the current ordering type to order. If no
argument is specified, the function returns the ordering type currently set.

• There are two types of functions concerning distributed polynomial, functions which
take a ordering type and those which don’t take it. The latter ones use the current
setting.

• Functions such as gr(), which need a ordering type as an argument, call dp_ord()
internally during the execution. The setting remains after the execution.

Fundamental arithmetics for distributed polynomial also use the current setting. There-
fore, when such arithmetics for distributed polynomials are done, the current setting
must coincide with the ordering type which was used upon the creation of the poly-
nomials. It is assumed that such polynomials were generated under the same ordering
type.

• Type of term ordering must be correctly set by this function when functions other than
top level functions are called directly.



Chapter 8: Groebner basis computation 137

[19] dp_ord(0)$
[20] <<1,2,3>>+<<3,1,1>>;
(1)*<<1,2,3>>+(1)*<<3,1,1>>
[21] dp_ord(2)$
[22] <<1,2,3>>+<<3,1,1>>;
(1)*<<3,1,1>>+(1)*<<1,2,3>>

References
Section 8.5 [Setting term orderings], page 123

8.10.11 dp_ptod

dp_ptod(poly,vlist)
:: Converts an ordinary polynomial into a distributed polynomial.

return distributed polynomial

poly polynomial

vlist list
• According to the variable ordering vlist and current type of term ordering, this function

converts an ordinary polynomial into a distributed polynomial.
• Indeterminates not included in vlist are regarded to belong to the coefficient field.

[50] dp_ord(0);
1
[51] dp_ptod((x+y+z)^2,[x,y,z]);
(1)*<<2,0,0>>+(2)*<<1,1,0>>+(1)*<<0,2,0>>+(2)*<<1,0,1>>+(2)*<<0,1,1>>
+(1)*<<0,0,2>>
[52] dp_ptod((x+y+z)^2,[x,y]);
(1)*<<2,0>>+(2)*<<1,1>>+(1)*<<0,2>>+(2*z)*<<1,0>>+(2*z)*<<0,1>>
+(z^2)*<<0,0>>

References
Section 8.10.12 [dp_dtop], page 137, Section 8.10.10 [dp_ord], page 136.

8.10.12 dp_dtop

dp_dtop(dpoly,vlist)
:: Converts a distributed polynomial into an ordinary polynomial.

return polynomial

dpoly distributed polynomial

vlist list
• This function converts a distributed polynomial into an ordinary polynomial according

to a list of indeterminates vlist.
• vlist is such a list that its length coincides with the number of variables of dpoly.

[53] T=dp_ptod((x+y+z)^2,[x,y]);
(1)*<<2,0>>+(2)*<<1,1>>+(1)*<<0,2>>+(2*z)*<<1,0>>+(2*z)*<<0,1>>
+(z^2)*<<0,0>>
[54] P=dp_dtop(T,[a,b]);
z^2+(2*a+2*b)*z+a^2+2*b*a+b^2
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8.10.13 dp_mod, dp_rat

dp_mod(p,mod,subst)
:: Converts a disributed polynomial into one with coefficients in a finite field.

dp_rat(p)
:: Converts a distributed polynomial with coefficients in a finite field into one
with coefficients in the rationals.

return distributed polynomial

p distributed polynomial

mod prime

subst list
• dp_nf_mod() and dp_true_nf_mod() require distributed polynomials with coefficients

in a finite field as arguments. dp_mod() is used to convert distributed polynomials
with rational number coefficients into appropriate ones. Polynomials with coefficients
in a finite field cannot be used as inputs of operations with polynomials with rational
number coefficients. dp_rat() is used for such cases.

• The ground finite field must be set in advance by using setmod().
• subst is such a list as [[var,value],...]. This is valid when the ground field of the

input polynomial is a rational function field. var’s are variables in the ground field and
the list means that value is substituted for var before converting the coefficients into
elements of a finite field.

References
Section 8.10.16 [dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod], page 139,
Section 6.3.11 [subst psubst], page 50, Section 6.1.16 [setmod], page 42.

8.10.14 dp_homo, dp_dehomo

dp_homo(dpoly)
:: Homogenize a distributed polynomial

dp_dehomo(dpoly)
:: Dehomogenize a homogenious distributed polynomial

return distributed polynomial

dpoly distributed polynomial
• dp_homo() makes a copy of dpoly, extends the length of the exponent vector of each

term t in the copy by 1, and sets the value of the newly appended component to
d-deg(t), where d is the total degree of dpoly.

• dp_dehomo() make a copy of dpoly and removes the last component of each terms in
the copy.

• Appropriate term orderings must be set when the results are used as inputs of some
operations.

• These are used internally in hgr() etc.
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[202] X=<<1,2,3>>+3*<<1,2,1>>;
(1)*<<1,2,3>>+(3)*<<1,2,1>>
[203] dp_homo(X);
(1)*<<1,2,3,0>>+(3)*<<1,2,1,2>>
[204] dp_dehomo(@);
(1)*<<1,2,3>>+(3)*<<1,2,1>>

References
Section 8.10.1 [gr hgr gr_mod], page 128.

8.10.15 dp_ptozp, dp_prim

dp_ptozp(dpoly)
:: Converts a distributed polynomial poly with rational coefficients into an
integral distributed polynomial such that GCD of all its coefficients is 1.

dp_prim(dpoly)
:: Converts a distributed polynomial poly with rational function coefficients
into an integral distributed polynomial such that polynomial GCD of all its
coefficients is 1.

return distributed polynomial

dpoly distributed polynomial
• dp_ptozp() executes the same operation as ptozp() for a distributed polynomial. If

the coefficients include polynomials, polynomial contents included in the coefficients
are not removed.

• dp_prim() removes polynomial contents.
[208] X=dp_ptod(3*(x-y)*(y-z)*(z-x),[x]);
(-3*y+3*z)*<<2>>+(3*y^2-3*z^2)*<<1>>+(-3*z*y^2+3*z^2*y)*<<0>>
[209] dp_ptozp(X);
(-y+z)*<<2>>+(y^2-z^2)*<<1>>+(-z*y^2+z^2*y)*<<0>>
[210] dp_prim(X);
(1)*<<2>>+(-y-z)*<<1>>+(z*y)*<<0>>

References
Section 6.3.18 [ptozp], page 55.

8.10.16 dp_nf, dp_nf_mod, dp_true_nf, dp_true_nf_mod

dp_nf(indexlist,dpoly,dpolyarray,fullreduce)

dp_nf_mod(indexlist,dpoly,dpolyarray,fullreduce,mod)
:: Computes the normal form of a distributed polynomial. (The result may be
multiplied by a constant in the ground field.)

dp_true_nf(indexlist,dpoly,dpolyarray,fullreduce)

dp_true_nf_mod(indexlist,dpoly,dpolyarray,fullreduce,mod)
:: Computes the normal form of a distributed polynomial. (The true result is
returned in such a list as [numerator, denominator])

return dp_nf() : distributed polynomial, dp_true_nf() : list
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indexlist list

dpoly distributed polynomial

dpolyarray
array of distributed polynomial

fullreduce flag

mod prime
• Computes the normal form of a distributed polynomial.
• dp_nf_mod() and dp_true_nf_mod() require distributed polynomials with coefficients

in a finite field as arguments.
• The result of dp_nf() may be multiplied by a constant in the ground field in order to

make the result integral. The same is true for dp_nf_mod(), but it returns the true
normal form if the ground field is a finite field.

• dp_true_nf() and dp_true_nf_mod() return such a list as [nm,dn]. Here nm is
a distributed polynomial whose coefficients are integral in the ground field, dn is an
integral element in the ground field and nm/dn is the true normal form.

• dpolyarray is a vector whose components are distributed polynomials and indexlist is
a list of indices which is used for the normal form computation.

• When argument fullreduce has non-zero value, all terms are reduced. When it has
value 0, only the head term is reduced.

• As for the polynomials specified by indexlist, one specified by an index placed at the
preceding position has priority to be selected.

• In general, the result of the function may be different depending on indexlist. However,
the result is unique for Groebner bases.

• These functions are useful when a fixed non-distributed polynomial set is used as a set
of reducers to compute normal forms of many polynomials. For single computation
p_nf and p_true_nf are sufficient.
[0] load("gr")$
[64] load("katsura")$
[69] K=katsura(4)$
[70] dp_ord(2)$
[71] V=[u0,u1,u2,u3,u4]$
[72] DP1=newvect(length(K),map(dp_ptod,K,V))$
[73] G=gr(K,V,2)$
[74] DP2=newvect(length(G),map(dp_ptod,G,V))$
[75] T=dp_ptod((u0-u1+u2-u3+u4)^2,V)$
[76] dp_dtop(dp_nf([0,1,2,3,4],T,DP1,1),V);
u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2^2
+(6*u1-2)*u2+9*u1^2-6*u1+1
[77] dp_dtop(dp_nf([4,3,2,1,0],T,DP1,1),V);
-5*u4^2+(-4*u3-4*u2-4*u1)*u4-u3^2-3*u3-u2^2+(2*u1-1)*u2-2*u1^2-3*u1+1
[78] dp_dtop(dp_nf([0,1,2,3,4],T,DP2,1),V);
-11380879768451657780886122972730785203470970010204714556333530492210
456775930005716505560062087150928400876150217079820311439477560587583
488*u4^15+...
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[79] dp_dtop(dp_nf([4,3,2,1,0],T,DP2,1),V);
-11380879768451657780886122972730785203470970010204714556333530492210
456775930005716505560062087150928400876150217079820311439477560587583
488*u4^15+...
[80] @78==@79;
1

References
Section 8.10.12 [dp_dtop], page 137, Section 8.10.10 [dp_ord], page 136, Sec-
tion 8.10.13 [dp_mod dp_rat], page 138, Section 8.10.27 [p_nf p_nf_mod p_
true_nf p_true_nf_mod], page 146.

8.10.17 dp_hm, dp_ht, dp_hc, dp_rest

dp_hm(dpoly)
:: Gets the head monomial.

dp_ht(dpoly)
:: Gets the head term.

dp_hc(dpoly)
:: Gets the head coefficient.

dp_rest(dpoly)
:: Gets the remainder of the polynomial where the head monomial is removed.

return dp_hm(), dp_ht(), dp_rest() : distributed polynomial dp_hc() : number or
polynomial

dpoly distributed polynomial
• These are used to get various parts of a distributed polynomial.
• The next equations hold for a distributed polynomial p.

p = dp_hm(p) + dp_rest(p)

dp_hm(p) = dp_hc(p) dp_ht(p)
[87] dp_ord(0)$
[88] X=ptozp((a46^2+7/10*a46+7/48)*u3^4-50/27*a46^2-35/27*a46-49/216)$
[89] T=dp_ptod(X,[u3,u4,a46])$
[90] dp_hm(T);
(2160)*<<4,0,2>>
[91] dp_ht(T);
(1)*<<4,0,2>>
[92] dp_hc(T);
2160
[93] dp_rest(T);
(1512)*<<4,0,1>>+(315)*<<4,0,0>>+(-4000)*<<0,0,2>>+(-2800)*<<0,0,1>>
+(-490)*<<0,0,0>>

8.10.18 dp_td, dp_sugar

dp_td(dpoly)
:: Gets the total degree of the head term.
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dp_sugar(dpoly)
:: Gets the sugar of a polynomial.

return non-negative integer

dpoly distributed polynomial

onoff flag
• Function dp_td() returns the total degree of the head term, i.e., the sum of all exponent

of variables in that term.
• Upon creation of a distributed polynomial, an integer called sugar is associated. This

value is the total degree of the virtually homogenized one of the original polynomial.
• The quantity sugar is an important guide to determine the selection strategy of critical

pairs in Groebner basis computation.
[74] dp_ord(0)$
[75] X=<<1,2>>+<<0,1>>$
[76] Y=<<1,2>>+<<1,0>>$
[77] Z=X-Y;
(-1)*<<1,0>>+(1)*<<0,1>>
[78] dp_sugar(T);
3

8.10.19 dp_lcm

dp_lcm(dpoly1,dpoly2)
:: Returns the least common multiple of the head terms of the given two poly-
nomials.

return distributed polynomial

dpoly1 dpoly2
distributed polynomial

• Returns the least common multiple of the head terms of the given two polynomials,
where coefficient is always set to 1.
[100] dp_lcm(<<1,2,3,4,5>>,<<5,4,3,2,1>>);
(1)*<<5,4,3,4,5>>

References
Section 8.10.27 [p_nf p_nf_mod p_true_nf p_true_nf_mod], page 146.

