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この講義について

内容：主に具体例を通じて，常微分方程式に対する基本的な取り扱いを学
ぶ．なお，一部を除いて厳密性はそれほど気にしない．

参考書：矢嶋信男「常微分方程式」（岩波書店）
笠原晧司「微分方程式の基礎」（朝倉書店）
柳田英二，栄伸一郎「常微分方程式論」（朝倉書店）
俣野博「常微分方程式入門―基礎から応用へ」（岩波書店）

第1章 導入

§ 1.1 動機付け

定義.一変数関数y = y(x)とその導関数y′, y′′, . . . , y(n)の間の「関係式」

F
(
x, y, y′, y′′, . . . , y(n)

)
= 0

を常微分方程式あるいは単に微分方程式と呼ぶ．英語表記Ordinary Differ-

ential Equationの頭文字をとってODEと呼ぶこともある．

例.関数y = y(x)について，適当に作った関係式

y +
y′′
x2

− 4xy′2 cos(y′′′′) = 0

は常微分方程式である．
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注意. 1. 多変数関数とその偏導関数の間の関係式は偏微分方程式と呼ばれ
る．英語表記Partial Differential Equationの頭文字をとってPDE

と呼ばれることもある．例えば，関数u = u(t, x, y, z)に対し，熱方程式

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

は偏微分方程式である．

2. 微分方程式という呼称は常微分方程式と偏微分方程式の総称として用い
られることもある．

3. 常微分方程式と偏微分方程式では解析の手法が大きく異なる．本講では
偏微分方程式は扱わない．

4

◦ 現象を記述する微分方程式

例.放射性元素は一定時間に一定の確率で崩壊することが知られている．時
刻 tにおける放射性元素の個数をn = n(t)とし，微小時間Δtの間の元素の
崩壊率をγΔt，個数の増分をΔnとすると，

dn

dt
≈ Δn

Δt
= −γn ∴ n′ = −γn. (♠)

が成り立つ．ここでnは十分大きく，連続変数とみなせるとした（例えば，個
数の単位としてmolを用いれば最小幅は(6.02× 1023)−1程度である）．

解法1. n(t) ≡ 0は(♠)を満たす．またn(t) �= 0となる tの範囲では，

n′
n

= −γ ∴ log |n| = −γt+ C ∴ n = ±eCe−γt =: C′e−γt

を得る．C′は任意定数と呼ばれる．n(t) ≡ 0はC′ = 0に対応する．
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解法2. (♠)の両辺にeγtをかけると，

eγtn′ = −γeγtn ∴ (eγtn)′ = 0 ∴ eγtn = C ∴ n = Ce−γt

を得る．ここでCは任意定数である．このようにすれば0での割り算の場合
分けを避けられる．

注意. 1. 初期値n(0) = n0を与えれば任意定数Cが一意に定まって，

n = n0e
−γt

となる．なお，元素数が半分になるまで時間は半減期と呼ばれ，初期数
n0によらない．上の記号で半減期は t1/2 = γ−1 log2である．

2. 任意定数Cを動かすことで，R2内に解曲線n = Ce−γtの族が得られる．
初期値を与えてCを決定することは，対応する初期点を通過する解曲線
を選び出すことに対応する．
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例 (Malthusモデル).理想的な環境下では生物の個体数の増加速度はその
時点の個体数に比例する（Malthusの法則）．よって時刻tにおける個体数
をn = n(t)，比例定数をμとすれば

n′ = μn

が成り立つ．これは直前の例と同様に解けて，初期値n(0) = n0を与えれば，

n = n0e
μt.

が従う．

例 (ロジスティック方程式).Malthusモデルは個体数が際限なく指数的に増
加していく点で非現実的である．個体数がその環境に収容できる最大個体数
Kに近づくにつれ，増加率が低下するよう修正したモデル方程式として

n′ = μ

(
1− n

K

)
n

がある．Kは環境収容力と呼ばれる．
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例 (Newton方程式).質量mの粒子の時刻 tにおける位置をx(t)とし，ま
たその粒子に働く力をF (t,x(t), ẋ(t))とすると，

mẍ(t) = F (t,x(t), ẋ(t))

が成り立つ．ただし時間微分をドットで表した．基本的な状況を列挙する．

1. 自由運動はF = (0,0,0)で記述される．

2. 自由落下はF = (0,0,−mg)で記述される．

3. 大気中の落下はF = (0,0,−mg)− kẋで記述される．

4. 調和振動子はF = −Kxで記述される．

一般にNewton方程式は3つの互いに絡み合った方程式からなる常微分方程
式系であるが，上に挙げた例では3つの独立な方程式に帰着する．
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§ 1.2 基本用語

定義.常微分方程式

F
(
x, y, y′, y′′, . . . , y(n)

)
= 0. (♥)

に対し，以下のように用語を定める．

1. xを独立変数，yを従属変数または未知関数と呼ぶ．

2. nを(♥)の階数と呼ぶ．(♥)はn階であるとも言う．

3. (♥)を満たす関数y = y(x)を(♥)の解と呼ぶ．さらに

(a) n個の任意定数を含む解を一般解と呼ぶ．

(b) 一般解のうちで任意定数を特定の数に指定したものを特殊解あるい
は特解と呼ぶ（一般解の特別な場合）．

(c) 一般解に含まれない解を特異解と呼ぶ．
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4. (♥)のすべての解を求めることを(♥)を解くまたは積分すると言う．

5. (♥)の解で

y(x0) = y0, y′(x0) = y1, . . . , y(n−1)(x0) = yn−1 (♦)

を満たすものを求める問題を初期値問題と呼ぶ．ここでx0, y0, . . . , yn−1

は与えられた数である．(♦)を初期値，初期条件または初期データと呼
ぶ．

注意.緩い言い方をすると，n階の常微分方程式を解くにはn回積分する必要
があり，その際にn個の積分定数が現れる．これらが一般解に含まれるn個
の任意定数に対応する．また，これらの任意定数を一意に決定するためには
n個の（独立な）初期値が必要となる．
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◦ 正規型

定義.常微分方程式が未知関数の最高階導関数について解けているとき，す
なわち

y(n) = f
(
x, y, . . . , y(n−1)

)
(♣)

の形であるとき，この方程式は正規型であると呼ばれる．

注意. 1. Lipschitz条件（後述）の下で，正規型常微分方程式(♣)の初期
値問題は一意解を持つ．これについては第6章で議論する．
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2. 正規型常微分方程式(♣)は常に1階の正規型常微分方程式系に書き換え
られる．実際，

y1 = y, y2 = y′, . . . , yn = y(n−1)

とおけば，

y′1 = y2, . . . , y′n−1 = yn, y′n = f(x, y1, . . . , yn)

と書き換えられる．またさらに，ベクトル値関数

y = (y1, . . . , yn), f(x,y) = (y2, . . . , yn, f(x, y1, . . . , yn))

を導入すれば，

y′ = f(x,y) (♠)

とも書ける．
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命題 1.1. y = y(x)を1階正規型常微分方程式

y′ = f(x, y) (♣)

の解とする．このとき，対応するR2内の解曲線（あるいはグラフ）

R → R, x �→ (x, y(x)) (♥)

は，R2上のベクトル場

R
2 → R

2, (x, y) �→ (1, f(x, y)) (♦)

に接する．

注意.すなわち，1階正規型常微分方程式(♣)を解くことは，対応するベクト
ル場(♦)に接する曲線族を求めることに他ならない．

証明. 解曲線のパラメータ表示(♥)をパラメータxで微分すればよい．
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問. y′ = 2yに対しその解曲線族の概形を図示し，命題 1.1の主張を確かめ
よ．

問.前々項の1階正規型常微分方程式系(♠)に対し命題 1.1と同様の主張を
書き下し，それを示せ．
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◦ 正規型だが解が一意ではない例

例.初期問題

y′ = 2
√
y, y(x0) = y0

は，y0 = 0のとき解を無数に持つ．実際，与えられた方程式は（初期条件を
無視すれば）特異解

y(x) = 0

と，一般解

y(x) =

⎧⎨
⎩0 for x ≤ C,

(x− C)2 for x ≥ C

を持つ．ここでCは任意定数である．このことから上の主張がすぐに従う．
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問.上の特異解と一般解を図示し，y0 = 0のとき実際に解が無数に存在する
ことを確かめよ．

注意. 1. 上の方程式は正規型だが，Lipschitz条件（後述）を満たさない．
（方程式自身の持つ平方根の特異性が，解の一意性を崩していると見て
よい．）

2. 上の初期値問題は，y0 > 0なら一意解を持ち，y0 < 0なら解を持たな
いことも示せる．

3. 上の方程式は変数分離型（後述）であり，初等的に解くことができる．

4. 上の特異解は一般解の包絡線になっていることにも注意する．
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◦ 非正規型

一般に，非正規型常微分方程式の初期値問題では，方程式自体に特異性が無
くても解の一意性は期待できない．

例.初期値問題

y′2 − 2y′y − 3y2 = 0, y(x0) = y0

を考える．与えられた方程式は

(y′ − 3y)(y′ + y) = 0 ∴ y′ = 3y or y′ = −y

と書き換えられるため，2つの一般解

y = Ce3x, y = De−x (C,Dは任意定数)

を持つ．このことからy0 �= 0に対し常に2つの解を持つことが分かる．
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注意. 1. 上の初期値問題において解の一意性が成り立たない理由は，方程
式が本質的に2つの方程式からなるため，と言える．

2. 上の方程式の一般解を求めることは，2つベクトル場

(x, y) �→ (1,3y), (x, y) �→ (1,−y)

のいずれかに接する曲線族を求めることに対応する．初期点からどちら
のベクトル場に沿って曲線を伸ばしていくかに応じて2つの解曲線が現
れる．

問.上の2つのベクトル場および解曲線族の概形を図示せよ．
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問.初期値問題

y′2 − 4y = 0, y(x0) = y0

を考える．−∞ ≤ C ≤ D ≤ ∞を満たす任意の定数C,Dに対し，関数

y(x) =

⎧⎪⎪⎨
⎪⎪⎩
(x− C)2 for x ≤ C,

0 for C < x < D,

(x−D)2 for x ≥ D

は上の微分方程式の解であることを確かめよ．特にこのことから，y0 ≥ 0の
とき，上の初期値問題は無数に解を持つことを確かめよ．

注意. 1. C = −∞のとき，x ≤ Cの場合分けには意味がないので無視す
ることにする．C = DやD = ∞のときも同様に解釈する．

2. 上の微分方程式はy′ = ±2
√
yと書き直せる．このことから2つ前の例

と同様の注意が（一部修正して）この場合にも適用される．
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第2章 1階方程式の初等解法（求積法）

§ 2.1 変数分離型

定義.次の形の常微分方程式を変数分離型と呼ぶ：

y′ = f(x)g(y).

解法. g(b) = 0を満たす bがあれば，y(x) ≡ bが解となることはすぐに分
かる．また，g(y) �= 0となる範囲では，形式的に

dy

g(y)
= f(x) dx

と書き，これにさらに積分記号を形式的に付けて∫ dy

g(y)
=
∫

f(x) dx

とすれば解が求まる．
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正当化（もう少し詳しく）. 上で議論で形式的だった部分を正当化する．曖
昧さを無くすために初期値y(x0) = y0を設定しておく．もしy(x)が解であ
るならば，g(y(x)) �= 0となるxの範囲において

1

g(y(x))

dy

dx
(x) = f(x)

が成り立つ．これを変数xについてx0からxまで積分すると，∫ x

x0

1

g(y(x))

dy

dx
(x) dx =

∫ x

x0
f(x) dx

であり，さらに左辺で置換積分を行うと∫ y(x)

y0

dy

g(y)
=
∫ x

x0
f(x) dx

が従う．よって正当化がなされた．
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例題. aを与えられた定数として，常微分方程式

y′ = ay

を解け．

解. 前章でも同じ形の方程式を扱ったが，改めて変数分離型として解いてみ
る．まずy(x) ≡ 0は解である．またy �= 0となる範囲においては∫ dy

y
=
∫

adx

であり，これより

log |y| = ax+ C ∴ y = C′eax

が従う．ただしC′ = ±eCとした．

注意.左辺の積分の積分変数はxではなくyである．慣れないうちは誤解する
ことがよくあるので注意せよ．
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例題. μ,Kを与えられた定数として，ロジスティック方程式

y′ = μy

(
1− y

K

)

を解け．また，解曲線族を図示せよ．

解. まずy ≡ 0,Kは解である．またy �= 0,Kとなる範囲においては∫
K dy

y(K − y)
=
∫

μdx

であり，これより

log
∣∣∣∣ y

K − y

∣∣∣∣ = μx+ C ∴ y =
C′Keμx

1+ C′eμx

を得る．ただしC′ = ±eCとした．曲線族の図は省略する．
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注意. 1. 解y ≡ 0はC′ = 0に対応し，特異解ではない．同様に，解y ≡ K

はC′ = ∞に対応すると見ることができ，特異解とはみなされない．実
際，上の解表示においてC′′ = 1/C′とおけば

y =
Keμx

C′′ + eμx

と書け，確かにy ≡ KはC′′ = 0に対応している．

2. 解曲線族の図から以下のことが分かる．x → ∞のとき，
(a) y ≡ 0以外の任意の解曲線はy ≡ 0から離れる．

(b) 任意の正値解の解曲線はy ≡ Kに近づく．

これらのことからy ≡ 0,Kはそれぞれ不安定解，安定解と呼ばれる．
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§ 2.2 同次型

定義.次の形の常微分方程式を同次型と呼ぶ：

y′ = f

(
y

x

)
.

