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1. Introduction
A typical result that we are to present here is

1√
N

N∑
n=1

(
f(θn · )g(θn2

· ) − m
) D−→ N(0, v) (N → ∞),

where θ > 1, and f and g are smooth functions with period 1.
This study was motivated by the polynomial ergodic theorem below:

Theorem 1. If the transform T on a probability space is weakly mixing, and p1,
. . . , pK are polynomials with pk(N) ⊂ N, pk(∞) = ∞, and (pk+1 − pk)(∞) = ∞,
then

1
N

N∑
n=1

K∏
k=1

fk(T pk(n) · ) L2

−→
K∏

k=1

Efk (N → ∞),

for any bounded measurable functions f1, . . . , fK .

This ergodic theorem for non-conventional average was proved by V. Bergelson
[2], and the pointwise convergence for special cases were proved by J. Bourgain
[6]. Earlier than these works, limiting behavior of the average of this type was
studied by H. Furstenberg, Y. Katznelson & D. Ornstein [12] to give an ergodic
theoretical proof of Szeméredi’s theorem. For further results, we refer the reader
to H. Furstenberg & B. Weiss [11]. The term ‘non-conventional average’ is due to
them.

We give much simpler proof of the polynomial ergodic theorem for a transform
ω 7→ θω on R, where θ > 1. When θ is not an integer, iteration of this transform
can not be regarded as iteration of some transform on [ 0, 1 ] or other finite intervals,
and hence the next theorem is not included in Theorem 1.

† Passed away on 11 March 1999
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Theorem 2. Let p1, . . . , pK be polynomials with pk(∞) = ∞ and (pk+1 −
pk)(∞) = ∞, and f1, . . . , fK be functions on R with period 1 satisfying fk ∈
L2K

(
[ 0, 1 ], dx). Then we have

1
N

N∑
n=1

K∏
k=1

fk(θpk(n) · ) →
K∏

k=1

∫ 1

0

fk(x) dx (N → ∞),

in L2
(
[ 0, 1 ], dx)-sense.

Having the weak law of large numbers, it is natural to ask whether the central
limit theorem holds or not. In this note, we give an answer to this question.

Before stating our results, we introduce the results for K = 1. When p1 is linear,
our problem is reduced to the following central limit theorem for Riesz-Raikov sums.

Theorem 3. Let θ > 1 and let f be a locally square integrable function on R with
period 1 satisfying the following L2-Dini condition:∫ 1

0

ω2(y)
y

dy < ∞ where ω2(δ) = sup
|h|≤δ

(∫ 1

0

∣∣f(x + h) − f(x)
∣∣2 dx

)1/2

. (1.1)

Then under any probability measure on [ 0, 1 ] which is absolutely continuous with
respect to the Lebesgue measure, we have the following convergence in law:

1√
N

N∑
n=1

f̃(θn · ) D−→ N(0, v) (N → ∞),

where f̃ = f −
∫ 1

0
f(x) dx. The limiting variance v is determined as follows: v =∫ 1

0
f̃(x)2 dx if

θn /∈ Q for all n ∈ N,

and if else

v =
∫ 1

0

f̃(x)2 dx + 2
∞∑

n=1

∫ 1

0

f̃(qnx)f̃(rnx) dx,

where
l = min{n ∈ N | θn ∈ Q }, θl = q/r, and q, r ∈ N.

This theorem was initially proved by M. Kac [15] and I. Ibragimov [14] in case
when θ is an integer, and after extensive studies by S. Takahashi [23], I. Berkes
[3], [4], and R. Kaufman [16], it was established as above by B. Petit [17] and the
author [9].

On the other hand, in case deg p1 ≥ 2, we have θp1(n+1)/θp1(n) → ∞, which
implies that this problem reduced to the special case of the following central limit
theorem for gap series with ‘large gaps’.
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Theorem 4. Let f be as in Theorem 3 and {βn} be a sequence of positive numbers
satisfying

βn+1/βn → ∞ (n → ∞).

