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0. Introduction and results. In this note we will treat functional central limit theo-
rem, Strassen’s law of the iterated logarithms and mean central limit theorem for weakly
multiplicative systems. A sequence {{,} of random variables is called a multiplicative
system if

E(&l...ﬁir,):0 (reN i3 <-- <ip).

To extend the notion of multiplicative system, we must prepare some notation. Let
B, = (bi17~~-7ir)i1<---<i be an infinite dimensional vector having b;,, ;. = E(fil ...&T)
1

5
as its components and ||B,||s be its {s—norm i.e. || B,|s = < S |bi1_“ir|6> . Upper
i1 < <ip
bound part of the law of the iterated logarithms for weakly multiplicative system was
proved by Moricz [8].

Theorem A. Let {{,} be a sequence of random variables satisfying

(0.1) € <K (neN),
1 .
(0.2) | Brll2 < o0 (r e N) and limsup || By||§ = B < o
Then,
) S,
lim sup <1 a.s.

nee \/2(K2 + B2)A2 loglog A2

where Sy, = a1&1 + - + apén andA%:a%+---+afl—>oo as n — 0o.

Berkes [1] proved Strassen’s law of the iterated logarithms for weakly multiplicative
systems satisfying (0.1),

o o0
ZHBr”l < 00 and Z||B7’n||1 < oo
r=1 r=1

1



2 KATUSI FUKUYAMA

where B! is a vector defined in the same way as b, using {¢2 — 1} instead of {&,}, i.e.

B, = (b, . ir-)i1<---<ir and b, =FE((& —1)...(& —1)).
We prove limit theorems under conditions much weaker than those of Berkes’. First we
state functional central limit theorem.

We define C[0, 1]—valued random variables X, by

A2 S. A? A2
X, (A—;> = A—J and is linear in A—;, jl;rl (7=0,...,n)

where S, = a1&1 + -+ + apéy.
Theorem 1. Let {,} be a sequence of random variables satisfying (0.1),

(0.3) sup ||BTH5% =B < for some 6 € [1,2)
reN
and either
(0.4) Jim_ B ((& -1 - 1) =0
i
or

(05)  E((& - 1)(532 —1)) < By for some sequence {3;} with Zﬁn < 00.

n=0
Let {a,} be a sequence of real numbers satisfying
(0.6) A2 =at+---+ad® —00 and a,=o0(A,) as n— oo,

Then the distribution of X, converges weakly on Cl0,1] to the Wiener measure as n —
00.

Next we state Strassen’s law of the iterated logarithms. This is an extention of the
results of Berkes.

Theorem 2.
(a) Let {&,} satisfy (0.1) and (0.3), and let {a,} satisfy

A2
(0.7) A% — o and =0 —"2— as n — oo.
loglog A2
Then
Xn : : :
{—} is relatively compact in C[0,1]  a.s.

\/2loglog A2
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(b) Let {&,} satisfy (0.1), (0.3) and

(0.8) sup [[BJII3 < o
reN

Let {a,} satisfy

A2
(0.9) A2 w00 and a2 =o L as m — oo.
(log log A,) @7

Then

X
Cluster o — C K a.s.
{ / {\/2loglogA%}}

(¢) Moreover if we suppose
(0.10) A2 —oo and a,=0(A,") as m—oo for some >0,

then we have

X
Cluster of { —————xu—— =K a.s.,
{ / {\/210glogA%}}

where

1 2
d
K = {x € C[0,1];2(0) = 0, = is absolutely continuous and / (d—f) dr < 1}.
0

Finally we state mean central limit theorem. We define a sequence {C,,} of positive

numbers by

max |a;|
i<n

An

Under the condition (0.6), lim C, = 0 holds. Let F), be a distribution function of S,
and G be that of standard Gaussian distribution.

C, =

Theorem 3. Under the conditions (0.1), (0.3), (0.6) and (0.8), there exsists positive
constant L such that

=

4(1_ 1
IFy — Glloo < LC3 G731

8(1__ 1 2
IE, — G < rosGmang,

Mean central limit theorem for ESMS was proved by Paditz-Sarachmetov [11].
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1. Proof of Theorem 1. To prove functional central limit theorem, it is sufficient
to prove weak convergence of finite dimensional distributions and tightness of {X,,}.
Tightness is easy to derive from the following lemma due to Méricz [8]. For details of
the proof of tightness, see Oodaira [10] or Fukuyama [2].