解法. 未知関数をyからz = y/xに変換すると変数分離型に帰着する．実際，
このとき

z + xz′ = f(z) ∴ z′ = f(z)− z

x
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である．よってf(b) = bを満たすbがあれば，z ≡ b，あるいは

y = bx (♦)

は解である．またz �= bとなる範囲では∫ dz

f(z)− z
=
∫ dx

x

により解が求まる．(f(z)− z)−1の原始関数の一つをF (z)とすると，

eF (y/x) = Cx (♥)

を得る．ここでCは任意定数である．

注意.常微分方程式の解は必ずしもy = y(x)の形に書く必要はなく，xとy

の関係式（できれば簡素な）が得られた段階で終了としても良い．
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定理 2.1. y(x)を同次型常微分方程式

y′ = f

(
y

x

)
(♠)

の解とする．このとき，任意のα �= 0に対しαy(x/α)も (♠)の解となる．
よって特に(♠)の解曲線族は原点を中心とした拡大縮小に対し不変である．

証明. z(x) = αy(x/α)とおくと，

z′(x) = y′
(
x

α

)
= f

(
y(x/α)

x/α

)
= f

(
z(x)

x

)

が成り立つ．よって主張は示された．

注意.前項の解の表示式(♦)および(♥)からも証明できる．
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例題.常微分方程式

y′ = x2 + y2

2xy

を解け．また解曲線族を図示せよ．

解. 与えられた方程式は

y′ = 1+ (y/x)2

2y/x

と書き直すことができる．これは同次型である．よってz = y/xとおくと

z′ = 1− z2

2xz
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となり，変数分離型に帰着された．まずz ≡ ±1，すなわちy = ±xは解で
ある．またz �= ±1となる範囲では∫ 2z dz

1− z2
=
∫ dx

x
∴ − log |1− z2| = log |x|+ C

から解が求まる．任意定数を±e−C = 2Aと置き直して，整理すると

1− z2 =
2A

x
∴ (x−A)2 − y2 = A2

を得る（y = ±xもこれに含まれる）．解曲線族の図は省略する．

注意.より一般に

y′ = f

(
a0x

n + a1x
n−1y + · · ·+ anyn

b0xn + b1xn−1y + · · ·+ bnyn

)
= f

(
同次n次多項式
同次n次多項式

)

も同次型である．
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例.常微分方程式

y′ = f

(
ax+ by + c

Ax+By + C

)
, aB − bA �= 0,

は同次型に帰着できる．実際，

aα+ bβ + c = 0, Aα+Bβ + C = 0

を満たすα, βを求めて，X = x− α, Y = y − βとおくと

Y ′ = f

(
aX + bY

AX +BY

)
= f

(
a+ b(Y/X)

A+B(Y/X)

)

と書き直せる．

問.上の例において，aB− bA = 0の場合には変数分離型に帰着できること
を確かめよ．
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§ 2.3 線形方程式

定義.次の形の常微分方程式を線形方程式と呼ぶ：

y′ + p(x)y + q(x) = 0. (♣)

また，q(x) ≡ 0のとき(♣)は斉次であると言い，そうでないとき(♣)は非
斉次であると言う．

注意. 1. 非斉次項q(x)があるため(♣)はy, y′に関して完全には線形でない
が，qがxのみに依るなら線形の枠組みで扱えるため，線形と呼ばれる．
一方，qが未知関数yやその微分に依存する場合には，もやは線形ではな
く非線形である．

2. 斉次の代わりに同次という用語を用いることもあるが，同次型と紛らわ
しいので本講では用いない．
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解法1. P (x)をp(x)の原始関数の一つとして，eP (x)を(♣)にかけると(
eP (x)y

)′
= −q(x)eP (x)

と書き換えられる．よって両辺を積分して整理すれば，

y = −e−P (x)
∫

q(x)eP (x) dx

を得る．

注意. P (x)をp(x)と積分記号を使って表せば

y = −e−
∫
p(x) dx

∫
q(x)e

∫
p(x) dx dx

とも書けるが，この表示は複数の積分定数を含むようにも見えるため，注意
が必要である（実際にはe−

∫
p(x) dxとe

∫
p(x) dxの積分定数が相殺する）．次

の解法では初期値を与えて，この表示をもう少し丁寧に見てみる．
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解法2（初期値がある場合にもう少し丁寧に）. ここでは初期値

y(x0) = y0

を設定して解く．(♣)の両辺にe
∫ x
x0

p(ξ) dξをかけると(
e
∫ x
x0

p(ξ) dξ
y

)′
= −q(x)e

∫ x
x0

p(ξ) dξ

となる．初期値に注意して，これをx0からxまで積分すると

e
∫ x
x0

p(ξ) dξ
y − y0 = −

∫ x

x0
q(η)e

∫ η
x0

p(ξ) dξ
dη

となるので，結局

y = y0e
− ∫ xx0 p(ξ) dξ −

∫ x

x0
q(η)e

− ∫ xη p(ξ) dξ
dη

が従う．
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注意.解法2の解表示において，q ≡ 0とすれば右辺第1項は対応する斉次方
程式の解であることが分かる．一方，y0 = 0とすれば右辺第2項は(♣)の
特殊解である．つまり，「非斉次解=斉次解+特殊解」の形になっている．

問. 1. q ≡ 0のとき，(♣)を変数分離型として解き，一般解は

y = Ce−P (x)

で与えられることを示せ．ここでP (x)はp(x)の原始関数の一つである．

2. （定数変化法）1の結果から，一般のqの場合には(♣)は

y = C(x)e−P (x)

の形の解を持つと予想される．これを (♣)に代入して計算することで，
C(x)を求めよ．
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例題. m, g, kを正定数とする．大気中の落下速度を記述する初期値問題

mv̇ = mg − kv, v(0) = v0

を解き，終端速度v∞ = lim
t→∞ vを求めよ．また解曲線族の概形を図示せよ．

解. 方程式は v̇ + (k/m)v = gと書き直せるので，これにekt/mをかけて

d

dt
(ekt/mv) = gekt/m ∴ v =

mg

k
+ Ce−kt/m

となる．よって初期値を考慮することで，

v =
mg

k
+
(
v0 − mg

k

)
e−kt/m および v∞ =

mg

k

を得る．解曲線族の図は省略する．

注意.変数分離型としても解ける．
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§ 2.4 Bernoulli型とRiccati型

定義.次の形の常微分方程式をBernoulliの方程式と呼ぶ：

y′ + p(x)y + q(x)yk = 0, k �= 0,1.

注意.斉次線形部分と，最も単純な非線形項であるべき型非線形項からなる
方程式である．非線形方程式だが変数変換により線形方程式に帰着できる．

解法. まずk > 0のときy ≡ 0は解である．また任意のk �= 0,1に対し，
y �= 0となる範囲では両辺をykで割ることで

(1− k)−1(y1−k)′ + p(x)y1−k + q(x) = 0

となる．よってz = y1−kとおけば

z′ + (1− k)p(x)z + (1− k)q(x) = 0

となり，線形方程式へ帰着される．
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定義.次の形の常微分方程式をRiccatiの方程式と呼ぶ：

y′ + p(x)y2 + q(x)y + r(x) = 0.

注意. 1. y′がyの2次式と一致する方程式，あるいは，非斉次項付き線形部
分と2次のべき型非線形項からなる方程式と見れる．

2. Riccatiの方程式は一般には初等的に求積できないことが知られている
が，特殊解が一つ見つかれば，そこからの「ずれ」を計算して解ける．

解法. 特殊解y0が一つ見つかったとする．このとき，与えられた方程式と

y′0 + py20 + qy0 + r = 0

の辺々で差を取って，z = y − y0とおくと

z′ + p(z +2y0)z + qz = 0 ∴ z′ + (2py0 + q)z + pz2 = 0

となる．したがってBernoulli型に帰着された．
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例題.常微分方程式

y′ − 3y2 − y

x
+12x2 = 0

を解け．

解. 試行錯誤により，与えられた方程式はy0 = 2xを特殊解に持つことが分
かる．実際，

(2x)′ − 3(2x)2 − 2x

x
+12x2 = 0

である．与えられた方程式とこれとで辺々を引いて，z = y − 2xとおくと

z′ − 3(z +4x)z − z

x
= 0 ∴ z′ −

(
12x+

1

x

)
z − 3z2 = 0

となる．これはBernoulli型である．まずz ≡ 0は解であるが，これはy =

y0 = 2x に他ならない．またz �= 0となる範囲では，さらにw = z−1とお
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くことで

w′ +
(
12x+

1

x

)
w +3 = 0

となる．これは線形方程式である．よってxe6x
2をかけて，整理すると

(
xe6x

2
w
)′

= −3xe6x
2 ∴ w =

1

xe6x2

(
C − 1

4
e6x

2
)

を得る．あとは変数を元に戻していくことで，

z =
4xe6x

2

4C − e6x2
∴ y = 2x+

4xe6x
2

4C − e6x2

を得る．

注意.解y0 = 2xはC = ∞に対応する．
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§ 2.5 完全微分型

方程式P (x, y) +Q(x, y)y′ = 0を形式的に

P (x, y) dx+Q(x, y) dy = 0 (♠)

と書き，x, yについて対称に見ることにする．

定義.方程式(♠)が完全微分型であるとは，あるΦ = Φ(x, y)が存在して

P =
∂Φ

∂x
, Q =

∂Φ

∂y

が成り立つことである．

定理 2.2.方程式(♠)が完全微分型ならば，その一般解は，上のΦを用いて

Φ(x, y) = C (♥)

で与えられる．ここでCは任意定数である．
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証明. 形式的には，(♥)を全微分して

0 = dΦ =
∂Φ

∂x
dx+

∂Φ

∂y
dy = P dx+Qdy

を得る．もう少し厳密に議論すると，y = y(x)を(♥)から定まる関数とす
れば，

Φ(x, y(x)) = C

が成り立つ．この両辺をxで微分して

0 =
d

dx
Φ(x, y(x))

=
∂Φ

∂x
(x, y(x)) +

∂Φ

∂y
(x, y(x))

dy

dx
(x)

= P (x, y(x)) +Q(x, y(x))
dy

dx
(x)

を得る．
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定理 2.3. (♠)が完全微分型であるための必要十分条件は，
∂P

∂y
=

∂Q

∂x
(♦)

が成り立つことである．

証明. まず，(♠)が完全微分型であれば，その定義より

∂P

∂y
=

∂2Φ

∂y∂x
=

∂2Φ

∂x∂y
=

∂Q

∂x

が成り立つ．逆に(♦)が成り立つとき，a, bを任意に固定して

Φ(x, y) =
∫ x

a
P (s, b) ds+

∫ y

b
Q(x, t) dt
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とおくと，これは完全微分型の定義の条件を満たす．実際，直接計算により
∂Φ

∂x
= P (x, b) +

∫ y

b

∂Q

∂x
(x, t) dt

= P (x, b) +
∫ y

b

∂P

∂y
(x, t) dt = P (x, y),

∂Φ

∂y
= Q(x, y)

が従う．

注意.十分性の証明時に，Φの表示公式も得られていることに注意する．よ
り一般には，定点(a, b)を予め固定しておいて，任意の(x, y)に対し(a, b)か
ら(x, y)へ至る任意の曲線γ をとって

Φ(x, y) =
∫
γ

(
P (ξ, η) dξ +Q(ξ, η) dη

)
と定めてもよい．実際，条件(♦)はこの線積分が(x, y)のみに依り，γの選び
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方には依らないことを保証している（Stokesの定理を参照）．なお，定義よ
り，γのパラメータ表示(ξ(t), η(t)), t ∈ [t0, t1], を用れば，上の線積分は

Φ(x, y) =
∫ t1

t0

(
P (ξ(t), η(t))

dξ(t)

dt
+Q(ξ(t), η(t))

dη(t)

dt

)
dt

となる．上の証明ではこれを計算し易くなるような特別なγを選んだ．

問.定理 2.3の(♦)を仮定する．このとき，

Φ1(x, y) =
∫ x

a
P (s, y) ds+

∫ y

b
Q(a, t) dt,

Φ2(x, y) =
∫ 1

0

[
(x− a)P

(
a+ t(x− a), b+ t(y − b)

)
+ (y − b)Q

(
a+ t(x− a), b+ t(y − b)

)]
dt

はともに完全微分型の定義の条件を満たすことを直接計算により確かめよ．
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例題.常微分方程式(ax+ by) dx+(bx+ cy) dy = 0を解け．ただしa, b, c

は定数とする．

解. Py = b = Qxなので，これは完全微分型である．Φの形は簡単に計算
できて，一般解は

Φ(x, y) =
1

2
ax2 + bxy +

1

2
cy2 = C

で与えられる．

例題.常微分方程式(y + cosx) dx+ xdy = 0を解け．

解. Py = 1 = Qxなので，これは完全微分型である．Φの形は簡単に計算
できて，一般解は

Φ(x, y) = xy + sinx = C

で与えられる．
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◦ 積分因子

定義.関数μ = μ(x, y)が本節冒頭の方程式(♠)の積分因子であるとは，

(μP ) dx+ (μQ) dy = 0

が完全微分型となることである．

定理 2.4. μが(♠)の積分因子となるための必要十分条件は，

(μP )y = (μQ)x, すなわち μ(Py −Qx) = μxQ− μyP

が成り立つことである．

証明. 定理 2.3からすぐに従う．

注意.一般の場合に積分因子を見つけるのは不可能であるが，以下では積分
因子が見つかるような特殊な場合をいくつか見る．
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◦ 積分因子が1変数のみに依存する場合

命題 2.5.本節冒頭の方程式(♠)に対し，以下が成り立つ．

1. xのみに依存する積分因子μ = μ(x)が存在するための必要十分条件は，
(Py −Qx)/Qがxのみの関数となることである．さらにこのとき，

μ = exp

[∫
Py −Qx

Q
dx

]

ととれる．

2. yのみに依存する積分因子μ = μ(y)が存在するための必要十分条件は，
(Qx − Py)/Pがyのみの関数となることである．さらにこのとき，

μ = exp

[∫
Qx − Py

P
dy

]

ととれる．
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証明. 1と2は同様に示せるので，1のみを示す．必要十分性は命題 2.5から
すぐに分かる．またこのとき，

μ′
μ

=
Py −Qx

Q

が成り立つので，

μ = exp

[∫
Py −Qx

Q
dx

]

ととれることが分かる．
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例題.常微分方程式
(
x2 − 2xy3

)
dx+3x2y2 dy = 0を解け．

解. 直接計算により

Py −Qx

Q
=

−6xy2 − 6xy2

3x2y2
= −4

x

となるので，命題 2.5より積分因子μ = x−4がとれる．実際，

μ
[(
x2 − 2xy3

)
dx+3x2y2 dy

]
=
(
x−2 − 2x−3y3

)
dx+3x−2y2 dy

は完全微分型であり，したがって解は

−x−1 + x−2y3 = C

である．
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◦ 積分因子の形をある程度予想できる場合

例題.常微分方程式
(
y3 + y2

)
dx+ xy dy = 0を解け．

解. 積分因子としてμ = xmynの形の関数を仮定すると，

(μP )y = (n+3)xmyn+2 + (n+2)xmyn+1,

(μQ)x = (m+1)xmyn+1

なので，n = −3, m = −2，すなわちμ = x−2y−3ととれる．このとき，

μ
[(
y3 + y2

)
dx+ xy dy

]
=
(
x−2 + x−2y−1

)
dx+ x−1y−2 dy

は確かに完全微分型であり，したがって解は

x−1 + x−1y−1 = C

である．
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◦ 初等解法と積分因子

これまでの初等解法は積分因子の方法の特別な場合と見ることができる．

例.変数分離型の方程式y′ = f(x)g(y)を

f(x)g(y) dx− dy = 0

の形に書くと，

Qx − Py

P
= −g′(y)

g(y)

はyのみの関数である．よって命題 2.5より積分因子をμ = μ(y) = g(y)−1

ととれて，このとき，

μ
[
f(x)g(y) dx− dy

]
= f(x) dx− dy

g(y)
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は確かに完全微分型である．したがって解は∫
f(x) dx−

∫ dy

g(y)
= 0

で与えられる．ただし任意定数は不定積分の積分定数に込めて省略した．

注意.もし命題 2.5の公式をそのまま用いるなら，本来はμ = |g(y)|−1と
すべきだが，実際には任意の解y = y(x)に対しg(y(x))は符号を変えない
ので，μ = g(y)−1としても問題は無い．実際，もしg(y(x))が符号を変え
たとすると，その瞬間y(x)はg(b) = 0となるbを値にとるが，y ≡ b自体
も解なので，解の一意性の下ではそのようなことは起こりえない．

問.同次形方程式y′ = f(y/x)を積分因子の方法で解け．
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例.線形方程式y′ + p(x)y + q(x) = 0を

(p(x)y + q(x)) dx+dy = 0

の形に書くと，
Py −Qx

Q
= p(x)

はxのみの関数である．よって，P (x)をp(x)の原始関数の一つとすれば，命
題 2.5より積分因子をμ = μ(x) = eP (x)ととれる．このとき，

μ
[
(p(x)y+ q(x)) dx+dy

]
=
(
p(x)yeP (x)+ q(x)eP (x)

)
dx+eP (x)dy

は確かに完全微分型である．したがって解は

yeP (x) +
∫

q(x)eP (x) dx = 0

で与えられる．ただし任意定数は不定積分の積分定数に込めて省略した．
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§ 2.6 Clairaut型とLagrange型（d’Alembert型）

