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ABSTRACT. Although the law of the iterated logarithm for discrepancies of
geometric progression is proved, the constants appearing there are not con-
cretely evaluated for small ratios. We consider the case when ratio is a power
root of small rational number, and make a conjecture on the concrete value of
the constant. We give several examples which are consistent with the conjec-
ture.

1. INTRODUCTION

A sequence {z} of real numbers is said to be uniformly distributed mod 1 if

1
lim N#{kSN\(xk>€[a,b)}:b—a forall 0<a<b<1,

N—o0

where (x) denotes the fractional part x —[2 ] of . Since the convergence is uniform
in a and b, we use the following discrepancy Dy ({x}) to measure the speed of
convergence:

1
Dn({zx}) = sup |=H{k <N | (wy) € [a,0)} = (b= a)|.
0<a<b<1

For geometric progressions {#*x} with || > 1, we can prove the law of the
iterated logarithm in exact form as below and determine the speed of convergence
toward the uniform distribution.

— ND k

— NDy({¢"z})

N—oo /2N loglog N
where ¥y > 1/2 is a constant determined by 6. The case § > 1 was proved in [1]
and the case § < —1 in [3].

Before this result, Philipp [8] applied the method of Takahashi [9] and proved
that the limsup above is bounded from below and above by positive constants if we
replace 6% by ny satisfying ng1/ng > q > 1.

We are interested in the concrete value of ¥y because it indicates the speed of

convergence.
When 6% ¢ Q for all k =1, 2, ..., then

=3y ae. z,

(1) Sy =5

When 6% € Q for some k = 1, 2, ..., denote r = min{k € N : 0¥ € Q} and
0" =p/qby p € Z and q € N with ged(p, g) = 1. We first see that Xy is independent
of r and and is determined only by p and ¢, i.e.,

(2) Yo =2%p/q-
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We also have the estimate

1 1 Jlplg+1
3 — <Y, <X < = .
(3) 9 P/q lpl/a =5 lplg — 1
If both p and ¢ are odd, then
plg +1
4 Yy = = .

If |p| > 4 is even and ¢ = 1, then

_ 1 (el + Dipl(p] —2)
® 2”‘2\/ (ol — 17

If p=2and g =1, then

1
(6) Sy = 5 V2
By (1), (2), (3), and (6), we see that ¥o is largest among g (|| > 1) and that
{2%2} is furthest from the uniform distribution a.e. These results are proved in
[1, 2, 3]. Determining the concrete value of ¥_5 is rather hard work [4]:

1
(7) ¥ = 4510,

When ¢ > 1 and pgq is even, evaluation of the concrete value of X, /, needs very
delicate estimate. We succeeded in giving the closed formula below to have the

concrete evaluation when p/q is large. If p is odd, ¢ is even and |p|/q > 9/4, or if p
is even, ¢ is odd and |p|/q > 4, then [7]

(8)
I-1

_ (Iplq)1+1v Ip| —q—1 2(|plg)* Pl —q—1
Pr/a = (Iplg)t — 1 (2(\p|*q)) (Iplg)” —1 Z Iplq ( 2(|p|*q))’

=1

where I = min{n € N | ¢" = 1 mod |p| — ¢} and v(z) = (z)(1 — (x)).

Having these results, it is very natural to have a question if the formula (8) is
valid when p/q is small. We already have counterexamples ¥y and ¥_o, since [ = 1
and the right hand side of the formula equals to 0 in these cases which is different
from the actual values (6) and (7). In this note, we make a conjecture and give a
few affirmative examples for that. Because the case when p/q is negative is very
delicate and hard to be investigated, we restrict ourselves to the case of positive

p/aq.
If p/q is positive, we [1] have proved

 V((Wra), (¢*a))
Y2 = sup oi(a) = su (Va,a+2 — 2 )
o 0§a21 9( ) 0921 ( ) ,; pqu
where V(z,€) =z AN§ — €.