8.10.20 dp_redble

dp_redble(dpoly1,dpoly2)
:: Checks whether one head term is divisible by the other head term.

return integer

dpoly1 dpoly2
distributed polynomial

• Returns 1 if the head term of dpoly2 divides the head term of dpoly1; otherwise 0.
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• Used for finding candidate terms at reduction of polynomials.
[148] C;
(1)*<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>>+(1)*<<1,0,0,1,1>>
[149] T;
(3)*<<2,1,0,0,0>>+(3)*<<1,2,0,0,0>>+(1)*<<0,3,0,0,0>>+(6)*<<1,1,1,0,0>>
[150] for ( ; T; T = dp_rest(T)) print(dp_redble(T,C));
0
0
0
1

References
Section 8.10.25 [dp_red dp_red_mod], page 145.

8.10.21 dp_subd

dp_subd(dpoly1,dpoly2)
:: Returns the quotient monomial of the head terms.

return distributed polynomial

dpoly1 dpoly2
distributed polynomial

• Gets dp_ht(dpoly1)/dp_ht(dpoly2). The coefficient of the result is always set to 1.
• Divisibility assumed.

[162] dp_subd(<<1,2,3,4,5>>,<<1,1,2,3,4>>);
(1)*<<0,1,1,1,1>>

References
Section 8.10.25 [dp_red dp_red_mod], page 145.

8.10.22 dp_vtoe, dp_etov

dp_vtoe(vect)
:: Converts an exponent vector into a term.

dp_etov(dpoly)
:: Convert the head term of a distributed polynomial into an exponent vector.

return dp_vtoe : distributed polynomial, dp_etov : vector

vect vector

dpoly distributed polynomial
• dp_vtoe() generates a term whose exponent vector is vect.
• dp_etov() generates a vector which is the exponent vector of the head term of dpoly.

[211] X=<<1,2,3>>;
(1)*<<1,2,3>>
[212] V=dp_etov(X);
[ 1 2 3 ]
[213] V[2]++$
[214] Y=dp_vtoe(V);
(1)*<<1,2,4>>
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8.10.23 dp_mbase

dp_mbase(dplist)
:: Computes the monomial basis

return list of distributed polynomial

dplist list of distributed polynomial

• Assuming that dplist is a list of distributed polynomials which is a Groebner basis with
respect to the current ordering type and that the ideal I generated by dplist in K[X] is
zero-dimensional, this function computes the monomial basis of a finite dimenstional
K-vector space K[X]/I.

• The number of elements in the monomial basis is equal to the K-dimenstion of K[X]/I.

[215] K=katsura(5)$
[216] V=[u5,u4,u3,u2,u1,u0]$
[217] G0=gr(K,V,0)$
[218] H=map(dp_ptod,G0,V)$
[219] map(dp_ptod,dp_mbase(H),V)$
[u0^5,u4*u0^3,u3*u0^3,u2*u0^3,u1*u0^3,u0^4,u3^2*u0,u2*u3*u0,u1*u3*u0,
u1*u2*u0,u1^2*u0,u4*u0^2,u3*u0^2,u2*u0^2,u1*u0^2,u0^3,u3^2,u2*u3,u1*u3,
u1*u2,u1^2,u4*u0,u3*u0,u2*u0,u1*u0,u0^2,u4,u3,u2,u1,u0,1]

References
Section 8.10.1 [gr hgr gr_mod], page 128.

8.10.24 dp_mag

dp_mag(p)
:: Computes the sum of bit lengths of coefficients of a distributed polynomial.

return integer

p distributed polynomial

• This function computes the sum of bit lengths of coefficients of a distributed polynomial
p. If a coefficient is non integral, the sum of bit lengths of the numerator and the
denominator is taken.

• This is a measure of the size of a polynomial. Especially for zero-dimensional system
coefficient swells are often serious and the returned value is useful to detect such swells.

• If ShowMag and Print for dp_gr_flags() are on, values of dp_mag() for intermediate
basis elements are shown.

[221] X=dp_ptod((x+2*y)^10,[x,y])$
[222] dp_mag(X);
115

References
Section 8.10.9 [dp_gr_flags dp_gr_print], page 135.
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8.10.25 dp_red, dp_red_mod

dp_red(dpoly1,dpoly2,dpoly3)

dp_red_mod(dpoly1,dpoly2,dpoly3,mod)
:: Single reduction operation

return list

dpoly1 dpoly2 dpoly3
distributed polynomial

vlist list

mod prime
• Reduces a distributed polynomial, dpoly1 + dpoly2, by dpoly3 for single time.
• An input for dp_red_mod() must be converted into a distributed polynomial with

coefficients in a finite field.
• This implies that the divisibility of the head term of dpoly2 by the head term of dpoly3

is assumed.
• When integral coefficients, computation is so carefully performed that no rational op-

erations appear in the reduction procedure. It is computed for integers a and b, and a
term t as: a(dpoly1 + dpoly2)-bt dpoly3.

• The result is a list [a dpoly1,a dpoly2 - bt dpoly3].
[157] D=(3)*<<2,1,0,0,0>>+(3)*<<1,2,0,0,0>>+(1)*<<0,3,0,0,0>>;
(3)*<<2,1,0,0,0>>+(3)*<<1,2,0,0,0>>+(1)*<<0,3,0,0,0>>
[158] R=(6)*<<1,1,1,0,0>>;
(6)*<<1,1,1,0,0>>
[159] C=12*<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>>;
(12)*<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>>
[160] dp_red(D,R,C);
[(6)*<<2,1,0,0,0>>+(6)*<<1,2,0,0,0>>+(2)*<<0,3,0,0,0>>,
(-1)*<<0,1,1,1,0>>+(-1)*<<1,1,0,0,1>>]

References
Section 8.10.13 [dp_mod dp_rat], page 138.

8.10.26 dp_sp, dp_sp_mod

dp_sp(dpoly1,dpoly2)

dp_sp_mod(dpoly1,dpoly2,mod)
:: Computation of an S-polynomial

return distributed polynomial

dpoly1 dpoly2
distributed polynomial

mod prime
• This function computes the S-polynomial of dpoly1 and dpoly2.
• Inputs of dp_sp_mod() must be polynomials with coefficients in a finite field.
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• The result may be multiplied by a constant in the ground field in order to make the
result integral.
[227] X=dp_ptod(x^2*y+x*y,[x,y]);
(1)*<<2,1>>+(1)*<<1,1>>
[228] Y=dp_ptod(x*y^2+x*y,[x,y]);
(1)*<<1,2>>+(1)*<<1,1>>
[229] dp_sp(X,Y);
(-1)*<<2,1>>+(1)*<<1,2>>

References
Section 8.10.13 [dp_mod dp_rat], page 138.

8.10.27 p_nf, p_nf_mod, p_true_nf, p_true_nf_mod

p_nf(poly,plist,vlist,order)
p_nf_mod(poly,plist,vlist,order,mod)

:: Computes the normal form of the given polynomial. (The result may be
multiplied by a constant.)

p_true_nf(poly,plist,vlist,order)
p_true_nf_mod(poly,plist,vlist,order,mod)

:: Computes the normal form of the given polynomial. (The result is returned
as a form of [numerator, denominator])

return p_nf : polynomial, p_true_nf : list

poly polynomial

plist vlist list

order number, list or matrix

mod prime
• Defined in the package ‘gr’.
• Obtains the normal form of a polynomial by a polynomial list.
• These are interfaces to dp_nf(), dp_true_nf(), dp_nf_mod(), dp_true_nf_mod
• The polynomial poly and the polynomials in plist is converted, according to the vari-

able ordering vlist and type of term ordering otype, into their distributed polynomial
counterparts and passed to dp_nf().

• dp_nf(), dp_true_nf(), dp_nf_mod() and dp_true_nf_mod() is called with value 1
for fullreduce.

• The result is converted back into an ordinary polynomial.
• As for p_true_nf(), p_true_nf_mod() refer to dp_true_nf() and dp_true_nf_mod().

[79] K = katsura(5)$
[80] V = [u5,u4,u3,u2,u1,u0]$
[81] G = hgr(K,V,2)$
[82] p_nf(K[1],G,V,2);
0
[83] L = p_true_nf(K[1]+1,G,V,2);
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[-1503...,-1503...]
[84] L[0]/L[1];
1

References
Section 8.10.11 [dp_ptod], page 137, Section 8.10.12 [dp_dtop], page 137, Sec-
tion 8.10.10 [dp_ord], page 136, Section 8.10.16 [dp_nf dp_nf_mod dp_true_nf
dp_true_nf_mod], page 139.

8.10.28 p_terms

p_terms(poly,vlist,order)
:: Monomials appearing in the given polynomial is collected into a list.

return list

poly polynomial

vlist list

order number, list or matrix
• Defined in the package ‘gr’.
• This returns a list which contains all non-zero monomials in the given polynomial. The

monomials are ordered according to the current type of term ordering and vlist.
• Since polynomials in a Groebner base often have very large coefficients, examining a

polynomial as it is may sometimes be difficult to perform. For such a case, this function
enables to examine which term is really exists.
[233] G=gr(katsura(5),[u5,u4,u3,u2,u1,u0],2)$
[234] p_terms(G[0],[u5,u4,u3,u2,u1,u0],2);
[u5,u0^31,u0^30,u0^29,u0^28,u0^27,u0^26,u0^25,u0^24,u0^23,u0^22,
u0^21,u0^20,u0^19,u0^18,u0^17,u0^16,u0^15,u0^14,u0^13,u0^12,u0^11,
u0^10,u0^9,u0^8,u0^7,u0^6,u0^5,u0^4,u0^3,u0^2,u0,1]

8.10.29 gb_comp

gb_comp(plist1, plist2)
:: Checks whether two polynomial lists are equal or not as a set

return 0 or 1

plist1 plist2
• This function checks whether plist1 and plist2 are equal or not as a set .
• For the same input and the same term ordering different functions for Groebner basis

computations may produce different outputs as lists. This function compares such lists
whether they are equal as a generating set of an ideal.
[243] C=cyclic(6)$
[244] V=[c0,c1,c2,c3,c4,c5]$
[245] G0=gr(C,V,0)$
[246] G=tolex(G0,V,0,V)$
[247] GG=lex_tl(C,V,0,V,0)$
[248] gb_comp(G,GG);
1



Chapter 8: Groebner basis computation 148

8.10.30 katsura, hkatsura, cyclic, hcyclic

katsura(n)

hkatsura(n)

cyclic(n)

hcyclic(n)
:: Generates a polynomial list of standard benchmark.

return list

n integer
• Function katsura() is defined in ‘katsura’, and function cyclic() in ‘cyclic’.
• These functions generate a series of polynomial sets, respectively, which are often used

for testing and bench marking: katsura, cyclic and their homogenized versions.
• Polynomial set cyclic is sometimes called by other name: Arnborg, Lazard, and

Davenport.
[74] load("katsura")$
[79] load("cyclic")$
[89] katsura(5);
[u0+2*u4+2*u3+2*u2+2*u1+2*u5-1,2*u4*u0-u4+2*u1*u3+u2^2+2*u5*u1,
2*u3*u0+2*u1*u4-u3+(2*u1+2*u5)*u2,2*u2*u0+2*u2*u4+(2*u1+2*u5)*u3
-u2+u1^2,2*u1*u0+(2*u3+2*u5)*u4+2*u2*u3+2*u1*u2-u1,
u0^2-u0+2*u4^2+2*u3^2+2*u2^2+2*u1^2+2*u5^2]
[90] hkatsura(5);
[-t+u0+2*u4+2*u3+2*u2+2*u1+2*u5,
-u4*t+2*u4*u0+2*u1*u3+u2^2+2*u5*u1,-u3*t+2*u3*u0+2*u1*u4+(2*u1+2*u5)*u2,
-u2*t+2*u2*u0+2*u2*u4+(2*u1+2*u5)*u3+u1^2,
-u1*t+2*u1*u0+(2*u3+2*u5)*u4+2*u2*u3+2*u1*u2,
-u0*t+u0^2+2*u4^2+2*u3^2+2*u2^2+2*u1^2+2*u5^2]
[91] cyclic(6);
[c5*c4*c3*c2*c1*c0-1,
((((c4+c5)*c3+c5*c4)*c2+c5*c4*c3)*c1+c5*c4*c3*c2)*c0+c5*c4*c3*c2*c1,
(((c3+c5)*c2+c5*c4)*c1+c5*c4*c3)*c0+c4*c3*c2*c1+c5*c4*c3*c2,
((c2+c5)*c1+c5*c4)*c0+c3*c2*c1+c4*c3*c2+c5*c4*c3,
(c1+c5)*c0+c2*c1+c3*c2+c4*c3+c5*c4,c0+c1+c2+c3+c4+c5]
[92] hcyclic(6);
[-c^6+c5*c4*c3*c2*c1*c0,
((((c4+c5)*c3+c5*c4)*c2+c5*c4*c3)*c1+c5*c4*c3*c2)*c0+c5*c4*c3*c2*c1,
(((c3+c5)*c2+c5*c4)*c1+c5*c4*c3)*c0+c4*c3*c2*c1+c5*c4*c3*c2,
((c2+c5)*c1+c5*c4)*c0+c3*c2*c1+c4*c3*c2+c5*c4*c3,
(c1+c5)*c0+c2*c1+c3*c2+c4*c3+c5*c4,c0+c1+c2+c3+c4+c5]

References
Section 8.10.12 [dp_dtop], page 137.

