前回の補足
Kolmogorov の連続性定理

確率過程 \(\{ X(t) : t \in [0, \infty) \} \) が，ある \(\alpha, \beta, \gamma > 0 \) と任意の \(t, s \in [0, \infty) \) (\(s < t \)) に対して

\[
E (|X(t) - X(s)|^\alpha) \leq \beta |t - s|^{1+\gamma}
\] (1.2.1)

を満たすならば，X と同値な確率過程 Y で，

\[
P(\{ \omega : Y(t, \omega) は t \in [0, \infty) の連続関数 \}) = 1
\]

となるものが存在する（つまり，同一視の意味で X が連続と思って良い）。

の証明をしていた。
証明 X(t) を 2 進有理点の時刻の全体

\[
D = \{ \frac{k}{2^n} ; k = 0, 1, \ldots ; n = 0, 1, \ldots \}
\]

に制限した確率過程 \(X_D(t) \) が，任意の \(T > 0 \) に対し，確率 1 で \([0, T] \cap D \) 上で一様に連続なることを示す。このとき，

\[
P(\{ \omega : X_D(t; \omega) は，任意の区間 [0, T] \cap D 上で一様連続 \})
= \lim_{T \to \infty} P(\{ X_D(t; \omega) は，[0, T] \cap D 上で一様連続 \})
= 1
\] (1.2.2)

となることに注意する。
任意に自然数 \(T \) をとめておく。\(n, k \geq 1 \) に対して，条件より，

\[
E \left(|X_D(\frac{k+1}{2^n}) - X_D(\frac{k}{2^n})|^\alpha \right) \leq \beta 2^{-n(1+\gamma)}
\] (1.2.3)

を得る。Chebyshev の不等式（補題??）により，

\[
P(|X_D(\frac{k+1}{2^n}) - X_D(\frac{k}{2^n})| \geq 2^{-\delta n}) \leq 2^{-n(1+\gamma-\delta n)}
\]
なるので，ここで \(\delta = \frac{\gamma}{2^n} > 0 \) とすると，上式右辺は \(2^{-n(1+\frac{1}{2^n})} \) となる.

上式左辺の事象を \(A_n(k) \) と書くと，

\[
P(\max_{0 \leq k \leq T2^n - 1} |X^D(\frac{k+1}{2^n}) - X^D(\frac{k}{2^n})| \geq 2^{-\delta n})
\]

\[
= P(\bigcup_{0 \leq k \leq T2^n - 1} A_n(k))
\]

\[
\leq T2^{-\frac{n}{2}}
\]

\[B_n = \bigcup_{0 \leq k \leq T2^n - 1} A_n(k) \] と書くと，

\[
\sum_{n=1}^{\infty} P(B_n) < \infty.
\]

だから，Borel-Cantelli の補題（補題 1.2）により，確率 1 で \(B_n \) は有限回しか起こらない．すなわち，確率 1 の \(\omega \) に対して，ある \(N = N(\omega) \in \mathbb{N} \) が存在し，\(n \geq N \) ならば

\[
|X((k+1)2^{-n}) - X(k2^{-n})| < 2^{-\delta n}
\]

が成り立っている．

いま，このような \(\omega \) を一つとめ，\(X(t) = X(t, \omega) \) が \([0, T] \cap D \) で一様連続であることを示す．これにはある定数 \(C > 0 \) と定して，\(s, t \in D \cap [0, T], s < t \) を \(|t - s| < 2^{-N} \) とするとき，

\[
|X(t) - X(s)| < C|t - s|^{\delta}
\]

となることを示せば十分，\(m \geq 1 \) を

\[
2^{-(N+m)} \leq |t - s| < 2^{-(N+m-1)}
\]

を満たすようにとると，\([s, t] \) には \(k2^{-(N+m)} \) の形の点が少なくとも１個，多くとも 2 個存在する（3 つあると \(|t - s| \geq 2^{-(N+m-1)} \) 以下）の議論はどちらでも同様なので，2 個あるとしてこれらを

\[
t_1 = j2^{-(N+m)}, \ t_2 = (j+1)2^{-(N+m)}
\]