◦ 準備：包絡線

定義.曲線Γがτをパラメータとする曲線族{Γτ}τの包絡線であるとは，任
意のτに対しある点でΓとΓτが接することである．

定理 2.6. τをパラメータとする曲線族{f(x, y, τ) = 0}τに対し，その包絡
線Γのパラメータ表示(x(t), y(t))は

f(x(t), y(t), t) = 0,
∂f

∂τ
(x(t), y(t), t) = 0

から定まる．よって特にΓの方程式は

f(x, y, t) = 0,
∂f

∂τ
(x, y, t) = 0

から tを消去することで得られる．
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証明. τを動かしたとき，Γとf(x, y, τ) = 0の接点は，Γ上をτに関して滑
らかに動くとしてよい．これによりΓをτでパラメータ付けることができる．
それを(x(τ), y(τ))とすると，まずこれがf(x, y, τ) = 0上にあることから

f(x(τ), y(τ), τ) = 0

が成り立つ．またこれをτで微分すると，

0 =
d

dτ
f(x(τ), y(τ), τ)

= x′(τ)∂f
∂x

(x(τ), y(τ), τ) + y′(τ)∂f
∂y

(x(τ), y(τ), τ)

+
∂f

∂τ
(x(τ), y(τ), τ)

=
∂f

∂τ
(x(τ), y(τ), τ)
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が成り立つ．ここで(x′(τ), y′(τ))は(x(τ), y(τ))におけるΓの接ベクトル
であり，したがって同じ点におけるf(x, y, τ) = 0の接ベクトルでもあるこ
と，および，(fx(x, y), fy(x, y))は(x, y)におけるf(x, y, τ) = 0の法ベク
トルであることを用いた．

例題. τをパラメータとする曲線族
{
y = 3τ2x−2τ3

}
τ
の包絡線の方程式を

求めよ．

解. 定理 2.6より，包絡線の方程式は

y = 3t2x2 − 2t3, 0 = 6tx− 6t2

からtを消去することで得られる．実際にtを消去して，y = x3を得る．
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◦ Clairautの方程式

定義.次の形の常微分方程式をClairautの方程式と呼ぶ：

y = xy′ + f(y′). (♣)

注意.以下に見るように，Clairautの微分方程式では初期値問題の解の一意
性が成立しない例を系統的に構成でき，その点で理論上重要である．このこ
とから当然，一般には非正規型となる．

解法. (♣)の両辺をxで微分すると

y′ = y′ + xy′′ + f ′(y′)y′′ ∴ y′′
(
x+ f ′(y′)

)
= 0

となり，これから以下の3種類の解が得られる．
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I. y′′ = 0のとき，y′ = C（任意定数）としてよく，これを(♣)に代入する
と，一般解

y = Cx+ f(C) (♠)

が得られる．

II. x+ f ′(y′) = 0のとき，これをy′ = f ′−1(−x)と解き直し，(♣)に代入
すると，特異解

y = xf ′−1(−x) + f(f ′−1(−x)) (♥)

が得られる．また(♥)は(♠)から定まる直線族の包絡線を与える．

III. さらに，(♠)と(♥)が定める解曲線を接点でつないで得られる曲線も(♣)

の解曲線となる．
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注意. 1. 特異解(♥)の解曲線は，パラメータ tを用いて

x = −f ′(t), y = −tf ′(t) + f(t)

のようにパラメータ表示できる．このことは，上のパラメータ表示から
tを消去して(♥)となることを確かめるか，本質的に同じことであるが，
(♥)を求める際に用いた関係式

x+ f ′(y′) = 0, y = xy′ + f(y′)
においてy′を tに置き換えることで示される．

2. (♥)が(♠)から定まる直線族の包絡線を与えることは，(♠)に定理 2.6
を適用して上のパラメータ表示と見比べればわかる．

3. (♠)と(♥)が定める解曲線は接点において接しているため，そこで曲線
を乗り換えてできる曲線も微分可能である．このことから，(♠)と(♥)
を乗り継いで別の解を構成することができ，一般に初期値問題の解の一
意性が成立しない．
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例題.常微分方程式

y = xy′ − 1

4
y′2

を解け．

解. 与えられた方程式はClairaut型であるが，ここでは変数変換により直接
解いてみる．z = −y + x2とおくと

z′2 − 4z = 0

となる．この方程式の解はz = (x − C)2，z = 0およびこれらを接点でつ
ないだものである（第1章最後の問も参照せよ）．したがって，与えられた
方程式の解は

y = 2Cx− C2, y = x2,

および，これらを接点でつないだものである．なお，上の後者が前者の包絡
線となっていることは，接線の方程式を直接計算しても確かめられる．
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◦ Lagrangeの方程式（d’Alembertの方程式）

定義.次の形の常微分方程式をLagrangeの方程式またはd’Alembertの
方程式と呼ぶ：

y = xg(y′) + f(y′). (♥)

ただしg(y′) �≡ y′とする．

注意.これはClairautの微分方程式の一般化とみることができる．

解法. (♥)をxで微分して，p = y′とおくと，

p− g(p)− (xg′(p) + f ′(p))p′ = 0 (♦)

となる．これから以下の2種類の解が得られる．
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I. もしp0−g(p0) = 0を満たすp0があれば，p ≡ p0は(♦)の解である．こ
れを(♥)に代入して，解

y = p0x+ f(p0)

を得る．

II. 次にp− g(p) �= 0となる範囲で考える．p = p(x)の逆関数をとると，こ
れをxについて解くことができてx = x(p)と書ける．すると(♦)は

(p− g(p))x′ − g′(p)x− f ′(p) = 0

となり，線形方程式に帰着された．実際，−(p− g(p))−1の原始関数の一つ
をG(p)として，両辺にeG(p)をかけるとこれは積分できて，整理すると

x =
e−G(p)

p− g(p)

∫
f ′(p)eG(p) dp

となる．これと(♥)およびp = y′から一般解のパラメータ表示が従う．
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第3章 定数係数線形方程式

§ 3.1 斉次方程式

◦ 2階の場合

一般階の場合を考える前に，定数a, b ∈ Cを係数とする2階斉次線形方程式

y′′ + ay′ + by = 0 (♦)

を見ておく．

定義. (♦)の特性多項式，特性方程式とは，それぞれ

λ2 + aλ+ b, λ2 + aλ+ b = 0

のことである．また(♦)の特性根とは，特性多項式の根あるいは特性方程式
の解のことである．
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定理 3.1. (♦)の解空間

V =
{
y ∈ C2(R); y′′ + ay′ + by = 0

}
は自然な和とスカラー倍に関して2次元ベクトル空間となる．さらに，(♦)
の2つの特性根をα, βとすると，以下が成り立つ．

1. α �= βのとき，V は
{
eαx, eβx

}
を基底に持つ．特に(♦)の一般解は

y = Aeαx +Beβx

である．

2. α = βのとき，V は
{
eαx, xeαx

}
を基底に持つ．特に(♦)の一般解は

y = Aeαx +Bxeαx

である．

注意.上の基底を(♦)の解の基本系あるいは基本解と呼ぶ．
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証明. V がベクトル空間であることはほぼ明らかだが，念のため確認する．任
意のy, z ∈ V とc, d ∈ Cに対し

(cy + dz)′′ + a(cy + dz)′ + b(cy + dz)

= c(y′′ + ay′ + by) + d(z′′ + az′ + bz) = 0

なので，cy + dz ∈ V となる．よってV はベクトル空間である．

残りの証明において記号を簡単にするために，微分作用素

D =
d

dx

を導入する．このとき，(♦)は

(D − α)(D − β)y = 0 (♣)

のように書き直せることに注意する．
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1. α �= βのとき，(♣)の両辺にe−αxをかけると

De−αx(D − β)y = 0 ∴ e−αx(D − β)y = A

となる．続けてe(α−β)xをかけると

De−βxy = Ae(α−β)x ∴ e−βxy =
A

α− β
e(α−β)x +B

となり，したがって

y = A′eαx +Beβx, A′ = A

α− β

を得る．
{
eαx, eβx

}
はV を張ることが分かったので，あとは1次独立性を確

かめればよい．あるA,B ∈ Cに対して

Aeαx +Beβx ≡ 0
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とする．このとき，この等式およびこの等式の微分にx = 0を代入すると

A+B = 0, αA+ βB = 0

となるが，α �= βに注意すると，結局A = B = 0が従う．

2. α = βのとき，(♣)にe−αxをかけると

D2e−αxy = 0 ∴ e−αxy = A+Bx

となるので，

y = Aeαx +Bxeαx

を得る．1と同様に，あとは
{
eαx, xeαx

}
の1次独立性を確かめればよい．あ

るA,B ∈ Cに対して

Aeαx +Bxeαx ≡ 0

とする．すると，やはり1と同様にしてA = B = 0が従う．
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例題.常微分方程式y′′ − y′ − 6y = 0を解け．

解. 特性多項式はλ2 − λ− 6 = (λ− 3)(λ+2)となるので，一般解は

y = Ae3x +Be−2x

である．

例題.常微分方程式y′′ − 4y′ +4y = 0を解け．

解. 特性多項式はλ2 − 4λ+4 = (λ− 2)2となるので，一般解は

y = Ae2x +Bxe2x

である．
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例題.常微分方程式y′′ +9y = 0を解け．

解. 特性多項式はλ2 + 9 = (λ− 3i)(λ+3i)となるので，一般解は

y = Ae3ix +Be−3ix

である．なお，Eulerの公式を用いて

y = A(cos 3x+ i sin 3x) +B(cos 3x− i sin 3x)

= E cos 3x+ F sin 3x

と書いてもよい．ただし，E = (A+B), F = i(A−B)とした．

注意.上の例題と同様に，2つの特性根が互いに共役な複素数であるとき，定
理 3.1の主張は以下のように書き直すこともできる．
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系 3.2.定理 3.1において，あるp, q ∈ Rが存在して

α = p+ iq, β = p− iq, q �= 0

とする．このとき，(♦)は
{
epx cos qx, epx sin qx

}
を解の基本系に持つ．特

に(♦)の一般解は

y = Aepx cos qx+Bepx sin qx

である．

証明. 定理 3.1からすぐに分かる．

注意.応用においては，物理的設定からyが実数値のみに限定されているこ
とも多く，その場合，上のような解の基本形を用いた方が係数が実数となり，
扱いやすい．一方，理論上においては，指数関数を用いた方が記述が統一的
になり，見通しが良い．
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◦ Wronski行列式

定義. (♦)の2つの解y1, y2に対し，それらのWronski行列式を

W [y1, y2] = y1y
′
2 − y2y

′
1

で定義する．

定理 3.3. y1, y2を(♦)の解とし，W = W [y1, y2]とおく．

1. W (x) = e−axW (0)が成り立つ．

2. 以下の条件は互いに同値である．

(a) y1, y2は1次独立である．特に，y1, y2は(♦)の解の基本系をなす．
(b) あるxに対しW (x) �= 0である．
(c) 任意のxに対しW (x) �= 0である．
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証明. 1. y1, y2が(♦)の解であることから，

W ′ = y′1y′2 − y′2y′1 + y1y
′′
2 − y2y

′′
1 = −ay1y

′
2 + ay2y

′
1 = −aW

が成り立つ．したがって(eaxW (x))′ = 0であり，これから結論が従う．

2. (b)と(c)の同値性は1より明らかである．またy1, y2が1次従属であれ
ばW ≡ 0となることもすぐに分かる．逆にW ≡ 0とすると，y1y2 �= 0と
なる範囲において

y′1
y1

=
y′2
y2

∴ y1 = Cy2

でなければならない．したがって主張は示された．

注意.この結果は変数係数にも拡張される．なお，上の証明の最後の部分で厳
密には定理 3.1または常微分方程式の初期値問題の解の一意性を用いている．
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◦ 一般階の場合

さて，一般階の斉次線形方程式を考えよう．定数a1, . . . , an ∈ Cに対し

y(n) + a1y
(n−1) + · · ·+ any = 0 (♣)

を考える．特性多項式，特性方程式，特性根は2階のときと同様に定義する．

定理 3.4. (♣)の解空間は自然な和とスカラー倍に関してn次元ベクトル空
間となる．また，(♣)の特性多項式が

λn + a1λ
n−1 + · · ·+ an =

m∏
j=1

(λ− αj)
kj

の様に因数分解されたとする．ただし任意の j �= lに対しαj �= αlとする．
このとき，(♣)の解空間は{

xkeαjx; j = 1, . . . ,m, k = 0, . . . , kj − 1
}

を解の基本系に持つ．
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証明. ここでは，1次独立性のみを確かめる．あるCjkに対し

m∑
j=1

kj−1∑
k=0

Cjkx
keαjx ≡ 0

とする．するとこのとき，

0 =

⎡
⎣ m∏
l=2

(D − αl)
kl

⎤
⎦ m∑
j=1

kj−1∑
k=0

Cjkx
keαjx

=
m∑

j=1

kj−1∑
k=0

Cjke
αjx

⎡
⎣ m∏
l=2

(D + αj − αl)
kl

⎤
⎦xk

=
k1−1∑
k=0

C1ke
α1x

⎡
⎣ m∏
l=2

(D + α1 − αl)
kl

⎤
⎦xk

であり，xの最高次の係数に注目することでC1(k1−1) = · · · = C10 = 0が
順々に分かる．あとはこれを繰り返せばよい．
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§ 3.2 非斉次方程式

ここでは定数a, b ∈ Cを係数とする2階非斉次線形方程式

y′′ + ay′ + by = f(x) (♠)

を扱う．

注意. 1. 本節の議論も一般階に拡張されるが，本講では割愛する．

2. 非斉次項f(x)は外力項などと呼ばれることもある．
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定理 3.5. y0を(♠)の特殊解とし，y1, y2を斉次方程式y′′ + ay′ + by = 0
の解の基本系とする．このとき，(♠)の一般解は

y = y0 + C1y1 + C2y2 (C1, C2は任意定数)

で与えられる．また一般解以外の解は存在しない．

証明. y0は(♠)の特殊解なので

y′′0 + ay′0 + by0 = f(x)

が成り立つ．これと(♠)の差をとると，z = y − y0に関する斉次方程式

z′′ + az′ + bz = 0

得られる．よって定理 3.1から主張が従う．

注意.「非斉次解=特殊解+斉次解」と見ることができる．よって特に，非
斉次方程式は，特殊解が一つ見つかれば，斉次方程式に帰着する．
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◦ 特殊解の一般公式

定理 3.6. y1, y2を斉次方程式y′′ + ay′ + by = 0の解の基本系とする．こ
のとき，(♠)は

y0(x) =
∫ x y2(x)y1(ξ)− y1(x)y2(ξ)

W [y1, y2](0)
eaξf(ξ) dξ.

