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Abstract. Morgenthaler proved that any bounded orthogonal sequence has a sub-
sequence which obey the g-CLT. In this note, it is proved that for any non-negative
integrable function g, there exists an orthogonal sequence which obey the g-CLT.

0. Introduction

In this note, we are concerned with limit theorems on the Lebesgue probability
space, i.e., the probability space consists of unit interval [ 0, 1 ] and Lebesgue measure
λ on it. We denote by EX the expectation of X and by Lp the Lp-space both on
[ 0, 1 ] with respect to λ.

Let us first introduce the notion of variance mixture of normal distribution.
Suppose that a function g satisfy

(0.0) g(t) ≥ 0 and
∫ 1

0

g(t) dt = 1.

We denote by 1
λ(S)

∫
S

N0,g(t)( · ) dt the variance variance mixture on S of normal
distribution with variance function g, that is the probability measure µ on R given
by

µ(A) =
1

λ(S)

∫
S

N0,g(t)(A) dt.

We say that a sequence {φk} of random variables on Lebesgue probability space
obeys the g-CLT if the convergence in law

1
An

n∑
k=1

akφk
D−→ 1

λ(S)

∫
S

N0,g(t)( · ) dt as n → ∞

holds on probability space
(
S, dt/λ(S)

)
for any S ⊂ [ 0, 1 ] with λ(S) > 0, and for

any sequence {an} of real numbers satisfying

(0.1) An =
( n∑

k=1

a2
k

)1/2

→ ∞ and an = o(An) as n → ∞.

Morgenthaler [0] proved that for any orthonormal sequence {φk}, there exists a
subsequence {φnk

} obeying the g-CLT for some bounded function g satisfying (0.0).
In this note we prove that for any g with (0.0), there exists an orthonormal

sequence obeying the g-CLT. Moreover we investigate integrability or boundedness
of the sequence.

1



Theorem 1. Suppose that g satisfies (1.2). Then there exists an orthonormal

sequence {φk} on [ 0, 1 ] obeying the g-CLT. We can take {φk} having the following

properties, according as the summability condition on g.

(1) {φk} can be taken to be multiplicatively orthogonal, i.e., to satisfy

E(φk1 . . . φkr ) = 0 for r ∈ N and k1 < · · · < kr.

(2) In case g ∈ Lp for some p ≥ 1, {φk} can be taken to be bounded with respect

to the L2p-norm.

(3) In case g is a bounded function, {φk} can be taken to be uniformly bounded

sequence.

For uniformly bounded multiplicatively orthogonal sequence, ordinary central
limit theorem is proved assuming the orthogonality of {φ2

k − Eφ2
k}. The above

theorem prove that multiplicatively orthogonal sequence may obey the g-CLT holds
if we drops the orthogonality of {φ2

k − Eφ2
k}.

2. Integrable variance function

Let sk be k-th sub-sum of the Fourier series of
√

g. We have

‖sk‖2 → ‖√g ‖2 = 1, and ‖sk‖2p → ‖√g ‖2p.

We prove that φk(ω) =
√

2 ‖sk‖−1
2 sk(ω) cos 2π3kω, is multiplicatively orthogo-

nal and obey the g-CLT.
Let us put nk := 3k + k. It is clear that {nk} has Hadamard’s gaps, i.e.,

nj+1/nj > q > 1 (j ∈ N). Let us denote by Spec (f) the set of all the frequencies
appearing in the Fourier series of f , and by |Spec (f)| the set { |n| | n ∈ Spec (f) }.
Note that

|Spec (φk)| ⊂ [ 3k − k, 3k + k ] ⊂ (nk−1, nk ].

If r ∈ N, k1 < · · · < kr, and ij ∈ |Spec (φkj )|,

ir ± · · · ± i1 ≥ (3kr − kr) − (3kr−1 + kr−1) − · · · − (3k1 + k1)

≥ (3kr − kr) − (3kr−1 + kr − 1) − · · · − (30 + 0)

=
3kr + 1

2
− kr(kr + 1)

2
> 1
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Since any element of |Spec (φk1 . . . φkr )| can be written as ±ir ± · · · ± i1 with ij ∈
|Spec (φkj )|, it holds that 0 /∈ |Spec (φk1 . . . φkr )|, and hence {φk} is multiplicatively
orthogonal. If g ∈ Lp, it is clear that ‖φk‖2p ≤

√
2 ‖sk‖2p ≤ C‖g‖p.

Nextly let us prove the g-CLT. Take arbitrarily a sequence {an} satisfying (0.1).
We can take a sequence {m(k)} of integers such that

m(k) ≤ k, m(k) ↑ ∞, and |ak| sup
ω∈[ 0,1 ]

|sm(k)(ω)| = o(Ak) as k → ∞.