The formula (8) is derived from

(9) Xp/q :Up/q<%)-

This equation holds since the point © = (p — ¢ — 1)/2(p — ¢) is the maximal
point of the function V(x,x) + 2V ({pz), {(qz))/pq and the remainder terms can be
negligible when p/q is large.
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When p/q is small, then the remainder terms grow and validity of the formula
(9) cannot be expected. Actually we can find several p/q such that

(10) Xplq = Up/q(ﬁ)

holds for some n € N, and we say that p/q is of type k in this case. The formula
(9) shows that p/q is of type I if pq is even and p/q is large.

Since we have )
Y2 = (22 12)

we see that 2 = 2/1 is of type IL
We here state our conjecture.

Conjecture 1. There exists k and n such that (10) holds if pq is even.
We are now in a position to state our result.

Theorem 1. Ratio 13/6 is under the threshold of validity of (8), it is of Type I
and the concrete evaluation given by (8) is as follows:

W
13-6/ 7V 77
Ratios 4/3, 8/3, 10/3, 12/5, 17/8 are of Type II and the concrete evaluations are
as follows:

213/6 = 013/6(

- 3 18 [ 117609

4/3_"4/3(42—32) ~ 7V 2085983

.o 24 \ 2 \/ 157667789263012683051319944222
8/3 = 08/3(82 32) T 275 32159909742724829389686571

s (L) & [0
10/3 = 010/3 102 _ 3 14877551

Y12/5 = O12/5 (

\_/

122—5

Yi7/s = 017/8<172 )

Ratio 19/10 is of type III and the concrete evaluation is as follows:
Y19/10 = 019/10(1932877?03)
Ratio 12/7 is of type IV and the concrete evaluation is as follows:
8717

—7)

1 \/1288914789424650371352900618359881195696318380071236938
~ 18335 15230103878098355389592475654267327331681959935
Ratio 8/5 is of type V:

Yo7 = 012/7(

13690 )
85 55 /)"
Ratio 3/2 is of type VI and the concrete evaluation is as follows:

277 ) 2 \/305671451762616889661445636790873

g5 = 08/5(

. — (7 _ 2
3/2 = 93/2\ 36 _ 96 665 10314424798490535546171949055

(Concrete evaluations of X for 6 = 12/5, 17/8, 19/10 and 8/5 can be found in
[6].)
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Since the evaluation of Y3/, contains very delicate calculation and the proof is
lengthy, it will be proved in a separate paper [5].
By the above results, concrete values of ¥, /5 and ¥, /3 are completely determined.

2. PRELIMINARY

We denote o3 (a) simply by o2(a).
The inequality 0 < V(z,y) < 1/4 (z, y € [0,1)) implies

o0 o0

2 Y V(") (e ”””‘ <3 2 Gor M D)™

n=N+1 (pq)n n=N+1

(11)

If x > y, then we have V(z,y) = y(1 — z), Va(z,y) = —y < 0, and Vj(z,y) =
1—2>0. If z < gy, then we have V(z,y) = z(1 — y), Vo(z,y) =1 —y > 0, and
Vy(z,y) = —x < 0. Since one of V;(z,y) and V,(z,y) is positive and the other is
negative, we see

Ly () (am)| = Ve (02, (a) + 0"V, (7). (")) | <0 e

and
—~ 1 d — 1 2
(12) 2 —V((p"z), (") ’ <2 —_— = — a.e.
n§+1 (pq)" dx ( ) n§+l ¢ (g=1)g"

Actually, the function V((p”:c), (q”x)) can not to be differentiated on finitely many
points, and the estimate above is valid outside of the countable dense set H. We can,
however, argue in the following way. Since the series (11) and (12) are uniformly
convergent outside of H, we see