Then under any absolutely continuous probability measure on [ 0, 1 ], we have

1√
N

N∑
n=1

f̃(βn · ) D−→ N(0, v) (N → ∞),

where f̃ = f −
∫ 1

0
f(x) dx and v =

∫ 1

0
f̃(x)2 dx.

This result is due to S. Takahashi [23] and I. Berkes [3], [4]. Actually, Takahashi
proved the above theorem by assuming that every βn is an integer, and Berkes
removed this condition by assuming a stronger regularity condition on f . But this
version can be easily proved by the method of Berkes, and also by some modification
of the method of Takahashi, which is similar to the proof found in [9].

Let us now state the results for K ≥ 2. Assuming that f1, . . . , fK are centered,
i.e., ∫ 1

0

fk(x) dx = 0 (k = 1, . . . ,K), (1.2)

the author [10] have proved the following result:

Theorem 5. Let K ≥ 2 and θ > 1. Let p1, . . . , pK be as in Theorem 2, and let
functions f1, . . . , fK on R with period 1 satisfy (1.1), (1.2) and∫ 1

0

∣∣fk(x)
∣∣2K−2

dx < ∞ (k = 1, . . . ,K). (1.3)

Then, under any probability measure on R which is absolutely continuous with
respect to the Lebesgue measure, we have

1√
N

N∑
n=1

K∏
k=1

fk(θpk(n) · ) D−→ N(0, v) (N → ∞).

The limiting variance v is determined as follows:
1. If maxk deg pk ≥ 2, then

v =
K∏

k=1

∫ 1

0

f2
k (x) dx. (1.4)
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2. When all pk are linear, let us put pk(x) = akx + bk.
a. If the condition

θakn /∈ Q for all n ∈ N

is satisfied for at lease one of k = 1, . . . , K, then v is given by (1.4).
b. If else, let us take the smallest n ≥ 1 satisfying θakn ∈ Q for all k, and

write θakn = qk/rk by using qk, rk ∈ N. Then

v =
K∏

k=1

∫ 1

0

f2
k (x) dx + 2

∞∑
n=1

K∏
k=1

∫ 1

0

fk(qn
k x)fk(rn

k x) dx.

In the case when fk are not centered, we could not give a complete answer as
above. Actually, we could not prove any results in case when some of the pi’s have
the same degree.

Theorem 6. Let K ≥ 2 and θ > 1. Let polynomials p1, . . . , pK satisfy pk(∞) = ∞
and

deg p1 < · · · < deg pK , (1.5)

and functions f1, . . . , fK on R with period 1 satisfy L2-Dini condition (1.1) and

(1.3). Set mk =
∫ 1

0
fk(x) dx and let a be the coefficient of linear term of p1. Then

1√
N

N∑
n=1

( K∏
k=1

fk(θpk(n) · ) −
K∏

k=1

mk

)
D−→ N(0, v) (N → ∞),

where

v =
K∏

k=1

∫ 1

0

f2
k (x) dx −

K∏
k=1

m2
k,

if deg p1 > 1 or if θan /∈ Q for all n ∈ N. If else

v =
K∏

k=1

∫ 1

0

f2
k (x) dx −

K∏
k=1

m2
k + 2

K∏
k=2

m2
k

∞∑
n=1

∫ 1

0

f̃1(qnx)f̃1(rnx) dx,

where f̃1 = f1 −
∫ 1

0
f1(x) dx,

l = min{n ∈ N | θan ∈ Q }, θal = q/r, and q, r ∈ N.
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2. Polynomial ergodic theorem for Riesz-Raikov sums.

We use the notation ‖f‖∞ = ess sup |f(x)|, ‖f‖p =
(∫ 1

0
|f(x)|p dx

)1/p, mk =∫ 1

0
fk(x) dx, f̃k = fk − mk, and vk =

∥∥f̃k

∥∥2

2
. Let sf,I denote the I-th subsum

of the Fourier series of f . Let us put

hλ(x) =
(

sinλx

λx

)2

and h(x) =
h1/2(x) + h1/2

√
2(x)

2π
(
1 +

√
2

) .

