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Abstract. In this note, we will consider on an effectiveness of quasi Monte-Carlo

method. We will prove some central limit theorem for Riesz-Raikov sums, and by using
that we will explain why the quasi Monte-Carlo method is not no more effective in case
when the integrand is complicated functions. This partly solves the Sugita’s conjecture.
We will also give a new proof of a previous result.

§1. Monte-Carlo and quasi Monte-Carlo method

In this note, we study some topics related to random numbers and numeri-

cal integrations. Among various methods of numerical integration, we here treat

Monte-Carlo method and quasi Monte-Carlo method. Let us first explain these two

methods, especially in one-dimensional case.

Suppose that a Riemann integrable function f on unit interval [ 0, 1 ] is given.

The purpose is to evaluate the integral
∫ 1

0
f(x) dx numerically. If we can prepare

[ 0, 1 ]-valued uniform i.i.d. {ξn}, we have the following law of the large numbers:

1

N

N∑
n=1

f(ξn) −→
∫ 1

0

f(x) dx a.s., (1.1)

The Monte-Carlo method evaluates the integral by using this theorem. More pre-

cisely, by using [ 0, 1 ]-valued uniform random numbers {ξ̃n}, we have an approxi-

mate value of the integral by calculating (1/N)
∑N

n=1 f(ξ̃n) for large enough N .

It is important for practical purpose to ask how to prepare random numbers

and how large we should take N . As to the first question, it seems that we still

don’t have complete answer. The question seems to be too difficult and we do not

study further here. We only mention that the statement (1.1) contains the phrase

‘almost surely’and there definitely exists a non-trivial exceptional set, so that even

in the case when we have i.i.d., it is not easy to pick up correct ω which ensures the

convergence.

On the other hand, we have a good answer to the second question. By precise

version of the law of large numbers or the law of iterated logarithm, we have the

following estimate of errors:

1

N

N∑
n=1

f(ξn)−
∫ 1

0

f(x) dx = O
(
Nε−1/2

)
a.s. for all ε > 0, (1.2)



in which ε can not be 0.

By the way, to escape from the above ambiguity of exceptional ω, the following

quasi Monte-Carlo method seems to be effective. Let α be an irrational number

and ω0 be an arbitrary real number. Then, by Weyl’s theorem, we have

1

N

N∑
n=1

f(ω0 + nα) −→
∫ 1

0

f(x) dx, (1.3)

where f is extended over R periodically. The first advantage of the quasi Monte-

Carlo method is that there is no ambiguity in the statement, and the second is the

following estimate of errors: If α is an algebraic irrational number, we have

1

N

N∑
n=1

f(ω0 + nα)−
∫ 1

0

f(x) dx = O
(
Nε−1

)
for all ε > 0. (1.4)

By these results, the quasi Monte-Carlo method seems to be much effective

than the Monte-Carlo method, but it is not generally correct.

For example, to integrate a function on high dimensional space, the quasi

Monte-Carlo method is not effective. An extensive treatment on this phenomenon

is recently given by Sugita & Takanobu [16].

And when the integrand f is irregular in some sense, the quasi Monte-Carlo

method is not effective, either. In this paper, we give some treatment on this

phenomenon. The story goes back to the results given by Sugita [14].

2. Sugita’s results and its refinements

Let Sm be a one-dimensional simple random walk. Sugita [14] considers the

following scheme to evaluate the probability P (Sm = a) numerically.

Prepare the Lebesgue probability space
(
Ω := [ 0, 1), P (dω) := dω

)
and

Rademacher functions ri. Recall that ri is a function on R with period 1 defined

by ri(ω) := r1(2
i−1ω) and r1(ω) := 1[ 0,1/2)(ω)− 1[ 1/2,1)(ω) (ω ∈ Ω).

By putting Sm :=
∑m

i=1 ri, a simple random walk {Sm} is defined on this space.

Since P (Sm = a) is given by the integral
∫ 1

0
1{Sm=a}(ω)dω on this space, by virtue

of the quasi-Monte Carlo method, it holds that

P (Sm = a) = lim
N→∞

1

N

N∑
n=1

1{Sm=a}(ω0 + nα). (2.1)



for all ω0 ∈ Ω and α ̸∈ Q. When α is an algebraic irrational, the theoretical rate of

convergence in (2.1) is of O(Nε−1), but Sugita [14] reports that this rate cannot be

observed in numerical experiments and only the rate O(Nε−1/2) is observed when

m is large. He claims that the quasi Monte-Carlo method is not effective in this

scheme. He explains this phenomenon by his conjecture that the sequence Sm(ω),

Sm(ω + α), Sm(ω + 2α), . . . is nearly independent when m is large. His result is as

follows:

Theorem A. The correlation R
(m)
α (n) of stationary sequence X(m)

α =
{
Sm(ω)/

√
m,

Sm(ω + α)/
√
m,Sm(ω + 2α)/

√
m, . . .

}
decays when m → 0 and its order is of

O(m−1/2+ε) for every n, ε > 0, and for almost every α.