“(d — 1 d
2\ _ k k
o) = [ (G0 +2 X g V0 e )
It make us possible to conclude that 02(a) increases in the interval in which

d 1 d
— 2 _ k k > .e.
de(x,m) + ;pkq’“ de((p a),(¢"a)) >0 a.e

3. TYPE IV CASE, X137

8717 8717
124 — 74 18335°

1224 =7 =1 mod 12¢-7,
we have V ({724 ), (12nF240¢)) = V ((T"¢), (12"¢c)) and

Put c =

24

24 24
o2(c) = V({), (e)) + 272112123 > 7&2”V(<7”c>, (127¢))

n=1
~ 1288914789424650371352900618359881195696318380071236938
~ 5119937907681452900160044383953378173894837463709805375
We divide [0,1/2) into [0,3/7), [3/7,68/122), [68/122,45/95), [45/95,820/12%),
[820/123,821/123), [821/123,9858/12%), [9858/12%, ¢), [ ¢, 9859/12%), [9859/12%, 822/123),
[822/123,659/1385), [659/1385,69/122), [69/122,46/95), [46/95,1/2), and prove
o%(z) < o*(c) (x # c) on each.
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3.1. [0,3/7) part. On [0,3/7), by applying (11) for N = 0 we have
o*(xz) = o*(c)
1
<z(l—z)+ —— — 02
sel-0tyg o v=3/7
_412525633762177727202928217956973408126390844189499799 <
~ 501753914952782384215684349627431061041694071443560926750 '

3.2. [3/7,68/122) and [46/95,1/2) parts. On [3/7,1/2), we see (12x) = 122 — 5,
(Tx) = Tx — 3, (12z) — (7Tx) = 5x — 2 > 0, and

(13) V((7z), (12z)) = (Tw — 3)(6 — 12z) x € [3/7,1/2).
On [3/7,68/122), by applying (11) for N = 1 we have

o?(x) — o*(c)

1

2
<a(l—2)+ ——(Tx —3)(6—122) 4+ ——— —
<z(l-2)+ (T2 — 3)(6 x)+2.83.7.12

7-12
=—-1.906--- x 107° < 0,

o?(c)
=68/122

since the bounding quadratic function on the right hand side has the axis of sym-
metry at @ = 10/21 € (68/12%,46/95). (Exact values can be found in [6].) On
[46/95,1/2), it also implies

o?(x) — o*(c)

<z(l-=z)+ %(ZE —3)(6 — 12z) +

=—-1.647--- x 107* < 0.

2=46/95

3.3. [69/122,46/95) part. We have (122z) = 122z — 69, (7%z) = 72z — 23, and
(122x) — (7?z) = 952 — 46 < 0. By applying (11) for N = 2 we have

o*(xz) = o*(c)

2
<z(l- — — —12
< x( z)+7.12(7x 3)(6 z)+
1

2.83-72.122
= —6.868---x 107° < 0,

2
W(u% —69)(24 — 7%2)

+ —a*(c)

=5639/11760

since the quadratic function has the axis at = 5639/11760.

3.4. [68/122,45/95), [45/95,820/12%), and [659/1385,69/122) parts. On [68/122,69/122),
we see (122z) = 122z — 68, (7%z) = 7%z — 23, (122x) — (7%z) = 95z — 45 and
1222 — 24 — 72 1224
(14) V(<72$>, <122.’L‘>) — ( R T 68)( 72I) RS [68/ ) 5/92)7
(7% —23)(69 — 12°x) =z € [45/95,69/12°).
On [68/122,45/95), by applying (11) for N = 2 we have

o?(x) — o?(c)

2
< _ - _ _
<z(1 $)+7.12(7£K 3)(6 — 12z) +
L1
2-83-72-122

=—1442---x107° < 0,

2
W(12% —68)(24 — 7%2)
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since the quadratic function has the axis at x = 4217/8820 > 45/95.
On [45/95,820/123), by applying (11) for N = 2 we have
o?(x) — o?(c)

<z(l-z)+ %(733 —3)(6 —12z) +

1 2
fomrae 7@ o—s20/12°

=-3.211---x107% <0,

2

since the quadratic function has the axis at x = 5591/11760 € (820/123,659/1385).
On [659/1385,69/122) it also implies
o%(x) — o*(c)
<z(l—-z)+ %(7% —3)(6 — 12x)
g )

=-1.718---x 10~ < 0.