8.10.31 primadec, primedec

primadec(plist,vlist)
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primedec(plist,vlist)
:: Computes decompositions of ideals.

return
plist list of polynomials

vlist list of variables
• Function primadec() and primedec are defined in ‘primdec’.
• primadec(), primedec() are the function for primary ideal decomposition and prime

decomposition of the radical over the rationals respectively.
• The arguments are a list of polynomials and a list of variables. These functions accept

ideals with rational function coefficients only.
• primadec returns the list of pair lists consisting a primary component and its associated

prime.
• primedec returns the list of prime components.
• Each component is a Groebner basis and the corresponding term order is indicated by

the global variables PRIMAORD, PRIMEORD respectively.
• primadec implements the primary decompostion algorithm in [Shimoyama,Yokoyama].
• If one only wants to know the prime components of an ideal, then use primedec because

primadec may need additional costs if an input ideal is not radical.
[84] load("primdec")$
[102] primedec([p*q*x-q^2*y^2+q^2*y,-p^2*x^2+p^2*x+p*q*y,
(q^3*y^4-2*q^3*y^3+q^3*y^2)*x-q^3*y^4+q^3*y^3,
-q^3*y^4+2*q^3*y^3+(-q^3+p*q^2)*y^2],[p,q,x,y]);
[[y,x],[y,p],[x,q],[q,p],[x-1,q],[y-1,p],[(y-1)*x-y,q*y^2-2*q*y-p+q]]
[103] primadec([x,z*y,w*y^2,w^2*y-z^3,y^3],[x,y,z,w]);
[[[x,z*y,y^2,w^2*y-z^3],[z,y,x]],[[w,x,z*y,z^3,y^3],[w,z,y,x]]]

References
Section 6.3.15 [fctr sqfr], page 52, Section 8.5 [Setting term orderings],
page 123.

8.10.32 primedec_mod

primedec_mod(plist,vlist,ord,mod,strategy)
:: Computes decompositions of ideals over small finite fields.

return
plist list of polynomials

vlist list of variables

ord number, list or matrix

mod positive integer

strategy integer
• Function primedec_mod() is defined in ‘primdec_mod’ and implements the prime de-

composition algorithm in [Yokoyama].
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• primedec_mod() is the function for prime ideal decomposition of the radical of a poly-
nomial ideal over small finite field, and they return a list of prime ideals, which are
associated primes of the input ideal.

• primedec_mod() gives the decomposition over GF(mod). The generators of each re-
sulting component consists of integral polynomials.

• Each resulting component is a Groebner basis with respect to a term order specified
by [vlist,ord].

• If strategy is non zero, then the early termination strategy is tried by computing the
intersection of obtained components incrementally. In general, this strategy is useful
when the krull dimension of the ideal is high, but it may add some overhead if the
dimension is small.

• If you want to see internal information during the computation, execute
dp_gr_print(2) in advance.
[0] load("primdec_mod")$
[246] PP444=[x^8+x^2+t,y^8+y^2+t,z^8+z^2+t]$
[247] primedec_mod(PP444,[x,y,z,t],0,2,1);
[[y+z,x+z,z^8+z^2+t],[x+y,y^2+y+z^2+z+1,z^8+z^2+t],
[y+z+1,x+z+1,z^8+z^2+t],[x+z,y^2+y+z^2+z+1,z^8+z^2+t],
[y+z,x^2+x+z^2+z+1,z^8+z^2+t],[y+z+1,x^2+x+z^2+z+1,z^8+z^2+t],
[x+z+1,y^2+y+z^2+z+1,z^8+z^2+t],[y+z+1,x+z,z^8+z^2+t],
[x+y+1,y^2+y+z^2+z+1,z^8+z^2+t],[y+z,x+z+1,z^8+z^2+t]]
[248]

References
Section 6.3.17 [modfctr], page 54, Section 8.10.6 [dp_gr_main dp_
gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main
dp_weyl_gr_f_main], page 133, Section 8.5 [Setting term orderings],
page 123, Section 8.10.9 [dp_gr_flags dp_gr_print], page 135.

8.10.33 bfunction, bfct, generic_bfct, ann, ann0

bfunction(f )
bfct(f )
generic_bfct(plist,vlist,dvlist,weight)

:: Computes the global b function of a polynomial or an ideal

ann(f )
ann0(f ) :: Computes the annihilator of a power of polynomial

return polynomial or list

f polynomial

plist list of polynomials

vlist dvlist
list of variables

• These functions are defined in ‘bfct’.
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• bfunction(f ) and bfct(f ) compute the global b-function b(s) of a polynomial f. b(s)
is a polynomial of the minimal degree such that there exists P(x,s) in D[s], which is a
polynomial ring over Weyl algebra D, and P(x,s)f^(s+1)=b(s)f^s holds.

• generic_bfct(f,vlist,dvlist,weight) computes the global b-function of a left ideal I
in D generated by plist, with respect to weight. vlist is the list of x-variables, vlist is
the list of corresponding D-variables.

• bfunction(f ) and bfct(f ) implement different algorithms and the efficiency depends
on inputs.

• ann(f ) returns the generator set of the annihilator ideal of f ^s. ann(f ) returns a list
[a,list], where a is the minimal integral root of the global b-function of f, and list is
a list of polynomials obtained by substituting s in ann(f ) with a.

• See [Saito,Sturmfels,Takayama] for the details.
[0] load("bfct")$
[216] bfunction(x^3+y^3+z^3+x^2*y^2*z^2+x*y*z);
-9*s^5-63*s^4-173*s^3-233*s^2-154*s-40
[217] fctr(@);
[[-1,1],[s+2,1],[3*s+4,1],[3*s+5,1],[s+1,2]]
[218] F = [4*x^3*dt+y*z*dt+dx,x*z*dt+4*y^3*dt+dy,
x*y*dt+5*z^4*dt+dz,-x^4-z*y*x-y^4-z^5+t]$
[219] generic_bfct(F,[t,z,y,x],[dt,dz,dy,dx],[1,0,0,0]);
20000*s^10-70000*s^9+101750*s^8-79375*s^7+35768*s^6-9277*s^5
+1278*s^4-72*s^3
[220] P=x^3-y^2$
[221] ann(P);
[2*dy*x+3*dx*y^2,-3*dx*x-2*dy*y+6*s]
[222] ann0(P);
[-1,[2*dy*x+3*dx*y^2,-3*dx*x-2*dy*y-6]]

References
Section 8.9 [Weyl algebra], page 127.
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9 Algebraic numbers

9.1 Representation of algebraic numbers

In Asir algebraic number fields are not defined as independent objects. Instead, individual
algebraic numbers are defined by some means. In Asir an algebraic number field is defined
virtually as a number field obtained by adjoining a finite number of algebraic numbers to
the rational number field.

A new algebraic number is introduced in Asir in such a way where it is defined as a root
of an uni-variate polynomial whose coefficients include already defined algebraic numbers
as well as rational numbers. We shall call such a newly defined algebraic number a root.
Also, we call such an uni-variate polynomial the defining polynomial of that root.

[0] A0=newalg(x^2+1);
(#0)
[1] A1=newalg(x^3+A0*x+A0);
(#1)
[2] [type(A0),ntype(A0)];
[1,2]

In this example, the algebraic number assigned to A0 is defined as a root of a polynomial
x^2+1; that of A1 is defined as a root of a polynomial x^3+A0*x+A0, which you see contains
the previously defined root (A0) in its coefficients.
The argument to newalg(), i.e., the defining polynomial, must satisfy the following condi-
tions.
1. A defining polynomial must be an uni-variate polynomial.
2. A defining polynomial is used to simplify expressions containing that algebraic number.

The procedure of such simplification is performed by an internal routine similar to
the built-in function srem(), where the defining polynomial is used for the second
argument, the divisor. By this reason, the leading coefficient of the defining polynomial
must be a rational number (must not be an algebraic number.)

3. Every coefficients of a defining polynomial must be a ‘(multi-variate) polynomial’ in al-
ready defined root’s. Here, ‘(multi-variate) polynomial’ means a mathematical concept,
not the object type ‘polynomial’ in Asir.

4. A defining polynomial must be irreducible over the field that is obtained by adjoining
all root’s contained in its coefficients to the rational number field.

Only the first two conditions (1 and 2) are checked by function newalg(). Among all,
it should be emphasized that no check is done for the irreducibility at all. The reason is
that the irreducibility test requires enormously much computation time. You are trusted
whether to check it at your own risk.
Once a root has been defined by newalg() function, it is given the type identifier for a
number, and furthermore, the sub-type identifier for an algebraic number. (See Section 6.8.1
[type], page 74, Section 6.8.2 [ntype], page 75.) Also, any rational combination of rational
numbers and root’s is an algebraic number.

[87] N=(A0^2+A1)/(A1^2-A0-1);
((#1+#0^2)/(#1^2-#0-1))



Chapter 9: Algebraic numbers 153

[88] [type(N),ntype(N)];
[1,2]

As you see it in the example, a root is displayed as #n. But, you cannot input that root in
its immediate output form. You have to refer to a root by a program variable assigned to
the root, or to get it by alg(n) function, or by several other indirect means. A strange use
of newalg(), with a same argument polynomial (except for the name of its main variable),
will yield the old root instead of a new root though it is apparently inefficient.

[90] alg(0);
(#0)
[91] newalg(t^2+1);
(#0)

The defining polynomial of a root can be obtained by defpoly() function.
[96] defpoly(A0);
t#0^2+1
[97] defpoly(A1);
t#1^3+t#0*t#1+t#0

Here, you see a strange expression, t#0 and t#1. They are a specially indeterminates
generated and maintained by Asir internally. Indeterminate t#0 corresponds to root #0, and
t#0 to #1. These indeterminates also cannot be input directly by a user in their immediate
forms. You can get them by several ways: by var() function, or algv(n) function.

[98] var(@);
t#1
[99] algv(0);
t#0
[100]

9.2 Operations over algebraic numbers

In the previous section, we explained about the representation of algebraic numbers and
their defining method. Here, we describe operations on algebraic numbers. Only a few
functions are built-in, and almost all functions are provided as user defined functions. The
file containing their definitions is ‘sp’, and it is placed under the same directory as ‘gr’ is
placed, i.e., the standard library directory of Asir.

[0] load("gr")$
[1] load("sp")$

Or if you always need them, it is more convenient to include the load commands in
‘$HOME/.asirrc’.
Like the other numbers, algebraic numbers can get arithmetic operations applied. Simplifi-
cation, however, by defining polynomials are not automatically performed. It is left to users
to simplify their expressions. A fatal error shall result if the denominator expression will be
simplified to 0. Therefore, be careful enough when you will create and deal with algebraic
numbers which may denominators in their expressions.