と書くことにする．このとき，\(|t_1 - s| < 2^{-(N+m)}, |t - t_2| < 2^{-(N+m)} \) でないと別の \(k2^{-(N+m)} \) の形の点が \([s, t] \) にあることになるので，この不等式が
成り立っている．したがって $t_1 - s, t - t_2$ をそれぞれ 2 進法展開すると，

$$t_1 - s = \sum_{p=1}^{\ell_1} \xi_p 2^{-(N+m+p)}, \quad t - t_2 = \sum_{p=1}^{\ell_2} \xi_p 2^{-(N+m+p)}$$

と書ける．ただし，$\xi_p, \bar{\xi}_p \in \{0,1\}$ である．このとき，(1.2.4) により，

$$|X(t_1) - X(s)| \leq \sum_{q=1}^{\ell_1} |X(t_1) - \sum_{p=1}^{q-1} \xi_p 2^{-(N+m+p)} - X(t_1 - \sum_{p=1}^{q} \xi_p 2^{-(N+m+p)})|$$

$$\leq \sum_{q=1}^{\ell_1} \xi_q 2^{-\delta(N+m+q)}$$

$$|X(t_2) - X(t_1)| \leq 2^{-\delta(N+m)} = |t_2 - t_1|^\delta$$

$$|X(t) - X(t_2)| \leq \sum_{q=1}^{\ell_2} |X(t) - \sum_{p=1}^{q-1} \xi_p 2^{-(N+m+p)} - X(t_1 - \sum_{p=1}^{q} \xi_p 2^{-(N+m+p)})|$$

$$\leq \sum_{q=1}^{\ell_2} \xi_q 2^{-\delta(N+m+q)}$$

を得る．$q_1 = \min \{ q : \xi_q \neq 0 \}$ とおくと

$$2^{-(N+m+q_1)} \leq |t_1 - s| < 2^{-(N+m+q_1-1)}$$

だから，

$$|X(t_1) - X(s)| \leq \sum_{q=q_1}^{\infty} 2^{-\delta(N+m+q)} \leq (1 - 2^{-\delta})^{-1} |t_1 - s|^\delta.$$

同様に

$$|X(t) - X(t_2)| \leq (1 - 2^{-\delta})^{-1} |t_1 - s|^\delta$$

なので，これらをあわせると

$$|X(t) - X(s)| \leq 3(1 - 2^{-\delta}) |t - s|^\delta$$

となり，(1.2.5) が示せた．T についての共通部分をとることにより $X(t)$ は

確率 1 で 任意の $[0,T] \cap D$ において一様連続なことが分かる．

次に，$X^D(t,\omega)$ が，任意の区間 $[0,T]$ 上で一様連続な ω に対しては，

$$Y(t,\omega) := \lim_{r \to t} X(r,\omega)_{r \in D}$$
が任意の \(t \in [0, \infty) \) に対して定義出来る．
そうでない \(\omega \) に対しては，\(Y(t, \omega) := 0 \) と定義すると，\(Y(t, \omega) \) は，任意の \(\omega \in \Omega \) に対して \([0, \infty)\) 上の連続関数となっていることを示そう．
\(r, r' \in D \cap [0, T] \) として (1.2.5) を使うと，
\[
|X(r) - X(r')| < C|r - r'|^\delta
\]
ここで \(r, r' \in D \cap [0, T] \) を保ちながら \(r \to s, r' \to t \) すると \(X(r) \to X(s), X(r') \to Y(t) \) だから
\[
|Y(s) - Y(t)| \leq C|t - s|^\delta
\]
したがって \(Y \) は確率 1 で任意の \([0, T]\) 上で一様連続．
\(X \) が (1.2.5) を満たさないところでは \(Y \equiv 0 \) だから \(Y \) はもちろん一様連続で，したがってすべての \(\omega \) で \(Y(t, \omega) \) は \(t \) の連続関数。（任意の \(T \) に対して \([0, T]\) 上で一様連続）

練習問題 1.3 上の \(X \) と \(Y \) が同値であることを証明せよ．つまり，任意の \(t \in [0, \infty) \) に対して
\[
P(X(t) \neq Y_t) = 0
\]
を示せ．

系 1.6 一次元 Brown 運動は連続な確率過程である．

証明 Brown 運動の定義から，\(0 \leq s < t \) のとき，
\[
E[|B(t) - B(s)|^4] = 3(t - s)^2
\]
だから，定理?? により Brown 運動は連続な確率過程となる．