2 2 2

+=659/1385

3.5. [820/12°,821/123), [821/123,9858/12), [9859/12*,822/123), and [822/123,659/1385)
parts. On [820/123,821/123) we have (1232) = 123z — 820, (732) = 732 — 162,
(123z) — (73z) = 13852 — 658, and

(1232 — 820)(163 — 73z) € [820/12°,658,/1385),

V((7%2), (12°2)) = {(7% —162)(821 — 12%z) =z € [658/1385,821/12°).

On [820/123,658/1385), by applying (11) for N = 3 we have

o%(x) — o*(c)

2 2 9 9
2 - 1
+ o (1232 — 820)(163 — 732) + —————— — 02(c)
73.123 2-83-73.123 +=658/1385

=-5.302---x 1077 <0,

since the quadratic function has the axis at x = 123241/259308 > 658/1385.
On [658/1385,821/123), by applying (11) for N = 3 we have

o*(z) — o*(c)

2 2 2 2
< — N — — - — —
1[,’(1 CC) + 712 (7LE 3)(6 12%) + 72192 (7 x 23)(69 12 l’)
1

(732 — 162)(821 — 1232) + 83 18 o2(c)

+=658/1385

L2
75123

=-5.302---x 1077 <0,

since the quadratic function has the axis at = 1970471/4148928 < 658,/1385.
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On [821/123,163/7%), we see (123x) = 123z — 821, (73x) = T3z — 162, and
(123z) — (73z) = 1385z — 659 < 0. By applying (11) for N = 3 we have

o%(x) — o*(c)

2 2
<ax(l— ——(Tx — -1 — _(TPx — —122
<z(l—=z)+ = 12(733 3)(6 —12x) + = 192 (7°z — 23)(69 — 12°x)
1
+ (1232 — 821)(163 — 732) + ———————— — 02(c)
73.123 2-83-73.123 2—163/75

=-3.247---x 1077 <0,

since the quadratic function has the axis at x = 1972199/4148928 > 163/73.
On [163/73,822/123), we see (123z) = 123z — 821, (73x) = 73z — 163, (123z) —
(73z) = 1385z — 658 > 0 by 658/1385 < 163/7%, and

(15)  V((7*z),(12%2)) = (T°z — 163)(822 — 12%z) =z € [163/7°,822/12%).
On [163/73,9858/12%), by applying (11) for N = 3 we have

o?(x) — o?(c)

2 2 9 9
2 1
—— (732 — 163)(822 — 123 S —
g (T e 163 Dt ysmomas 0O o858/ 124

= —5648---x 1077 < 0,

since the quadratic function has the axis at x = 328757/691488 € [9858/12%,9859/12%).
On [9859/124,822/123), it also implies

o*(xz) — o*(c)

2 2 9 9
2 1
+ (72 — 163)(822 — 12%°2) + ————— — 07(c
712 I N TN I DE ( )x:9859/124

=-2319---x107? < 0.

On [822/123,659/1385), we see (123z) = 123z — 822, (T3z) = 73z — 163, and
(123x) — (73z) = 13852 — 659 < 0. By applying (11) for N = 3 we have

o*(xz) — o*(c)

2 2 9 9
2 1
+ o (1282 — 822)(164 — 7P2) + —————— — 02(c)
73128 2-83.7%.123 —659,/1385

=-3.136---x 1077 <0,

since the quadratic function has the axis at x = 329045/691488 > 659/1385.

3.6. [9858/12%,¢c) and [c, 9859/12%) parts. We see (12%z) = 1242 — 9858, (74z) =
74 — 1141, and

(124 — 9858)(1142 — 7*z) = € [9858/12%, ¢),

V(7). (12%a)) = {(7% ~1141)(9859 — 12%2) € [, 9859/124).
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On [9858/124, ¢), by applying (12) for N = 4 we have

d
%02(55)
> 4 (33(1 —z)+ (7Tx —3)(6 — 12z) + L(72$ —23)(69 — 12%z)
T dz 712 72122
+ L(?% — 163)(822 — 12%x) + (12%2 — 9858) (1142 — 7%))
73123 74124
2
674
_ 74680704z — 35506607 . 74680704c — 35506607 21942577 <
4148928 - 4148928 76070594880 '
On [c,9859/12%), by applying (12) for N = 4 we have
d
£02($)

