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Abstract. Morgenthaler proved that any bounded orthogonal sequence has a sub-
sequence which obey the g-CLT. In this note, it is proved that for any non-negative

integrable function g, there exists an orthogonal sequence which obey the g-CLT.

0. Introduction

In this note, we are concerned with limit theorems on the Lebesgue probability
space, i.e., the probability space consists of unit interval [0, 1] and Lebesgue measure
A on it. We denote by FX the expectation of X and by LP the LP-space both on
[0,1] with respect to A.

Let us first introduce the notion of variance mixture of normal distribution.

Suppose that a function g satisfy

(0.0) g(t) >0 and /1 g(t)dt = 1.
0

We denote by ﬁ Js No,g(t)( - ) dt the variance variance mixture on S of normal
distribution with variance function g, that is the probability measure p on R given

by
1

A= —— | N, A)dt.
,u( ) /\(5) /S O,Q(t)( )
We say that a sequence {¢y} of random variables on Lebesgue probability space

obeys the g-CLT if the convergence in law

Ly 7 1
A_";ak(bk—)m/sj\fo’g(t)(')dt a8 T — 0O

holds on probability space (S,dt/A(S)) for any S C [0,1] with A(S) > 0, and for

any sequence {a,} of real numbers satisfying

n 1/2
(0.1) A, = <Z ai) — oo and a, =0(4,) as n— oo.
k=1

Morgenthaler [0] proved that for any orthonormal sequence {¢y}, there exists a
subsequence {¢,, } obeying the g-CLT for some bounded function g satisfying (0.0).
In this note we prove that for any g with (0.0), there exists an orthonormal
sequence obeying the g-CLT. Moreover we investigate integrability or boundedness

of the sequence.



Theorem 1. Suppose that g satisfies (1.2). Then there exists an orthonormal
sequence {¢y} on [0,1] obeying the g-CLT. We can take {¢y} having the following
properties, according as the summability condition on g.

(1) {¢r} can be taken to be multiplicatively orthogonal, i.e., to satisfy
E(pr, ... ¢r,)=0 for re N and ki <---<k,.

(2) In case g € LP for some p > 1, {¢i} can be taken to be bounded with respect
to the L*?-norm.
(3) In case g is a bounded function, {¢} can be taken to be uniformly bounded

sequerce.

For uniformly bounded multiplicatively orthogonal sequence, ordinary central
limit theorem is proved assuming the orthogonality of {¢7 — E¢2}. The above
theorem prove that multiplicatively orthogonal sequence may obey the g-CLT holds
if we drops the orthogonality of {¢7 — E¢37}.

2. Integrable variance function
Let sj be k-th sub-sum of the Fourier series of ,/g. We have

[sklla = [[Vgllz =1, and iskll2p = [1v/g [l2p-

We prove that ¢ (w) = v2|sk|l5  sk(w) cos 2r3*w, is multiplicatively orthogo-
nal and obey the g-CLT.

Let us put ng := 3% + k. It is clear that {n;} has Hadamard’s gaps, i.e.,
njy1/n; > q > 1 (j € N). Let us denote by Spec (f) the set of all the frequencies
appearing in the Fourier series of f, and by | Spec (f)| the set { |n| | n € Spec(f) }.
Note that

[Spec (6] © [35 — k35 + k] € (ng_1, k).

IfreN, ki <---<kp, and i; € | Spec (¢x, )|,

ety > B k) =B 4 k) — = (M + Ey)
> (3 — k) — (3" k. — 1) — - = (3°+0)
34l ke(ke 1)
2 2
> 1



Since any element of | Spec (¢, ... ¢k, )| can be written as +i, +--- +4; with i; €
| Spec (¢, )|, it holds that 0 ¢ | Spec (¢, . .. ¢k, )|, and hence { ¢y} is multiplicatively
orthogonal. If g € LP, it is clear that ||¢|l2p < V2 ||skll2p < Cllgllp-

Nextly let us prove the g-CLT. Take arbitrarily a sequence {a,, } satisfying (0.1).

