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Chapter 1
Oscillatory Integrals

§ 1.1 Introduction

o Notation

In this course we use the notation

N={1,2,3,...}, Ng=4{0,1,2,...} ={0}UN.
We usually let d € N be the dimension of the configuration
space. For any multi-index a = (a1,...,a4) € Ng we define its
length and factorial as
ol =1+ +ag, al=(a1)) - (agh),
respectively. In addition, for any «, 3 € Ng we let

a<p & a;<p; forallj=1,...,d




and define the binomial coefficient as

a al a
= if 0 <pB<a, < >=O otherwise,
<B> B!(a — B)! B
where a—ﬂ=(a1—51,...,ad—5d).
For any z = (z1,...,24) € R and o = (o, ..., ay) € Nd we write
1o}
xa:x‘fl...xgd, aa:afl...agd, aj:amjzg.

J
Moreover, we introduce the notation

D.

j = —io

. a __ N %
;, D%=D{t...DJ

Then, in particular, we have

D = (—i)lelp,

Thoughout the course for any z,€ € R? we write simply

w=u-E=wif1+ - tags, =z, |o|=Vrz,
and we adopt the Fourier transform and its inverse defined as
extensions from

Fu© = @m™2 [ e u(@)do for ue SE&Y,
Ff(z) = (27) 4?2 /Rd e F(£)de for f e S(RD),
respectively. Note, in particular, for any u,v € S(]Rd) and a € Ng

(u?v)LQ == (]:ua]:U)LQ, ]:*faj:u = Dau,

where (-,-)L2 denotes the L2-inner product, being linear and
conjugate-linear in the first and second entries, respectively.
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Problem. 1. (Binomial theorem) Show for any «a € Ng and
z,y € RY

(z4+y*= > (g)maﬁyﬁ; In particular, > (g) = olel,

BeENG BeNY

2. (Leibniz rule) Show for any o € N§ and f,g € Clol(R?)

()= 3 (“)(aa—ﬂfxaﬂg).

B
BeNg

o Partial differential operators

Consider a partial differential operator (PDO) on RY:
A=Y aa(z)D aa € CPRY).
|a|<m

If we let

a(m7£)= Z aa(m)§a7

la|<m

then we can write for any u € C2°(R%)

Au(z) = a(z, D)u(z) = (27) ¢ /R?d ei(z_y)ga(m,f)u(y) dydé.




The last integral makes sense even if we replace the polynomial
a(z,£) in € by a symbol growing at most polynomially in £ € R4,
That is a pseudodifferential operator (WDO, or PsDO). We
are going to develop a pseudodifferential calculus for an appro-
priate symbol class, and discuss its applications.

Remark. The last integral has to be interpreted as an iterated
integral; The integrand is not integrable in (y,£). However, we
can also justify it as an oscillatory integral, as discussed in the
following section.

§ 1.2 Oscillatory Integrals

For any z € R? we let
(z) = (1 4+ 22)1/2 € c®(R?).
Lemma 1.1. 1. For any z € R4
1
V2
2. For any a € NJ there exists Cq > 0 such that for any z € R?

0%(z)| < Cafa)t7lol.

(1 +z)) <(z) <1+ |zl

3. (Peetre’s inequality) For any s € R and z,y € R
(@ +y)* < 2B z)lsliy)s.

Proof. 1, 2. We omit the proofs.

3. By the assertion 1 we can estimate

(x+y) <1+ |z+yl <1+ [z[+ |yl
< (142D + |y]) < 2(z)(y).

This implies the assertion for s > 0. The same estimate also
implies

) P <20@)@+y) L

If we replace x by —x, and then y by x + y, it follows that
(@+y) <2027,

which implies the assertion for s < 0. Hence we are done. []
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o Oscillatory Integrals

For any m,é € R we define the set of amplitude functions as

AT(RY) = {a € C®(RY); Vo e Ng Suﬂgd(a:>_m_5‘al|8aa(w)| < oo} .
xre

For any k € Ny define a seminorm |- |, on A?(Rd) as

laly, = lal,ap = sup{(x) ™ 0%l|0%(x)]; o <k, =R,

Remark. Obviously, Agl(Rd) is a Fréchet space with respect to
the family {| - [g}ren, Of seminorms.
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Problem. Let x € S(R?). Show x(ex) € A%;(R?) uniformly in
e € (0,1), i.e., for any a € N¢ there exists C' > 0 such that for
any e € (0,1) and z € R4

