A remark to the *g*-CLT result by Morgenthaler

Katusi FUKUYAMA (Kobe) and Shigeru TAKAHASHI (Hirosaki)

Abstract. Morgenthaler proved that any bounded orthogonal sequence has a subsequence which obey the g-CLT. In this note, it is proved that for any non-negative integrable function g, there exists an orthogonal sequence which obey the g-CLT.

0. Introduction

In this note, we are concerned with limit theorems on the Lebesgue probability space, i.e., the probability space consists of unit interval [0, 1] and Lebesgue measure λ on it. We denote by EX the expectation of X and by L^p the L^p -space both on [0, 1] with respect to λ .

Let us first introduce the notion of variance mixture of normal distribution. Suppose that a function g satisfy

(0.0)
$$g(t) \ge 0$$
 and $\int_0^1 g(t) dt = 1$

We denote by $\frac{1}{\lambda(S)} \int_S N_{0,g(t)}(\cdot) dt$ the variance variance mixture on S of normal distribution with variance function g, that is the probability measure μ on \mathbf{R} given by

$$\mu(A) = \frac{1}{\lambda(S)} \int_{S} N_{0,g(t)}(A) \, dt.$$

We say that a sequence $\{\phi_k\}$ of random variables on Lebesgue probability space obeys the g-CLT if the convergence in law

$$\frac{1}{A_n} \sum_{k=1}^n a_k \phi_k \xrightarrow{\mathscr{D}} \frac{1}{\lambda(S)} \int_S N_{0,g(t)}(\,\cdot\,) \, dt \quad \text{as} \quad n \to \infty$$

holds on probability space $(S, dt/\lambda(S))$ for any $S \subset [0, 1]$ with $\lambda(S) > 0$, and for any sequence $\{a_n\}$ of real numbers satisfying

(0.1)
$$A_n = \left(\sum_{k=1}^n a_k^2\right)^{1/2} \to \infty \quad \text{and} \quad a_n = o(A_n) \quad \text{as} \quad n \to \infty.$$

Morgenthaler [0] proved that for any orthonormal sequence $\{\phi_k\}$, there exists a subsequence $\{\phi_{n_k}\}$ obeying the *g*-CLT for some bounded function *g* satisfying (0.0).

In this note we prove that for any g with (0.0), there exists an orthonormal sequence obeying the g-CLT. Moreover we investigate integrability or boundedness of the sequence. **Theorem 1.** Suppose that g satisfies (1.2). Then there exists an orthonormal sequence $\{\phi_k\}$ on [0, 1] obeying the g-CLT. We can take $\{\phi_k\}$ having the following properties, according as the summability condition on g.

(1) $\{\phi_k\}$ can be taken to be multiplicatively orthogonal, i.e., to satisfy

$$E(\phi_{k_1} \dots \phi_{k_r}) = 0 \quad \text{for} \quad r \in \mathbf{N} \quad \text{and} \quad k_1 < \dots < k_r.$$

- (2) In case $g \in L^p$ for some $p \ge 1$, $\{\phi_k\}$ can be taken to be bounded with respect to the L^{2p} -norm.
- (3) In case g is a bounded function, $\{\phi_k\}$ can be taken to be uniformly bounded sequence.

For uniformly bounded multiplicatively orthogonal sequence, ordinary central limit theorem is proved assuming the orthogonality of $\{\phi_k^2 - E\phi_k^2\}$. The above theorem prove that multiplicatively orthogonal sequence may obey the *g*-CLT holds if we drops the orthogonality of $\{\phi_k^2 - E\phi_k^2\}$.

2. Integrable variance function

Let s_k be k-th sub-sum of the Fourier series of \sqrt{g} . We have

$$||s_k||_2 \to ||\sqrt{g}||_2 = 1$$
, and $||s_k||_{2p} \to ||\sqrt{g}||_{2p}$.

We prove that $\phi_k(\omega) = \sqrt{2} \|s_k\|_2^{-1} s_k(\omega) \cos 2\pi 3^k \omega$, is multiplicatively orthogonal and obey the *g*-CLT.