As a refinement of this theorem, we have the following results (Cf. [5].):

Theorem 1. (1) For almost every α, the stationary sequence X(m)
α converges to

Gaussian i.i.d. as m → ∞, in sense of convergence of every finite dimensional

distributions.

(2) For almost every α and every n, lim supm→∞
√
m/log logmR

(m)
α (n) =

√
2/3.

(3) Hausdorff dimension of the set of α for which (1) does not hold is 1.

By (1) and (2), we can say that Sugita’s conjecture is correct for almost every

α, and that Theorem A gives almost best possible result, but by (3) we conclude

that the exceptional set for this phenomenon is also large.

There is, however, other interpretation of this result apart from the conjecture.

There is some possibility that random numbers can be generated by X(m)
α for large

m. For the purpose of practical use, we must be serious about the exceptional set

of α. We need some test to distinguish good α and bad one. In the next section,

we give results for every α and try to give some answer to this demand.

By the way, we would like to mention that, by using similar but more simple

scheme, Sugita [15] gives effective random number generator.

3. Riesz-Raikov sums and irrational rotation

To study limit behavior of X(m)
α for every α, the following treatment as Riesz-

Raikov sums is appropriate. Let us first begin with the introduction of this notion.

Let θ > 1, α ∈ R, and g be a function on R with period 1 satisfying∫ 1

0

g(t) dt = 0 and 0 <

∫ 1

0

∣∣g(t)∣∣2 dt < ∞. (3.1)



Let us put

X(m)(ω) :=
1√
m

m∑
k=1

g(θk−1ω).

The sum in the right hand side is called Riesz-Raikov sum. If we put θ := 2 and

g := r1, we have g(θ
k−1ω) = rk(ω) and X(m) = Sm/

√
m and thereby we can regard

the Riesz-Raikov sum as an extension of simple random walk {Sm}.
As before, we have the next central limit theorem for Riesz-Raikov sums. (see

Berkes [1], [2] and Fukuyama [6].)

Theorem B. Let θ > 1 and g satisfy (3.1) and

∞∑
k=0

∥∥s2k+1 − s2k
∥∥
2
< ∞, (3.2)

where ∥ · ∥2 denotes L2[ 0, 1 ]-norm and si denotes i-th subsum of the Fourier series

of g. Then for any measurable Ω ⊂ [ 0, 1) with |Ω| > 0,

X(m) D−→ N(0, v)

holds on
(
Ω, dω/|Ω|

)
, where the limiting variance v = vg,θ is given as follows: In

case

θr /∈ Q (r ∈ N) (3.3)

is satisfied, v = ∥g∥22; Otherwise, by using p and q given by

θr =
p

q
where r = min{n ∈ N | θn ∈ Q }, p, q ∈ N and gcd(p, q) = 1, (3.4)

we have

v = ∥g∥22 + 2
∞∑
k=1

∫ 1

0

g(pkt)g(qkt) dt < ∞.

As before, we operate irrational rotation to X(m) and define X(m)
α , i.e.,

X(m)
α :=

{
X(m)

α;n

}
n∈Z

where X(m)
α;n (ω) := X(m)(ω + nα) .

Next theorem characterizes the possible limit distribution of X(m)
α as m → ∞.

There is no restriction or ambiguity on α.



Theorem 2. Suppose that (3.1) and (3.2) are satisfied. Then for all Ω ⊂ [ 0, 1)

with |Ω| > 0, θ > 1 and α ∈ R, on probability space
(
Ω, dω/|Ω|

)
, the sequence

{X(m)
α }m∈N is relatively compact in the sense of convergence in distribution on RZ,

and all the possible limit is stationary Gaussian sequence, i.e., for any subsequence

of {X(m)
α }m∈N there exists a subsequence which converges to a stationary gaussian

sequence. This subsequence can be taken independently of Ω and g, and the limit

distribution does not depend on Ω.

By this theorem, we see that only stationary gaussian distribution can appear

as the limit distribution.

The next theorem gives a relation between convergence of the correlation and

convergence in law. It means that, by calculating the correlation numerically, we

can test whether α is good one or not. It has a practical significance.

Theorem 3. Let us assume (3.1) and (3.2). Let {mj}j∈N be a subsequence of N

and Ω ⊂ [ 0, 1) satisfy |Ω| > 0. For any n and l ∈ Z, the convergence of correlation

lim
j→∞

E
(
X(mj)

α;n X
(mj)
α;l

)
= rn l (3.5)

holds if and only if X(mj) converges as j → ∞ to the stationary gaussian sequence

with mean vector 0 and correlation matrix {rn l}n,l∈Z.

As before, the limit of X(m) is gaussian i.i.d. for almost all α. The next theorem

state this result.

Theorem 4. Let us assume (3.1) and (3.2). For almost all α with respect to the

Lebesgue measure, the sequence X(m)
α converges in distribution to gaussian i.i.d.

The exceptional set of α can be taken to be independent of Ω and g.

Let us next consider about the fluctuation of the correlation. From now on we

only consider the case when θ > 1 is an integer.