< %(m(l C )4 =2 (72— 3)(6 — 122)

2r—9 — 122
13 (7*x — 23)(69 x)

L2
72122

2 3 3 2 4 4
T oy (TP — 163)(822 — 12°0) + o (T — 1141) (9850 — 12 x))
2
* 674
_ 448084224x — 213028219 < 443084224c — 213028219 77785243
24893568 - 24893568 456423569280
< 0.
4. TYPE I CASE, Xi3/6
Put
3
=
Because of V((6™c), (13™¢c)) = V(e, ¢), we have
6-13+1
2 —
o%(c) = ET13 1V(c,c).

In the same way as the proof of the previous section, we divide interval into
small pieces, and prove one of the following result to accomplish the proof.

(16) o?(x) — o*(c) <0,
(17) %02(@ >0,
(18) %0’2(1') < 0.

In this case, we divide in the following way, apply an inequality and prove the
necessary result on each interval.

Interval Applying inequality Shown result
[0,5/13) (11) for N =0 (16)
[5/13,¢) (12) for N =1 (17)
[c,942/13%) (12) for N = (18)
[942/133,943/133) (11) for N = (16)
[943/132,73/132), [73/13%,58/133) (11) for N = (16)
[58/133,6/13), [6/13,1/2) (11) for N =1 (16)

Detailed calculation for this case can be found in [6].
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5. TYPE II CASE, Y43

Putc= % By 35 =46 = 1 mod 7, we see V ((3"%9¢), (4"t0ic)) = V ((3F¢), (4%¢))

and

46 O
o*() = V(e,c) + (32_(1)64)_ e _14)kv(<3kc>,<4’fc>).

k=1

In this case, we divide in the following way, apply an inequality and prove the
necessary result on each interval.

Interval Applying inequality Shown result
10,1/4) (11) for N =0 (16)
[1/4,1/3),[1/3,3/8) (11) for N =1 (16)
[3/8,27/64) (11) for N =2 (16)
[27/64,¢) (12) for N =3 (17)
[¢,16/37) (12) for N =3 (18)
[16/37,7/16), [7/16,4/9), [4/9,1/2) (11) for N =2 (16)

6. TYPE IT CASE, Xg/3

24 ; )
Put ¢ = = By 3?0 = 8% = 1 mod 55, we see V ((3F+20ic) (8+20ic)) =
V((3¥¢c), (8%¢)) and

o 23-8)2° &1
o%(c) = V(c,c) + B8P 1 kZ:l (3-8)kV(<3kC>7<10kc>)'

In this case, we divide in the following way, apply an inequality and prove the
result on each interval.

Interval Applying inequality Shown result
[0,3/8) (11) for N=0 (16)
[3/8,2/5), [2/5,27/82) (11) for N =1 (16)
[27/8%,223/8%) (11) for N = (16)
[223/83,¢) (12) for N =3 (17)
[c,28/82) (12) for N = (18)
[28/82,29/82), [29/82,30/8%) (11) for N = (16)
[30/82,1/2) (11) for N =1 (16)

7. TYPE II CASE, Xjo/3
40 . )
Put ¢ = o1 By 35 = 10° = 1 mod 91, we see V((3"T%ic), (10%T6ic)) =
V ((3¥¢), (10¥¢)) and

6

70 = Vieo) + o ?1010_121 TV (64 (10%0).

In this case, we divide in the following way, apply an inequality and prove the
necessary result on each interval.
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Interval Applying inequality Result
[0,4/10) (11) for N =0 (16)
[4/10,43/10%) (11) for N =1 (16)
[43/10%,4389/10%) (11) for N =2 (16)
[4389/10%,439/10%), [439/10%,4395/10%) (11) for N = (16)
[4395/10%, ¢) (12) for N =4 (17)
[c,44/102) (12) for N =2 (18)
[44/10%,4/3%), [4/32,45/10?), [45/10%,46/102) (11) for N = (16)
[46/10%,1/2) (11) for N = (16)

8. TYPE II CASE, X195

55
Put ¢ = —. Since we have 12%® = 1, 5% = 1 mod 119, we have (1248%+n¢) =
(12"¢), (5%8k+nc) = (57¢), and
1248548 48 1

2 _
o(e) =Vle o) + 2 oasgm 1 2« 12750

V((12"¢), (5"c)).

