Recurrence for cosine series with bounded gaps

KATUSI FUKUYAMA and DINESH NEUPANE Department of Mathematics, Kobe University, Rokko, Kobe, 657-8501, Japan fukuyama@math.kobe-u.ac.jp neupane@math.kobe-u.ac.jp

June 2, 2010

The first author was supported in part by KAKENHI 19204008.

Abstract

Ullrich, Grubb and Moore [11, 5] proved that a lacunary trigonometric series satisfying Hadamard's gap condition is recurrent a.e. We prove the existence of a recurrent trigonometric series with bounded gaps.

1 Introduction

If we regard the sequence $\{\cos 2\pi n_k x\}$ as a sequence of random variables on the unit interval equipped with the Lebesgue measure, it behaves like a sequence of independent random variables when n_k diverges rapidly. For example, by assuming Hadamard's gap condition

 $n_{k+1}/n_k > q > 1,$ (k = 1, 2, ...),

the central limit theorem for $\sum \cos 2\pi n_k x$ was proved by Salem and Zygmund [9], the law of the iterated logarithm by Erdős and Gál [4], and the almost sure invariance principles by Philipp and Stout [8]. As to the recurrence, Hawkes [7] proved that $\{\sum_{k=1}^{N} \exp(2\pi i n_k x)\}_{N \in \mathbb{N}}$

As to the recurrence, Hawkes [7] proved that $\{\sum_{k=1}^{N} \exp(2\pi i n_k x)\}_{N \in \mathbb{N}}$ is dense in complex plane for a.e. x assuming the very strong gap condition $\sum n_k/n_{k+1} < \infty$. Anderson and Pitt [1] weakened the gap condition to $n_{k+1}/n_k \to \infty$ or $n_k = a^k$, where $a \ge 2$ is an integer. These results imply the recurrence of $\sum_{k=1}^{N} \cos 2\pi n_k x$. As to this one-dimensional recurrence, Ullrich, Grubb and Moore [11, 5] succeeded in weakening the condition to the Hadamard's gap condition.

It is very natural to ask if the gap condition can be replaced by a weaker one. As to the central limit theorem, Erdős [3] relaxed the gap condition to $n_{k+1}/n_k > 1 + c_k/\sqrt{k}$ with $c_k \to \infty$. This condition is best possible. Actually Erdős [3] and Takahashi [10] constructed counterexamples for the central limit theorem satisfying $n_{k+1}/n_k > 1 + c/\sqrt{k}$ with c > 0. But there still remains the possibility that some series having smaller gaps may obey the central limit theorem. Indeed, for any $\phi(k) \uparrow \infty$, Berkes [2] proved the existence of $\sum \cos 2\pi n_k x$ with small gaps $n_{k+1} - n_k = O(\phi(k))$ which obeys the central limit theorem. And it was a long standing problem whether some trigonometric series with bounded gaps $n_{k+1} - n_k = O(1)$ can obey the central limit theorem. Recently the existence of such series was proved in [6] and the problem was solved.

In this paper, we consider the same problem for recurrence, and prove the existence of recurrent series with bounded gaps.

Theorem 1. Let us suppose that $\{n_k\}$ satisfies the Hadamard's gap condition and let $\{m_j\}$ be an arrangement in increasing order of $\mathbf{N} \setminus \{n_k\}$. If we put $S_N(x) = \sum_{j=1}^N \cos 2\pi m_j x$, then $\{S_N(x)\}$ is recurrent a.e. x.

The sequence $\{n_k\}$ satisfying the Hadamard's gap condition has null density $\lim_{k\to\infty} n_k/k = 0$, and its complement sequence $\{m_k\}$ defined above has full density $\lim_{k\to\infty} m_k/k = 1$. Both of these define recurrent trigonometric series. We can also construct a sequence with bounded gaps and intermediate density defining recurrent trigonometric series.

Theorem 2. Let us take an arbitrary rational number in (0,1) and denote it by p/q $(p,q \in \mathbf{N})$. Put $I_{p,q} = \{lq + j \mid l = 0, 1, 2, ...; j = 1, 2, ..., p\}$ and suppose that $\{n_k\}$ is a sequence satisfying Hadamard's gap condition and $\{n_k\} \cap I_{p,q} = \emptyset$. Let $\{m_j\}$ be an arrangement in increasing order of $\{n_k\} \cup I_{p,q}$. Then $\sum \cos 2\pi m_k x$ is recurrent a.e. x and $\{m_j\}$ has density $\lim_{k\to\infty} m_k/k = p/q$.

The proofs are modifications of those in Grubb and Moore [5]. By using properties of Dirichlet kernel, we can prove a new result.

2 Proof.

We use the lemma which is a modification of that in Grubb and Moore [5].

Lemma 3. Let I be a non-empty open interval, E_N , $F_N \subset I$ $(N \in \mathbf{N})$, c > 0, and $0 < \delta_N \downarrow 0$. Assume that for any $x \in E_N$, there exists N_0 such that for $N \ge N_0$, there exists an interval J_N with $x \in J_N$, $|J_N| = \delta_N$ and $|F_N \cap J_N| \ge c|J_N|$. If $x \in E_N$ infinitely often a.e. $x \in I$, then $x \in F_N$ infinitely often a.e. $x \in I$.

Take $\rho > 0$ arbitrarily and take an open interval $I \subset [0, 1]$ such that $2 \sin \pi x > \rho$ on I. Since ρ is arbitrary, it is sufficient to prove recurrence for a.e. $x \in I$.