We can take a sequence {m(k)} of integers such that

m(k) <k, m(k)Too, and |ax| sup |[spk)(w)|=o0(Ar) as k — oo.
we[0,1]

Let us put ¢ (w) = ﬁsm(k)(w) cos 2m3kw.

We here prove the following central limit theorem for {vy}:

L5 2 1
' A, — | Ny (- e
(1.0) Ankz_lam — )\(S)/s 0o (-)dt as n— oo

We use the next theorem due to Takahashi [1].

Theorem T. Suppose that a sequence {n;} of integers had Hadamard’s gaps, and

a sequence {Ay} of trigonometric polynomials satisfies the following conditions:

(1.1) | Spec (Ag)| C (ng,nk+1] for ke N;

(1.2 =3 Akl = oo as n oo

(1.3) sup k\_Alk(w)| =0(Cg) as k — oo
we[0,1]

(1.4) Ci% é(Ai YA A1) E g as m— oo

Then

1 — 2 1
C_nkz—lAk—)W/sNovg(t)(‘)dt as n — 0o

holds on probability space (S, dt/)\(S)) for any S C [0,1] with A(S) > 0.

Let us put Ax = agg. It is clear that (1.1) and the estimate below hold:

sup |Ag(w)| =o0(Ar) as k — oo.
w€[0,1]

Because of the expression Ai — a%s%(k) = azsfn(k) cos 212 - 3*w, we have
| Spec (A} — ajsp, )l C [2-3F =2k, 23" + 2k] C (204, 20k,
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and hence {A2 — a?s? is orthogonal. Especially, 0 Spec (A% — a3s?
kT Sk kS (k)

implies
2 2 2 0721 1 S 2 1 - 2 2
EA} = @i By, and hence  —5 = -5 3 EA}= -5 ) aiBs) g — 1.
n " g=1 " k=1

Therefore we have (1.2) and (1.3).

Because of ApAyy1 = agag,1(cos2m2 - 38w + cos4n2 - Bkw)si(k)(w), we have
| Spec (AgAgi1)| C [2-3% — 2k, 4- 3% + 2k]

and thereby {ArAgy1} is orthogonal.
To prove (1.4), we divide the left hand-side into three parts:

n

k=1 k=1 k=1

k=1
SN YT YT )

Because of s,,,(x) — /g in L2, it is clear that sfn(k) — g in L', and hence

DIV
= 259 as n— oo.

AL

By the orthogonality, the condition (1.3), and A2/A2 .| =1—a2 /A2 |, — 1, we

have the estimates below:

(B|S,))* < EX2 = ZEA4 = 0(A7)EA} = o(A}):

k=1

(B|S,))” < B3 = ZEA?AM S o(AD)EAL = o(A2,, A42) = o(AL).
k=1

These imply (1.4) and thereby the proof of (1.0) is over.
{¢r — 1r} is orthogonal, since | Spec (¢r — 1x)| C | Spec (¢)|. Thus we have

1 n
E<A_n ;ak(% —W)) 1z Z%E R

" k=1

since ¢, ¥r — /g in L?. This and (1.0) prove the g-CLT for {¢y}.



2. Bounded variance function
Let o, be k-th Cesaro sum of the Fourier series of |/g. Since ,/g is bounded, it
holds that

o — g ae, |oglla—valla=1, and sup sup |op(w)| < .
keN we[0,1]

Thus, if we put ¢p(w) = v2||ok |5 or(w) cos 2m3*w,

sup sup |op(w)| < oo.
keN we[0,1]

In this case, the proof can be carried out almost in the same way as before.

References
0 G. W. Morgenthaler, A central limit theorem for uniformly bounded orthonor-
mal system, Trans. Amer. Math. Soc. 79 (1955) 281-311
1 S. Takahashi, A version of the central limit theorem for trigonometric series,

To6hoku Math. J., 16 (1964) 384-398

Katusi FUKUYAMA  Department of Mathematics, Kobe University, Kobe, Japan.
E-mail: fukuyama@math.kobe-u.ac. jp
Shigeru TAKAHASHI  Yamamichi-cho 21-1-601, Hirosaki, Japan.