Lemma B. Under the conditions (0.1) and (0.2),

(1.1) Eexp(AS,) < Cexp (% <K2 +B?+ 1) )\ZAEL>
and
y?
1.2 P{|S,| >y} <2Ce — -
(1.2 (15012 ) < 20esp (~ gt )

for all N e R and y > 0.

Next we proceed to the other part of the proof. Here we prove only 1-dimensional
case instead of multidimensional case using the following theorem due to McLeish [7],
but it is easy to extend this theorem to the case of multidimensional distributions.

Theorem C. Let {(, ;1 < j < kn} be a given triangular array of random variables

and put T, = [ (1+it(,. ;). Suppose for allt € R,
J<kn

(a) ET, —1, (b) {T,} is uniformly integrable ,
(c) Z C,%J —1 4p. and(d) jrr%e}sz"nﬂ —0 4ip. as n— oo.

J<kn

Then the distribution of . (n ; converges weakly to the standard Gaussian distribution.
J<kn

To apply this theorem to our case, we put k, = n and ¢, ; = %ﬁj. Then (a) and
n

(d) is trivial because of (0.1) and (0.6). To verify (a), we prove more general lemma for
convinience of the later use.

Lemma 1. We assume (0.3). Let {A,} be a sequence of positive numbers satifying that

1 —2(5-3)
< —0, .
A, < 2BC (n € N)

Let {\n ;} be a triangular array of complex numbers satisfying |\, ;| < A,,. Then

aj; 202 ~4(5-3)
(1.3) EH<1+>\MA > Z)\MA bi| < 2B%A2C,"°
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and

(14) FE H (1 + )\nvj%gj) -1 < QBAnCS(E_E)
j=1 "

Proof. First we prove (1.3) in case § € (1,2). Let € be the dual of §.

n Qs n Qs
E]] (1 + An,jA—Jgj) —1- ZAn,jA—]bj
j=1 " j=1 "

3

< Z (2B)T |)\n,j1 s An:jr| AET |aj1 s ajr" (2B)7T |bj1,-~~7jr| ’

r=2ji1<-<jr<n

using Holder’s inequality,

o=

n

S Z(ZB)re Z }/\n,jl e )\nJTA;TCle e CL]'T, ‘
r=2 J1<<jr<n
1
n 5
_ )
x 1Y @B) > b
r=2 J1<<jr<n
1
d 2(1-3),, a2\ (= (1IBl;
< | ) _(2BA,C, e Z A%ra3 L ad 5
r=2 J1<-<jr<n r=2

A
o
™
=
3
a
ol
|
N
o
m
()=
h
S |
N
3
S
E ]
S
SN0
3
ol
YOS
(]
[\]
1
(o9}
N——
|

S

n 2 B —25 N\ 3
2(3-%)\2 H aj 2
< QBzAzc;‘;(%—%)_

Thus we have proved (1.3), and it is clear that

o=
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and

n a n B . n
S Nni—lbi| < An | DAL ] 1b,]°
j=1 j=1 j=1
2(1-1 1 & ‘
< a0 S ) sl
n =1
1_1
< BA,c23),

These two estimates imply (1.4). We omit the case 6 = 1. (Cf. Fukuyama [3])

If we put A, ; =it and A,, =t in lemma 1, (1.4) implies (a) because of lim C,, = 0.

Finally we verify (c) under (0.4). It is sufficient to show that AL% Jél a?ﬁ? converges to 1
in LQ.
. 2
B> -1
noj—1
= E L@ ) gy Y atdB (-0 )
n =1 n1<i<i<n

The first term tends to 0 because of (0.1) and the second term also because of (0.4).
We omit the proof of the case that (0.5) is assumed. See Stout [15], theorem 3.7.2 or
Fukuyama [3].

\/2loglog A2
derived from (1.2) and theorem 1 of Méricz [9] using Ascoli-Arzera theorem and Borel-
Cantelli lemma. For the details, refer Fukuyama [2]. For the proof of (b) and (c), we
use the following theorem due to Kuelbs [6].

X
2. Proof of Theorem 2. Relative compactness of the sequence {—n} is

Theorem D. Assume that

v/2loglog A2

and, for all signed measure v with bounded variation on [0,1],

Xn
{—} is relatively compact in C[0, 1] a.s.