Use simpalg() function for simplification of algebraic numbers by defining polynomials.
[49] T=A0^2+1;
(#0^2+1)
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[50] simpalg(T);
0

Function simpalg() simplifies algebraic numbers which have the same structures as rational
expressions in their appearances.

[39] A0=newalg(x^2+1);
(#0)
[40] T=(A0^2+A0+1)/(A0+3);
((#0^2+#0+1)/(#0+3))
[41] simpalg(T);
(3/10*#0+1/10)
[42] T=1/(A0^2+1);
((1)/(#0^2+1))
[43] simpalg(T);
div : division by 0
stopped in invalgp at line 258 in file "/usr/local/lib/asir/sp"
258 return 1/A;
(debug)

This example shows an error caused by zero division in the course of program execution
of simpalg(), which attempted to simplify an algebraic number expression of which the
denominator is 0.

Function simpalg() also can take a polynomial as its argument and simplifies algebraic
numbers in its coefficients.

[43] simpalg(1/A0*x+1/(A0+1));
(-#0)*x+(-1/2*#0+1/2)

Thus, you can operate in polynomials which contain algebraic numbers as you do usually in
ordinary polynomials, except for proper simplification by simpalg(). You may sometimes
feel needs to convert root’s into indeterminates, especially when you are working for norm
computation in algorithms for algebraic factorization. Function algptorat() is used for
such cases.

[83] A0=newalg(x^2+1);
(#0)
[84] A1=newalg(x^3+A0*x+A0);
(#1)
[85] T=(2*A0+A1*A0+A1^2)*x+(1+A1)/(2+A0);
(#1^2+#0*#1+2*#0)*x+((#1+1)/(#0+2))
[86] S=algptorat(T);
(((t#0+2)*t#1^2+(t#0^2+2*t#0)*t#1+2*t#0^2+4*t#0)*x+t#1+1)/(t#0+2)
[87] algptorat(coef(T,1));
t#1^2+t#0*t#1+2*t#0

As you see by the example, function algptorat() converts root’s, #n, in polynomials and
numbers into its associated indeterminates, t#n. As was already mentioned those indeter-
minates cannot be directly input in their immediate form. The restriction is adopted to
avoid the confusion that might happen if the user could input such internally generatable
indeterminates.
The associated indeterminate to a root is reversely converted into the root by rattoalgp()
function.
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[88] rattoalgp(S,[alg(0)]);
(((#0+2)/(#0+2))*t#1^2+((#0^2+2*#0)/(#0+2))*t#1
+((2*#0^2+4*#0)/(#0+2)))*x+((1)/(#0+2))*t#1+((1)/(#0+2))
[89] rattoalgp(S,[alg(0),alg(1)]);
(((#0^3+6*#0^2+12*#0+8)*#1^2+(#0^4+6*#0^3+12*#0^2+8*#0)*#1
+2*#0^4+12*#0^3+24*#0^2+16*#0)/(#0^3+6*#0^2+12*#0+8))*x
+(((#0+2)*#1+#0+2)/(#0^2+4*#0+4))
[90] rattoalgp(S,[alg(1),alg(0)]);
(((#0+2)*#1^2+(#0^2+2*#0)*#1+2*#0^2+4*#0)/(#0+2))*x
+((#1+1)/(#0+2))
[91] simpalg(@89);
(#1^2+#0*#1+2*#0)*x+((-1/5*#0+2/5)*#1-1/5*#0+2/5)
[92] simpalg(@90);
(#1^2+#0*#1+2*#0)*x+((-1/5*#0+2/5)*#1-1/5*#0+2/5)

Function rattoalgp() takes as the second argument a list consisting of root’s that you want
to convert, and converts them successively from the left. This example shows that apparent
difference of the results due to the order of such conversion will vanish by simplification
yielding the same result. Functions algptorat() and rattoalgp() can be conveniently
used for your own simplification.

9.3 Representation of algebraic numbers by distributed
polynomials

Simplification of algebraic numbers containing root is not done automatically and should be
done by users. There is another representation of algebraic numbers, for which the results of
fundamental operations are automatically simplified. This representations are designed so
that operations are efficiently performed especially when the field is a successive extension
and it can be used as a ground field for Groebner basis related functions. Internally an
algebraic number of this type is defined as an object called DAlg. A DAlg is represented as
a fraction. The denominator is an integer and the numerator is a distributed polynomial
with integral coefficients.

DAlg is generated as an element of an algebraic number field set by set_field(). There
are two methods to generate a DAlg. algtodalg() converts an algebraic number containing
root to DAlg. dptodalg() directly converts a distributed polynomial to DAlg.

[0] A=newalg(x^2+1);
(#0)
[1] B=newalg(x^3+A*x+A);
(#1)
[2] set_field([B,A]);
0
[3] C=algtodalg(A+B);
((1)*<<1,0>>+(1)*<<0,1>>)
[4] C^5;
((-11)*<<2,1>>+(5)*<<2,0>>+(10)*<<1,1>>+(9)*<<1,0>>+(11)*<<0,1>>
+(-1)*<<0,0>>)
[5] 1/C;
((2)*<<2,1>>+(-1)*<<2,0>>+(1)*<<1,1>>+(2)*<<1,0>>+(-3)*<<0,1>>
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+(-1)*<<0,0>>)/5

In this example Q(a,b) (a^2+1=0, b^3+ab+b=0) is set as the current ground field, and
(a+b)^5 and 1/(a+b) are simplified in the field. The numerators of the results are printed
as distributed polynomials.

9.4 Operations for uni-variate polynomials over an algebraic
number field

In the file ‘sp’ are provided functions for uni-variate polynomial factorization and uni-variate
polynomial GCD computation over algebraic numbers, and furthermore, as an application
of them, functions to compute splitting fields of univariate polynomials.

9.4.1 GCD

Greatest common divisors (GCD) over algebraic number fields are computed by cr_gcda()
function. This function computes GCD by using modular computation and Chinese re-
mainder theorem and it works for the case where the ground field is a multiple extension.

[63] A=newalg(t^9-15*t^6-87*t^3-125);
(#0)
[64] B=newalg(75*s^2+(10*A^7-175*A^4-470*A)*s+3*A^8-45*A^5-261*A^2);
(#1)
[65] P1=75*x^2+(150*B+10*A^7-175*A^4-395*A)*x
+(75*B^2+(10*A^7-175*A^4-395*A)*B+13*A^8-220*A^5-581*A^2)$
[66] P2=x^2+A*x+A^2$
[67] cr_gcda(P1,P2);
27*x+((#0^6-19*#0^3-65)*#1-#0^7+19*#0^4+38*#0)

9.4.2 Square-free factorization and Factorization

For square-free factorization (of uni-variate polynomials over algebraic number fields), we
employ the most fundamental algorithm which begins first to compute GCD of a polynomial
and its derivative. The function to do this factorization is asq().

[116] A=newalg(x^2+x+1);
(#4)
[117] T=simpalg((x+A+1)*(x^2-2*A-3)^2*(x^3-x-A)^2);
x^11+(#4+1)*x^10+(-4*#4-8)*x^9+(-10*#4-4)*x^8+(16*#4+20)*x^7
+(24*#4-6)*x^6+(-29*#4-31)*x^5+(-15*#4+28)*x^4+(38*#4+29)*x^3
+(#4-23)*x^2+(-21*#4-7)*x+(3*#4+8)
[118] asq(T);
[[x^5+(-2*#4-4)*x^3+(-#4)*x^2+(2*#4+3)*x+(#4-2),2],[x+(#4+1),1]]

Like factorization over the rational number field, the result is presented, commonly to both
square-free factorization and factorization, as a list whose elements are pairs (list of two
elements) in the form [factor, multiplicity] without the constant multiple part.

Here, it should be noticed that the products of all factors of the result may DIFFER
from the input polynomial by a constant. The reason is that the factors are normalized so
that they have integral leading coefficients for the sake of readability.

This incongruity may happen to square-free factorization and factorization commonly.
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The algorithm employed for factorization over algebraic number fields is an improvement
of the norm method by Trager. It is especially very effective to factorize a polynomial over
a field obtained by adjoining some of its root’s to the base field.

[119] af(T,[A]);
[[x^3-x+(-#4),2],[x^2+(-2*#4-3),2],[x+(#4+1),1]]

The function takes two arguments: The second argument is a list of root’s. Factorization
is performed over a field obtained by adjoining the root’s to the rational number field. It
is important to keep in mind that the ordering of the root’s must obey a restriction: Last
defined should come first. The automatic re-ordering is not done. It should be done by
yourself.

The efficiency of factorization via norm depends on the efficiency of the norm computation
and univariate factorization over the rationals. Especially the latter often causes combina-
torial explosion and the computation will stick in such a case.

[120] B=newalg(x^2-2*A-3);
(#5)
[121] af(T,[B,A]);
[[x+(#5),2],[x^3-x+(-#4),2],[x+(-#5),2],[x+(#4+1),1]]

9.4.3 Splitting fields

This operation may be somewhat unusual and for specific interest. (Galois Group for
example.) Procedurally, however, it is easy to obtain the splitting field of a polynomial
by repeated application of algebraic factorization described in the previous section. The
function is sp().

[103] sp(x^5-2);
[[x+(-#1),2*x+(#0^3*#1^3+#0^4*#1^2+2*#1+2*#0),2*x+(-#0^4*#1^2),
2*x+(-#0^3*#1^3),x+(-#0)],
[[(#1),t#1^4+t#0*t#1^3+t#0^2*t#1^2+t#0^3*t#1+t#0^4],[(#0),t#0^5-2]]]

Function sp() takes only one argument. The result is a list of two element: The first element
is a list of linear factors, and the second one is a list whose elements are pairs (list of two
elements) in the form [root, algptorat(defining polynomial)]. The second element, a list
of pairs of form [root,algptorat(defining polynomial)], corresponds to the root’s which
are adjoined to eventually obtain the splitting field. They are listed in the reverse order
of adjoining. Each of the defining polynomials in the list is, of course, guaranteed to be
irreducible over the field obtained by adjoining all root’s defined before it.

The first element of the result, a list of linear factors, contains all irreducible factors of the
input polynomial over the field obtained by adjoining all root’s in the second element of the
result. Because such field is the splitting field of the input polynomial, factors in the result
are all linear as the consequence.

Similarly to function af(), the product of all resulting factors may yield a polynomial
which differs by a constant.

9.5 Summary of functions for algebraic numbers
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9.5.1 newalg

newalg(defpoly)
:: Creates a new root.

return algebraic number (root)

defpoly polynomial
• Creates a new root (algebraic number) with its defining polynomial defpoly.
• For constraints on defpoly, See Section 9.1 [Representation of algebraic numbers],

page 152.
[0] A0=newalg(x^2-2);
(#0)

Reference
Section 9.5.2 [defpoly], page 158

9.5.2 defpoly

defpoly(alg)
:: Returns the defining polynomial of root alg.

return polynomial

alg algebraic number (root)
• Returns the defining polynomial of root alg.
• If the argument alg, a root, is #n, then the main variable of its defining polynomial is

t#n.
[1] defpoly(A0);
t#0^2-2

Reference
Section 9.5.1 [newalg], page 158, Section 9.5.3 [alg], page 158, Section 9.5.4
[algv], page 159

9.5.3 alg

alg(i) :: Returns a root which correspond to the index i.

return algebraic number (root)

i integer
• Returns #i, a root.
• Because #i cannot be input directly, this function provides an alternative way: input

alg(i).
[2] x+#0;
syntax error
0
[3] alg(0);
(#0)

Reference
Section 9.5.1 [newalg], page 158, Section 9.5.4 [algv], page 159
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9.5.4 algv

algv(i) :: Returns the associated indeterminate with alg(i).

return polynomial

i integer

• Returns an indeterminate t#i

• Since indeterminate t#i cannot be input directly, it is input by algv(i).
[4] var(defpoly(A0));
t#0
[5] t#0;
syntax error
0
[6] algv(0);
t#0

Reference
Section 9.5.1 [newalg], page 158, Section 9.5.2 [defpoly], page 158, Section 9.5.3
[alg], page 158

9.5.5 simpalg

simpalg(rat)
:: Simplifies algebraic numbers in a rational expression.

return rational expression

rat rational expression

• Defined in the file ‘sp’.