Let us put ψk(ω) =
√

2 sm(k)(ω) cos 2π3kω.
We here prove the following central limit theorem for {ψk}:

(1.0)
1

An

n∑
k=1

akψk
D−→ 1

λ(S)

∫
S

N0,g(t)( · ) dt as n → ∞.

We use the next theorem due to Takahashi [1].

Theorem T. Suppose that a sequence {nj} of integers had Hadamard’s gaps, and

a sequence {∆k} of trigonometric polynomials satisfies the following conditions:

(1.1) |Spec (∆k)| ⊂ (nk, nk+1 ] for k ∈ N;

(1.2) C2
n =

n∑
k=1

‖∆k‖2
2 → ∞ as n → ∞;

(1.3) sup
ω∈[ 0,1 ]

|∆k(ω)| = o(Ck) as k → ∞;

(1.4)
1

C2
n

n∑
k=1

(∆2
k + 2∆k∆k+1)

L1

−→ g as n → ∞.

Then
1

Cn

n∑
k=1

∆k
D−→ 1

λ(S)

∫
S

N0,g(t)( · ) dt as n → ∞

holds on probability space
(
S, dt/λ(S)

)
for any S ⊂ [ 0, 1 ] with λ(S) > 0.

Let us put ∆k = akψk. It is clear that (1.1) and the estimate below hold:

sup
ω∈[ 0,1 ]

|∆k(ω)| = o(Ak) as k → ∞.

Because of the expression ∆2
k − a2

ks2
m(k) = a2

ks2
m(k) cos 2π2 · 3kω, we have

|Spec (∆2
k − a2

ks2
m(k))| ⊂ [ 2 · 3k − 2k, 2 · 3k + 2k ] ⊂ (2nk, 2nk+1 ],
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and hence {∆2
k − a2

ks2
m(k)} is orthogonal. Especially, 0 /∈ | Spec (∆2

k − a2
ks2

m(k))|
implies

E∆2
k = a2

kEs2
m(k), and hence

C2
n

A2
n

=
1

A2
n

n∑
k=1

E∆2
k =

1
A2

n

n∑
k=1

a2
kEs2

m(k) → 1.

Therefore we have (1.2) and (1.3).
Because of ∆k∆k+1 = akak+1(cos 2π2 · 3kω + cos 4π2 · 3kω)s2

m(k)(ω), we have

|Spec (∆k∆k+1)| ⊂ [ 2 · 3k − 2k, 4 · 3k + 2k ]

and thereby {∆k∆k+1} is orthogonal.
To prove (1.4), we divide the left hand-side into three parts:

n∑
k=1

(∆2
k + 2∆k∆k+1) =

n∑
k=1

a2
ks2

m(k) +
n∑

k=1

(∆2
k − a2

ks2
m(k)) +

n∑
k=1

2∆k∆k+1

= Σ1 + Σ2 + Σ3.

Because of sm(k) →
√

g in L2, it is clear that s2
m(k) → g in L1, and hence

Σ1

A2
n

L1

−→ g as n → ∞.

By the orthogonality, the condition (1.3), and A2
n/A2

n+1 = 1 − a2
n+1/A

2
n+1 → 1, we

have the estimates below:

(
E|Σ2|

)2 ≤ EΣ2
2 =

n∑
k=1

E∆4
k =

n∑
k=1

o(A2
k)E∆2

k = o(A4
n);

(
E|Σ3|

)2 ≤ EΣ2
3 =

n∑
k=1

E∆2
k∆2

k+1 =
n∑

k=1

o(A2
k)E∆2

k = o(A2
n+1A

2
n) = o(A4

n).

These imply (1.4) and thereby the proof of (1.0) is over.
{φk − ψk} is orthogonal, since |Spec (φk − ψk)| ⊂ | Spec (φk)|. Thus we have

E

(
1

An

n∑
k=1

ak(φk − ψk)
)2

=
1

A2
n

n∑
k=1

a2
kE(φk − ψk)2 → 0,

since φk, ψk → √
g in L2. This and (1.0) prove the g-CLT for {φk}.
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2. Bounded variance function

Let σk be k-th Cesaro sum of the Fourier series of
√

g. Since
√

g is bounded, it
holds that

σk → √
g a.e., ‖σk‖2 → ‖√g ‖2 = 1, and sup

k∈N
sup

ω∈[ 0,1 ]

|σk(ω)| < ∞.

Thus, if we put φk(ω) =
√

2 ‖σk‖−1
2 σk(ω) cos 2π3kω,

sup
k∈N

sup
ω∈[ 0,1 ]

|σk(ω)| < ∞.

In this case, the proof can be carried out almost in the same way as before.
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