を特殊解に持つ．

証明. y0の表示式を(♠)に直接代入して計算することで，主張は確かめられ
る．詳細は問として省略する．

注意.単純な形の外力項であっても，上の公式から特殊解を計算するのはな
かなか煩雑である．状況に応じて，後述の代入法や演算子法を用いるのが良
いだろう．
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問 (定数変化法). (♠)の特殊解が，あるz1, z2を用いて

y0(x) = z1(x)y1(x) + z2(x)y2(x), z′1y1 + z′2y2 = 0

の形で書けると仮定する．z1, z2を求めることで，定理 3.6の表示を導け．

注意. 1つの特殊解y0を求めるために，2つの自由度z1, z2を導入しているた
め，関係式z′1y1+z′2y2 = 0で自由度を1つ縛らないとz1, z2が定まらない．

解. 直接計算により

y′0 = z′1y1 + z′2y2 + z1y
′
1 + z2y

′
2 = z1y

′
1 + z2y

′
2

および

y′′0 = z′1y′1 + z′2y′2 + z1y
′′
1 + z2y

′′
2
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が分かる．これらを(♠)に代入して整理すると

z′1y′1 + z′2y′2 = f

が従う．これと条件より

z′1 = − y2f

y1y
′
2 − y2y

′
1
, z′2 =

y1f

y1y
′
2 − y2y

′
1

であり，さらに定理 3.3を用いると

z1 = −
∫

y2(x)e
axf(x)

W [y1, y2](0)
dx, z2 =

∫
y1(x)e

axf(x)

W [y1, y2](0)
dx

となる．よって所望の表示式が得られた．
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◦ 代入法：具体的な外力項に対する特殊解の求め方（その1）

外力項の形から特殊解の形をある程度予想し，係数を調整して特殊解を求め
る方法を紹介する．本講ではこれを代入法と呼ぶことにする．

例題.常微分方程式y′′ − 4y′ +3y = x2の特殊解を一つ求めよ．

解. y0 = ax2 + bx+ cを代入してみると

x2 = 2a− 4(2ax+ b) + 3(ax2 + bx+ c)

= 3ax2 + (−8a+3b)x+2a− 4b+3c

となる．よって両辺の係数を比較して

a =
1

3
, b =

8

9
, c =

26

27
∴ y0 =

1

3
x2 +

8

9
x+

26

27

を得る．
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例題.常微分方程式y′′ − 4y′ +3y = cosxの特殊解を一つ求めよ．

解. y0 = a cosx+ b sinxを代入してみると

(2a− 4b) cosx+ (4a+2b) sinx = cosx

となる．よって両辺の係数を比較して

a =
1

10
, b = −1

5
∴ y0 =

1

10
cosx− 1

5
sinx

を得る．

注意.外力項が三角関数のときは，三角関数の特殊解を想定する．
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例題.常微分方程式y′′ − 4y′ +3y = 3e2x +4exの特殊解を一つ求めよ．

解. y0 = ae2x + bxexを代入してみると

− ae2x − 2bex = 3e2x +4ex

となる．よって両辺の係数を比較して

a = −3, b = −2 ∴ y0 = −3e2x − 2xex

を得る．

注意.外力項が指数関数のときは，指数関数の特殊解を想定する．ただし外
力項の指数に，対応する斉次方程式の特性根が現れる場合は，x（のべき）を
かけて調整する．
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例題. ω, θ,Aは0でない実定数でω �= θとする．初期値問題

ẍ+ ω2x = A sin θt, x(0) = ẋ(0) = 0

を解け．またθ ∼ ωのときの解の振幅について考察せよ．ただしここでは t

を独立変数とする．

解. x0 = a cos θt+ b sin θtを代入すると

a(ω2 − θ2) cos θt+ b(ω2 − θ2) sin θt = A sin θt

となるので，係数を比較することで特殊解

x0 =
A

ω2 − θ2
sin θt

を得る．よって一般解は

x =
A

ω2 − θ2
sin θt+ C1 cosωt+ C2 sinωt
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であり，これと初期条件より求める解は

x =
A

ω2 − θ2

[
sin θt− θ

ω
sinωt

]

である．

さてこの解を以下の様に書き換えると，θ ∼ ωのとき

x =
A

ω2 − θ2

[(
1− θ

ω

)
sin
(
θ + ω

2
t

)
cos

(
θ − ω

2
t

)

+
(
1+

θ

ω

)
cos

(
θ + ω

2
t

)
sin
(
θ − ω

2
t

)]

∼ A

ω(ω − θ)
cos

(
θ + ω

2
t

)
sin
(
θ − ω

2
t

)

となる．したがってθ ∼ ωのとき振幅は大きくなる（共鳴または共振と呼ば
れる）．同時にうなりが起こることも分かる．
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例題. ω,Aは0でない実定数とする．初期値問題

ẍ+ ω2x = A sinωt, x(0) = ẋ(0) = 0

を解け．また解の振幅について簡単にコメントせよ．ただしここでも独立変
数は tである．

解. x0 = at cosωt+ bt sinωtを代入すると

− 2aω sinωt+ bω cosωt = A sinΩt

となるので，係数を比較することで特殊解

x0 = − A

2ω
t cosωt
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を得る．よって一般解は

x = − A

2ω
t cosωt+ C1 cosωt+ C2 sinωt

であり，これと初期条件より求める解は

x =
A

2ω2

(
sinωt− ωt cosωt

)
である．また，この表示から解の振幅はtについて1次のオーダーで増大する
ことが分かる．

注意.この解は直前の例題の解においてθ → ωとしたものに一致する．
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◦ 演算子法：具体的な外力項に対する特殊解の求め方（その2）

次に形式計算から特殊解を導く方法を，例題を通じて紹介する．本講ではこ
れを演算子法あるいは記号法と呼ぶことにする．一般化や正当化は難しくは
ないが，割愛する．

例題.常微分方程式y′′ − 4y′ +3y = x2の特殊解を一つ求めよ．

解. まず形式的に

y =
(
D2 − 4D +3

)−1
x2 =

1

3

(
1− 1

3

(
4D −D2

))−1
x2

のようの書き直す．さらに形式級数(
1− 1

3

(
4D −D2

))−1
=

∞∑
n=0

(
1

3

(
4D −D2

))n
(♠)
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を用いる．x2の3階以上の微分は0なので，級数は有限和に帰着して

y =
1

3

[
x2 +

1

3

(
4D −D2

)
x2 +

(
1

3

(
4D −D2

))2
x2
]

=
1

3
x2 +

8

9
x+

26

27

を得る．

注意.作用素に対する(♠)の形の級数をNeumann級数と呼ぶ．Neumann

級数はいつでも適用できるわけではないが，外力項が多項式の場合には級数
が有限和となり，適用できる．
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例題.常微分方程式y′′ − 4y′ +3y = cosxの特殊解を一つ求めよ．

解. ここではz′′ − 4z′ + 3z = eixの特殊解を求め，その実部をとる．形式
的に

z =
(
D2 − 4D +3

)−1
eix = eix

(
(D + i)2 − 4(D + i) + 3

)−1
1

= eix
(
D2 − (4− 2i)D +2− 4i

)−1
1

と書き換える．あとは直前の例題と同様に計算して

z = eix
1

2− 4i
=

1+ 2i

10
eix ∴ y =

1

10
cosx− 1

5
sinx

を得る．

注意.指数関数に対してはNeumann級数は有限和とはならないが，交換関
係を用いれば計算を進めることができる．
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例題.常微分方程式y′′ − 4y′ +3y = 3e2x +4exの特殊解を一つ求めよ．

解. 直前の例と同様に，指数関数との交換関係を用いて

y =
(
D2 − 4D +3

)−1(
3e2x +4ex

)
= 3e2x

(
D2 − 1

)−1
1 + 4ex

(
D2 − 2D

)−1
1

と書ける．右辺第2項にはこのままではNeumann級数を適用できないが，
(D2 − 2D)−1 = D−1(D − 2)−1と書き，D−1を積分に読み替えると，

y = −3e2x +4exD−1
(
−1

2

)
= −3e2x − 2xex

が従う．

注意.D−1は積分に読み替える．特殊解を求めるだけなので積分定数は付け
なくてよい．
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§ 3.3 線形方程式系

n ∈ Nとする．またn次正方行列Aとn次元ベクトル値関数f(x)が与えら
れているとする．本節では，n次元ベクトル値関数y(x)を未知関数とする線
形方程式

y′(x) = Ay(x) + f(x)

を考える．成分表示すれば，これは線形微分方程式系

y′1 = a11y1 + · · ·+ a1nyn + f1(x),

y′2 = a21y1 + · · ·+ a2nyn + f2(x),
...

y′n = an1y1 + · · ·+ annyn + fn(x)

に他ならない．
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注意.上のベクトル値1階線形方程式は，前節で扱ったようなスカラー値高階
線形方程式を特別な場合として含んでいる．実際，

y(n) + a1y
(n−1) + · · ·+ any = f(x)

は，いつでも⎛
⎜⎜⎜⎜⎝

y
y′
...

y(n−1)

⎞
⎟⎟⎟⎟⎠

′

=

⎛
⎜⎜⎜⎝

0 1 · · · 0
... ... . . . ...
0 0 · · · 1

−an −an−1 · · · −a1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

y
y′
...

y(n−1)

⎞
⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

0
...
0

f(x)

⎞
⎟⎟⎟⎠

のように書き直すことができる．
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例.ばね定数1のばね(n+1)個と質量1の質点n個を交互につないで，摩擦
の無い水平な床の上に直線状に設置し，すべてのばねが自然長となる状態で
両端を固定する．系の運動は直線上に拘束されているとする．第 j番目の質
点の静止状態からの変位をxjとすると，それらが満たす運動方程式は

ẍj = xj−1 − 2xj + xj+1, j = 1, . . . , n,

である．ただし，x0 ≡ xn+1 ≡ 0とする．これは

ẍ = Lx, L =

⎛
⎜⎜⎜⎝

−2 1
1 −2 1

1 .. .
−2

⎞
⎟⎟⎟⎠ ,

と表すことができるが，さらに
d

dt

(
x
ẋ

)
=

(
0 1
L 0

)(
x
ẋ

)

とも書ける．
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◦ 行列の指数関数を用いた解法（抽象理論）

定理 3.7.任意のn次正方行列Aに対し，

eA :=
∞∑

k=0

1

k!
Ak

の各成分は収束する．さらに以下が成り立つ．

1. n次正方零行列Oに対しeO = I．

2. n次正方行列BがAB = BAを満たすなら，

eA+B = eAeB = eBeA.

3. 任意のx ∈ Rに対し，
d

dx
exA = AexA = exAA.
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注意.行列の指数関数の具体的計算方法は後で説明する．

証明. A = (aij)i,j=1,...,nとして，Aの最大ノルムを

‖A‖ = max
i,j=1,...,n

|ajk|

で定めると，任意のkに対し

‖Ak‖ ≤ nk−1‖A‖k

が成り立つことが分かる（問とする）．するとAk/k!の各成分の絶対値は
∥∥∥∥ 1k!Ak

∥∥∥∥ ≤ nk−1

k!
‖A‖k

で上から評価することができ，これはk → ∞のとき，十分早く0に収束す
る．したがってeAの各成分は収束することが分かる．

97

残りの主張は，スカラーに対する指数関数と同様にして，以下のように示せ
る．

1. 定義に従って直接計算すれば，

eO =
∞∑

k=0

1

k!
Ok = I

が分かる．

2. AとBは可換なので，以下のように二項定理を適用できて，

eA+B =
∞∑

k=0

1

k!
(A+B)k =

∞∑
k=0

1

k!

∑
l+m=k

k!

l!m!
AlBm

=
∞∑

k=0

∑
l+m=k

1

l!m!
AlBm
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が成り立つ．ここで和の順序交換を認めれば，

eA+B =

( ∞∑
l=0

1

l!
Al

)( ∞∑
m=0

1

m!
Bm

)
= eAeB

を得る．左辺はAとBを入れ替えても不変なので，第2等式も成り立つ．

3. 項別微分（微分の和の順序交換）を認めれば，

d

dx
exA =

∞∑
k=1

1

(k − 1)!
xk−1Ak =

∞∑
l=0

1

l!
xlAl+1 = AexA = exAA

を得る．

注意. 1. 行列の最大ノルムは劣乗法性‖AB‖ ≤ ‖A‖‖B‖を満たさない．
2. 上で認めた事実はもちろん正当化可能だが，ここでは詳細には立ち入ら
ない（実際には初等的に示すことができる）．
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定理 3.8. 1. 斉次線形方程式の初期値問題

y′ = Ay, y(0) = y0

は一意解を持ち，それは

y = exAy0

で与えられる．

2. 非斉次線型方程式の初期値問題

y′ = Ay + f(x), y(0) = y0

は一意解を持ち，それは

y = exAy0 +
∫ x

0
e(x−ξ)Af(ξ) dξ

で与えられる．
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注意.この場合にもやはり「非斉次解=斉次解+特殊解」の形をしているこ
とに注意せよ．非斉解を斉次解作用素exAで表示する公式はDuhamelの公
式と呼ばれ，より一般的な設定にも拡張されている．

証明. 非斉次の場合を示せば十分である．方程式の両辺にe−xAを掛けると(
e−xAy

)′
= e−xAf(x)

と書き換えられる．初期条件を用いて，これを0からxまで積分すると

e−xAy − y0 =
∫ x

0
e−ξAf(ξ) dξ

となり，これにexAを掛けることで主張の公式が従う．
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◦ 対角化可能な行列の指数関数

定理 3.9. Aをn次正方行列とし，ある正則なn次正方行列Pに対し

P−1AP = diag(λ1, . . . , λn), λ1, . . . , λn ∈ C,

と書けたとする．このとき，

exA = P
(
diag

(
exλ1, . . . , exλn

))
P−1

が成り立つ．

注意.一般に，diag(λ1, . . . , λn)はλ1, . . . , λnを対角成分とする対角行列を
表すことにする．なお，以降ブロック対角行列についても同様の記法を用いる．
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証明. 行列の指数関数の定義と上の条件から，

exA =
∞∑

k=0

xk

k!
Ak

= P

( ∞∑
k=0

xk

k!

(
P−1AP

)k)
P−1

= P

⎛
⎝ ∞∑
k=0

xk

k!
diag

(
λk1, . . . , λ

k
n

)⎞⎠P−1

= P
(
diag

(
exλ1, . . . , exλn

))
P−1

である．
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問.実2次正方行列Aは実でない固有値α = a− ib (a ∈ R, b ∈ R \ {0})
を持つとし，対応する固有ベクトルをp = u+ iv (u, v ∈ R2) とする．

1. Au, Avをa, b,u, vを用いて表せ．

2. 行列P = (u v)は正則であることを示せ．

3. 等式

P−1AP =

(
a −b
b a

)
, etP

−1AP = eat
(

cos bt − sin bt
sin bt cos bt

)

を示せ．（P−1AP = aI + bJとおいて，定理 3.7の2および行列の指
数関数の定義を用いよ．）

注意.複素固有値を持つ実正方行列に対し，実数の範囲内で指数関数を計算
したいことがある．そのようなときには上の手順が有効である．
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◦ 一般の行列の指数関数

ひとまずJordan標準形について復習する．

定義.Nはν次正方行列で，対角成分の右上に1が並び，それ以外は0である
とする：

N =

⎛
⎜⎜⎜⎝

0 1 0
.. .

1
0 0

⎞
⎟⎟⎟⎠ .

このとき，ν次Jordanブロックを

Jν(λ) = λI +N, λ ∈ C,

で定める．ここでIはν次単位行列である．

問.任意のk ∈ Nに対し，Nkを計算し，その具体形を確認せよ．
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定理 3.10.Aをn次正方行列とする．このとき，ある正則行列Pが存在して，

P−1AP = diag(Jν1(λ1), . . . , Jνp(λp))

の形に書ける．ここで，λ1, . . . , λp ∈ Cかつν1 + · · ·+ νp = nである．

証明. 省略する．線形代数の教科書を参照せよ．

注意. 1. 上のブロック対角行列をAのJordan標準形と呼ぶ．Jordan標準
形はブロックの並べ替えを除いて一意的である．

2. 一般に，あるj �= kに対しλj = λkとなることもあり得る．

3. 対角化可能な場合はν1 = · · · = νp = 1に対応する．
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定理 3.11. 1. Aをn次正方行列とし，ある正則なn次正方行列Pに対し

P−1AP = diag(Jν1(λ1), . . . , Jνp(λp))

と書けたとする．このとき，

exA = P

(
diag

(
exJν1(λ1), . . . , exJνp(λp)

))
P−1

が成り立つ．

2. 一般のν次JordanブロックJν(λ)に対し

exJν(λ) = exλ
ν−1∑
k=0

xk

k!
Nk

と書ける．
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注意. 1. 参考までに，exJν(λ)を行列の形に具体的に書くと

exJν(λ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

exλ xexλ x2

2!e
xλ x3

3!e
xλ · · · xν−1

(ν−1)!e
xλ

0 exλ xexλ x2

2!e
xλ · · · xν−2

(ν−2)!e
xλ

0 0 exλ xexλ · · · xν−3

(ν−3)!e
xλ

0 0 0 exλ · · · xν−4

(ν−4)!e
xλ

... ... ... ... . . . ...
0 0 0 0 · · · exλ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

となる．

2. 具体的な行列の指数関数の計算は，広義固有空間へのスペクトル分解を
用いるともう少し計算量を減らせるが，本講では扱わない．
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証明. 1. 定理 3.9と同様に示せるので省略する．

2. I,Nが可換なことに注意して，定理 3.7およびNν = 0を用いると

exJν(λ) = exλIexN = exλ
ν−1∑
k=0

xk

k!
Nk

が分かる．

例.例えば，

exp

⎡
⎢⎢⎢⎣x
⎛
⎜⎜⎜⎝

2 0 0 0
0 3 1 0
0 0 3 1
0 0 0 3

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦ =

⎛
⎜⎜⎜⎜⎝

e2x 0 0 0

0 e3x xe3x x2

2 e3x

0 0 e3x xe3x

0 0 0 e3x

⎞
⎟⎟⎟⎟⎠

である．
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◦ Jordan標準形の計算問題

例題.次の行列のJordan標準形を求めよ：

A =

⎛
⎜⎝ 2 1 1

1 2 1
1 1 2

⎞
⎟⎠ .