• Simplifies algebraic numbers contained in numbers, polynomials, and rational expres-
sions by the defining polynomials of root’s contained in them.

• If the argument is a number having the denominator, it is rationalized and the result
is a polynomial in root’s.

• If the argument is a polynomial, each coefficient is simplified.

• If the argument is a rational expression, its denominator and numerator are simplified
as a polynomial.
[7] simpalg((1+A0)/(1-A0));
simpalg undefined
return to toplevel
[7] load("sp")$
[46] simpalg((1+A0)/(1-A0));
(-2*#0-3)
[47] simpalg((2-A0)/(2+A0)*x^2-1/(3+A0));
(-2*#0+3)*x^2+(1/7*#0-3/7)
[48] simpalg((x+1/(A0-1))/(x-1/(A0+1)));
(x+(#0+1))/(x+(-#0+1))
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9.5.6 algptorat

algptorat(poly)
:: Substitutes the associated indeterminate for every root

return polynomial

poly polynomial
• Defined in the file ‘sp’.
• Substitutes the associated indeterminate t#n for every root #n in a polynomial.

[49] algptorat((-2*alg(0)+3)*x^2+(1/7*alg(0)-3/7));
(-2*t#0+3)*x^2+1/7*t#0-3/7

Reference
Section 9.5.2 [defpoly], page 158, Section 9.5.4 [algv], page 159

9.5.7 rattoalgp

rattoalgp(poly,alglist)
:: Substitutes a root for the associated indeterminate with the root.

return polynomial

poly polynomial

alglist list
• Defined in the file ‘sp’.
• The second argument is a list of root’s. Function rattoalgp() substitutes a root for

the associated indeterminate of the root.
[51] rattoalgp((-2*algv(0)+3)*x^2+(1/7*algv(0)-3/7),[alg(0)]);
(-2*#0+3)*x^2+(1/7*#0-3/7)

Reference
Section 9.5.3 [alg], page 158, Section 9.5.4 [algv], page 159

9.5.8 cr_gcda

cr_gcda(poly1,poly2)
:: GCD of two uni-variate polynomials over an algebraic number field.

return polynomial

poly1 poly2
polynomial

• Defined in the file ‘sp’.
• Finds the GCD of two uni-variate polynomials.

[76] X=x^6+3*x^5+6*x^4+x^3-3*x^2+12*x+16$
[77] Y=x^6+6*x^5+24*x^4+8*x^3-48*x^2+384*x+1024$
[78] A=newalg(X);
(#0)
[79] cr_gcda(X,subst(Y,x,x+A));
x+(-#0)
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Reference
Section 8.10.1 [gr hgr gr_mod], page 128, Section 9.5.10 [asq af af_noalg],
page 161

9.5.9 sp_norm

sp_norm(alg,var,poly,alglist)
:: Norm computation over an algebraic number field.

return polynomial

var The main variable of poly

poly univariate polynomial

alg root

alglist root list
• Defined in the file ‘sp’.
• Computes the norm of poly with respect to alg. Namely, if we write K = Q(alglist \

{alg}), The function returns a product of all conjugates of poly, where the conjugate
of polynomial poly is a polynomial in which the algebraic number alg is substituted
for its conjugate over K.

• The result is a polynomial over K.
• The method of computation depends on the input. Currently direct computation of

resultant and Chinese remainder theorem are used but the selection is not necessarily
optimal. By setting the global variable USE_RES to 1, the builtin function res() is
always used.
[0] load("sp")$
[39] A0=newalg(x^2+1)$
[40] A1=newalg(x^2+A0)$
[41] sp_norm(A1,x,x^3+A0*x+A1,[A1,A0]);
x^6+(2*#0)*x^4+(#0^2)*x^2+(#0)
[42] sp_norm(A0,x,@@,[A0]);
x^12+2*x^8+5*x^4+1

Reference
Section 6.3.14 [res], page 52, Section 9.5.10 [asq af af_noalg], page 161

9.5.10 asq, af, af_noalg

asq(poly) :: Square-free factorization of polynomial poly over an algebraic number field.

af(poly,alglist)
af_noalg(poly,defpolylist)

:: Factorization of polynomial poly over an algebraic number field.

return list

poly polynomial

alglist root list
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defpolylist root list of pairs of an indeterminate and a polynomial
• Both defined in the file ‘sp’.
• If the inputs contain no root’s, these functions run fast since they invoke functions over

the integers. In contrast to this, if the inputs contain root’s, they sometimes take a
long time, since cr_gcda() is invoked.

• Function af() requires the specification of base field, i.e., list of root’s for its second
argument.

• In the second argument alglist, root defined last must come first.
• In af(F,AL), AL denotes a list of roots and it represents an algebraic number field. In

AL=[An,...,A1] each Ak should be defined as a root of a defining polynomial whose
coefficients are in Q(A(k+1),...,An).

[1] A1 = newalg(x^2+1);
[2] A2 = newalg(x^2+A1);
[3] A3 = newalg(x^2+A2*x+A1);
[4] af(x^2+A2*x+A1,[A2,A1]);
[[x^2+(#1)*x+(#0),1]]

To call sp_noalg, one should replace each algebraic number ai in poly with an inde-
terminate vi. defpolylist is a list [[vn,dn(vn,...,v1)],...,[v1,d(v1)]]. In this expression
di(vi,...,v1) is a defining polynomial of ai represented as a multivariate polynomial.

[1] af_noalg(x^2+a2*x+a1,[[a2,a2^2+a1],[a1,a1^2+1]]);
[[x^2+a2*x+a1,1]]

• The result is a list, as a result of usual factorization, whose elements is of the form
[factor, multiplicity]. In the result of af_noalg, algebraic numbers in f̌actor are replaced
by the indeterminates according to defpolylist.

• The product of all factors with multiplicities counted may differ from the input poly-
nomial by a constant.
[98] A = newalg(t^2-2);
(#0)
[99] asq(-x^4+6*x^3+(2*alg(0)-9)*x^2+(-6*alg(0))*x-2);
[[-x^2+3*x+(#0),2]]
[100] af(-x^2+3*x+alg(0),[alg(0)]);
[[x+(#0-1),1],[-x+(#0+2),1]]
[101] af_noalg(-x^2+3*x+a,[[a,x^2-2]]);
[[x+a-1,1],[-x+a+2,1]]

Reference
Section 9.5.8 [cr_gcda], page 160, Section 6.3.15 [fctr sqfr], page 52

9.5.11 sp, sp_noalg

sp(poly)
sp_noalg(poly)

:: Finds the splitting field of polynomial poly and splits.

return list

poly polynomial
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• Defined in the file ‘sp’.
• Finds the splitting field of poly, an uni-variate polynomial over with rational coeffi-

cients, and splits it into its linear factors over the field.
• The result consists of a two element list: The first element is the list of all linear factors

of poly ; the second element is a list which represents the successive extension of the
field. In the result of sp_noalg all the algebraic numbers are replaced by the special
indeterminate associated with it, that is t#i for #i. By this operation the result of
sp_noalg is a list containing only integral polynomials.

• The splitting field is represented as a list of pairs of form [root,
algptorat(defpoly(root))]. In more detail, the list is interpreted as a
representation of successive extension obtained by adjoining root’s to the rational
number field. Adjoining is performed from the right root to the left.

• sp() invokes sp_norm() internally. Computation of norm is done by several methods
according to the situation but the algorithm selection is not always optimal and a
simple resultant computation is often superior to the other methods. By setting the
global variable USE_RES to 1, the builtin function res() is always used.
[101] L=sp(x^9-54);
[[x+(-#2),-54*x+(#1^6*#2^4),54*x+(#1^6*#2^4+54*#2),
54*x+(-#1^8*#2^2),-54*x+(#1^5*#2^5),54*x+(#1^5*#2^5+#1^8*#2^2),
-54*x+(-#1^7*#2^3-54*#1),54*x+(-#1^7*#2^3),x+(-#1)],
[[(#2),t#2^6+t#1^3*t#2^3+t#1^6],[(#1),t#1^9-54]]]
[102] for(I=0,M=1;I<9;I++)M*=L[0][I];
[111] M=simpalg(M);
-1338925209984*x^9+72301961339136
[112] ptozp(M);
-x^9+54

Reference
Section 9.5.10 [asq af af_noalg], page 161, Section 9.5.2 [defpoly], page 158,
Section 9.5.6 [algptorat], page 160, Section 9.5.9 [sp_norm], page 161.

9.5.12 set_field

set_field(rootlist)
:: Set an algebraic number field as the currernt ground field.

return 0

rootlist A list of root
• set_field() sets an algebraic number field generated by root in rootlist over Q.
• You don’t care about the order of root in rootlist, because root are automatically

ordered internally.
[0] A=newalg(x^2+1);
(#0)
[1] B=newalg(x^3+A);
(#1)
[2] C=newalg(x^4+B);
(#1)
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[3] set_field([C,B,A]);
0

Reference
Section 9.5.13 [algtodalg dalgtoalg dptodalg dalgtodp], page 164

9.5.13 algtodalg, dalgtoalg, dptodalg, dalgtodp

algtodalg(alg)
:: Converts an algebraic number alg to a DAlg.

dalgtoalg(dalg)
:: Converts a DAlg dalg to an algebraic number.

dptodalg(dp)
:: Converts an algebraic number alg to a DAlg.

dalgtodp(dalg)
:: Converts a DAlg dalg to an algebraic number.

return An algebraic number, a DAlg or a list [distributed polynomial,denominator]

alg an algebraic number containing root

dp a distributed polynomial over Q
• These functions are converters between DAlg and an algebraic number containing root,

or a distributed polynomial.
• A ground field to which a DAlg belongs must be set by set_field() in advance.
• dalgtodp() returns a list containing the numerator (a distributed polynomial) and the

denominator (an integer).
• algtodalg(), dptodalg() return the simplified result.

[0] A=newalg(x^2+1);
(#0)
[1] B=newalg(x^3+A*x+A);
(#1)
[2] set_field([B,A]);
0
[3] C=algtodalg((A+B)^10);
((408)*<<2,1>>+(103)*<<2,0>>+(-36)*<<1,1>>+(-446)*<<1,0>>
+(-332)*<<0,1>>+(-218)*<<0,0>>)
[4] dalgtoalg(C);
((408*#0+103)*#1^2+(-36*#0-446)*#1-332*#0-218)
[5] D=dptodalg(<<10,10>>/10+2*<<5,5>>+1/3*<<0,0>>);
((-9)*<<2,1>>+(57)*<<2,0>>+(-63)*<<1,1>>+(-12)*<<1,0>>
+(-60)*<<0,1>>+(1)*<<0,0>>)/30
[6] dalgtodp(D);
[(-9)*<<2,1>>+(57)*<<2,0>>+(-63)*<<1,1>>+(-12)*<<1,0>>
+(-60)*<<0,1>>+(1)*<<0,0>>,30]

Reference
Section 9.5.12 [set_field], page 163
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10 Finite fields

10.1 Representation of finite fields

On Asir GF(p), GF(2^n), GF(p^n) can be defined, where GF(p) is a finite prime field of
charateristic p, GF(2^n) is a finite field of characteristic 2 and GF(p^n) is a finite extension
of GF(p). These are all defined by setmod_ff().

[0] P=pari(nextprime,2^50);
1125899906842679
[1] setmod_ff(P);
1125899906842679
[2] field_type_ff();
1
[3] load("fff");
1
[4] F=defpoly_mod2(50);
x^50+x^4+x^3+x^2+1
[5] setmod_ff(F);
x^50+x^4+x^3+x^2+1
[6] field_type_ff();
2
[7] setmod_ff(x^3+x+1,1125899906842679);
[1*x^3+1*x+1,1125899906842679]
[8] field_type_ff();
3
[9] setmod_ff(3,5);
[3,x^5+2*x+1,x]
[10] field_type_ff();
4

If p is a positive integer, setmod_ff(p) sets GF(p) as the current base field. If f is a
univariate polynomial of degree n, setmod_ff(f ) sets GF(2^n) as the current base field.
GF(2^n) is represented as an algebraic extension of GF(2) with the defining polynomial f
mod 2. Furthermore, finite extensions of prime finite fields can be defined. See Section 3.2
[Types of numbers], page 13. In all cases the primality check of the argument is not done
and the caller is responsible for it.