(2.1) lim sup Jo Xn(t) v(d) <

n—oo +/2loglog A2

v,1 a.s.
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holds. Then we have

X
Cluster o - Cc K a.s.
{ / {\/QIOglogA%}}

Furthermore, suppose that

S X (t) v(dt)

(2.2) lim sup =K, a.s.

n—oo 1/ 2 10g log A%

holds. Then we have

X
Cluster of { —————xu—— =K a.s.,
{ / {\/210glogA%}}

1

((/ Wt A0 (dt)) ):/00 (vl 1)) da

(W (t) denotes the standard Wiener process)

where

First we prepare some notation. Put

2
0 if te o, 5],
Pni = linear if te[ Lt 2—]
1 otherwise,

1 n
Cn,j = /0 Gnjv(d) and A2, = (ajen;)’.
=1

j
Fix # > 1 and we take p(r) € N satisfying A;( y SO < A? 2 We have

J+1 -

2

Aun 2
(2.3) Tim. g = K2,.

It is a consequence of

lim E ((/01 Y, (4) u(dt)>2> _E ((/01 W) y(dt))2>

which follows from functional central limit theorem and uniform integrability of {Y,,}
where Y,, is a C|0, 1]—valued random variables defined in the same way as X,, using
Rademacher sequence {r,} instead of {{,}. Next we prove

1 p(r)

2
(2.4) —AQ( ) Z (ajcp(T),jfj) — Kil a.s. as r — 00
p(r) j=1
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Since |c,, ;| < N, (0.9) and (2.3) imply

A2
(ajcp(,a),j) =0 (( ) as n — OoQ.

loglog A,,) =5

Using (0.8) and (1.2), we have

o A ) 2(K* + B'? +2)
P 2 () (6 1) = \/ i
r=1

v,p(r) j=1 p(r)

< Z2Cexp (—4loglogf”) < oo

r=1

where

2
Ao

(max mjan,) loglog A2

Jj<n

H, = — 00 as n — oo.

By Borel-Cantelli lemma, we have (2.4).

Putting A\, ; = ¢y j4/2loglog A2 and A,, = N4/2loglog A2 in lemma 1, we have
= Cn,ja;&;
E 14+ 22050 /2loglog A2 || < L N
(10228 ) <1 e

for some L > 0.
Now we can prove (2.1) using the method of Takahashi [16]. Put u,, = KV_% 2loglog A2.

Making use of e < (1 + x) exp (’”—22 + ]x|3> (Jz| < 3), for large enough r,

. p(r) MQ( : p(r) ) K21M2( :
L | exp Ap( Zaﬂ Cp(r),5€5 — 22}2( ) Z (ajcp(r),jfj) —(142¢)— 9 -
p(r) = p(r) 5=1

< EH (1 + Cn%ajfj\/2loglogA$L)
j=1 "

113 § K3 ) K,% 2 .
ex p( ) Z |aj¢p(r) J| ’12 no
P(T) j=1
= Lexp ( (1) loglog AP(T) (1 + 2¢)loglog Ap(r)>
S K//,,,—]_—G

Thus, by Beppo-Levi’s theorem,

lim p5,, / - 1+6K3>:—oo.
i p”(u() pry () v(dt) — (1 +€) K, 4
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This implies
1
X, (t) v(dt
limsupf p()()y( ) < K, a.s.

r—oo  /2loglog Ap(r)

For given n, take r satisfying p(r) < n < p(r + 1). Then

1 1
Jo Xn()v(dt) [y Xp(t) v(dt)
V/2loglog A2 \/2 log log Af)(r)

fol (Xn(t) = Xpiy (1)) v(dt)

\/2loglog A2

/
\/ log 10g 2 \/2 log log A ( )

=1+ I.

Obviously Iy — 0 as 6 — 1 and

|Il| S 1 (AP(T)
\/2 log log Ai(r_l)

[ (e () - XM) )
+( p(r) )‘/ ot )D

because of the equicontinuity. Since we have verified (2.1), the proof of (b) is completed.
Now we proceed to the proof of (c). We prove it in a similar way as Révész [13]. First
we prepare some notation.

— 0 as 0—1,

p(n) p(nt1) 2
Ly = Z aij(n+1)7j§j, D721 = Z (ajcp(”-i-l)J)
j=1 j=p(n)+1
p(n+1) .
B ita;Cp(n+t1),;€;
Ay = ‘ H <1 + Dn y
j=p(n)+1
p(n+1) ) 1 p(n+1)
B, = D2 Z (ajcp(n+1),j§j) o Tin = D Z Cp(n+1),565
" j=p(n)+1 " j=p(n)+1

Cbn,m( ) = E (eXP(iS% + itnn+m)) )
an( ) P{nn<$ 77n—l—m<y}
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) , D2
Since lim —5—"— =K., — K2, , we have
n—oo A ’ ’
p(n+1)

D2 ;8% laj| < LCym+1) for some L > 0.