Put $\Delta = 2\pi (q/(q-1) + 4/\rho^2)$ and take an arbitrary $\varepsilon \in (0, \Delta/2)$. We have

$$S_N(x) = D_{m_N}(x) - \frac{1}{2} - \sum_{j:n_j \le m_N} \cos 2\pi n_j x,$$

where D_n is the Dirichlet kernel given by

$$D_n(x) = \frac{1}{2} + \sum_{j=1}^n \cos 2\pi j x = \frac{\sin \pi (2n+1)x}{2\sin \pi x}$$

It is easily verified that $|D'_n(x)| \leq 2\pi(2n+2)/\rho^2 \leq 8\pi n/\rho^2$ on I and $|T'_j(x)| \leq 2\pi(n_1+\cdots+n_j) \leq 2\pi n_j q/(q-1)$ where $T_j(x) = \cos 2\pi n_1 x + \cdots + \cos 2\pi n_j x$. Hence $|S'_N(x)| \leq \Delta m_N$ on I. Take an arbitrary $a \in \mathbf{R}$ and put

$$E_N = \{ x \in I : S_N(x) \ge a, S_{N+1}(x) < a \},\$$

$$F_N = \{ x \in I : |S_N(x) - a| < \varepsilon \text{ or } |S_{N+1}(x) - a| < \varepsilon \}.$$

By noting $|D_n(x)| \leq 1/\rho$ and the properties $\sup_j T_j(x) = \infty$ and $\inf_j T_j(x) = -\infty$ a.e. of lacunary trigonometric series (205pp of Zygmund [12]), we have $\sup_N S_N(x) = \infty$ and $\inf_N S_N(x) = -\infty$ a.e. $x \in I$. Hence $x \in E_N$ infinitely often a.e $x \in I$.

Let us take an arbitrary $x \in E_N$. Put $\delta_N = 1/m_{N+1}$ and $J_N = (x - \delta_N/2, x + \delta_N/2)$. We have $J_N \subset I$ for large N. We divide the proof into two cases:

Case I: the case when there exists an $x_0 \in J_N$ such that $S_N(x_0) = a$.

We have $|S_N(x)-a| < \varepsilon$ on $(x_0-|J_N|\varepsilon/\Delta, x_0+|J_N|\varepsilon/\Delta)$. Since $|J_N|\varepsilon/\Delta \le |J_N|/2$, either $(x_0-|J_N|\varepsilon/\Delta)$ or $(x_0, x_0+|J_N|\varepsilon/\Delta)$ is contained in J_N and hence in $F_N \cap J_N$. Therefore $|F_N \cap J_N| \ge |J_N|\varepsilon/\Delta$.

Case II: the case when $S_N(x) > a$ on J_N .

By $x \in E_N$, we have $S_N(x) \ge a$ and $S_{N+1}(x) < a$. Since $|J_N| = 1/m_{N+1}$, there exists an $x_1 \in J_N$ such that $\cos 2\pi m_{N+1}x_1 = 0$. Hence $S_{N+1}(x_1) = S_N(x_1) \ge a$, and therefore we can find $x_2 \in J_N$ such that $S_{N+1}(x_2) = a$. In the same way as the previous case, we can see $|F_N \cap J_N| \ge |J_N|\varepsilon/\Delta$.

Applying the lemma, we see that $x \in F_N$ infinitely often, a.e. $x \in I$. Theorem 2 can be proved in the same way by noting

$$\sum_{l=1}^{n} \cos 2\pi (lq+j)x = \frac{\sin \pi ((2n+1)q+2j)x - \sin \pi (q+2j)x}{2\sin \pi qx}$$

References

[1] J. M. Anderson, D. Pitt, On recurrence properties of certain lacunary series. I. general results, II. the series $\sum_{k=1}^{n} \exp(ia^k \theta)$, Jour. reine angewandt. Math., **377** (1987) 65-82, 83-96.

- [2] I. Berkes, A central limit theorem for trigonometric series with small gaps, Z. Wahr. verw. Geb. 47 (1979) 157–161
- [3] P. Erdős, On trigonometric series with gaps, Magyar Tud. Akad. Mat. Kutato Int. Közl. 7 (1962) 37–42
- [4] P. Erdős & I. S. Gál, On the law of the iterated logarithm I, II, Nederl. Akad. Wetensch. Proc. Ser. A 58 (Indag. Math. 17) (1955) 65–76, 77–84
- [5] D. J. Grubb, C. N. Moore, Certain lacunary cosine series are recurrent, Studia Math., 108 (1994) 21-23.
- [6] K. Fukuyama, A central limit theorem for trigonometric series with bounded gaps, Prob. Theory related Fields (to appear)
- [7] J. Hawkes, Probabilistic behaviour of some lacunary series, Z. Wahr. verw. Geb., 53 (1980) 21–33
- [8] W. Philipp & W. Stout, Almost sure invariance principles for partial sums of weakly dependent random variables, Memoirs A. M. S. 161 (1975).
- R. Salem, & A. Zygmund, On lacunary trigonometric series, Proc. Nat. Acad. Sci. 33 (1947) 333–338
- [10] S. Takahashi, On lacunary trigonometric series II, Proc. Japan Acad. 44 (1968) 766-770
- [11] D. Ullrich, Recurrence for lacunary cosine series, Contemp. Math., 137, (1992) 459–467.
- [12] A. Zygmund, Trigonometric series I, Cambridge Univ. Press, Cambridge, 1959.