Correctly speaking there is no actual object corresponding to a ’base field’. Setting
a base field means that operations on elements of finite fields are done according to the
arithmetics of the base field. Thus, if operands of an arithmetic operation are both rational
numbers, then the result is also a rational number. However, if one of the operands is in
a finite field, then the other is automatically regarded as in the same finite field and the
operation is done in the finite field.

A non zero element of a finite field belongs to the number and has object identifier 1.
Its number identifier is 6 if the finite field is GF(p), 7 if it is GF(2^n).

There are several methods to input an element of a finite field. An element of GF(p)
can be input by simp_ff().



Chapter 10: Finite fields 166

[0] P=pari(nextprime,2^50);
1125899906842679
[1] setmod_ff(P);
1125899906842679
[2] A=simp_ff(2^100);
3025
[3] ntype(@@);
6

In the case of GF(2^n) the following methods are available.

[0] setmod_ff(x^50+x^4+x^3+x^2+1);
x^50+x^4+x^3+x^2+1
[1] A=@;
(@)
[2] ptogf2n(x^50+1);
(@^50+1)
[3] simp_ff(@@);
(@^4+@^3+@^2)
[4] ntogf2n(2^10-1);
(@^9+@^8+@^7+@^6+@^5+@^4+@^3+@^2+@+1)

Elements of finite fields are numbers and one can apply field arithmetics to them. @ is a
generator of GF(2^n) over GF(2). See Section 3.2 [Types of numbers], page 13.

10.2 Univariate polynomials on finite fields

In ‘fff’ square-free factorization, DDF (distinct degree factorization), irreducible factoriza-
tion and primality check are implemented for univariate polynomials over finite fields.

Factorizers return lists of [factor,multiplicity]. The factor part is monic and the infor-
mation on the leading coefficient of the input polynomial is abandoned.

The algorithm used in square-free factorization is the most primitive one.

The irreducible factorization proceeds as follows.

1. DDF

2. Nullspace computation by Berlekamp algorithm

3. Root finding of minimal polynomials of bases of the nullspace

4. Separation of irreducible factors by the roots

10.3 Polynomials on small finite fields

A multivariate polynomial over small finite field set by setmod_ff(p,n) can be factorized
by using a builtin function sffctr(). modfctr() also factorizes a polynomial over a finite
prime field. Internally, modfctr() creates a sufficiently large field extension of the specified
ground field, and it calls sffctr(), then it constructs irreducible factors over the ground
field from the factors returned by sffctr().
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10.4 Elliptic curves on finite fields

Several fundamental operations on elliptic curves over finite fields are provided as built-in
functions.

An elliptic curve is specified by a vector [a b] of length 2, where a, b are elements of
finite fields. If the current base field is a prime field, then [a b] represents y^2=x^3+ax+b.
If the current base field is a finite field of characteristic 2, then [a b] represents
y^2+xy=x^3+ax^2+b.

Points on an elliptic curve together with the point at infinity forms an additive group.
The addition, the subtraction and the additive inverse operation are provided as ecm_add_
ff(), ecm_sub_ff() and ecm_chsgn_ff() respectively. Here the representation of points
are as follows.

• 0 denotes the point at infinity.
• The other points are represented by vectors [x y z] of length 3 with non-zero z.

[x y z] represents a projective coordinate and it corresponds to [x/z y/z] in the affine
coordinate. To apply the above operations to a point [x y ], [x y 1] should be used instead
as an argument. The result of an operation is also represented by the projective coordinate.
As the third coordinate is not always equal to 1, one has to divide the first and the scond
coordinate by the third one to obtain the affine coordinate.

10.5 Functions for Finite fields

10.5.1 setmod_ff

setmod_ff([p|defpoly2])
setmod_ff([defpolyp,p])
setmod_ff([p,n])

:: Sets/Gets the current base fields.

return number or polynomial

p prime

defpoly2 univariate polynomial irreducible over GF(2)

defpolyp univariate polynomial irreducible over GF(p)

n the extension degree
• If the argument is a non-negative integer p, GF(p) is set as the current base field.
• If the argument is a polynomial defpoly2, GF(2^deg(defpoly2 mod 2)) =

GF(2)[t]/(defpoly2(t) mod2) is set as the current base field.
• If the arguments are a polynomial defpolyp and a prime p, GF(p^deg(defpolyp)) =

GF(p)[t]/(defpolyp(t)) is set as the current base field.
• If the arguments are a prime p and an extension degree n, GF(p^n) is set as the current

base field. p^n must be less than 2^29 and if p is greater than or equal to 2^14, then
n must be equal to 1.
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• If no argument is specified, the modulus indicating the current base field is returned. If
the current base field is GF(p), p is returned. If it is GF(2^n), the defining polynomial is
returned. If it is GF(p^n) defined by setmod_ff(defpoly,p), [defpolyp,p] is returned.
If it is GF(p^n) defined by setmod_ff(p,n), [p,defpoly,prim elem] is returned. Here,
defpoly is the defining polynomial of the n-th extension, and prim elem is the generator
of the multiplicative group of GF(p^n).

• Any irreducible univariate polynomial over GF(2) is available to set GF(2^n). However
the use of defpoly_mod2() is recommended for efficiency.
[174] defpoly_mod2(100);
x^100+x^15+1
[175] setmod_ff(@@);
x^100+x^15+1
[176] setmod_ff();
x^100+x^15+1
[177] setmod_ff(x^4+x+1,547);
[1*x^4+1*x+1,547]
[178] setmod_ff(2,5);
[2,x^5+x^2+1,x]

References
Section 10.5.14 [defpoly_mod2], page 174

10.5.2 field_type_ff

field_type_ff()
:: Type of the current base field.

return integer
• Returns the type of the current base field.
• If no field is set, 0 is returned. If GF(p) is set, 1 is returned. If GF(2^n) is set, 2 is

returned.
[0] field_type_ff();
0
[1] setmod_ff(3);
3
[2] field_type_ff();
1
[3] setmod_ff(x^2+x+1);
x^2+x+1
[4] field_type_ff();
2

References
Section 10.5.1 [setmod_ff], page 167

10.5.3 field_order_ff

field_order_ff()
:: Order of the current base field.
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return integer
• Returns the order of the current base field.
• q is returned if the current base field is GF(q).

[0] field_order_ff();
field_order_ff : current_ff is not set
return to toplevel
[0] setmod_ff(3);
3
[1] field_order_ff();
3
[2] setmod_ff(x^2+x+1);
x^2+x+1
[3] field_order_ff();
4

References
Section 10.5.1 [setmod_ff], page 167

10.5.4 characteristic_ff

characteristic_ff()
:: Characteristic of the current base field.

return integer
• Returns the characteristic of the current base field.
• p is returned if GF(p), where p is a prime, is set. 2 is returned if GF(2^n) is set.

[0] characteristic_ff();
characteristic_ff : current_ff is not set
return to toplevel
[0] setmod_ff(3);
3
[1] characteristic_ff();
3
[2] setmod_ff(x^2+x+1);
x^2+x+1
[3] characteristic_ff();
2

References
Section 10.5.1 [setmod_ff], page 167

10.5.5 extdeg_ff

extdeg_ff()
:: Extension degree of the current base field over the prime field.

return integer
• Returns the extension degree of the current base field over the prime field.
• 1 is returned if GF(p), where p is a prime, is set. n is returned if GF(2^n) is set.
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[0] extdeg_ff();
extdeg_ff : current_ff is not set
return to toplevel
[0] setmod_ff(3);
3
[1] extdeg_ff();
1
[2] setmod_ff(x^2+x+1);
x^2+x+1
[3] extdeg_ff();
2

References
Section 10.5.1 [setmod_ff], page 167

10.5.6 simp_ff

simp_ff(obj)
:: Converts numbers or coefficients of polynomials into elements in finite fields.

return number or polynomial

obj number or polynomial

• Converts numbers or coefficients of polynomials into elements in finite fields.

• It is used to convert integers or intrgral polynomials int elements of finite fields or
polynomials over finite fields.

• An element of a finite field may not have the reduced representation. In such case an
application of simp_ff ensures that the output has the reduced representation. If a
small finite field is set as a ground field, an integer is projected the finite prime field,
then it is embedded into the ground field. ptosfp() can be used for direct projection
to the ground field.

[0] simp_ff((x+1)^10);
x^10+10*x^9+45*x^8+120*x^7+210*x^6+252*x^5+210*x^4+120*x^3+45*x^2+10*x+1
[1] setmod_ff(3);
3
[2] simp_ff((x+1)^10);
1*x^10+1*x^9+1*x+1
[3] ntype(coef(@@,10));
6
[4] setmod_ff(2,3);
[2,x^3+x+1,x]
[5] simp_ff(1);
@_0
[6] simp_ff(2);
0
[7] ptosfp(2);
@_1
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References
Section 10.5.1 [setmod_ff], page 167, Section 10.5.8 [lmptop], page 171, Sec-
tion 10.5.10 [gf2nton], page 172, Section 10.5.13 [ptosfp sfptop], page 174

10.5.7 random_ff

random_ff()
:: Random generation of an element of a finite field.

return element of a finite field
• Generates an element of the current base field randomly.
• The same random generator as in random(), lrandom() is used.

[0] random_ff();
random_ff : current_ff is not set
return to toplevel
[0] setmod_ff(pari(nextprime,2^40));
1099511627791
[1] random_ff();
561856154357
[2] random_ff();
45141628299

References
Section 10.5.1 [setmod_ff], page 167, Section 6.1.8 [random], page 37, Sec-
tion 6.1.9 [lrandom], page 37

10.5.8 lmptop

lmptop(obj)
:: Converts the coefficients of a polynomial over GF(p) into integers.

return integral polynomial

obj polynomial over GF(p)
• Converts the coefficients of a polynomial over GF(p) into integers.
• An element of GF(p) is represented by a non-negative integer r less than p. Each

coefficient of a polynomial is converted into an integer object whose value is r.
[0] setmod_ff(pari(nextprime,2^40));
1099511627791
[1] F=simp_ff((x-1)^10);
1*x^10+1099511627781*x^9+45*x^8+1099511627671*x^7+210*x^6
+1099511627539*x^5+210*x^4+1099511627671*x^3+45*x^2+1099511627781*x+1
[2] setmod_ff(547);
547
[3] F=simp_ff((x-1)^10);
1*x^10+537*x^9+45*x^8+427*x^7+210*x^6+295*x^5+210*x^4+427*x^3
+45*x^2+537*x+1
[4] lmptop(F);
x^10+537*x^9+45*x^8+427*x^7+210*x^6+295*x^5+210*x^4+427*x^3
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+45*x^2+537*x+1
[5] lmptop(coef(F,1));
537
[6] ntype(@@);
0

References
Section 10.5.6 [simp_ff], page 170

10.5.9 ntogf2n

ntogf2n(m)
:: Converts a non-negative integer into an element of GF(2^n).

return element of GF(2^n)

m non-negative integer
• Let m be a non-negative integer. m has the binary representation

m=m0+m1*2+...+mk*2^k. This function returns an element of GF(2^n) =
GF(2)[t]/(g(t)), m0+m1*t+...+mk*t^k mod g(t).

• Apply simp_ff() to reduce the result.
[1] setmod_ff(x^30+x+1);
x^30+x+1
[2] N=ntogf2n(2^100);
(@^100)
[3] simp_ff(N);
(@^13+@^12+@^11+@^10)

References
Section 10.5.10 [gf2nton], page 172

10.5.10 gf2nton

gf2nton(m)
:: Converts an element of GF(2^n) into a non-negative integer.

return non-negative integer

m element of GF(2^n)
• The inverse of gf2nton.

[1] setmod_ff(x^30+x+1);
x^30+x+1
[2] N=gf2nton(2^100);
(@^100)
[3] simp_ff(N);
(@^13+@^12+@^11+@^10)
[4] gf2nton(N);
1267650600228229401496703205376
[5] gf2nton(simp_ff(N));
15360
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References
Section 10.5.10 [gf2nton], page 172

10.5.11 ptogf2n

ptogf2n(poly)
:: Converts a univariate polynomial into an element of GF(2^n).

return element of GF(2^n)

poly univariate polynomial

• Generates an element of GF(2^n) represented by poly. The coefficients are reduced
modulo 2. The output is equal to the result by substituting @ for the variable of poly.