解. det(λI − A) = (λ − 1)2(λ − 4)なので，固有値はλ = 1,4である．
固有値λ = 1に対する固有ベクトルを求めるには，(A− I)p = 0を解けば
よい．係数行列を行基本変形で変形すると，⎛
⎜⎝ 1 1 1

1 1 1
1 1 1

⎞
⎟⎠→

⎛
⎜⎝ 1 1 1

0 0 0
0 0 0

⎞
⎟⎠ ∴ p1 =

⎛
⎜⎝ 1

−1
0

⎞
⎟⎠ , p2 =

⎛
⎜⎝ 1

0
−1

⎞
⎟⎠

のように固有値の重複度と同じ本数の1次独立な固有ベクトルがとれる．固
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有値λ = 4に対応する固有ベクトルを求めるには，(A− 4I)p3 = 0を解け
ばよく，上と同様にして⎛

⎜⎝ −2 1 1
1 −2 1
1 1 −2

⎞
⎟⎠→ · · · →

⎛
⎜⎝ 1 0 −1

0 1 −1
0 0 0

⎞
⎟⎠ ∴ p3 =

⎛
⎜⎝ 1

1
1

⎞
⎟⎠

ととれる．ゆえにP = (p1 p2 p3) とおけば，

P−1AP = P−1(Ap1 Ap2 Ap3) = P−1(p1 p2 4p3)

= (e1 e2 4e3) =

⎛
⎜⎝ 1 0 0

0 1 0
0 0 4

⎞
⎟⎠

を得る．

注意. Aは実対称なのでPを直交行列にとることもできるが，ここでは不要
なため，そうしなかった．固有ベクトルを並べることでAを対角化できる仕
組みを上の計算から読み取れるとよい．
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例題.次の行列のJordan標準形を求めよ：

A =

⎛
⎜⎝ 6 −3 −2

4 −1 −2
3 −2 0

⎞
⎟⎠ .

解. det(λI − A) = (λ − 1)(λ − 2)2なので，固有値はλ = 1,2である．
固有値λ = 1に対する固有ベクトルを求めるために，(A − I)p1 = 0を解
く．係数行列の行基本変形により⎛

⎜⎝ 5 −3 −2
4 −2 −2
3 −2 −1

⎞
⎟⎠→ · · · →

⎛
⎜⎝ 1 0 −1

0 1 −1
0 0 0

⎞
⎟⎠ ∴ p1 =

⎛
⎜⎝ 1

1
1

⎞
⎟⎠

を得る．一方，固有値λ = 2に対しても同様にして，⎛
⎜⎝ 4 −3 −2

4 −3 −2
3 −2 −2

⎞
⎟⎠→ · · · →

⎛
⎜⎝ 1 0 −2

0 1 −2
0 0 0

⎞
⎟⎠ ∴ p2 =

⎛
⎜⎝ 2

2
1

⎞
⎟⎠
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となる．固有値の重複度よりも少ない本数の固有ベクトルしか取れないため，
対角化不可能であり，(A − 2I)p3 = p2を解くことになる．拡大係数行列
の行基本変形により，⎛
⎜⎝ 4 −3 −2 2

4 −3 −2 2
3 −2 −2 1

⎞
⎟⎠→ · · · →

⎛
⎜⎝ 1 0 −2 −1

0 1 −2 −2
0 0 0 0

⎞
⎟⎠ ∴ p3 =

⎛
⎜⎝ 1

0
1

⎞
⎟⎠

と取れる．ゆえにP = (p1 p2 p3)とおけば，

P−1AP = P−1(Ap1 Ap2 Ap3) = P−1(p1 2p2 p2 + 2p3)

= (e1 2e2 e2 + 2e3) =

⎛
⎜⎝ 1 0 0

0 2 1
0 0 2

⎞
⎟⎠

を得る．
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例題.次の行列のJordan標準形を求めよ：

A =

⎛
⎜⎝ 1 1 1

0 1 2
0 0 1

⎞
⎟⎠ .

解. det(λI −A) = (λ− 1)3なので，固有値はλ = 1である．固有ベクト
ルを求めるために，(A− I)p1 = 0を解く．係数行列の行基本変形より⎛

⎜⎝ 0 1 1
0 0 2
0 0 0

⎞
⎟⎠→

⎛
⎜⎝ 0 1 0

0 0 1
0 0 0

⎞
⎟⎠ ∴ p1 =

⎛
⎜⎝ 1

0
0

⎞
⎟⎠

のようにとれる．次に(A− I)p2 = p1を解く．拡大係数行列を見ることで⎛
⎜⎝ 0 1 1 1

0 0 2 0
0 0 0 0

⎞
⎟⎠→

⎛
⎜⎝ 0 1 0 1

0 0 1 0
0 0 0 0

⎞
⎟⎠ ∴ p2 =

⎛
⎜⎝ 0

1
0

⎞
⎟⎠
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ととれる．さらに(A− I)p3 = p2を解く．同様にして⎛
⎜⎝ 0 1 1 0

0 0 2 1
0 0 0 0

⎞
⎟⎠→

⎛
⎜⎝ 0 2 0 −1

0 0 2 1
0 0 0 0

⎞
⎟⎠ ∴ p3 =

⎛
⎜⎝ 0

−1/2
1/2

⎞
⎟⎠

を得る．ゆえにP = (p1 p2 p3) とおけば，

P−1AP = P−1(Ap1 Ap2 Ap3)

= P−1(p1 p1 + p2 p2 + p3)

= (e1 e1 + e2 e2 + e3)

=

⎛
⎜⎝ 1 1 0

0 1 1
0 0 1

⎞
⎟⎠

を得る．
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例題.次の行列のJordan標準形を求めよ：

A =

⎛
⎜⎝ 0 2 1

−4 6 2
4 −4 0

⎞
⎟⎠ .

解. det(λI −A) = (λ− 2)3なので，固有値はλ = 2である．固有ベクト
ルを求めるために，(A− 2I)p1 = 0を解く．係数行列の行基本変形より⎛

⎜⎝ −2 2 1
−4 4 2
4 −4 −2

⎞
⎟⎠→

⎛
⎜⎝ 2 −2 −1

0 0 0
0 0 0

⎞
⎟⎠ ∴ p1 =

⎛
⎜⎝ α+ β

α
2β

⎞
⎟⎠

となる．固有空間の次元が1でも3でもないため，どの固有ベクトルをとる
べきかまだ分からない．そこで(A−2I)p2 = p1が解ける条件を求める．拡
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大係数行列の行基本変形より，⎛
⎜⎝ −2 2 1 α+ β

−4 4 2 α
4 −4 −2 2β

⎞
⎟⎠→ · · · →

⎛
⎜⎝ 2 −2 −1 −α− β

0 0 0 α+2β
0 0 0 0

⎞
⎟⎠

となるので，α+2β = 0でなければならない．よって例えば，α = 2, β =

−1として

p1 =

⎛
⎜⎝ 1

2
−2

⎞
⎟⎠ , p2 =

⎛
⎜⎝ −1/2

0
0

⎞
⎟⎠

が取れる．さらにp1と1次独立な固有ベクトル

p3 =

⎛
⎜⎝ 1

1
0

⎞
⎟⎠
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をとって，P = (p1 p2 p3) とおけば，

P−1AP = P−1(Ap1 Ap2 Ap3)

= P−1(2p1 p1 + 2p2 2p3)

= (2e1 e1 + 2e2 2e3)

=

⎛
⎜⎝ 2 1 0

0 2 0
0 0 2

⎞
⎟⎠

を得る．

例題.次の行列のJordan標準形を求めよ：

A =

⎛
⎜⎜⎜⎝

0 −1 −1 0
−1 1 0 1
2 1 2 −1
−1 −1 −1 1

⎞
⎟⎟⎟⎠ .
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略解. det(λI − A) = (λ − 1)4なので，固有値はλ = 1である．固有ベ
クトルを求めるために，(A − I)p = 0を解く．係数行列の行基本変形を通
じて，

p =

⎛
⎜⎜⎜⎝

β
−α− β

α
β

⎞
⎟⎟⎟⎠

が分かる．このようなpに対し，(A − I)q = pが解けるための条件を求め
ると，これはいつでも解けることが分かる．したがって，1次独立なpを任
意に2つ選んでこれまでと同様に議論することで

P−1AP =

⎛
⎜⎜⎜⎝

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎞
⎟⎟⎟⎠

となることが分かる．
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第4章 変数係数2階線形方程式

§ 4.1 解空間の構造

◦ 斉次方程式

ここでは変数係数2階斉次線形方程式

y′′ + p(x)y′ + q(x)y = 0 (♠)

の基本的性質を述べる．ただしp(x), q(x)は適当な滑らかさを持つとする．
一般に，(♠)は初等的には求積できないことが知られているが，定数係数の
ときと同様な，いくつかの抽象的性質は示すことができる．それを列挙する．

定理 4.1. (♠)の解空間は2次元ベクトル空間となる．よって特に，1次独
立な2つの解y1, y2が得られれば，(♠)の一般解は

y = C1y1 + C2y2

と書ける．また，一般解以外の解は存在しない．
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注意.上のようなy1, y2をやはり(♠)の解の基本系あるいは基本解と呼ぶ．

証明. (♠)の解空間がベクトル空間となることは自明である．常微分方程式
の初期値問題の解の一意存在定理（後述，定理 6.2）によれば，初期条件⎧⎨

⎩y(x0) = 1,

y′(x0) = 0,

⎧⎨
⎩y(x0) = 0,

y′(x0) = 1,

をそれぞれ満たす解y1, y2が存在する．これらが1次独立なことは，初期値
に注目することですぐに分かる．一方，一般の初期条件

y(x0) = C1, y′(x0) = C2

に対し，

y = C1y1 + C2y2

は一つの解を与えるが，再び解の一意性（定理 6.2）を用いると，解はこれ
以外にはない．以上より主張が従う．
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定義. (♠)の2つの解y1, y2に対し，それらのWronski行列式を

W [y1, y2] = y1y
′
2 − y2y

′
1

で定義する．

定理 4.2. y1, y2を(♠)の解とし，W = W [y1, y2]とおく．

1. 任意のx, x0に対しW (x) = W (x0)e
− ∫ xx0 p(ξ) dξが成り立つ．

2. 以下の条件は互いに同値である．

(a) y1, y2は1次独立である．特に，y1, y2は(♠)の解の基本系をなす．
(b) あるxに対しW (x) �= 0である．
(c) 任意のxに対しW (x) �= 0である．

証明. 定理 3.3と同様に示せるので証明を省略する．
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◦ 非斉次方程式

次に変数係数2階非斉次線形方程式

y′′ + p(x)y′ + q(x)y = f(x) (♥)

について述べる．

定理 4.3. y0を(♥)の特殊解とし，y1, y2を対応する斉次方程式(♠)の解の
基本系とする．このとき，(♥)の一般解は

y = y0 + C1y1 + C2y2 (C1, C2は任意定数)

で与えられる．また一般解以外の解は存在しない．

証明. 定理 3.5と同様に示せるので，証明を省略する．

注意. 4度目となるが，「非斉次解=特殊解+斉次解」となっている．
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定理 4.4. y1, y2を本節冒頭の斉次方程式(♠)の解の基本系とする．このと
き，(♥)は

y0(x) =
∫ x y2(x)y1(ξ)− y1(x)y2(ξ)

W [y1(ξ), y2(ξ)]
f(ξ) dξ

を特殊解に持つ．

証明. 定理 3.6と同様に示せるので，証明を省略する．
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§ 4.2 方程式の変形

◦ 標準形

定義.変数係数2階斉次線形方程式

y′′ + p(x)y′ + q(x)y = 0 (♠)

が標準形であるとは，p(x) ≡ 0となること，すなわち

y′′ + q(x)y = 0

の形となることである．

注意.標準形だからと言って，必ずしも方程式が簡単になるわけではない．実
際，次のように，(♠)はいつでも標準形へと変形できる．
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定理 4.5. 1. (♠)において，

z = y exp
(
1

2

∫ x
p(ξ) dξ

)

を通じて従属変数をyからzへと変数変換すると，

z′′ +
(
q(x)− p(x)2

4
− p′(x)

2

)
z = 0

となる．

2. P (x)をp(x)の原始関数の一つとする．このとき，(♠)において，

t =
∫ x

e−P (ξ) dξ

を通じて独立変数をxから tへと変数変換すると，
d2y

dt2
+ e2P (x(t))q(x(t))y = 0

となる．
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証明. 1. a = a(x)として，Leibniz則を用いると，(♠)は

1

a
(ay)′′ +

(
p− 2a′

a

)
y′ +

(
q − a′′

a

)
y = 0

と書き換えられる．z = ayとしたときにこれが標準形になるためには，

p− 2a′
a

= 0 ∴ a = exp
(
1

2

∫ x
p(ξ) dξ

)

となることが必要十分である．よって主張が従う．

2. ひとまず t = t(x)として，(♠)を書き換えると

t′2d
2y

dt2
+
(
t′′ + pt′

)dy
dt

+ qy = 0

となる．よって t = t(x)を主張のようにとれば，確かに結論が従う．
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◦ Riccatiの方程式との同等性

定理 4.6. 1. 2階斉次線形方程式

y′′ + p(x)y′ + q(x)y = 0

においてy = e
∫ x z(ξ) dξとおくと，Riccatiの方程式

z′ + z2 + p(x)z + q(x) = 0

が得られる．
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2. 逆に, Riccati方程式

y′ + p(x)y2 + q(x)y + r(x) = 0

においてy = z′/(pz)とおくと，2階斉次線形方程式

z′′ −
(
p′(x)
p(x)

− q(x)

)
z′ + p(x)r(x)z = 0

が得られる．

証明. 証明は問として省略する．

注意.この意味で，2階斉次線形方程式はRiccatiの方程式と同等である．
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◦ d’Alembertの階数低下法

定理 4.7. 2階斉次線形方程式

y′′ + p(x)y′ + q(x)y = 0

に対し，解が一つ見つかったとする．このとき，この方程式は1階線形方程
式に帰着し，求積できる．

注意. 1. このときさらに，定理 4.4および定理 4.3により，対応する非斉
次方程式も解けることになる．

2. より一般に，n階線形方程式も，解が一つ見つかれば，(n−1)階線形方
程式に帰着させることができる．ただしn ≥ 3の場合には，2階以上の
線形方程式に帰着されるので，必ずしも求積できない．
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証明. 既知の解をy1として，定数変化法を適用する．実際，y = y1(x)zと
して，これを方程式に代入し，整理すると

z′′ +
(
2y′1(x)
y1(x)

+ p(x)

)
z′ = 0

となる．これはz′に関する1階線形方程式であり，両辺に

y1(x)
2 exp

(∫ x
p(ξ) dξ

)

を掛けることで求積できる．ゆえに主張が従う．
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◦ Eulerの方程式

定義.次の形の常微分方程式をEulerの方程式と呼ぶ：

x2y′′ + axy′ + by = f(x), a, b ∈ C.