Then h is a positive integrable analytic function on R which satisfies ĥ(u) = 0
(|u| > 1), |ĥ(u)| ≤ 1 (u ∈ R), and

∫
R

h(u) du = 1. (Cf. L. Breiman [8] pp.218).
Let µ0 be a probability measure on R whose density is h. Since h is positive

and continuous on [ 0, 1 ], L2(R, µ0)-convergence implies L2([ 0, 1 ], dx)-convergence.
First let us prove Theorem 2 in the case when f1, . . . , fK are trigonometric

polynomials whose degrees are less than I. Let us decompose the product as follows.

K∏
k=1

fk(θpk(n) · ) =
K∑

κ=1

κ−1∏
k=1

fk(θpk(n) · )f̃κ(θpκ(n) · )
K∏

k=κ+1

mk +
K∏

k=1

mk

=
K∑

κ=1

Uκ,n( · )
K∏

k=κ+1

mk +
K∏

k=1

mk, (say.)

(2.1)

Thus it is sufficient to prove L2(R, µ0)-convergence 1
N

∑N
n=1 Uκ,n → 0, for each

κ = 1, . . . , K.
Since any frequency appears in the trigonometric polynomial expansion of Uκ,n

is of the form

θpκ(n)iκ + θpκ−1(n)iκ−1 + · · · + θp1(n)i1, (|i1|, . . . , |iκ| ≤ I),

and because of θpk(n) = o
(
θpκ(n)

)
(k < κ, n → ∞), for large n, modulus of any

frequency of Uκ,n belongs to Jn = (θpκ(n)/2, 2Iθpκ(n)). Since pκ is a polynomial
diverges to infinity, there exists c > 0 such that pκ(n + 1) − pκ(n) ≥ c for large
n. Thus there exists n0, L ∈ N such that, for n ≥ n0 and l ≥ L, Jn and Jn+l

are disjoint and separated at least 1. Therefore Uκ,n and Uκ,n+l are orthogonal in
L2(R, µ0). Since ‖Uκ,n‖∞ is bounded, we see that 1

N

∑N
n=1 Uκ,n converges to 0 in

L2(R, µ0)-sense.
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Next, we prove the general case. Clearly, we have∥∥∥∥ 1
N

N∑
n=1

K∏
k=1

fk(θpk(n) · ) − 1
N

N∑
n=1

K∏
k=1

sfk,I(θpk(n) · )
∥∥∥∥

L2(µ0)

≤ 1
N

K∑
κ=1

N∑
n=1

∥∥∥∥κ−1∏
k=1

fk(θpk(n) · )(fκ − sfκ,I)(θpκ(n) · )
K∏

k=κ+1

sfk,I(θpk(n) · )
∥∥∥∥

L2(µ0)

.

Note that ‖F (ϕ · )‖L2l(µ0) = ‖F‖2l (ϕ > 1) is easily verified for F with period 1. It
is known that if F ∈ Lp

(
[ 0, 1 ], dx

)
, ‖F − sF,I‖p → 0 and ‖sF,I‖p ≤ C‖F‖p hold

for an absolute constant C. (Cf. A. Zygmund [24].) Using Hölder’s inequality and
these relations in turn, we see that the summand in the above sum is estimated by

κ−1∏
k=1

∥∥fk(θpk(n) · )
∥∥

L2K(µ0)

∥∥(fκ − sfκ,I)(θpκ(n) · )
∥∥

L2K(µ0)

K∏
k=κ+1

∥∥sfk,I(θpk(n) · )
∥∥

L2K(µ0)

=
κ−1∏
k=1

∥∥fk

∥∥
2K

∥∥fκ − sfκ,I

∥∥
2K

K∏
k=κ+1

∥∥sfk,I

∥∥
2K

≤ CK−κ
κ−1∏
k=1

∥∥fk

∥∥
2K

∥∥fκ − sfκ,I

∥∥
2K

K∏
k=κ+1

∥∥fk

∥∥
2K

→ 0 (I → ∞),

and thereby have the conclusion.