In this case, we divide in the following way, apply an inequality and prove the
necessary result on each interval.

Interval Applying inequality Shown result
[0,3/7) (11) for N =0 (16)
[3/7,66/122) (11) for N =1 (16)
[66/122, ) (12) for N =2 (17)
[c,801/123) (12) for N =3 (18)
[801/123,67/12?) (12) for N = (18)
[67/12%,68/122%) (11) for N = (16)
[68/122,1/2) (11) for N =1 (16)

9. TYPE II CASE, X7/

101
Putc= 2—(2)5 By 17%° = 1 mod 225 and 82° = 1 mod 225, we have (172%%+n¢) =

(17"¢), (820k+nc) = (87¢), and
1720820 20 1

2 —
7€) = Viee) + 2sgm g £ 17ngn

V((17"c), (8"c)).

In this case, we divide in the following way, apply an inequality and prove the
nessesary result on each interval.

Interval Applying inequality Shown result
[0,7/17) (11) for N =0 (16)
[7/17,129/17?) (11) for N =1 (16)
[129/17%,2205/17%) (11) for N =2 (16)
[2205/172, ¢) (12) for N =3 (17)
[c,130/172) (12) for N =2 (18)
[130/17%,29/8%) (11) for N =2 (16)
[29/8%,8/17), [8/17,1/2) (11) for N =1 (16)
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10. TyPE III CASE, ¥19/10

2879
Put ¢ = 95 105 Since we have 193 = 1, 103° = 1 mod 193 — 103, we have
(1930k+nc) = (197¢), (1030k+7¢) = (10™c), and
19301030 XL 1

o?(c) =V(e,c) +2 V((19"¢c), (10™c)).

19301030 — 1 ot 19n10m

In this case, we divide in the following way, apply an inequality and prove the
nessesary result on each interval.

Interval Applying inequality Shown result
[0,8/19) (11) for N =0 (16)
[8/19,9/19), [9/19,176/19%) (11) for N =1 (16)
[176/192,177/192), [177/192,128/261) (11) for N = (16)
[128/261,3369/19%) (11) for N =2 (16)
[3369/193,3370/193) (11) for N = (16)
[3370/193, ¢) (12) for N = (17)
[c,3371/193) (12) for N = (18)
[3371/193,178/192) (11) for N = (16)
[178/19%,1/2) (11) for N =1 (16)

11. TYPE V CASE, g5

13690

_ _ 13690
Put ¢ = Q5 _ 155 29643

840 =540 -1 mod 8§ —5°
we have V ((5mT40k¢) (8n+40kc)) = V' ((5"¢), (8"c)) and
540840 40 1

o?(c) = V((e), () + 2540840 -1 nz::l onan

V(<5"c>, <8"c>).

In this case, we divide in the following way, apply an inequality and prove the
nessesary result on each interval.

Interval Applying inequality Shown result
[0,2/5) (11) for N =0 (16)
[2/5,29/8%) (11) for N =1 (16)
[29/82,236/8%) (11) for N = (16)
[236/8%,18/39), [18/39,1891/8%) (11) for N = (16)
[1891/8%,15133/8%) (11) for N = 4 (16)
[15133/8%, ¢c) (12) for N = (17)
[¢,15134/8°) (12) for N =5 (18)
[15134/85,1892/8%), [1892/8%,1893/8%) (11) for N = (16)
[1893/8%,179/387), [179/387,237/8%) (11) for N = (16)
[237/8%,30/8%), [30/82,12/52) (11) for N =2 (16)
[12/52,1/2) (11) for N = (16)
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