First we prove the next lemma.

Lemma 2. There exist positive constants Ly and Ly such that

Lo 2 AF=3)A 3 342, 2
Gnom(s,t) —exp —5(3 + t%) < LGy ([t + |s]? + 2 + %)

‘ —2(3-1)Ad
if Is], 1t < LsC, oy 20"

Proof. We use the following expansion formula.

2
1
e’ =(1+z)exp (% -I-r(x)) and Ir(z)| < |z)® if |z| < 5

We put
p(n+1) 1
Ry(t)= > v <D—tajcp(n+1),jfj>-
j=p(n)+1 "
If Dinmjcp(nﬂ),jgj < LNK|t|Cp(r41) < 1, we have

R, (t)] < D3 > ajepmin il < FPEPLNCy ).
" g=p(n)+1

Using above expansion formula,

Brm (8,1) — exp (—%(52 + t2)) ‘

< 'Ean(s)an+m(t) <exp( - %(szﬁn + £ Brgm)
FRu(s) + an(t)) ~exp (—%(32 + t2))> ’
| Boin(8)tmsm (f) — 1] exp (_%(52 + t2)> .

Since Jon(s)] < exp (15262),

<FE

exp (% (82(571 — 1) + 2 (Bosm — 1))) — 1‘
+ Elexp(R, + Ryuam) — 1] + |Eayn(s)anam(t) — 1]
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= FE1+ Ey+ Es

Using |e® — 1] < |z|el®l,

By <5 B (|25 = 1)+ (B — 1)
x exp (| (s*(Bn — 1) + t?(Bosm — 1)) /2]))
S% (SZE% (ﬁn - 1)2 + tQE% (ﬁn-i-m - 1)2)

X E% exp (|S2(ﬁn - 1) + t2(ﬁn+m - 1)‘) :

By (0.3),

(n+1)
2 (K?+1)? pz
E (ﬂ’?l - 1) S D4 (ajcp(n+1)7j)4
" j=p(n)+1

1
2571 > (aiCpnr1).0)*(aCp(nt1),) b7 5

" p(n)<i<j<p(n+1)
4 D, 27122
< 2(K° + B)N°L°Cp, 44y

Using (1.1),

E exp (‘82(577, -1) +t2(ﬁn+m - 1)‘)

4 Pp(ntl)
<2Cexp [ (K*+B%+1) Di Z (ajcp(n+1)7j)4
" j=p(n)+1
4 p(nd+m+1)
tor— 2. (Cmems)’

mEM j=p(n+m)+1
< 2C exp ((K4 + B2+ )LPN2C2 (8% + t2)> .
It is bounded because of the conditions on s and t. Thus
By < LoCppnyny (£ + 57).

Similarly we have
Ey < LiCppnrn) ([t +5[%).

In the same way as the proof of lemma 1, we have

q(L1_1 (1 _1
E3 S chp((7;5+1§)8t S L2Cp(('rf—|—1§)(t2 + 82).

Thus we have proved the lemma.

Next we use the following theorem due to Sadikova [14].

11
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Theorem E. Let F(x,y) and G(x,y) be two dimensional distribution functions and
suppose that G has a bounded density function. Denote the corresponding characteristic
functions by f(s,t) and g(s,t) and put

f(S,t) = f(S,t) - f(S,O)f(O,t)
g(svt) = g(svt) _9(370)9(07t)'
Then
T T |F _ (s
sxui)]F(a:,y) —G(z,y)| < Cy /_T/_T f(s,t) stg( .t dsdt
r f(S,O)—g(S,O) g f(0=t>_g(07t) C'4
+CQ/-T s ’d8+03/—7’ t 'dt+?

for any T > 0 where Cy,Cs,Cs and C4 are positive constants.