3. The central limit theorem for trigonometric polynomials.
In this section we prove Theorem 6 in case when f1, . . . , fK are trigonometric
polynomials whose degrees are less than I. We may assume that p1 is linear, i.e.,
p1(n) = an + b. Actually, if deg p1 > 1, by putting p0(n) = n and f0 = 1 the
following argument yields the desired result because of

∫
f2
0 = 1 and f̃0 = 0.

For u ∈ R, let µu be a C-valued measure on R whose density is e
√
−1 uxh(x).

Clearly it satisfies
∣∣∫

R
f(x)µu(dx)

∣∣ ≤ ∫
R

∣∣f(x)
∣∣ µ0(dx) and∫

R

e
√
−1 λx µu(dx) = 0 if |λ| ≥ U = |u| + 1.

The next two lemmas make our calculation simple. The idea of Lemma 1 goes back
to P. Hartman [13], and that of Lemma 2 originated to P. Révész [19] and R. Salem
& A. Zygmund [21]. Proofs are found in [10].
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Lemma 1. If a sequence {XN} of real functions on R satisfies∫
R

e
√
−1 tXN (x) µu(dx) → e−t2v/2ĥ(u) (t ∈ R, N → ∞), (3.1)

for all u ∈ R, then under any probability measure on R which is absolutely contin-
uous with respect to the Lebesgue measure,

XN
D−→ N(0, v) (N → ∞).

Lemma 2. Let u ∈ R and {ξm,N}1≤m≤MN , N≥1 be an array of functions on R. If

BN = sup
1≤m≤MN

‖ξm,N‖∞ → 0 (N → ∞), (3.2)∫
R

ξm1,N . . . ξmr,N dµu = 0 (N ∈ N, r ∈ N, m0 ≤ m1 < · · · < mr), (3.3)

VN =
MN∑

m=m0

ξ2
m,N −→ v in measure µ0 (N → ∞), (3.4)

B0 = sup
N≥1

‖VN‖∞ < ∞, (3.5)

are satisfied for some m0, then (3.1) holds for XN =
∑MN

m=1 ξm,N .

First, let us put ξκ,N,n = Uκ,n

∏K
k=κ+1 mk

/√
N for κ ≥ 2. By (2.1) we have

XN =
1√
N

N∑
n=1

K∏
k=1

f̃k(θpk(n) · ) =
K∑

κ=2

N∑
n=1

ξκ,N,n +
1√
N

K∏
k=2

mk

N∑
n=1

f̃1(θp1(n) · ).

We define ξ1,N,n as follows. Since the set { jθp1(n) | j ∈ Z, 0 < |j| ≤ I, n ∈ N } is
symmetric with respect to 0, we can write it as a sequence . . . , −λ2, −λ1, λ1, λ2,
. . . in increasing order. Note that λi+1/λi > q > 1 holds for some q. Let us take
i0 > I such that

1 − 1
q
− 1

qi0+1
− 1

q2i0+1
− · · · = 1 − 1

q(1 − 1/qi0)
≥ 1

2

(
1 − 1

q

)
(3.6)

1 +
1
q

+
1

qi0+1
+

1
q2i0+1

+ · · · = 1 +
1

q(1 − 1/qi0)
≤ 2 (3.7)

1 − 1
q
− 2

qi0+1
≥ 1

2

(
1 − 1

q

)
(3.8)
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Let us take j0 > I as 1
2 (1− 1

q )λj0 ≥ U . Let us put 1√
N

∏K
k=2 mk

∑N
n=1 f̃1(θp1(n)x) =∑

i∈Z cN,i exp(2π
√
−1 λix), and define

ξ1,N,1 =
j0∑

|i|=1

cN,i exp(2π
√
−1λix), and ξ1,N,n =

i0(n+1)+j0∑
|i|=i0n+j0+1

cN,i exp(2π
√
−1λix)

for n ≥ 2. Since there are at most IN many positive frequencies, we have

1√
N

K∏
k=2

mk

N∑
n=1

f̃1(θp1(n)x) =
N∑

n=1

ξ1,N,n and hence XN =
K∑

κ=1

N∑
n=1

ξκ,N,n.