解法1. ±x > 0において，それぞれ独立変数を

x = ±et, t = log |x|
で変換すると，定数係数線形方程式に帰着する．実際

x
d

dx
=

d

dt
, x2

d2

dx2
=
(
x
d

dx

)2
− x

d

dx
=

d2

dt2
− d

dt
に注意すれば，

d2y

dt2
+ (a− 1)

dy

dt
+ by = f(±et)

と書き換えられる．
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解法2. 定理 4.3と定理 4.4により，対応する斉次方程式

x2y′′ + axy′ + by = 0

を解けばよい．±x > 0において，それぞれy = (±x)λ = |x|λの形の解を
仮定して代入すると

(λ(λ− 1) + aλ+ b)|x|λ = 0 ∴ λ2 + (a− 1)λ+ b = 0

となる．λについて2つの解λ = α, βが得られたとすると，一般解は，

y =

⎧⎨
⎩A|x|α +B|x|β if α �= β,

A|x|α +B|x|α log |x| if α = β

である．ただし後者についてはd’Alembertの階数低下法を用いて対数型の
解を導出した（詳細は問とする）．

注意. α, β = 0,1,2, . . .かつα �= βの場合には，x = 0の前後で任意定数
を適当に取り直すことで，解をR上全体で滑らかにつなぐことができる．
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例題.常微分法手式x2y′′ − xy′ − 3y = 0を解け．

解. 変数変換x = ±etにより，

d2y

dt2
− 2

dy

dt
− 3y = 0

となる．対応する特性多項式は

λ2 − 2λ− 3 = (λ− 3)(λ+1)

と因数分解できるので，特性根はλ = 3,−1である．したがって，

y = A±e3t +B±e−t = A±|x|3 +B±|x|−1

である．ここでA = A+ = −A−, B = B+ = −B−とおくと，

y = Ax3 +Bx−1

を得る．
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例題.常微分法手式x2y′′ − xy′ +5y = 0を解け．

略解. 直前の例題と同様に，変数変換x = ±etにより，

d2y

dt2
− 2

dy

dt
+5y = 0

となる．この方程式の特性根はλ = 1± 2iなので，

y = A±|x| cos(2 log |x|) +B±|x| sin(2 log |x|)
である．したがって，任意定数を取り直して

y = Ax cos(2 log |x|) +Bx sin(2 log |x|)
を得る（解はどうやってもx = 0で自然につながらないので，わざわざ任意
定数を取り直さなくてもよい）．
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§ 4.3 べき級数による解法

◦ 準備：解析関数

定義.関数f(x)が点x = aで解析的であるとは，aを含むある開区間上でべ
き級数展開（あるいはTaylor展開）

f(x) =
∞∑

n=0

cn(x− a)n (♦)

が成り立つことである．また，f(x)が解析関数あるいはCω級であるとは，
定義域の各点で解析的となることである．

例.初等関数は特異点（定義されない点）を除いて解析的である．例えば，

1. xn (n = 0,1,2, . . .), sinx, ex, arctanx, . . .はR上で解析的である．

2. logxは(0,∞)上で解析的である．
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定理 4.8. f(x)はx = aで解析的であるとする．このとき，(♦)の右辺の
べき級数に対しあるr ∈ (0,∞]が存在して，以下を満たす．

1. |x− a| < rを満たす任意のxに対し，(♦)の右辺は収束する．

2. |x− a| > rを満たす任意のxに対し，(♦)の右辺は発散する．

証明. 証明は省略する．関数論（複素関数論）の教科書を参照せよ．

注意.定理 4.8の記号の下で，rを(♦)の収束半径と呼ぶ．rは(♦)の係数cn

から計算することができ，例えば，

r =
(
lim sup
n→∞

n
√
|cn|

)−1

であることが知られている．ただし，0−1 = ∞とみなす．
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例. x �= 1に対しf(x) = (1− x)−1と定義する．|x| < 1のとき，

f(x) =
∞∑

n=0

xn

が成り立つ．一方，|x| > 1に対し右辺の級数は発散する（左辺が定義されて
いるにもかかわらず！）．よって上の右辺の級数の収束半径は1である．な
お，x = 1/2のまわりでは

f(x) =
2

1− 2(x− 1/2)
=

∞∑
n=0

2n+1
(
x− 1

2

)n

であり，このべき級数の収束半径は1/2である．

注意.収束半径rは中心x = aと特異点の位置に依存して変化する．一般に，
収束半径rは円 |x− a| = rが特異点に触れるまで伸ばせる．
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例.関数

f(x) =
sinx

x

はx = 0を特異点に持つように見えるが，分母からくる特異性はsinxの零
点と相殺するため，f(x)はR上で解析的となる．実際，f(0) = 1と定義し
ておけば，x = 0のまわりで

f(x) =
∞∑

k=0

(−1)k

(2k +1)!
x2k

が成り立つことが分かる．なお，このべき級数の収束半径は∞である．
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定理 4.9.定理 4.8の記号の下で，f(x)は |x− a| < r上で微分可能である．
さらにf(x)のべき級数展開(♦)は項別微分であり，

f ′(x) =
∞∑

n=1

ncn(x− a)n−1

の収束半径もrである．よって特にf(x)はC∞級であり，また

cn =
f(n)(a)

n!
が従う．

証明. 証明は省略する．関数論（複素関数論）の教科書を参照せよ．

注意.定理 4.9により，関数f(x)がCω級であれば，C∞級である．この逆
は成り立たず，Cω級であることはC∞級であることよりも真に強い性質で
ある．
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問. R上の関数f(x)を以下で定める：

f(x) =

⎧⎨
⎩e

−1/x for x > 0,

0 for x ≤ 0.

1. f(x)はR上でC∞級であることを示せ．また任意のn ∈ Nに対し

f(n)(0) = 0

であることを確かめよ．

2. f(x)はx = 0で解析的ではないことを示せ．

略解. 1. やや状況が煩雑になるが，直接計算により確かめられる．詳細は省
略する．
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2. もし f(x)がx = 0で解析的であれば，ある r > 0が存在して任意の
|x| < rに対し

f(x) =
∞∑

n=0

f(n)(0)

n!
xn = 0

が成り立つ．しかし，左辺は0 < x < rに対し正の値をとるので，これは矛
盾である．

注意.Taylorの定理とTaylor展開を混同してはならない．実際，上のf(x)に
Taylorの定理を適用すると，任意のx > 0とN ∈ Nに対し，あるθ ∈ (0,1)
が存在して

f(x) =
N−1∑
n=0

f(n)(0)

n!
xn +

f(N)(θx)

N !
xN =

f(N)(θx)

N !
xN

が成立する（これは正しい）．しかしこの場合，剰余項はN → ∞で0に収
束せず，Taylor展開はできない．
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◦ 解析的係数を持つ線形方程式の解法

定理 4.10. p(x)とq(x)はx = aで解析的とする．このとき，微分方程式

y′′ + p(x)y′ + q(x)y = 0 (♠)

の任意の解yはx = aで解析的である．特に，べき級数展開

p(x) =
∞∑

n=0

pn(x− a)n, q(x) =
∞∑

n=0

qn(x− a)n

を既知として，yのべき級数展開

y(x) =
∞∑

n=0

cn(x− a)n

とともに(♠)に代入して両辺の係数を比較すれば，解yを構成できる．

証明. 本講では証明を省略する．
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例題.定理 4.10により，Airyの方程式

y′′ − xy = 0

はx = 0のまわりでのべき級数解

y =
∞∑

n=0

cnx
n

を持つことが分かる．係数c2, c3, . . .をc0, c1を用いて表せ．

解. yのべき級数展開を方程式に代入すると，

0 =
∞∑

n=2

n(n− 1)cnx
n−2 −

∞∑
n=0

cnx
n+1

= 2c2 +
∞∑

n=0

[
(n+3)(n+2)cn+3 − cn

]
xn+1
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となる．右辺のxのべき級数の係数はすべて0でなければならないことから，

c2 = 0, (n+3)(n+2)cn+3 − cn = 0 for n = 0,1,2, . . .

が従う．ゆえに

c3m =
1

(3m)(3m− 1)
c3m−3 = · · · = (3m− 2)(3m− 5) · · ·1

(3m)!
c0,

c3m+1 =
1

(3m+1)(3m)
c3m−2 = · · · = (3m− 1)(3m− 4) · · ·2

(3m+1)!
c1,

c3m+2 =
1

(3m+2)(3m+1)
c3m−1 = · · · = 0.

を得る．

146

注意. 1. c0, c1の値によらず，上のべき級数解の収束半径は∞である．
2. 例えば，初期値

(y(0), y′(0)) = (c0, c1) = (1,0), (0,1)

に対応する解をそれぞれy1, y2とすれば，

y1 = 1+
∞∑

m=1

(3m− 2)(3m− 5) · · ·1
(3m)!

x3m,

y2 = x+
∞∑

m=1

(3m− 1)(3m− 4) · · ·2
(3m+1)!

x3m+1

であり，これらはAiryの方程式の解の基本系をなす．

3. 応用上は解の基本系としてAiry関数Ai(x),Bi(x)を選ぶことが多い．こ
れらは上のy1, y2とは異なるが，もちろん互いに線形結合で表示できる．
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例題.常微分方程式(x2 − 1)y′′ − 2y = 0に対し，x = 0のまわりでのべき
級数解を求めよ．

解. 解のべき級数展開

y =
∞∑

n=0

cnx
n

を方程式に代入すると

0 = (x2 − 1)
∞∑

n=0

n(n− 1)cnx
n−2 − 2

∞∑
n=0

cnx
n

=
∞∑

n=0

[
n(n− 1)cn − (n+2)(n+1)cn+2 − 2cn

]
xn

=
∞∑

n=0

(n+1)
[
(n− 2)cn − (n+2)cn+2

]
xn
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となる．係数比較により

(n− 2)cn − (n+2)cn+2 = 0

であり，したがって

c2 = −c0,

c4 = c6 = · · · = 0,

c2m+1 =
2m− 3

2m+1
c2m−1 = · · · = −1

(2m+1)(2m− 1)
c1

を得る．ゆえに一般解は

y = c0
(
1− x2

)
− c1

∞∑
m=0

1

(2m+1)(2m− 1)
x2m+1

である．

149

注意.上のべき級数解の収束半径は1であることがすぐに確かめられる．ま
た，少し計算すると，|x| < 1において

y(x) = c0
(
1− x2

)
+

c1
2

(
x+

1− x2

2
log

1 + x

1− x

)

であることも分かる．さらに，|x| > 1においては

y = c0
(
1− x2

)
+

c1
2

(
x+

1− x2

2
log

∣∣∣∣1+ x

1− x

∣∣∣∣
)

が解を与えることも直接計算により確かめられる．最後の関数はx = ±1に
おいて微分可能ではないため，実関数の範囲では |x| < 1からの自然な拡張
とは言い難いが，関数の定義域を複素数にまで広げれば，適当な修正の下で
自然な拡張と見なすことができる．
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§ 4.4 確定特異点

定義.線形方程式

y′′ + P (x)y′ +Q(x)y = 0 (♥)

に対し，以下のように定義する．

1. x = aが(♥)の確定特異点であるとは，x = aで解析的なp(x), q(x)が
存在して

P (x) =
p(x)

x− a
, Q(x) =

q(x)

(x− a)2

と書けることである．

2. x = ∞が(♥)の確定特異点であるとは，(♥)に変数変換x = t−1を施
したときに t = 0が確定特異点となることである．
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例. Eulerの方程式

x2y′′ + axy′ + by = 0, a, b ∈ C,

は，x = 0を確定特異点に持つ最も単純な方程式である．実際，

y′′ + a

x
y′ + b

x2
y = 0

と書き直せる．また，x = t−1とすると

d

dx
= −t2

d

dt
,

d2

dx2
= t4

d2

dt2
+ 2t3

d

dt

であることから，
d2y

dt2
+

2− a

t

dy

dt
+

b

t2
y = 0

となる．よってx = ∞も確定特異点である．
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例.線形方程式

y′′ + x+1

x(x+2)2
y′ − 4

x(x+2)2
y = 0

の係数はx = 0,−2を特異点に持つ．今，

p(x) =
x+1

(x+2)2
, q(x) = − 4x

(x+2)2

とおけば，これらはx = 0で解析的である．よって，x = 0は与えられた方
程式の確定特異点である．一方，x = −2は確定特異点ではない．

注意. x = 0を見るとき，p(x), q(x)のx = −2における特異性は関係ない
ことに注意せよ．また，上のx = −2のように，係数の特異点だが確定特異
点ではないものは不確定特異点と呼ばれる．

問. x = ∞が上の方程式の確定特異点であるか判定せよ．
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◦ 解法

ここではx = 0を確定特異点とする線形方程式

x2y′′ + xp(x)y′ + q(x)y = 0 (♦)

の解法を与える．x = 0以外の確定特異点に対しても，平行移動によりこの
場合に帰着されることに注意する．

定義. (♦)に対し，その決定方程式を

λ(λ− 1) + p(0)λ+ q(0) = 0

で定める．

注意.決定方程式の導出については，この後で例題で見る．(♦)をEulerの
方程式の変数係数版と見れば，決定方程式は割合自然なものである．Euler
の方程式の解法2も参照せよ．
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定理 4.11. (♦)の決定方程式の2つの解をα, β (Reα ≤ Re β)とする．

1. β − α �= 0,1,2, . . .のとき，(♦)に対しx = 0のまわりで

y1 = xα
∞∑

n=0

cnx
n, y2 = xβ

∞∑
n=0

dnx
n

の形の解の基本系が存在する．ただしc0 = d0 = 1である．

2. β − α = 0,1,2, . . .のとき，(♦)に対しx = 0のまわりで

y1 = xα
∞∑

n=0

cnx
n + cxβ(logx)

∞∑
n=0

dnx
n, y2 = xβ

∞∑
n=0

dnx
n

の形の解の基本系が存在する．ただしβ − α = 0のときはc = d0 = 1

であり，β − α = 1,2,3, . . .のときはc0 = d0 = 1である．

証明. 本講では証明を省略する．
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例題.常微分方程式

x(x+2)y′′ + (x+1)y′ − 4y = 0

に対し，確定特異点x = 0のまわりで，解の基本系を級数表示せよ．

解法. 確定特異点まわりでの級数解を計算するには，普通は，

1. まず決定方程式の2つの解を求め，

2. それらに応じて，定理 4.11の形の級数解を代入し，係数を決定すれば
よい．

しかし，ここでは決定方程式の導出を見るために，定理 4.11の証明の手順
をわざわざ繰り返すことにする．

156

まず，

y = xλ
∞∑

n=0

cnx
n, c0 = 1,

の形の解を仮定する．与えられた方程式にこれを代入すると

0 = x(x+2)
∞∑

n=0

(n+ λ)(n+ λ− 1)cnx
n+λ−2

+ (x+1)
∞∑

n=0

(n+ λ)cnx
n+λ−1 − 4

∞∑
n=0

cnx
n+λ

となり，これを整理して

0 = λ(2λ− 1)c0x
λ−1 +

∞∑
n=0

[
(n+ λ− 2)(n+ λ+2)cn

+ (n+ λ+1)(2n+2λ+1)cn+1

]
xn+λ
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を得る．よって係数比較により決定方程式

λ(2λ− 1) = 0

と係数cnに関する漸化式

(n+ λ+1)(2n+2λ+1)cn+1 = −(n+ λ− 2)(n+ λ+2)cn

が従う．

I. λ = 0のとき，c0 = 1と漸化式

(n+1)(2n+1)cn+1 = −(n− 2)(n+2)cn

より

c1 = 4, c2 = 2, c3 = c4 = · · · = 0

を得る．
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II. λ = 1/2のとき，c0 = 1と漸化式