Using this theorem, we have

1 x Yy 2 2
Y R P

for some @ > 0 and h > 0. Setting A,, = {nn > /(2 — €)loglog D%} and using following
generalized second Borel-Cantelli lemma (Cf. Rényi [12] ),we have

< a
— Ohn

N > /(2 — €) loglog D2 i.o a.s.
For details, see Révész [13].
Theorem F. Suppose that the events Ay, Ao, ... satisfy

o 2. 2 P(A; N Ay)
Z P(A,) = and lim inf 2= =1.
n=1

n—00 ( n P(AJ))

Jj=1

[y

Then we have

P <limsup An> =1.

n—oo
In a similar way as the proof of (b), we can prove

p(n)
Zl A5Cp(n+1),56;
.]:

< K,p fie. a.s.

V2T loglog A3,
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and now we have proved

p(n+1)
X 4Cnt1),56;
J:p(n)2+1 : < ngl _ ng i.o. a.s.
\/(2 — G)Ap(n—i—l) log 10g Ap(n—i—l)

Thus for any € > 0 and 6 > 1,

p(n+1)

> aiepein & = (/@ - K2, — K2g) = /(2 + OK2,)

Jj=1

X \/Af)(nH) log log A;2)(n+1) io. a.s.

But

V@ =K —K2) =/ + K2, — Ko

as 0 — oo and e — 0.

This implies (c).
3. Proof of theorem 3. In this section, z denotes a complex number satisfying | Im z| <
n

1 o
1. Let G,, denote the distribution function of N(M,,1) where M, = T > ajb;, F,
and én denote corresponding Fourier-Stieltjes transform of F;, and G,,,

L 120 -~
Tn(z)ZH(1+ AJ)’ Un =D a€.
n j=1

j=1
B - B - 1za;€;
Vn—;aj(gj—l) and Rn—;T(A—jnj).

First we prove a lemma.

Lemma 3. There exist positive constants Ly and Ls such that
x A 3 4(3-3)A1 o
[Fn(2) — Gn(2)] < Ly | Cul2]” + Cn |2

)%

=
N[

if [ Tmz| <1 and |z| SC’;(

Proof. Using expansion formula,

[Fn(2) = Gn(2)]
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22 22
< ‘ETn (exp (—?Un + Rn>) — exp (—5)'

2
+ ‘(ET,,L —exp(izM,,)) exp <—%> ‘
=FE,+ E5
. 2(Im 2)S,,
Since |T},|* < exp <|z|2 — A—n>’

E,<FE

exp (52 = A0, - (n ) 32 )

(oot (Z0))]

< Eexp ((Imz)QVn — (Im z)i + (Im Z)2>

o (25)

22V,
1 2 1 Sn
< Es exp (8(Im 2)°V,,) E% exp | —8(Im z)A—

22V,
2

% (ar\expuRn\) T

2
X (E R E% exp (I8R.|) + %E?Vfl@s exp (4|22Vn\)>
estimating in a similar way as the proof of lemma 2, we have
< LyCu(|2P + [2)
if |2| < LsCp ® and |[Im z| < 1.
Next we estimate Es.
Es <e|ET, —1—izM,| + elexp(izM,) — 1 — izM,,|
By lemma 1, first term is less than L4C’i(§_§)]z]2 if |z] < L5C;2(g_§). Since |M,| <

1 1 1 1

11 11 _o(1_1
C’i(‘s 2>HBZ-||5, second term is also less than L40§(‘s 2)|z|2 if |z] < L50n2(6 2)- Thus
we have proved the lemma.

Let C; be a circle in C with center ¢ € R and radius £ L, A 1. Since E,(2) and G, (2)
are entire functions, using lemma 3,

Eo(t) = Ga(t)
t

1 / Fu(€) = Gu(Q)

271

=

< Lg (Cnﬂ 4ty 4 1))

L _o(i1_1 1
1f |t’ S 750712(5 2)/\3

Now we proceed to the proof of the theorem. We use the next theorem by Essen.(Cf.[4]

).
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Theorem G. Let F' and G are distribution functions. Then for some constants C; (i =

1,....5),
poalse [ [FOZ00) 4,
T labw-cwl
IF — Gll1 < G /_TE t »
Tlabw-cwl N\ (L 1), G
+Cy /—TE , dt (1+T>+?

Using this theorem, we have
11 1
172 = Gl < L (€27 + 324 1)

and

4 1 _s
Putting T = C,, s(3-2)0s orT=0C, 2(G-3)07 respectively,we have

=

4(1_ 1
||Fn - Gn”oo S LCS(J 2)/\
and

5(1_1)\p2
IF— Gully < LOS G,
Using the estimate of M,,, we have

1Gn — Glloes G — Gl < LCZG7H),

Combining these estimstes, we can obtain the final resuls.
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