11月26日分 練習の解答

練習8.1

\[
\begin{align*}
-x_1 + x_2 - x_3 &= a \\
x_1 - x_2 + 2x_3 &= b \\
2x_1 + 3x_3 &= c
\end{align*}
\]

（8.1）

をクレムの公式を用いて解く。（8.1）を行列を使って表すと

\[
\begin{pmatrix}
-1 & 1 & -1 \\
1 & -1 & 2 \\
2 & 0 & 3
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}
= \begin{pmatrix}
a \\
b \\
c
\end{pmatrix}
\]

となる。まず、係数行列の行列式を求めよう。

\[
\begin{vmatrix}
-1 & 1 & -1 \\
1 & -1 & 2 \\
2 & 0 & 3
\end{vmatrix} = \begin{vmatrix}
-1 & 1 & -1 \\
0 & 0 & 1 \\
2 & 0 & 3
\end{vmatrix} = - \begin{vmatrix}
-1 & 1 \\
2 & 0
\end{vmatrix} = 2
\]

したがって,

\[
x_1 = \frac{1}{2} \begin{vmatrix}
a & 1 & -1 \\
b & -1 & 2 \\
c & 0 & 3
\end{vmatrix} = \frac{1}{2} \begin{vmatrix}
a & 1 & -1 \\
a+b & 0 & 1 \\
c & 0 & 3
\end{vmatrix} = -\frac{1}{2} \begin{vmatrix}
a+b & 1 \\
c & 3
\end{vmatrix} = \frac{c - 3a - 3b}{2}
\]

\[
x_2 = \frac{1}{2} \begin{vmatrix}
a & 1 & -1 \\
b & 1 & -1 \\
c & 2 & 3
\end{vmatrix} = \frac{1}{2} \begin{vmatrix}
a & 1 & -1 \\
0 & b+a & 1 \\
0 & c+2a & 1
\end{vmatrix} = -\frac{1}{2} \begin{vmatrix}
b+a & 1 \\
c + 2a & 1
\end{vmatrix} = \frac{a - b + c}{2}
\]

\[
x_3 = \frac{1}{2} \begin{vmatrix}
a & 1 & 1 \\
1 & -1 & b \\
2 & 0 & c
\end{vmatrix} = \frac{1}{2} \begin{vmatrix}
a & 1 \\
0 & a+b \\
2 & 0 & c
\end{vmatrix} = -\frac{1}{2} \begin{vmatrix}
a+b & 0 \\
2 & c
\end{vmatrix} = a + b
\]

次に、(8.1) を基本変形で解く。

\[
\begin{pmatrix}
-1 & 1 & -1 & a \\
1 & -1 & 2 & b \\
2 & 0 & 3 & c
\end{pmatrix} \rightarrow \begin{pmatrix}
-1 & 1 & -1 & a \\
0 & 0 & 1 & a+b \\
0 & 2 & 0 & 2a + c
\end{pmatrix}
\]

\[
\begin{pmatrix}
-1 & 1 & 0 & 2a + b \\
0 & 0 & 1 & a + b \\
0 & 2 & 0 & a - b + c
\end{pmatrix} \rightarrow \begin{pmatrix}
-1 & 1 & 0 & 2a + b \\
0 & 0 & 1 & a + b \\
0 & 1 & 0 & (a - b + c)/2
\end{pmatrix}
\]

\[
\begin{pmatrix}
-1 & 0 & 0 & (3a + 3b - c)/2 \\
0 & 0 & 1 & a + b \\
0 & 1 & 0 & (a - b + c)/2
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 0 & 0 & (-3a - 3b + c)/2 \\
0 & 0 & 1 & a + b \\
0 & 1 & 0 & (a - b + c)/2
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 0 & 0 & (-3a - 3b + c)/2 \\
0 & 1 & 0 & (a - b + c)/2 \\
0 & 0 & 1 & a + b
\end{pmatrix}
\]

したがって、\(x_1 = (−3a - 3b + c)/2, \ x_2 = (a - b + c)/2, \ x_3 = a + b \) となる。
練習 8.2

\[
\begin{pmatrix}
4 & 1 & -1 & 3 \\
2 & 5 & -4 & 0 \\
3 & -2 & 1 & 2
\end{pmatrix}
\begin{pmatrix}
7 & -1 & 0 & 5 \\
14 & -3 & 0 & 8 \\
3 & -2 & 1 & 2
\end{pmatrix}
\rightarrow
\begin{pmatrix}
7 & -1 & 0 & 5 \\
0 & -1 & 0 & -2 \\
3 & -2 & 1 & 2
\end{pmatrix}
\begin{pmatrix}
7 & 0 & 0 & 7 \\
0 & -1 & 0 & -2 \\
3 & -2 & 1 & 2
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
3 & 0 & 1 & 6
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3
\end{pmatrix}
\]

したがって、\(x = 1, y = 2, z = 3 \) となる。

講評 今回は問題数が多かったようで、皆さん時間が足りなかった様です。クラメルの公式の答と基本変形の方法で求めた答が合わないでイライラした人も多かったでしょう。「あっーっ!!」という叫びとも嘆きともいえない声が聞こえて来たときは、苦労しているのがリアルに想像できて、つい笑ってしまいました。申し訳ない。

皆さん、大分計算のやり方には慣れて来た様子も見えます。あとは計算間違いを無くす努力をしましょう。

一般的に、足し算の間違いは少ないのですが、何倍かしてから引くという計算はよく間違えます。用心して計算するようにしてください。