[1] setmod_ff(x^30+x+1);
x^30+x+1
[2] ptogf2n(x^100);
(@^100)

References
Section 10.5.12 [gf2ntop], page 173

10.5.12 gf2ntop

gf2ntop(m[,v])
:: Converts an element of GF(2^n) into a polynomial.

return univariate polynomial

m an element of GF(2^n)

v indeterminate

• Returns a polynomial representing m.

• If v is used as the variable of the output. If v is not specified, the variable of the
argument of the latest ptogf2n() call. The default variable is x.

[1] setmod_ff(x^30+x+1);
x^30+x+1
[2] N=simp_ff(gf2ntop(2^100));
(@^13+@^12+@^11+@^10)
[5] gf2ntop(N);
[207] gf2ntop(N);
x^13+x^12+x^11+x^10
[208] gf2ntop(N,t);
t^13+t^12+t^11+t^10

References
Section 10.5.11 [ptogf2n], page 173
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10.5.13 ptosfp, sfptop

ptosfp(p)
sfptop(p)

:: Transformation to/from a small finite field

return polynomial

p polynomial
• ptosfp() converts coefficients of a polynomial to elements in a small finite field

GF(p^n) set as a ground field. If a coefficient is already an element of the field, no
conversion is done. If a coefficient is a positive integer, then its residue modulo p^n
is expanded as p-adic integer, then p is substituted by x, finally the polynomial is
converted to its correspoding logarithmic representation with respect to the primitive
element. For example, GF(3^5) is represented as F(3)[x]/(x^5+2*x+1), and each
element of the field is represented as @ k by its exponent k with respect to the
primitive element x. 23 = 2*3^2+3+2 is represented as 2*x^2+x+2 and it is equivalent
to x^17 modulo x^5+2*x+1. Therefore an integer 23 is conterted to @ 17.

• sfptop() is the inverse of ptosfp().
[196] setmod_ff(3,5);
[3,x^5+2*x+1,x]
[197] A = ptosfp(23);
@_17
[198] 9*2+3+2;
23
[199] x^17-(2*x^2+x+2);
x^17-2*x^2-x-2
[200] sremm(@,x^5+2*x+1,3);
0
[201] sfptop(A);
23

References
Section 10.5.1 [setmod_ff], page 167, Section 10.5.6 [simp_ff], page 170

10.5.14 defpoly_mod2

defpoly_mod2(d)
:: Generates an irreducible univariate polynomial over GF(2).

return univariate polynomial

d positive integer
• Defined in ‘fff’.
• An irreducible univariate polynomial of degree d is returned.
• If an irreducible trinomial x^d+x^m+1 exists, then the one with the smallest m is re-

turned. Otherwise, an irreducible pentanomial x^d+x^m1+x^m2+x^m3+1 (m1>m2>m3
is returned. m1, m2 and m3 are determined as follows: Fix m1 as small as possible.
Then fix m2 as small as possible. Then fix m3 as small as possible.
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References
Section 10.5.1 [setmod_ff], page 167

10.5.15 sffctr

sffctr(poly)
:: Irreducible factorization over a small finite field.

return list

poly polynomial over a finite field
• Factorize poly into irreducible factors over a small finite field currently set.
• The result is a list [[f1,m1],[f2,m2],...], where fi is a monic irreducible factor and mi is

its multiplicity.
[0] setmod_ff(2,10);
[2,x^10+x^3+1,x]
[1] sffctr((z*y^3+z*y)*x^3+(y^5+y^3+z*y^2+z)*x^2+z^11*y*x+z^10*y^3+z^11);
[[@_0,1],[@_0*z*y*x+@_0*y^3+@_0*z,1],[(@_0*y+@_0)*x+@_0*z^5,2]]

References
Section 10.5.1 [setmod_ff], page 167, Section 6.3.17 [modfctr], page 54

10.5.16 fctr_ff

fctr_ff(poly)
:: Irreducible univariate factorization over a finite field.

return list

poly univariate polynomial over a finite field
• Defined in ‘fff’.
• Factorize poly into irreducible factors over the current base field.
• The result is a list [[f1,m1],[f2,m2],...], where fi is a monic irreducible factor and mi is

its multiplicity.
• The leading coefficient of poly is abandoned.

[178] setmod_ff(2^64-95);
18446744073709551521
[179] fctr_ff(x^5+x+1);
[[1*x+14123390394564558010,1],[1*x+6782485570826905238,1],
[1*x+15987612182027639793,1],[1*x^2+1*x+1,1]]

References
Section 10.5.1 [setmod_ff], page 167

10.5.17 irredcheck_ff

irredcheck_ff(poly)
:: Primality check of a univariate polynomial over a finite field.

return 0|1
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poly univariate polynomial over a finite field
• Defined in ‘fff’.
• Returns 1 if poly is irreducible over the current base field. Returns 0 otherwise.

[178] setmod_ff(2^64-95);
18446744073709551521
[179] ] F=x^10+random_ff();
x^10+14687973587364016969
[180] irredcheck_ff(F);
1

References
Section 10.5.1 [setmod_ff], page 167

10.5.18 randpoly_ff

randpoly_ff(d,v)
:: Generation of a random univariate polynomial over a finite field.

return polynomial

d positive integer

v indeterminate
• Defined in ‘fff’.
• Generates a polynomial of v such that the degree is less than d and the coefficients are

in the current base field. The coefficients are generated by random_ff().
[178] setmod_ff(2^64-95);
18446744073709551521
[179] ] F=x^10+random_ff();
[180] randpoly_ff(3,x);
17135261454578964298*x^2+4766826699653615429*x+18317369440429479651
[181] randpoly_ff(3,x);
7565988813172050604*x^2+7430075767279665339*x+4699662986224873544
[182] randpoly_ff(3,x);
10247781277095450395*x^2+10243690944992524936*x+4063829049268845492

References
Section 10.5.1 [setmod_ff], page 167, Section 10.5.7 [random_ff], page 171

10.5.19 ecm_add_ff, ecm_sub_ff, ecm_chsgn_ff

ecm_add_ff(p1,p2,ec)
ecm_sub_ff(p1,p2,ec)
ecm_chsgn_ff(p1)

:: Addition, Subtraction and additive inverse for points on an elliptic curve.

return vector or 0

p1 p2 vector of length 3 or 0

ec vector of length 2
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• Let p1, p2 be points on the elliptic curve represented by ec over the current base field.
ecm add ff(p1,p2,ec), ecm sub ff(p1,p2,ec) and ecm chsgn ff(p1) returns p1+p2, p1-p2
and -p1 respectively.

• If the current base field is a prime field of odd order, then ec represents
y^2=x^3+ec[0]x+ec[1]. If the characteristic of the current base field is 2, then ec
represents y^2+xy=x^3+ec[0]x^2+ec[1].

• The point at infinity is represented by 0.
• If an argument denoting a point is a vector of length 3, then it is the projective coor-

dinate. In such a case the third coordinate must not be 0.
• If the result is a vector of length 3, then the third coordinate is not equal to 0 but

not necessarily 1. To get the result by the affine coordinate, the first and the second
coordinates should be divided by the third coordinate.

• The check whether the arguments are on the curve is omitted.
[0] setmod_ff(1125899906842679)$
[1] EC=newvect(2,[ptolmp(1),ptolmp(1)])$
[2] Pt1=newvect(3,[1,-412127497938252,1])$
[3] Pt2=newvect(3,[6,-252647084363045,1])$
[4] Pt3=ecm_add_ff(Pt1,Pt2,EC);
[ 560137044461222 184453736165476 125 ]
[5] F=y^2-(x^3+EC[0]*x+EC[1])$
[6] subst(F,x,Pt3[0]/Pt3[2],y,Pt3[1]/Pt3[2]);
0
[7] ecm_add_ff(Pt3,ecm_chsgn_ff(Pt3),EC);
0
[8] D=ecm_sub_ff(Pt3,Pt2,EC);
[ 886545905133065 119584559149586 886545905133065 ]
[9] D[0]/D[2]==Pt1[0]/Pt1[2];
1
[10] D[1]/D[2]==Pt1[1]/Pt1[2];
1

References
Section 10.5.1 [setmod_ff], page 167
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Appendix A Appendix

A.1 Details of syntax

<expression>:
‘(’<expression>‘)’
<expression> <binary operator> <expression>
‘+’ <expression>
‘-’ <expression>
<left value>
<left value> <assignment operator> <expression>
<left value> ‘++’
<left value> ‘--’
‘++’ <left value>
‘--’ <left value>
‘!’ <expression>
<expression> ‘?’ <expression> ‘:’ <expression>
<function> ‘(’ <expr list> ‘)’
<function> ‘(’ <expr list> ‘|’ <option list> ‘)’
<string>
<exponent vector>
<atom>
<list>

(See Section 4.2.10 [various expressions], page 24.)
<left value>:

<program variable> [‘[’<expression>‘]’]*

<binary operator>:
‘+’ ‘-’ ‘*’ ‘/’ ‘%’ ‘^’(exponentiation)
‘==’ ‘!=’ ‘<’ ‘>’ ‘<=’ ‘>=’ ‘&&’ ‘||’
‘==’ ‘!=’ ‘<’ ‘>’ ‘<=’ ‘>=’ ‘&&’ ‘||’

<assignment operator>:
‘=’ ‘+=’ ‘-=’ ‘*=’ ‘/=’ ‘%=’ ‘^=’

<expr list>:
<empty>
<expression> [‘,’ <expression>]*

<option>:
Character sequence beginning with an alphabetical letter ‘=’ <expr>

<option list>:
<option>
<option> [‘,’ <option>]*

<list>:
‘[’ <expr list> ‘]’

<program variable>:
Sequence of alphabetical letters or numeric digits or _
that begins with a capital alphabetical letter
(X,Y,Japan etc.)
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(See Section 4.2.2 [variables and indeterminates], page 19.)
<function>:

Sequence of alphabetical letters or numeric digits or _
that begins with a small alphabetical letter
(fctr,gcd etc.)

<atom>:
<indeterminate>
<number>

<indeterminate>:
Sequence of alphabetical letters or numeric digits or _
that begin with a small alphabetical letter
(a,bCD,c1_2 etc.)

(See Section 4.2.2 [variables and indeterminates], page 19.)
<number>:

<rational number>
<floating point number>
<algebraic number>
<complex number>

(See Section 3.2 [Types of numbers], page 13.)
<rational number>:

0, 1, -2, 3/4

<floating point number>:
0.0, 1.2e10

<algebraic number>:
newalg(x^2+1), alg(0)^2+1

(See Chapter 9 [Algebraic numbers], page 152.)
<complex number>:

1+@i, 2.3*@i

<string>:
character sequence enclosed by two ‘"’’s.

<exponent vector>:
‘<<’ <expr list> ‘>>’

(See Chapter 8 [Groebner basis computation], page 118.)
<statement>:

<expression> <terminator>
<compound statement>
‘break’ <terminator>
‘continue’ <terminator>
‘return’ <terminator>
‘return’ <expression> <terminator>
‘if’ ‘(’ <expr list> ‘)’ <statement>
‘if’ ‘(’ <expr list> ‘)’ <statement> ‘else’ <statement>
‘for’ ‘(’ <expr list> ‘;’ <expr list> ‘;’ <expr list> ‘)’ <statement>
‘do’ <statement> ‘while’ ‘(’ <expr list> ‘)’ <terminator>
‘while’ ‘(’ <expr list> ‘)’ <statement>
‘def’ <function> ‘(’ <expr list> ‘)’ ‘{’ <variable declaration> <stat list> ‘}’
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‘end(quit)’ <terminator>

(See Section 4.2.5 [statements], page 21.)
<terminator>:

‘;’ ‘$’

<variable declaration>:
[‘extern’ <program variable> [‘,’ <program variable>]* <terminator>]*

<compound statement>:
‘{’ <stat list> ‘}’

<stat list>:
[<statement>]*

A.2 Files of user defined functions

There are several files of user defined functions under the standard library directory.
(‘/usr/local/lib/asir’ by default.) Here, we explain some of them.

‘fff’ Univariate factorizer over large finite fields (See Chapter 10 [Finite fields],
page 165.)