Let us put $n_k := 3^k + k$. It is clear that $\{n_k\}$ has Hadamard's gaps, i.e., $n_{j+1}/n_j > q > 1$ $(j \in \mathbf{N})$. Let us denote by Spec (f) the set of all the frequencies appearing in the Fourier series of f, and by $|\operatorname{Spec}(f)|$ the set $\{|n| \mid n \in \operatorname{Spec}(f)\}$. Note that

$$|\operatorname{Spec}(\phi_k)| \subset [3^k - k, 3^k + k] \subset (n_{k-1}, n_k].$$

If $r \in \mathbf{N}$, $k_1 < \cdots < k_r$, and $i_j \in |\operatorname{Spec}(\phi_{k_j})|$,

$$i_r \pm \dots \pm i_1 \ge (3^{k_r} - k_r) - (3^{k_{r-1}} + k_{r-1}) - \dots - (3^{k_1} + k_1)$$
$$\ge (3^{k_r} - k_r) - (3^{k_r-1} + k_r - 1) - \dots - (3^0 + 0)$$
$$= \frac{3^{k_r} + 1}{2} - \frac{k_r(k_r + 1)}{2}$$
$$> 1$$

Since any element of $|\operatorname{Spec}(\phi_{k_1}\dots\phi_{k_r})|$ can be written as $\pm i_r \pm \dots \pm i_1$ with $i_j \in |\operatorname{Spec}(\phi_{k_j})|$, it holds that $0 \notin |\operatorname{Spec}(\phi_{k_1}\dots\phi_{k_r})|$, and hence $\{\phi_k\}$ is multiplicatively orthogonal. If $g \in L^p$, it is clear that $\|\phi_k\|_{2p} \leq \sqrt{2} \|s_k\|_{2p} \leq C \|g\|_p$.

Nextly let us prove the g-CLT. Take arbitrarily a sequence $\{a_n\}$ satisfying (0.1). We can take a sequence $\{m(k)\}$ of integers such that

$$m(k) \le k$$
, $m(k) \uparrow \infty$, and $|a_k| \sup_{\omega \in [0,1]} |s_{m(k)}(\omega)| = o(A_k)$ as $k \to \infty$.

Let us put $\psi_k(\omega) = \sqrt{2} s_{m(k)}(\omega) \cos 2\pi 3^k \omega$.

We here prove the following central limit theorem for $\{\psi_k\}$:

(1.0)
$$\frac{1}{A_n} \sum_{k=1}^n a_k \psi_k \xrightarrow{\mathscr{D}} \frac{1}{\lambda(S)} \int_S N_{0,g(t)}(\cdot) dt \quad \text{as} \quad n \to \infty$$

We use the next theorem due to Takahashi [1].

Theorem T. Suppose that a sequence $\{n_j\}$ of integers had Hadamard's gaps, and a sequence $\{\Delta_k\}$ of trigonometric polynomials satisfies the following conditions:

(1.1)
$$|\operatorname{Spec}(\Delta_k)| \subset (n_k, n_{k+1}] \text{ for } k \in \mathbf{N};$$

(1.2)
$$C_n^2 = \sum_{k=1} \|\Delta_k\|_2^2 \to \infty \quad \text{as} \quad n \to \infty;$$

(1.3)
$$\sup_{\omega \in [0,1]} |\Delta_k(\omega)| = o(C_k) \quad \text{as} \quad k \to \infty;$$

(1.4)
$$\frac{1}{C_n^2} \sum_{k=1}^n (\Delta_k^2 + 2\Delta_k \Delta_{k+1}) \xrightarrow{L^1} g \quad \text{as} \quad n \to \infty.$$

Then

$$\frac{1}{C_n} \sum_{k=1}^n \Delta_k \xrightarrow{\mathscr{D}} \frac{1}{\lambda(S)} \int_S N_{0,g(t)}(\cdot) dt \quad \text{as} \quad n \to \infty$$

holds on probability space $(S, dt/\lambda(S))$ for any $S \subset [0, 1]$ with $\lambda(S) > 0$.

Let us put $\Delta_k = a_k \psi_k$. It is clear that (1.1) and the estimate below hold:

$$\sup_{\omega \in [0,1]} |\Delta_k(\omega)| = o(A_k) \quad \text{as} \quad k \to \infty.$$

Because of the expression $\Delta_k^2 - a_k^2 s_{m(k)}^2 = a_k^2 s_{m(k)}^2 \cos 2\pi 2 \cdot 3^k \omega$, we have $|\operatorname{Spec} (\Delta_k^2 - a_k^2 s_{m(k)}^2)| \subset [2 \cdot 3^k - 2k, 2 \cdot 3^k + 2k] \subset (2n_k, 2n_{k+1}],$ and hence $\{\Delta_k^2 - a_k^2 s_{m(k)}^2\}$ is orthogonal. Especially, $0 \notin |\operatorname{Spec}(\Delta_k^2 - a_k^2 s_{m(k)}^2)|$ implies

$$E\Delta_k^2 = a_k^2 E s_{m(k)}^2, \quad \text{and hence} \quad \frac{C_n^2}{A_n^2} = \frac{1}{A_n^2} \sum_{k=1}^n E\Delta_k^2 = \frac{1}{A_n^2} \sum_{k=1}^n a_k^2 E s_{m(k)}^2 \to 1.$$

Therefore we have (1.2) and (1.3).