Theorem 5. Let Ω = [ 0, 1), θ > 1 be an integer and g satisfies (3.1), v = vg,θ > 0

and
∞∑
k=0

k
∥∥s2k+1 − s2k

∥∥
2
< ∞. (3.6)

Then the correlation on
(
Ω, dω

)
obeys

lim sup
m→∞

√
m

log logm
E
(
X(mj)

α;n X
(mj)
α;l

)
= β a.e. α



for some positive constant β.

Unlike as it appears, proof of β > 0 is more difficult rather than the law of the

iterated logarithm itself.

The next result claim that the exceptional set of α is not small with respect to

the Hausdorff dimension.

Theorem 6. Let θ > 1 be an integer and g satisfies (3.1), v = vg,θ > 0 and

∞∑
k=0

2kγ
∥∥s2k+1 − s2k

∥∥
2
< ∞ for some γ > 0 (3.7)

The set of α for which the limit distribution of X(m)
α is dependent has Hausdorff

dimension 1.

By the way, the regularity conditions (3.2), (3.6) and (3.7) are derived from

some smoothness conditions on g. We now note these implications. Let us define

the L2-modulus of continuity ω2(δ) of function g by

ω2(δ) := sup
|h|≤δ

(∫ 1

0

∣∣g(t+ h)− g(t)
∣∣2 dt)1/2

.

The condition (3.2), (3.6) or (3.7) are derived from∫ 1

0

ω2(y)

y
dy < ∞,

∫ 1

0

ω2(y) log 1/y

y
dy < ∞ or

∫ 1

0

ω2(y)

y1−γ
dy < ∞, (3.8)

respectively. (Cf. Zygmund [18], (3.3) of pp. 241).

Obviously Hölder continuous functions and functions of bounded variation sat-

isfy these conditions.

Proofs of all results stated in this section can be found in [7].

4. Rademacher functions

In this section, we restrict ourself to the case of Rademacher functions, and give

a sketch of proofs of our result putting g = r1.

The next lemma plays an key.

Lemma 1. For any sequence {αi} of real numbers, the sequence {r′i(ω) := ri(ω +

αi)} is an i.i.d. on (Ω, P ).

Here we will give new proof. It is enough to prove

P
(
r′1 = ε1, . . . , r

′
n = εn

)
=

1

2n
, where ε1, . . . , εn ∈ {−1,+1}. (4.1)



Let us put Ψ(ω) :=
(
r′1(ω), . . . , r

′
n(ω)

)
. (4.1) reduces to Ψ−1(ε1, . . . , εn) = 1/2n. It

is clear that r′i(ω + 1/2i) = −r′i(ω) holds, and thereby r′i(ω + j/2i) = (−1)jr′i(ω)

holds. If we take j = 1, . . . , 2n − 1 arbitrary, we can write j = (2j′ + 1)2m. Hence

we have

r′n−m(ω + j/2n) = r′n−m

(
ω + (2j′ + 1)/2n−m

)
= −r′n−m(ω).

Thus we have Ψ(ω+j/2n) ̸= Ψ(ω), and we can collude that Ψ(ω+j/2n) (j = 0, . . . ,

2n − 1) are different from each other, and thereby Ψ(ω + j/2n) (j = 0, . . . , 2n − 1)

takes all values in {−1,+1}n.
It implies that Ψ−1(ε1, . . . , εn) + j/2n (j = 0, . . . , 2n − 1) do not intersect

each other and the union of these coincides with Ω. Thus we can conclude that

Ψ−1(ε1, . . . , εn) has measure 1/2n.

To prove (1) of Theorem 1, it is enough to prove that the law of a1X
(m)
1;α + · · ·+

akX
(m)
k;α converges to the standard normal law for any a1, . . . , ak with a21+ · · ·+a2k =

1.

To prove this, we use the next theorem due to McLeish [11].

Theorem B. Let { ζm,j ; 1 ≤ j ≤ km } be a triangular array of random variables

and put Lm :=
∏

j≤km

(
1 +

√
−1tζm,j

)
. The law of

∑
j≤km

ζm,j converges to the

standard normal distribution as m → ∞, provided that the following four conditions

are satisfied for all t ∈ R:

(1) ELm → 1 as m → ∞;

(2) The sequence {Lm}m∈N is uniformly integrable;

(3)
∑

j≤km
ζ2m,j → 1 in probability as m → ∞;

(4) maxj≤km |ζm,j | → 0 in probability as m → ∞.

Putting ζm,i(ω) :=
(
1/

√
m

)∑k
j=1 ajri(ω + jα), we apply this theorem. As to

condition (1), by Lemma 1, we have ELm = 1. (2) and (4) are easily verified. (3)

is derived from the following:

lim
m→∞

1

m

m∑
i=1

ri(ω + pα)ri(ω + qα) = 0, a.s.

It is easily proved that the above formula holds for almost all (ω, α). By applying

Fubini’s theorem, we complete the proof.

For the proof of the rest of the result, see [5].
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