‘gr’ Groebner basis package. (See Chapter 8 [Groebner basis computation],
page 118.)

‘sp’ Operations over algebraic numbers and factorization, Splitting fields. (See
Chapter 9 [Algebraic numbers], page 152.)

‘alpi’
‘bgk’
‘cyclic’
‘katsura’
‘kimura’ Example polynomial sets for benchmarks of Groebner basis computation. (See

Section 8.10.30 [katsura hkatsura cyclic hcyclic], page 148.)

‘defs.h’ Macro definitions. (See Section 4.2.11 [preprocessor], page 25.)

‘fctrtest’
Test program of factorization of integral polynomials. It includes ‘factor.tst’
of REDUCE and several examples for large multiplicity factors. If this file is
load()’ed, computation will begin immediately. You may use it as a first test
whether Asir at you hand runs correctly.

‘fctrdata’
This contains example polynomials for factorization. It includes polynomials
used in ‘fctrtest’. Polynomials contained in vector Alg[] is for the algebraic
factorization af(). (See Section 9.5.10 [asq af af noalg], page 161.)

[45] load("sp")$
[84] load("fctrdata")$
[175] cputime(1)$
0msec
[176] Alg[5];
x^9-15*x^6-87*x^3-125
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0msec
[177] af(Alg[5],[newalg(Alg[5])]);
[[1,1],[75*x^2+(10*#0^7-175*#0^4-470*#0)*x
+(3*#0^8-45*#0^5-261*#0^2),1],
[75*x^2+(-10*#0^7+175*#0^4+395*#0)*x
+(3*#0^8-45*#0^5-261*#0^2),1],
[25*x^2+(25*#0)*x+(#0^8-15*#0^5-87*#0^2),1],
[x^2+(#0)*x+(#0^2),1],[x+(-#0),1]]
3.600sec + gc : 1.040sec

‘ifplot’ Examples for plotting. (See Section 7.5.15 [ifplot conplot plot polarplot plo-
tover], page 113.) Vector IS[] contains several famous algebraic curves. Vari-
ables H, D, C, S contains something like the suits (Heart, Diamond, Club, and
Spade) of cards.

‘num’ Examples of simple operations on numbers.

‘mat’ Examples of simple operations on matrices.

‘ratint’ Indefinite integration of rational functions. For this, files ‘sp’ and ‘gr’ is neces-
sary. A function ratint() is defined. Its returns a rather complex result.

[0] load("gr")$
[45] load("sp")$
[84] load("ratint")$
[102] ratint(x^6/(x^5+x+1),x);
[1/2*x^2,
[[(#2)*log(-140*x+(-2737*#2^2+552*#2-131)),
161*t#2^3-23*t#2^2+15*t#2-1],
[(#1)*log(-5*x+(-21*#1-4)),21*t#1^2+3*t#1+1]]]

In this example, indefinite integral of the rational function x^6/(x^5+x+1) is
computed. The result is a list which comprises two elements: The first element
is the rational part of the integral; The second part is the logarithmic part of
the integral. The logarithmic part is again a list which comprises finite number
of elements, each of which is of form [root*log(poly),defpoly]. This pair
should be interpreted to sum up the expression root*log(poly) through all
root’s root’s of the defpoly. Here, poly contains root, and substitution for
root is equally applied to poly. The logarithmic part in total is obtained by
applying such interpretation to all element pairs in the second element of the
result and then summing them up all.

‘primdec’ Primary ideal decomposition of polynomial ideals and prime compotision of
radicals over the rationals (see Section 8.10.31 [primadec primedec], page 148).

‘primdec_mod’
Prime decomposition of radicals of polynomial ideals over finite fields (see Sec-
tion 8.10.32 [primedec mod], page 149).

‘bfct’ Computation of b-function. (see Section 8.10.33 [bfunction bfct generic bfct
ann ann0], page 150).
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A.3 Input interfaces

A command line editing facility and a history substitution facility are built-in for DOS,
Windows version of Asir. UNIX versions of Asir do not have such built-in facilites. Instead,
the following input interfaces are prepared. This are also available from our ftp server. As
for our ftp server See Section 1.3 [How to get Risa/Asir], page 2.

On Windows, ‘asirgui.exe’ has a copy and paste functionality different from Windows
convention. Press the left button of the mouse and drag the mouse cursor on a text, then
the text is selected and is highlighted. When the button is released, highlighted text returns
to the normal state and it is saved in the copy buffer. If the right button is pressed, the
text in the copy buffer is inserted at the current text cursor position. Note that the existing
text is read-only and one cannot modify it.

A.3.1 fep

Fep is a general purpose front end processor. The author is K. Utashiro (SRA Inc.).

Under fep, emacs- or vi-like command line editing and csh-like history substitution are
available for UNIX commands, including ‘asir’.

% fep asir
...
[0] fctr(x^5-1);
[[1,1],[x-1,1],[x^4+x^3+x^2+x+1,1]]
[1] !! /* !!+Return */
fctr(x^5-1); /* The last input appears. */
... /* Edit+Return */
fctr(x^5+1);
[[1,1],[x+1,1],[x^4-x^3+x^2-x+1,1]]

Fep is a free software and the source is available. However machines or operating systems on
which the original one can run are limited. The modified version by us running on several
unsupported environments is available from our ftp server.

A.3.2 asir.el

‘asir.el’ is a GNU Emacs interface for Asir. The author is Koji Miyajima
(YVE25250@pcvan.or.jp). In ‘asir.el’, completion of file names and command names is
realized other than the ordinary editing functions which are available on Emacs.

‘asir.el’ is distributed on PC-VAN. The version where several changes have been made
according to the current version of Asir is available via ftp.

The way of setting up and the usage can be found at the top of ‘asir.el’.

A.4 Library interfaces

It is possible to link an Asir library to use the functionalities of Asir from other programs.
The necessary libraries are included in the OpenXM distribution (http://www.math.kobe-
u.ac.jp/OpenXM). At present only the OpenXM interfaces are available. Here we assume
that OpenXM is already installed. In the following $OpenXM_HOME denotes the OpenXM
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root directory. All the library files are placed in ‘$OpenXM_HOME/lib’. There are three kinds
of libraries as follows.
• ‘libasir.a’

It does not contain the functionalities related to PARI and X11. Only ‘libasir-gc.a’
is necessary for linking.

• ‘libasir_pari.a’
It does not contain the functionalities related to X11. ‘libasir-gc.a’, ‘libpari.a’
are necessary for linking.

• ‘libasir_pari_X.a’
All the functionalities are included. ‘libasir-gc.a’, ‘libpari.a’ and libraries related
to X11 are necessary for linking.

• int asir_ox_init(int byteorder)
It initializes the library. byteorder specifies the format of binary CMO data on the
memory. If byteorder is 0, the byteorder native to the machine is used. If byteorder
is 1, the network byteorder is used. It returns 0 if the initialization is successful, -1
otherwise.

• void asir_ox_push_cmo(void *cmo)

• int asir_ox_peek_cmo_size()
It returns the size of the object at the top of the stack as CMO object. It returns -1 if
the object cannot be converted into CMO object.

• int asir_ox_pop_cmo(void *cmo, int limit)
It pops an Asir object at the top of the stack and it converts the object into CMO
data. If the size of the CMO data is not greater than limit, then the data is written in
cmo and the size is returned. Otherwise -1 is returned. The size of the array pointed
by cmo must be at least limit. In order to know the size of converted CMO data in
advance asir_ox_peek_cmo_size is called.

• void asir_ox_push_cmd(int cmd)
It executes a stack machine command cmd.

• void asir_ox_execute_string(char *str)
It evaluates str as a string written in the Asir user language. The result is pushed onto
the stack.

A program calling the above functions should include ‘$OpenXM_HOME/include/asir/ox.h’.
In this file all the definitions of OpenXM tags and commands. The following example
(‘$OpenXM_HOME/doc/oxlib/test3.c’) illustrates the usage of the above functions.

#include <asir/ox.h>
#include <signal.h>

main(int argc, char **argv)
{
char buf[BUFSIZ+1];
int c;
unsigned char sendbuf[BUFSIZ+10];
unsigned char *result;
unsigned char h[3];
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int len,i,j;
static int result_len = 0;
char *kwd,*bdy;
unsigned int cmd;

signal(SIGINT,SIG_IGN);
asir_ox_init(1); /* 1: network byte order; 0: native byte order */
result_len = BUFSIZ;
result = (void *)malloc(BUFSIZ);
while ( 1 ) {
printf("Input>"); fflush(stdout);
fgets(buf,BUFSIZ,stdin);
for ( i = 0; buf[i] && isspace(buf[i]); i++ );
if ( !buf[i] )
continue;

kwd = buf+i;
for ( ; buf[i] && !isspace(buf[i]); i++ );
buf[i] = 0;
bdy = buf+i+1;
if ( !strcmp(kwd,"asir") ) {
sprintf(sendbuf,"%s;",bdy);
asir_ox_execute_string(sendbuf);

} else if ( !strcmp(kwd,"push") ) {
h[0] = 0;
h[2] = 0;
j = 0;
while ( 1 ) {
for ( ; (c= *bdy) && isspace(c); bdy++ );
if ( !c )
break;

else if ( h[0] ) {
h[1] = c;
sendbuf[j++] = strtoul(h,0,16);
h[0] = 0;

} else
h[0] = c;

bdy++;
}
if ( h[0] )
fprintf(stderr,"Number of characters is odd.\n");

else {
sendbuf[j] = 0;
asir_ox_push_cmo(sendbuf);

}
} else if ( !strcmp(kwd,"cmd") ) {
cmd = atoi(bdy);
asir_ox_push_cmd(cmd);

} else if ( !strcmp(kwd,"pop") ) {
len = asir_ox_peek_cmo_size();
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if ( !len )
continue;

if ( len > result_len ) {
result = (char *)realloc(result,len);
result_len = len;

}
asir_ox_pop_cmo(result,len);
printf("Output>"); fflush(stdout);
printf("\n");
for ( i = 0; i < len; ) {
printf("%02x ",result[i]);
i++;
if ( !(i%16) )
printf("\n");

}
printf("\n");

}
}

}

This program receives a line in the form of keyword body as an input and it executes
the following operations according to keyword.

• asir body
body is regarded as an expression written in the Asir user language. The expression
is evaluated and the result is pushed onto the stack. asir_ox_execute_string() is
called.

• push body
body is regarded as a CMO object in the hexadecimal form. The CMO object is
converted into an Asir object and is pushed onto the stack. asir_ox_push_cmo() is
called.

• pop
The object at the top of the stack is converted into a CMO object and it is displayed in
the hexadecimal form. asir_ox_peek_cmo_size() and asir_ox_pop_cmo() are called.

• cmd body
body is regarded as an SM command and the command is executed. asir_ox_push_
cmd() is called.

A.5 Appendix

A.5.1 Version 990831

Four years have passed since the last distribution. Though the look and feel seem
unchanged, internally there are several changes such as 32-bit representation of bignums.
Plotting facilities are not available on Windows.

If you have files created by bsave on the older version, you have to use bload27 to read
such files.
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A.5.2 Version 950831

A.5.2.1 Debugger

• One can enter the debug mode anytime.

• A command finish has been appended.

• One can examine any stack frame with up, down and frame.

• A command trace has been appended.

A.5.2.2 Built-in functions

• One can specify a main variable for sdiv() etc.

• Functions for polynomial division over finite fields such as sdivm() have been appended.

• det(), res() can produce results over finite fields.

• vtol(), conversion from a vector to a list has been appended.

• map() has been appended.

A.5.2.3 Groebner basis computation

• Functions for Groebner basis computation have been implemented as built-in functions.

• grm() and hgrm() have been changed to gr() and hgr() respectively.

• gr() and hgr() requires explicit specification of an ordering type.

• Extension of specification of a term ordering type.

• Groebner basis computations over finite fields.

• Lex order Groebner basis computation via a modular change of ordering algorithm.

• Several new built-in functions.

A.5.2.4 Others

• Implementation of tools for distributed computation.

• Application of modular computation for GCD computation over algebraic number
fields.

• Implementation of primary decompostion of ideals.

• Porting to Windows.

A.5.3 Version 940420

The first public verion.
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