(2n+3)(n+1)cn+1 = −1

4
(2n− 3)(2n+5)cn

より

c1 =
5

4
, c2 = −7

8
, cn =

(
−1

4

)n
(2n+3)

(2n− 5)!!

n!
for n ≥ 3

を得る．

以上の Iと IIにより，解の基本系として

y1 = 1+ 4x+2x2,

y2 = x1/2
[
1+

5

4
x− 7

8
x2 +

∞∑
n=3

(
−1

4

)n
(2n+3)

(2n− 5)!!

n!
xn
]

が得られた．
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注意. 1. β − α = 0,1,2, . . .の場合，λ = βに対しては上と同様に級数
解が求まるが，λ = αに対してはうまくいかない．というのも，係数を
決める漸化式において，cn+1の係数が途中で必ず0となってしまうから
である．この場合には，λ = βに対して得られた解を基にd’Alembert

の階数低価法を適用することで，対数型の解が導出される．この手順は
Eulerの方程式に対する解法2の一般化である．

2. x < 0に対する非整数べきxλを避けたければ，これを |x|λで置き換え
ればよい．実際，Eulerの方程式の解法2ではそのようにした．ちなみ
に，xλは複素関数としてはx < 0に対しても問題無く定義され，そこで
は |x|λと複素定数倍の違いしかないので，xλのままでもよい．
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第5章 自励系

§ 5.1 自励系の定義と例

本章に限り，独立変数をt，従属変数をxで表し，xはRnに値をとるとする．

定義.常微分方程式

x′ = f(t,x)

が自励系であるとは，f(t,x)が tによらないこと，すなわち

x′ = f(x)

の形となることである．また，解が値をとる空間Rnを相空間と呼び，さらに
解が相空間に描く曲線γ = {x(t) ∈ Rn; t ∈ R}を解軌道と呼ぶ．
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注意. 1. 非自励系であっても，(
t
x

)′
=

(
1

f(t,x)

)

とすれば，いつでも自励系に書き換えられる．ただし，変数の表す意味
によってはこれは適切ではないこともある．

2. 本節では解の具体的表示などといった詳細な解析よりも，解軌道全体の
「トポロジカルな」振る舞いに着目する．このような解の大局的挙動に関
する理論を大域理論という．
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例.実正方行列Aを係数とする線形方程式系x′ = Axは自励系である．より
具体的に，例えば， (

x
y

)′
=

(
−1 0
0 −2

)(
x
y

)

を考えると，一般解は (
x
y

)
=

(
C1e

−t

C2e
−2t

)

であり，解軌道は{
(0,0)

}
,
{
(0, y); ±y > 0

}
,
{
(x, y); y = Cx2, ±x > 0

}
で与えらえれる．

注意.解となる定点(0,0)は平衡点と呼ばれる．すべての解はt → ∞でこの
点に収束するという意味で，この平衡点は安定である．後にR2上の自励系
x′ = Axの解軌道を完全に分類する．
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例. Lotka–Volterra方程式とは，被食者の個体数xと捕食者の個体数yを
未知関数とするモデル方程式

x′ = ax− bxy, y′ = cxy − dy, a, b, c, d > 0,

のことである．この方程式は初等的には求積できないことが知られている．し
かし，(0,0)と(d/c, a/b)が平衡点であることはすぐに分かる．また保存量

H(x, y) = cx+ by − d logx− a log y

を持っており，解軌道の概形を描くことができる．特に(d/c, a/b)以外の正
値解はすべて閉曲線からなることも分かる．

問.上のH(x, y)が保存量であることを示せ．
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例. R2上の関数H(x, ξ)に対し，方程式系

ẋ(t) =
∂H

∂ξ
(x(t), ξ(t)), ξ̇(t) = −∂H

∂x
(x(t), ξ(t))

をHamilton系あるいはHamilton方程式と呼ぶ．また，H(x, ξ)をハミ
ルトニアンと呼ぶ．Hamilton系ではH(x, ξ)自身が保存量となる．実際，

d

dt
H(x(t), ξ(t)) = ẋ(t)

∂H

∂x
(x(t), ξ(t)) + ξ̇(t)

∂H

∂ξ
(x(t), ξ(t))

= 0

である．

注意. R2n上の関数H(x, ξ)に対してもHamilton系は拡張される．この場
合，H(x, ξ)の等位面は，解軌道の拘束される(2n−1)次元超曲面を与える
だけであり，解軌道を決定するには，残りの(2n−2)個の保存量を見つける
必要がある．
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例. R上の自由粒子に対するNewton方程式

mẍ = 0

において，ξ = mẋとおくと

ẋ =
1

m
ξ, ξ̇ = 0

となる．これはハミルトニアン

H(x, ξ) =
1

2m
ξ2

を持つHamilton系である．なお，上の方程式の解は

x =
ξ0
m

t+ x0, ξ = ξ0.

で与えられ，これが描く解軌道は確かにH(x, ξ)の等位線上に乗っている．
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例. R上の調和振動子に対するNewton方程式

mẍ = −kx

において，ξ = mẋとおくと

ẋ =
1

m
ξ, ξ̇ = −kx

となる．これはハミルトニアン

H(x, ξ) =
ξ2

2m
+

kx2

2

を持つHamilton系である．なお，上の方程式の解は

x = A sin

(√
k

m
t+ δ

)
, ξ =

√
mkA cos

(√
k

m
t+ δ

)

で与えられ，これが描く解軌道は確かにH(x, ξ)の等位線上に乗っている．
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例.振り子に対するNewton方程式

mlθ̈ = −mg sin θ

において，ω = ml2θ̇とおくと

θ̇ = ω/(ml2), ω̇ = −mgl sin θ

となる．これはハミルトニアン

H(θ, ω) =
ω2

2ml2
−mgl cos θ

を持つHamilton系である．なお，上の方程式の解は初等的には求まらない
が，H(x, ξ)の等位線から解軌道を描くことはできる．
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例. van der Pol方程式とは

x′′ − μ(1− x2)x′ + x = 0, μ > 0,

の形の方程式のことであり，これはvan der Pol振動子を記述する．x1 =

x, x2 = x′とおけば

x′1 = x2, x′2 = −x1 + μ
(
1− x21

)
x2

と書けるので，これは自励系である．この方程式の解軌道はリミットサイク
ルを持つことが知られている．

注意.これを拡張したものにFitzHugh–南雲モデル（神経細胞などの活動電
位を表現するモデル）がある．
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§ 5.2 相空間上のフロー

本章では，自励系の初期値問題

x′ = f(x), x(0) = a (♠)

の解の一意存在を既知とする．(♠)の解はその初期値依存性を明示して

x = x(t;a)

と書き，また対応する解軌道は

γ(a) =
{
x(t;a) ∈ R

n; t ∈ R

}
で表す．

定理 5.1. 1. x(0;a) = aが成り立つ．

2. 任意の t, s ∈ Rに対しx(t;x(s;a)) = x(t+ s;a)が成り立つ．
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証明. 1は初期値から自明である．2を示すためにsとaを固定して

y(t) = x(t+ s;a)

とおくと，

y′(t) = x′(t+ s;a) = f(x(t+ s;a)) = f(y(t))

および

y(0) = x(s;a)

が成り立つ．よって初期値問題(♠)の解の一意性から

y(t) = x(t;x(s;a))

でなければならない．よって主張は示された．

注意.上のような性質を持つ写像x : R×Rn → Rnをフロー（流れ）と呼び，
組(Rn,R,x)を力学系と呼ぶ．
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系 5.2. 1. t = sにおける初期値問題

x′ = f(x), x(s) = a

は一意的な解を持ち，それはx(t− s;a)で与えられる．

2. 任意のsに対し，γ(a) = γ(x(s;a))が成り立つ．

3. 任意のa, bに対し，

γ(a) = γ(b) または γ(a) ∩ γ(b) = ∅
が成り立つ．

注意.主張3から，相異なる2つの解軌道は交差しないことが分かる．よって
特に，相空間は互いに交差しない解軌道の族で埋め尽くされる．
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証明. 1. 定理 5.1の主張1と同様に示せる．

2. 解軌道の定義および定理 5.1の主張2を用いると，

γ(a) = {x(t;a); t ∈ R} = {x(t+ s;a); t ∈ R}
= {x(t;x(s;a)); t ∈ R} = γ(x(s;a))

が成り立つ．

3. a, bを固定する．もしc ∈ γ(a) ∩ γ(b)がとれるなら，

c = x(s;a) = x(r; b)

を満たすようなs, rが存在する．すると主張2で示したことから，

γ(a) = γ(x(s;a)) = γ(x(r; b)) = γ(b)

が従う．
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§ 5.3 平衡点の安定性

本節でも引き続き，自励系

x′ = f(x) (♥)

について議論する．(♥)の解および解軌道は，それぞれ初期値依存性を明示
して，x(t;a)およびγ(a)で表す．

定義. 1. eが(♥)の平衡点であるとは，

γ(e) = {e}
が成り立つことである．

2. 解軌道γ(a)が(♥)の周期軌道であるとは，あるTに対して

x(T ;a) = a

が成り立つことである．
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定理 5.3. eが(♥)の平衡点となるための必要十分条件は，

f(e) = 0

が成り立つことである．

証明. eが平衡点であればx(t; e) ≡ eなので，

f(e) = f(x(t; e)) = x′(t; e) = e′ = 0

が成り立つ．一方，f(e) = 0であれば，x(t) ≡ eは(♥)の解である．よっ
て主張は示された．
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定義. eを(♥)の平衡点とする．

1. eがLyapunov安定あるいは単に安定であるとは，任意の ε > 0に対
し，あるδ > 0が存在して任意のaと t ≥ 0に対し

|a− e| < δ ⇒ |x(t;a)− e| < ε

が成り立つことである．

2. eが漸近安定であるとは，安定であり，かつ，あるδ′ > 0が存在して任
意のaに対し

|a− e| < δ′ ⇒ lim
t→∞x(t;a) = e

が成り立つことである．

3. eが不安定であるとは，安定でないことである．
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◦ 定数係数線形方程式系

Aを実2次正方行列とする．相空間R2上の自励系

x′ = Ax (♦)

に対し，平衡点(0,0)の安定性を分類する．

定理 5.4. Aの固有多項式の2つの根をα, β (Reα ≤ Re β)とする．

1. Reβ < 0なら平衡点(0,0)は漸近安定である．

2. Reβ = 0なら平衡点(0,0)は漸近安定ではない．

3. Reβ > 0なら平衡点(0,0)は不安定である．

注意.この定理はn次元の場合にも同様に拡張される．
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証明. 一般に，実2次正則行列Pに対しy = Pxとおけば，(♦)は

y′ = (P−1AP )y (♣)

と書き換えられる．変換x �→ y = PxはR2の自己同相写像かつ(0,0)を
(0,0)に移すので，計算し易いPを選んで(♣)の平衡点(0,0)を分類すれば
よい．以下では，

I. α, β ∈ RかつAが対角化可能なとき，

II. α, β ∈ RかつAが対角化不可能なとき，

III. α, β /∈ Rのとき，

に従って場合分けを行う．
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I. このとき，P−1APが対角行列になるようにPを選べば，(♣)は

y =

(
eαt 0
0 eβt

)
y0

のように解ける．ゆえに平衡点(0,0)は次のように分類される．

(a) 0 < α ≤ βなら(0,0)は不安定である（結節点）．

(b) α = 0 < βなら(0,0)は不安定である（結節点）．

(c) α = β = 0なら(0,0)は安定である．

(d) α < 0 < βなら(0,0)は不安定である（鞍点あるいは鞍状点）．

(e) α < β = 0なら(0,0)は安定である（結節点）．

(f) α ≤ β < 0なら(0,0)は漸近安定である（結節点）．
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II. このとき，P−1APがJordan標準形となるようにPを選べば，(♣)は

y =

(
eαt teαt

0 eαt

)
y0

のように解ける．ゆえに平衡点(0,0)は次のように分類される．

(a) 0 < α = βなら(0,0)は不安定である（結節点）．

(b) α = β = 0なら(0,0)は不安定である．

(c) α = β < 0なら(0,0)は漸近安定である（結節点）．
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III. このとき，α = a − ib, β = a + ib (a ∈ R, b ∈ R \ {0})と書け，P

を適当に選べば，(♣)は

y = eat
(

cos bt − sin bt
sin bt cos bt

)
y0

のように解ける（定理 3.9直後の問を参照）．ゆえに平衡点(0,0)は次のよ
うに分類される．

(a) 0 < Reα = Re βなら(0,0)は不安定である（渦状点）．

(b) Reα = Re β = 0なら(0,0)は安定である（渦心点）．

(c) Reα = Re β < 0なら(0,0)は漸近安定である（渦状点）．

以上，I, II, IIIにより主張は示された．
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問.相空間R2上の自励系

x′ = Ax, A = diag(α,0), α ∈ R,

に対し，(0,0)以外の平衡点をすべて求め，それらの安定性をαで分類せよ．
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◦ 平衡点まわりでの1次近似

相空間R2上の自励系 (
x
y

)′
=

(
f(x, y)
g(x, y)

)
(♠)

は点(a, b)を平衡点に持つとする．すなわち，

f(a, b) = g(a, b) = 0 (♥)

とする．平衡点(a, b)の安定性を判定するために，(a, b)の近傍での1次近似
（あるいは線形近似）を調べよう．Taylorの定理と(♥)によれば，

f(x, y) ≈ (x− a)fx(a, b) + (y − b)fy(a, b),

g(x, y) ≈ (x− a)gx(a, b) + (y − b)gy(a, b)
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が成り立つ．よって，(a, b)の近傍で(♠)は

x′ = (x− a)′ ≈ A(x− a), A =

(
fx(a, b) fy(a, b)
gx(a, b) gy(a, b)

)

の形に書ける．多くの場合，次の定理が有効である．

定理 5.5.以上の設定の下で，Aの固有値をα, β (Reα ≤ Re β)とする．

1. Reβ < 0なら平衡点(a, b)は漸近安定である．

2. Reβ > 0なら平衡点(a, b)は不安定である．

証明. 本講では証明を省略する．

注意.なお，Re β = 0のときは，1次近似のレベルでは平衡点の安定性を判
定できない．この場合，より高次の項の影響が効いてくる．
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例題. Lotka–Volterra方程式

x′ = ax− bxy, y′ = cxy − dy, a, b, c, d > 0,

の平衡点をすべて求めよ．また，それらの安定性について，1次近似のレベ
ルで分かることを述べよ．

解. 定理 5.3により

ax− bxy = 0, cxy − dy = 0

を解いて，平衡点

(0,0), (d/c, a/b)

を得る．
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与えられた方程式の(0,0)の近傍での1次近似は(
x
y

)′
≈
(

a 0
0 −d

)(
x
y

)

で与えられる．係数行列は固有値−dを持つので，平衡点(0,0)は不安定で
ある．一方，(d/c, a/b)の近傍での1次近似は(

x
y

)′
≈
(

0 −bd/c
ac/b 0

)(
x− d/c
y − a/b

)

