3.4 伊藤の公式 (Ito formula)

$B(t)$ を (\mathcal{F}_t)-Brown 運動とし、次の様な確率過程を考える。

$$X(t) = X(0) + \int_0^t b(s, \omega) ds + \int_0^t a(s, \omega) dB(s) \quad (3.4.1)$$

ここに、$a(t, \omega)$、$b(t, \omega)$ はともに (\mathcal{F}_t)-発展的可測な確率過程で、任意の $T > 0$ に対して

$$\int_0^T |b(s, \omega)| ds < \infty \quad \text{a.s.} \quad (3.4.2)$$

$$\int_0^T |a(s, \omega)|^2 ds < \infty \quad \text{a.s.} \quad (3.4.3)$$

をみたすものとする。このような確率過程は伊藤過程ともよばれ、連続な確率過程の重要な例として知られている。

定理 3.6 M_t が連続な \mathcal{F}_t-マルチンゲールで、

$$M_t = \int_0^t K_s ds \quad \text{ただし} \quad \int_0^T |K_s| ds < \infty \quad \text{a.s.},$$

ならば

$$M_t = 0 \quad \forall t \leq T, \quad \text{a.s.}$$

となる

この定理は伊藤過程の分解 (3.4.1) が一意的であることを意味している。

定理 3.7 (伊藤の公式) f が C^2 級の関数の時、(3.4.1) の確率過程 $X(t)$ に対して、次式が a.s. で成立する。

$$f(X(t)) = f(X(0)) + \int_0^t \left\{ b(s, \omega)f'(X(s)) + \frac{1}{2} a(s, \omega)^2 f''(X(s)) \right\} ds$$
$$+ \int_0^t a(s, \omega)f'(X(s)) dB(s) \quad (3.4.4)$$

例 3.1 $f(x) = x^2, X(t) = B(t)$ に対して伊藤の公式を使うと、$f'(x) = 2x, f''(x) = 2$ である (3.4.1)において、$a(t) = 1, b(t) = 0$ なので、

$$B(t)^2 = B(0)^2 + \int_0^t 1 \times 2 ds + \int_0^t 2B(s)dB(s) = t + 2 \int_0^t B(s)dB(s)$$
3.4. 伊藤の公式（Ito formula）

したがって，$B(t)^2 - t$ というマルチンゲールは実は

$$2 \int_0^t B(s) dB(s)$$

という形をしている事がわかる。

例 3.2 次の方程式を解きたい。

$$S(t) = x_0 + \int_0^t S(s) (\mu ds + \sigma dB(s))$$ (3.4.5)

形式的に

$$\frac{dS(t)}{S(t)} = \mu ds + \sigma dB(s)$$

と書けるので，$\log S(t)$ を考えてみると，伊藤の公式により,

$$\log S(t) - \log x_0 = \int_0^t \frac{\mu ds}{S(s)} - \frac{1}{2} \int_0^t \sigma^2 ds + \int_0^t \sigma dB(s)$$

となり，これより,

$$S(t) = x_0 \exp \left\{ \int_0^t \sigma dB(s) + \int_0^t (\mu - \frac{1}{2} \sigma^2) ds \right\}$$

でなければならないことがわかる．実際 $f(x) = e^x$ について，$X(t) = x_0 + (\mu - \frac{1}{2} \sigma^2)t + \sigma B(t)$ とおくと，伊藤の公式から上の $S(t)$ が (3.4.5) を満たすことがわかる．

練習問題 3.3 次の $X(t)$ について伊藤の公式を計算せよ．ただし，$B(t), W(t)$ は独立なブラウン運動とする。

(i) $X(t) = B^2(t)$
(ii) $X(t) = (B(t) + at)^3$ a は定数。
(iii) $X(t) = \log (B(t)^2 + W(t)^2)$
(iv) $X(t) = e^{at + bB(t)}$ a, b は定数
(v) $X(t) = B(t)W(t)$
(vi) $X(t) = B(t)e^{R(t)}$
(vii) $X(t) = \exp\{i \int_0^t a(s)dB(s)\}$ な連続危険

練習問題 3.4

$$X(t) = e^{-bt}\{a + \int_0^t e^{bs}dB(s)\}$$

は次の確率微分方程式を満たすことを示せ。

$$X(t) = a + B(t) - b \int_0^t X(s)ds$$

練習問題 3.5 $n \geq 0$ に対して Hermite 多項式 $H_n(t, x)$ を

$$H_n(t, x) = \frac{(-1)^n}{n!} e^{-x^2/(2t)} \frac{\partial^n}{\partial x^n} e^{-x^2/(2t)}$$

と定める。このとき、

(i) 次の等式を証明せよ。ただし、γ は実数とする。

$$\sum_{n=0}^\infty \gamma^n H_n(t, x) = \exp\{\gamma x - \frac{\gamma^2 t}{2}\}$$

(ii) $M_\gamma(t)$ を

$$M_\gamma(t) = \exp\{\gamma B(t) - \frac{\gamma^2 t}{2}\}$$

とおくとき、$M_\gamma(t)$ は次の確率微分方程式を満たすことを証明せよ。

$$M_\gamma(t) = 1 + \int_0^t M_\gamma(s)dB(s)$$

(iii) 上の確率微分方程式を満たす確率過程は $M_\gamma(t)$ のみであることが知られている。このことを使って、

$$Z_n(t) = H_n(t, B(t))$$

に対して、

$$M_\gamma(t) = \sum_{n=0}^\infty \gamma^n Z_n(t)$$

をこの確率微分方程式に代入して

$$Z_{n+1}(t) = \int_0^t Z_n(s)dB(s)$$
3.4. 伊藤の公式 (Ito formula)

が成り立つことを証明し、

\[H_n(t, B(t)) = \int_0^t dB(t_1) \int_0^{t_1} dB(t_2) \cdots \int_0^{t_{n-1}} dB(t_n) \]

を証明せよ。