12月16日分 練習の解答

練習9.1 次の行列の行列式を計算し、それが正則な行列であるか否かを判定せよ。

(1) \[A = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{pmatrix} \]

(2) \[B = \begin{pmatrix} 1 & -2 & 5 & 0 \\ -3 & 1 & 2 & -3 \\ 2 & -1 & 1 & 3 \\ 4 & -2 & -3 & 1 \end{pmatrix} \]

(解答)

(1) 3行に4行を加え、その後4列で展開する。

\[|A| = \begin{vmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{vmatrix} = (-1)^{4+4} \cdot 1 \begin{vmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{vmatrix} \]

(3行を2行に加え、その後3列で展開する。)

\[= \begin{vmatrix} 2 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{vmatrix} = (-1)^{3+3} \begin{vmatrix} 2 & -1 \\ -1 & 1 \end{vmatrix} = 2 - 1 = 1 \]

従ってAは正則（可逆）。

実際

\[A^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} \]

となります。確かめてみてください。また

\[A_2 = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}, \quad A_5 = \begin{bmatrix} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix} \]

とすると

\[A_2^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}, \quad A_3^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{bmatrix}, \quad A_5^{-1} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix} \]

になります。

(2) 3行を2行に加え、4行の3倍を3行から引く。その後4列で展開。また3行から因子5
をくくり出します。

\[
|B| = \begin{vmatrix}
1 & -2 & 5 & 0 \\
-1 & 0 & 3 & 0 \\
-10 & 5 & 10 & 0 \\
4 & -2 & -3 & 1 \\
\end{vmatrix} = (-1)^{4+4} \begin{vmatrix}
1 & -2 & 5 \\
-1 & 0 & 3 \\
-10 & 5 & 10 \\
\end{vmatrix} = 5 \begin{vmatrix}
1 & -2 \\
-1 & 0 \\
-2 & 1 \\
\end{vmatrix}
\]

(3 行の 2 倍を 1 行に加える。1 行から因子 3 を取り出す。)
(そうすると 1 行と 2 行が同じになって行列式は 0 となる。)

\[
= 5 \begin{vmatrix}
-3 & 0 & 9 \\
-1 & 0 & 3 \\
-2 & 1 & 2 \\
\end{vmatrix} = 5 \cdot 3 = 0
\]

従って \(B \) は可逆でない。

練習 9.2 次の行列の逆行列を求めよ

\[
C = \begin{pmatrix}
1 & -1 & 0 \\
1 & 1 & -1 \\
1 & 0 & 1 \\
\end{pmatrix}
\]

（解答） 1 行を 2 行 3 行から引く。次に 1 行に 3 行を加え 2 行から 3 行の 2 倍を引き、2 行と 3
行を交換する。

\[
(C \ E_3) = \begin{pmatrix}
1 & -1 & 0 & 1 & 0 & 0 \\
1 & 1 & -1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 \\
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & -1 & 0 & 1 & 0 & 0 \\
0 & 2 & -1 & 1 & -1 & 0 \\
0 & 1 & 1 & -1 & 0 & 1 \\
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & -1 & 0 & 1 \\
0 & 0 & -3 & 1 & 1 & -2 \\
\end{pmatrix}
\]

(3 行を -3 で割る。次に 1 行 2 行から 3 行を引く。)

\[
\rightarrow \begin{pmatrix}
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & -1 & 0 & 1 \\
0 & 0 & 1 & -\frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \\
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 0 & 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
0 & 1 & 0 & -\frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\
0 & 0 & 1 & -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \\
\end{pmatrix} = (E_3 \ C^{-1})
\]

従って

\[
C^{-1} = \begin{pmatrix}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
-\frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \\
\end{pmatrix}
\]

講評 ここにきて行列の基本変形と行列式的変形が混乱している人がかなりいる事に気がつきました。行列の基本変形は一つの行を定数倍（≠0）してよかったので等号では結ばず → で結びました。行列式は、その値を計算するので、一つの行や列を定数倍してはいけません。（これをすると答えが変わります。）そのかわり、一つの行（または列）を定数倍（≠0）したときは、前にその逆数をくくりだして等号で結びます。上の解答をよく読んでみてください。この混乱を乗り越えれば、ほとんどの人は単位が取れるところまで理解できていると思います。あとは計算間違いをしないように注意してください。