As we have explained in the proof of Theorem 1, when κ ≥ 2, modulus of any
frequency of ξκ,N,n belongs to (θpκ(n)/2, 2Iθpκ(n)). Let us set n(1, N) = 2, and take
n(κ, N) ∈ N (κ ≥ 2) such that

θpκ(n+1)/2
2Iθpκ(n)

≥ 3 (n ≥ n(κ, N)),
θpκ+1(n(κ,N))/2

2Iθpκ(N)
≥ 3, (3.9)

θpκ(n(κ,N)) ≥ 2U, and lim
N→∞

n(κ,N)
N

= 0 (3.10)

Now let us verify the conditions of Lemma 2 for the sequence

{ ξκ,N,n | n(κ, N) ≤ n ≤ N, 1 ≤ κ ≤ K }. (3.11)

Let us first verify (3.3). Let us take arbitrary subset of (3.11), and take an arbitrary
positive frequency φi of each function of κ ≥ 2, and λi of each function of κ = 1.
By the definition of i0 and j0, thanks to (3.6) and (3.7), we have

2Iθp1(N) ≥ 2λr ≥ λr ± λr−1 ± · · · ± λ1 ≥ 1
2

(
1 − 1

q

)
λr ≥ U.

(3.9) assures that φ1, φ2, . . . satisfies the Hadamard’s gap condition with q = 3.
Therefore we can verify (3.3) by

φρ ± φρ−1 ± · · · ± φ1 ± λr ± λr−1 ± · · · ± λ1

≥ φρ − φρ−1 − · · · − φ1 − 2Iθp1(N)

≥ φρ

(
1 − 1

3
− · · · − 1

3ρ−1
− 1

3ρ

)
≥ φρ/2 ≥ U.
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Next, let us verify the condition (3.4). Recall that Theorem 1 is originally
proved as L2(µ0)-convergence. In the case when κ ≥ 2, by applying this, we have

N∑
n=n(κ,N)

ξ2
κ,N,n →

κ−1∏
k=1

‖fk‖2
2‖f̃κ‖2

2

K∏
k=κ+1

m2
k (N → ∞),

in L2(µ0)-sense, and hence in measure µ0. To calculate the case when κ = 1, we
introduce the following notation. Denote∫

R

f(x) µR(dx) = lim
T→∞

1
2T

∫ T

−T

f(x) dx

whenever the right hand side exists. The right hand side is only a symbolic ex-
pression and does not mean integral with respect to the measure µR. Let us put
βN,n =

∫
R

ξ2
1,N,n(x)µR(dx), where it is well defined since ξ2

1,N,n is an almost periodic
function (Cf. Besicovich [5]). Note that {ξ2

1,N,2n−βN,2n} and {ξ2
1,N,2n+1−βN,2n+1}

are both orthogonal sequence under µ0. Actually if n − m ≥ 2, if ±λi ± λj is a
frequency of ξ2

1,N,n − βN,n, and if ±λk ± λr is a frequency of ξ2
1,N,m − βN,m, then

we have

| ± λi ± λj ± λk ± λr| ≥ λi

(
1 − 1

q
− 2

qi0+1

)
≥ λi

1
2

(
1 − 1

q

)
≥ U ≥ 1.

By definition, there exists a constant does not depend on n and N such that
‖ξ1,N,n‖∞ ≤ C/

√
N . Thus we have

(
ξ2
1,N,n − βN,n

)2 ≤ (2C2)/N2 and hence

N∑
n=1

(
ξ2
1,N,n − βN,n

) L2(µ0)−→ 0.