0% (x(ex))| < C()lol.
Solution. Take any a € Ng. Since x is rapidly decreasing, we can
compute and bound it as
0% (x(ex))| = €™l (07x) (ex)| < Cele) =1
< oeol(@ 4 242) 12 = oy ol

Hence we are done. []

Remark. Of course, for any fixed ¢ € (0,1) we have x(ex) €
AT(R?) for all m,§ € R.
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Theorem 1.2. Let Q be a non-degenerate real symmetric matrix
of order d, and let m € R and § < 1. Then for any a € AT(R?)
and x € S(R%) with x(0) = 1 there exists the limit
i izQz/2
Ig(a) = €gr£0 e € x(ex)a(z) dz, ()

and it is independent of choice of y € S(R%). Moreover, there
exist k € Ng and C > 0 such that for any a € AT'(R?)

[Ig(a)| < Claly, ap-

Remark. The last bound implies I: Ag’l(Rd) — C is continuous.
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Proof. Noting that for any z,y € R
zQx 1 ¢
w0("3%) =3 Y ui(ejQa +2Qe)) = yQu,
j=1
we can deduce

Substitute the above identity into the integrand of (&), and
integrate it by parts. Repeat this precedure, and we obtain

izQz/2 _ izQz/2 1k
/Rde x(ex)a(zx) dz = /Rde L (x(ex)a(w)) dz
for any k € Ng. Since L is of the form
d
L=co+ Y ¢05; co€AF(RY), ¢;e AT1(RY),
j=1
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there exists C'> 0 such that for any € € (0,1) and a € AT(R%)
|E* (x(ex)a(a) )| < Claly ap )™ -+ min2270), @)
We also note there exists a pointwise limit
Ein_ﬂo Lk<x(ex)a($)> = LFa(2).

Then, if we choose k € Ng such that m —kmin{2,1 -6} < —d, it
follows by the Lebesgue convergence theorem that

— i izQz/2 — izrQz/2 1k
Ig(a) GE)TO /Rde x(ex)a(x) dx /Rde L¥a(x) dz.

Certainly the last expression is independent of xy. Combined with
(), it also implies the asserted bound. We are done. [
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Remarks. 1. The limit (#) from Theorem 1.2 is called an os-

cillatory integral, and is denoted simply by
/H.&d eiwa/2a(x) dz = eir—?-o /Rd eixQx/zx(ex)a(m) dz.
The notation is compatible with the case a € L} (R?).

. We can also define the oscillatory integral as

e 2a(@)da = [ "@*/2Lra(a) da,

Lemma 1.3. Let Q be a non-degenerate real symmetric matrix

of order d, and let a € AT*(RY) with m € R and § < 1.

1. For any c e R4
/Rd eime/Qa(m) dx = elc@e/2 /IRd elvQy/2 (eicha(y + c)) dy.

2. For any real invertible matrix P of order d
/R &R/ 24 (z) dx = /R _@v(PRPI/24(py)| det P|dy.

where LF is from the proof of Theorem 1.2. Practically, in
order to compute an oscillatory integral we may implement
any formal integrations by parts until the integrand gets in-
tegrable, see also Lemma 1.3.3.

3. For any a € N§

/Rd <8aeisz/2>a(ac) de = (—1)‘0" /Rd eimepaaa(x) dz.
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3. Similarly to the above, let x € S(R?) with x(0) = 1. Then

/ (8aei$Qx/2)a(m) dz
Proof. 1 and 2. We can prove 1 and 2 very similarly, and here R4
we disucss only 2. Let x € S(R%) with x(0) = 1, and then by = lim d(aae”@rp)x(ex)a(x) dz
definition of the oscillatory integral e>+0/R

; ) T 1\l izQz/2 e
/Rde'sz/Qa(x) dz = liTO Rde”EQﬂ”px(ea:)a(:c) dz _GLIT_O( 1) {/Rde x(ex)8%a(z) dz

€E—>
: e
= lim Rdeuy( PQP)Y/2y (cPy)a(Py)| det P| dy S (Z) /Rdeian:/Q(aﬁx(ex))(aa—ﬁa(x)) del
1B1>1

:/ eiy(tPQP)y/Qa(PyNdetP|dy. ) )
Rd For the second integral in the above square brackets we can

further implement integrations by parts, e.g., by using L from the
proof of Theorem 1.2, and then we can verify that it converges
to 0 as ¢ — +0. Thus we obtain the assertion. []

This implies the assertion.
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§ 1.3 Expansion Formula

Definition. Let Q be a non-degenerate real symmetric matrix of
order d, and let u € §'(R?%). We define

eiDQD/2,, — F*i€QE/2 7y ¢ S/(RY).