であり，係数行列の固有値は純虚数である．よって，平衡点(d/c, a/b)の安
定性は1次近似のレベルでは判定できない．

注意.保存量を用いれば，平衡点(d/c, a/b)は安定なことが示せる．
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第6章 解の一意存在定理

§ 6.1 主定理

本章の目的は，1階正規型常微分方程式の初期値問題

φ′(x) = f(x, φ(x)), φ(x0) = y0 (♠)

に対し，解の一意存在定理を正確に述べ，厳密に証明することである．

注意. 1. これまで常微分方程式の解はy(x)で表してきたが，関数f(x, y)
の変数yと区別するため，以降ではφ(x)で表す．

2. ここで言う解は厳密には局所解であり，f(x, y)と(x0, y0)が与えられる
度に，x0のある近傍で定義された解φ(x)が見つかる，というものであ
る．したがって，f(x, y)は(x0, y0)の近傍で定義されていれば十分であ
り，以下では閉近傍

D = [x0 − a, x0 + a]× [y0 − b, y0 + b], a, b > 0,

で定義されているとする．
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定理 6.1. f(x, y)はD上で連続であり，さらに次の（一様）Lipschitz条
件を満たすとする：あるK > 0が存在して任意の(x, y), (x, z) ∈ Dに対し

|f(x, y)− f(x, z)| ≤ K|y − z|
が成り立つ．また，

M = max
(x,y)∈D

|f(x, y)|, δ =

⎧⎨
⎩min{a, b/M} if M > 0,

a if M = 0

とおく．このとき，あるC1級関数

φ : [x0 − δ, x0 + δ] → [y0 − b, y0 + b]

が一意的に存在して，(♠)を満たす．

注意.この結果は，以下のように，常微分方程式系へと拡張される．
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定理 6.2. f(x,y)は

D = [x0 − a, x0 + a]×
{
y ∈ R

n; ‖y − y0‖ ≤ b
}
, a, b > 0,

上で連続で，さらにあるK > 0が存在して任意の(x,y), (x, z) ∈ Dに対し

‖f(x,y)− f(x, z)‖ ≤ K‖y − z‖
を満たすとする．また，

M = max
(x,y)∈D

‖f(x,y)‖, δ =

⎧⎨
⎩min{a, b/M} if M > 0,

a if M = 0

とおく．このとき，あるC1級関数

φ : [x0 − δ, x0 + δ] →
{
y ∈ R

n; ‖y − y0‖ ≤ b
}

が一意的に存在して，

φ′(x) = f(x,φ(x)), φ(x0) = y0

を満たす．
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注意. 1. 第1章で見たように，高階の正規型方程式はいつでも1階の正規型
方程式系に書き換えられる．それに定理 6.2を適用することで，高階正
規型方程式の初期値問題の解の一意存在も従う．

2. 定理 6.2の証明は定理 6.1のそれと全く同様なので，省略する．定理 6.1

の証明は以下の第6.3節で与えられる．

3. 上で述べられている解の一意性は局所解の一意性であるが，解の存在す
る範囲で定理を繰り返し適用して，一意性の成り立つ区間を延長してい
くことで，大域的な一意性も従う．

4. Lipschitz条件が無ければ解の一意性が保証されないことは，既に第1

章の例で確認した．
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§ 6.2 Lipschitz条件に対する十分条件

定義.関数g(y)が区間I上でLipschitz連続であるとは，あるK > 0が存
在して，任意のy, z ∈ Iに対し

|g(y)− g(z)| ≤ K|y − z|
が成り立つことである．

例.関数

g(y) =

⎧⎨
⎩
√
y y ≥ 0,

0 y ≤ 0

は0を内部に含む任意の区間上でLipschitz連続ではない．実際，

lim
y→+0

|g(y)− g(0)|
|y − 0| = lim

y→+0

1√
y
= ∞

なので，条件を満たすK > 0は存在しない．
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定理 6.3. 1. 関数g(y)が有界閉区間I上でC1級であれば，g(y)はI上で
Lipschitz連続である．

2. 関数g(y)が区間I上でLipschitz連続であれば，g(y)はI上でC0級，す
なわち，連続である．

注意.粗く言って，

C1級 ⇒ Lipschitz連続 ⇒ C0級

が分かる．特に，C1級であることはLipschitz連続であるための十分条件で
ある．
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証明. 1. g′(y)は有界閉区間 I上で連続であるから，|g′(y)|もそうであり，
特に

K = max
y∈I |g(y)| < ∞

が存在する．すると，任意のy, z ∈ Iに対して，平均値の定理よりあるθ ∈
(0,1)が存在して

|g(y)− g(z)| =
∣∣∣g′(z + θ(y − z))

∣∣∣|y − z| ≤ K|y − z|
が成り立つ．

2. Lipschitz連続性の定義より，任意のy ∈ Iに対して

lim sup
z→y

|g(z)− g(y)| ≤ K lim sup
z→y

|z − y| = 0

が成り立つ．よってg(y)はI上でC0級である．

195



系 6.4. I, Jを有界閉区間とする．f(x, y)がI × J上でC1級であれば，も
ちろんf(x, y)はI × J上で連続であり，さらにあるK > 0が存在して，任
意の(x, y), (x, z) ∈ I × Jに対し

|f(x, y)− f(x, z)| ≤ K|y − z|
が成り立つ．

証明. 定理 6.3と同様に証明できる．詳細は問とする．
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注意. 1. 系 6.4により，f(x, y)が定理 6.1の仮定を満たすには，C1級で
あれば十分である．

2. 参考のため，次の2つの条件(a), (b)を比較してみる．

(a) ∃K > 0 s.t. ∀x ∈ I ∀y, z ∈ J |f(x, y)− f(x, z)| ≤ K|y− z|.
(b) ∀x ∈ I ∃K > 0 s.t. ∀y, z ∈ J |f(x, y)− f(x, z)| ≤ K|y− z|.
一様Lipschitz条件は論理式(a)に対応しており，「一様」という修飾語
は「Kをxによらずに一様にとれること」を意味する．一方，(b)はK

がxによって変わることを許容しており，(a)より弱い条件である．厳密
な議論をする際には，このような微妙な違いを理解しておく必要がある．
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§ 6.3 主定理の証明

本節では，定理 6.1の証明を与える．局所解φ(x)は逐次近似法により，構
成的に得られる．そのあらましを述べておく．まず(♠)を積分方程式

φ(x) = y0 +
∫ x

x0
f(ξ, φ(ξ)) dξ

に書き換える．この積分方程式を逐次的に解くために，帰納的に

φ0(x) ≡ y0, φn(x) = y0 +
∫ x

x0
f(ξ, φn−1(ξ)) dξ for n = 1,2, . . .

と定め，適当な意味での極限

φ(x) = lim
n→∞φn(x)

が存在することを示す．そして，φn(x)の定義式でn → ∞とすると，φ(x)

が所望の積分方程式の解となっている，という流れである．
198

定理 6.1の証明. 以下，I = [x0− δ, x0+ δ], J = [y0− b, y0+ b]とおく．

Step 1. あるC0級関数φ : I → Jが存在して

φ(x) = y0 +
∫ x

x0
f(ξ, φ(ξ)) dξ (♥)

を満たすことを示せばよい．実際，このとき(♥)からφ(x)はC1級であるこ
とが分かり，さらに両辺を微分する，あるいは，x = x0を代入することで，
(♠)が従う．また(♠)を満たす別のC1級関数ψ : I → Jがあったとすると，
ψ(x)も(♥)を満たすので，Lipschitz条件から

|φ(x)− ψ(x)| ≤
∣∣∣∣
∫ x

x0

∣∣∣f(ξ, φ(ξ))− f(ξ, ψ(ξ))
∣∣∣dξ∣∣∣∣

≤ K

∣∣∣∣
∫ x

x0
|φ(ξ)− ψ(ξ)|dξ

∣∣∣∣
(♦)
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を得る．これからまず

|φ(x)− ψ(x)| ≤ K|x− x0| sup
ξ∈I

|φ(ξ)− ψ(ξ)|

となるが，これを(♦)の右辺に代入すると，さらに

|φ(x)− ψ(x)| ≤ K2|x− x0|2
2

sup
ξ∈I

|φ(ξ)− ψ(ξ)|

となる．繰り返すと，任意のn ∈ Nに対して

|φ(x)− ψ(x)| ≤ Kn|x− x0|n
n!

sup
ξ∈I

|φ(ξ)− ψ(ξ)|

が成り立ち，ここでn → ∞とすることでφ(x) ≡ ψ(x)が従う．よって一意
性も示された．
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Step 2. (♥)の解φ(x)を，逐次近似

φ0(x) ≡ y0, φn(x) = y0 +
∫ x

x0
f(ξ, φn−1(ξ)) dξ

の極限として構成したい．ここでφn(x)が定義されるためには，φn−1(x)の
値域がJに含まれていなければならない．これを帰納法で確かめよう．φ0(x)
については，φ0(x) ≡ y0なので上の主張は自明である．いま，φn−1(x)の
値域がJに含まれているとすると，Mとδの定め方から

|φn(x)− y0| =
∣∣∣∣
∫ x

x0
f(ξ, φn−1(ξ)) dξ

∣∣∣∣ ≤ M |x− x0| ≤ b

が従う．よって，帰納法により上の主張が示された．
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Step 3. 次に，関数列φn(x)はある関数φ(x)にI上で一様収束することを
示す．そのために，

φn(x) = φ0(x) +
n∑

m=1

(φm(x)− φm−1(x)) (♣)

と書き直し，n → ∞のとき，(♣)の右辺第2項の定める級数が，xによらな
い収束優級数を持つことを示す．まず，φ1(x)の定義から

|φ1(x)− φ0(x)| =
∣∣∣∣
∫ x

x0
f(ξ, φ0(ξ)) dξ

∣∣∣∣ ≤ M |x− x0|

である．今，一般のn ≥ 2に対して，Lipschitz条件から

|φn(x)− φn−1(x)| ≤
∣∣∣∣
∫ x

x0

[
f(ξ, φn−1(ξ))− f(ξ, φn−2(ξ))

]
dξ
∣∣∣∣

≤ K

∣∣∣∣
∫ x

x0
|φn−1(ξ)− φn−2(ξ)|dξ

∣∣∣∣
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であることに注意する．n = 2として，上の2つの評価を組み合わせると

|φ2(x)− φ1(x)| ≤
MK|x− x0|2

2
を得る．n = 3に対しては，n = 2のときの結果を用いて

|φ3(x)− φ2(x)| ≤
MK2|x− x0|3

3!
を得る．繰り返すことで，一般のnに対して

|φn(x)− φn−1(x)| ≤
MKn−1|x− x0|n

n!
≤ MKn−1δn

n!
が分かる．すると，

∞∑
m=1

MKm−1δm

m!
=

M

K

(
eKδ − 1

)
< ∞

およびWeierstrassのM判定法（次節で補足）により，(♣)の右辺，した
がって左辺は，n → ∞のときにある関数φ(x)に一様収束することが従う．

203



Step 4. Step 3で得たφ(x)がStep 1の解となっていることを示す．実際，
まずφ(x)は連続関数列φn(x)の一様収束極限なので連続であり，値域もJに
含まれている．今，

φn+1(x) = y0 +
∫ x

x0
f(ξ, φn(ξ)) dξ

においてn → ∞としてみよう．左辺がφ(x)に収束することは自明である．
右辺については，Lipschitz条件および一様収束の定義から∣∣∣∣∣
∫ x

x0
f(ξ, φ(ξ)) dξ −

∫ x

x0
f(ξ, φn(ξ)) dξ

∣∣∣∣∣ ≤ K|x− x0| sup
ξ∈I

|φn(ξ)− φ(ξ)|

≤ Kδ sup
ξ∈I

|φn(ξ)− φ(ξ)|

→ 0

である．よってφ(x)は(♥)を満たす．
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§ 6.4 補足：WeierstrassのM判定法

◦ 関数の一様収束

定義. φn, φ : I → R, n ∈ N, とする．

1. 関数列(φn)n∈Nがφに各点収束するとは，任意のx ∈ Iに対し

lim
n→∞φn(x) = φ(x)

が成り立つことである．

2. 関数列(φn)n∈Nがφに一様収束するとは，任意のε > 0に対しあるN ≥
0が存在して，任意のn ≥ Nとx ∈ Iに対し

|φn(x)− φ(x)| < ε

が成り立つことである．
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注意.上の各点収束を論理記号で表現すれば，

∀x ∈ I ∀ε > 0 ∃N ≥ 0 s.t. ∀n ≥ N |φn(x)− φ(x)| < ε

であり，また一様収束は

∀ε > 0 ∃N ≥ 0 s.t. ∀n ≥ N ∀x ∈ I |φn(x)− φ(x)| < ε

である．後者は前者より強い性質である．「∀x ∈ I」の位置の違いによる意味
の違いに注意せよ．
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定理 6.5. φn, φ : I → R, n ∈ N, とする．φnがI上で連続かつ(φn)n∈Nが
φに一様収束すれば，φもI上で連続である．

証明. 任意のx ∈ Iにおいてφが連続であることを示せばよい．任意のε > 0
をとる．このとき，一様収束の定義より，あるN ≥ 0が存在して，任意の
n ≥ Nとy ∈ Iに対し

|φn(y)− φ(y)| < ε

が成り立つ．さてn ≥ Nを一つ固定しよう．するとφnはI上で連続なので，
あるδ > 0が存在して，|x− y| < δならば

|φn(x)− φn(y)| < ε

が成り立つ．よって，|x− y| < δならば

|φ(x)− φ(y)| ≤ |φ(x)− φn(x)|+ |φn(x)− φn(y)|+ |φn(y)− φ(y)|
< 3ε

が成り立ち，主張が従う．
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◦ WeierstrassのM判定法

定義.数列(an)n∈NがCauchy列であるとは，

∀ε > 0 ∃N ≥ 0 s.t. ∀n, k ≥ N ‖an − ak‖ < ε

が成り立つことである．

定理 6.6.数列(an)n∈Nが収束列となるための必要十分条件は，(an)n∈Nが
Cauchy列となることである．

証明. (an)n∈Nがαに収束するなら，n, k → ∞のとき，
‖an − ak‖ ≤ ‖an − α‖+ ‖α− ak‖ → 0

となる．よって(an)n∈NはCauchy列である（詳細は省略する）．逆は実数
の連続性公理を用いて証明されるが，本講では省略する．
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定理 6.7 (WeierstrassのM判定法). (φn)n∈NをI上の関数列とする．こ
のとき，もしある非負値実数列(Mn)n∈Nが存在して

|φn(x)| ≤ Mn for all x ∈ I,
∞∑

n=1

Mn < ∞

が成り立つならば，関数項級数
∞∑

n=1

φn

はI上のある関数にI上で一様収束する．

証明. まず各n ∈ Nに対し，

Φn =
n∑

k=1

φk
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と定め，各点極限を用いて一様収束先の候補を構成しよう．任意のx ∈ Iを
固定する．n > m → ∞のとき

|Φn(x)−Φm(x)| ≤
n∑

k=m+1

|φk(x)| ≤
n∑

k=m+1

Mk → 0 (♠)

なので，数列(Φn(x))n∈NはCauchy列であり，収束する．よって各点極限

Φ(x) := lim
n→∞Φn(x) =

∞∑
n=1

φn(x)

が存在する．すると，(♠)においてn → ∞とすることで，任意のx ∈ Iと
m ∈ Nに対して

|Φ(x)−Φm(x)| ≤
∞∑

k=m+1

Mk

が成り立つ．ここでm → ∞とすると，右辺はx ∈ Iに依らず一様に0に収
束する．これは関数列(Φn)n∈NがΦに一様収束することを意味する．
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