By the orthogonality of ξ1,N,n, we have
N∑

n=1

βN,n =
∫
R

( N∑
n=1

ξ1,N,n

)2

µR(dx) =
1
N

K∏
k=2

m2
k

∫
R

( N∑
n=1

f̃1(θan+bx)
)2

µR(dx)

=
1
N

K∏
k=2

m2
k

N∑
n=1

N∑
m=1

∫
R

f̃1(θa(n−m)x)f̃1(x)µR(dx)

=
K∏

k=2

m2
k

(∫
R

f̃1(x)2 µR(dx) +
2(N − n)

N

N−1∑
n=1

∫
R

f̃1(θanx)f̃1(x)µR(dx)
)

→
K∏

k=2

m2
k

(∫
R

f̃1(x)2 µR(dx) + 2
∞∑

n=1

∫
R

f̃1(θanx)f̃1(x) µR(dx)
)

(N → ∞)

9



Here the last convergence holds since f1 is a trigonometric polynomial and the sum-
mand equals to 0 except for finitely many n. If θan /∈ Q, then the summand equals to
0. Thus in case θan /∈ Q for all n ∈ N, the sum reduced to

∫
R

f̃1(x)2 µR(dx) = ‖f̃1‖2
2.

If θal = q/r, where l is a least n such that θan ∈ Q, the series equals to the sum of∫
R

f̃1

(
(q/r)nx

)
f̃1(x)µR(dx) =

∫
R

f̃1(qnx)f̃1(rnx)µR(dx) =
∫ 1

0

f̃1(qnx)f̃1(rnx) dx.

Combining these, we can verify (3.4).
Since f1, . . . , fK are trigonometric polynomials, condition (3.2) is verified as

BN = O
(
1/
√

N
)

and by this, (3.5) is clear. By Lemma 2, we have (3.1) for the sum
of (3.11). Because of the following estimate, (3.1) is also valid for XN and hence
the central limit theorem holds for XN :∥∥∥∥ K∑

κ=1

N∑
n=n(κ,N)

ξN,n,κ −
K∑

κ=1

N∑
n=1

ξN,n,κ

∥∥∥∥
L2(µ0)

≤
K∑

κ=1

(n(κ,N)−1∑
n=1

‖ξN,n,κ‖∞
)1/2

= O

(
K∑

κ=1

√
n(κ,N)

N

)
= o(1).

4. The central limit theorem for L2-Dini continuous functions.
In this section we complete the proof of Theorem 6. It is known that L2-Dini
condition (1.1) is equivalent to

∞∑
n=1

∥∥f − sf,2n

∥∥
2

< ∞,

which implies an estimate of Fourier approximation∥∥f − sf,n

∥∥2

2
= o

(
1
/

log n
)

(n → ∞).

The first equivalence can be proved inequalities (3.3) of pp. 241 of Zygmund [24]
and (2.6) of pp. 160 of Bari [1], while the proof of the second implication can be
found at the end of [10].

Assuming K ≥ 2 and that f1, . . . , fK are centered, the author [10] have proved
that

lim
I→∞

lim sup
N→∞

∫
R

∣∣XN (x) − X
(I)
N (x)

∣∣ µ0(dx) = 0 (4.1)
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where X
(I)
N (x) = 1√

N

∑N
n=1

∏K
k=1 sfk,I(θpk(n)x). In the proof of (4.1), f1, . . . ,

fK−1 need not to be centered, and we see that it is valid only under the condition∫ 1

0
fK(x) dx = 0.

Let us now decompose X
(I)
N in the same way as (2.1), and define U

(I)
κ,n naturally.

Then we have

XN − X
(I)
N =

K∑
κ=1

1√
N

N∑
n=1

(
Uκ,n − U (I)

κ,n

) K∏
k=κ+1

mk.

By using (4.1), if κ ≥ 2, we have

lim
I→∞

lim sup
N→∞

∫
R

∣∣∣∣ 1√
N

N∑
n=1

(
Uκ,n − U (I)

κ,n

)∣∣∣∣ µ0(dx) = 0. (4.2)

In case κ = 1, (4.2) follows from (1) of Lemma 1 of [9]. Combining these, we have
(4.1).

If we put the limping variance of X
(I)
N by v(I), then we can easily prove that

v(I) → v. (Cf. 65pp of [9].) Thus we can derive the central limit for XN by standard
argument.
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