Because of
$$\Delta_k \Delta_{k+1} = a_k a_{k+1} (\cos 2\pi 2 \cdot 3^k \omega + \cos 4\pi 2 \cdot 3^k \omega) s_{m(k)}^2(\omega)$$
, we have

 $|\operatorname{Spec}(\Delta_k \Delta_{k+1})| \subset [2 \cdot 3^k - 2k, 4 \cdot 3^k + 2k]$

and thereby $\{\Delta_k \Delta_{k+1}\}$ is orthogonal.

To prove (1.4), we divide the left hand-side into three parts:

$$\sum_{k=1}^{n} (\Delta_k^2 + 2\Delta_k \Delta_{k+1}) = \sum_{k=1}^{n} a_k^2 s_{m(k)}^2 + \sum_{k=1}^{n} (\Delta_k^2 - a_k^2 s_{m(k)}^2) + \sum_{k=1}^{n} 2\Delta_k \Delta_{k+1}$$
$$= \Sigma_1 + \Sigma_2 + \Sigma_3.$$

Because of $s_{m(k)} \to \sqrt{g}$ in L^2 , it is clear that $s_{m(k)}^2 \to g$ in L^1 , and hence

$$\frac{\Sigma_1}{A_n^2} \xrightarrow{L^1} g \quad \text{as} \quad n \to \infty.$$

By the orthogonality, the condition (1.3), and $A_n^2/A_{n+1}^2 = 1 - a_{n+1}^2/A_{n+1}^2 \rightarrow 1$, we have the estimates below:

$$(E|\Sigma_2|)^2 \le E\Sigma_2^2 = \sum_{k=1}^n E\Delta_k^4 = \sum_{k=1}^n o(A_k^2) E\Delta_k^2 = o(A_n^4);$$

$$(E|\Sigma_3|)^2 \le E\Sigma_3^2 = \sum_{k=1}^n E\Delta_k^2 \Delta_{k+1}^2 = \sum_{k=1}^n o(A_k^2) E\Delta_k^2 = o(A_{n+1}^2 A_n^2) = o(A_n^4).$$

These imply (1.4) and thereby the proof of (1.0) is over.

 $\{\phi_k - \psi_k\}$ is orthogonal, since $|\operatorname{Spec}(\phi_k - \psi_k)| \subset |\operatorname{Spec}(\phi_k)|$. Thus we have

$$E\left(\frac{1}{A_n}\sum_{k=1}^n a_k(\phi_k - \psi_k)\right)^2 = \frac{1}{A_n^2}\sum_{k=1}^n a_k^2 E(\phi_k - \psi_k)^2 \to 0,$$

since $\phi_k, \psi_k \to \sqrt{g}$ in L^2 . This and (1.0) prove the *g*-CLT for $\{\phi_k\}$.

2. Bounded variance function

Let σ_k be k-th Cesaro sum of the Fourier series of \sqrt{g} . Since \sqrt{g} is bounded, it holds that

 $\sigma_k \to \sqrt{g} \text{ a.e.}, \quad \|\sigma_k\|_2 \to \|\sqrt{g}\|_2 = 1, \quad \text{and} \quad \sup_{k \in \mathbf{N}} \sup_{\omega \in [0,1]} |\sigma_k(\omega)| < \infty.$

Thus, if we put $\phi_k(\omega) = \sqrt{2} \|\sigma_k\|_2^{-1} \sigma_k(\omega) \cos 2\pi 3^k \omega$,

$$\sup_{k \in \mathbf{N}} \sup_{\omega \in [0,1]} |\sigma_k(\omega)| < \infty.$$

In this case, the proof can be carried out almost in the same way as before.

References

- 0 G. W. Morgenthaler, A central limit theorem for uniformly bounded orthonormal system, Trans. Amer. Math. Soc. **79** (1955) 281–311
- S. Takahashi, A version of the central limit theorem for trigonometric series, Tôhoku Math. J., 16 (1964) 384–398

Katusi FUKUYAMA Department of Mathematics, Kobe University, Kobe, Japan. E-mail: fukuyama@math.kobe-u.ac.jp Shigeru TAKAHASHI Yamamichi-cho 21-1-601, Hirosaki, Japan.