Theorem 1.4. Let Q be a non-degenerate real symmetric matrix
of order d, and let a € AT*(R?) with m € R and § < 1. Then

eim(sanQ)/4
(2m)4/2| det Q|1/2

eiPRD/24 (1) = /n.w efinfly/za(w + ) dy.

Remark. As for a € Ag’L(Rd) we can compute pointwise values of
elPQD/2, a5 an oscillatory integral.
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Theorem 1.5. There exists C' > 0 dependent only on the dimen-
sion d such that for any non-degenerate real symmetric matrix
Q of order d, a € CX(R?) and N € N

iDQD/2 A k
e a(z) = ) Sk (P@D) a(@) + Ry (a)
k=0 < '

with

C (0%
‘RN(G)‘ < 2NN!|a<Zd+1‘a (DQD)NaHLl.
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Lemma 1.6. Let Q be a non-degenerate real symmetric matrix

of order d. Then
: ir(sgn Q) /4 cem—1
FelrQu/2 _© e iEQTYE/2.
( )(5) |detQ|1/2

Proof. Step 1. We first let d = 1. Since F: S/(R) — S'(R) is
continuous, we can proceed as

<];-eiQx2/2)(£)= lim (]:'e*(efiQ)x2/2)(§)

e——40
= lim (e —iQ) Y2e—(—i@)1e?/2
o 52T—0<6 IQ) €
_ eim(sgn Q)/4e—iQ_1§2/2_
Q|12

Thus the assertion for d = 1 is verified.
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Step 2. There exists an invertible real matrix P such that
'PQP = diag(Ip, —Iy),
where Iy, I, are the identity matrices of order p,q € Ng with p 4+
q = d, respectively. Changing variables as x = Py and spliting
y=(y,y") € RP x R, we can compute
(]_-eia:Qz/2> (P_l’r])

. i _ tp—1p—1 _
=EE>T_O<]_—e|xQx/2e ex(!P~ 1P )x>(P 1,'7)

— lim (2r)" /2 / el (2 =y") /2= | det P| dy
e——+0 JRA
= | det PleiW(Sgn Q)/4e7i(77/2777”2)/27

where in the last equality we use the result from Step 1. Finally
let n = P¢, and we obtain the assertion. [
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Proof of Theorem 1.4. Let a € CZ(R%). Then it follows by
change of variables, the Plancherel theorem and Lemma 1.6

elPQD/2, () = (27) ¢ /Rd eléQe/2 </Rd e Wea(x +y) dy) d¢
eim(sgnQ)/4

T @072 det Q|12

Then, since the right-hand side of the asserted identity is con-

tinuous on A?(Rd) byTheorem 1.2, we obtain the assertion. [

L7 W 2a(a 4 ) dy.
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Proof of Theorem 1.5. Recall by Taylor's theorem for any N € N
and t € R

N—-1 ik N
it _ (it) i tois N-1
el = kgo o + (N—l)!/oel (t—s) ds,

so that we can write

N—1 k N
cag> 5 (1£Q0) . Q]
efQ£/2 — = W""”N(&)r |TN(§)| S 2NN| '

Substitute the above expansion into the definition of e/PQD/24
and implement the Fourier inversion formula, and then

. N-1 ik
ePRD/24(z) = ¥ 2;37kl(DQD)ku(w)+RN(a)
k=0 :
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with
1 N
|RN(G)| < m/ﬂ%dK}—(DQD) a)(&))d&.
Finally it suffices to show that for any v € Cgo(Rd)

[Follp<C >0 1%l
|a|<d+1

However, it is clear since
Fo(©) = (2m) 2(g 2D [ e + D) o) d.

Thus we are done. []
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Corollary 1.7 (Stationary phase theorem). There exists C >
0 dependent only on the dimension d such that for any non-
degenerate real symmetric matrix Q of order d, a € C2(RY),
NeNand h>0

/ eisz/(Zh)a(x) da

R

B N-1 (2ﬂ)d/2hk+d/2ei7r(sgn Q)/4

=5 | det Q|1/2(2i)kk!

((DQ™D)*a)(0) + Rn(a,h)
with

RyGam| < O
| de

[aetqan 2, 17°(PQ7 D)oy

|a|<d+1

Proof. The assertion is clear by Theorems 1.4 and 1.5. [
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Remarks. 1. As h — +0, the rapid oscillatory factor elz@z/(2h)
cancels contributions from the amplitude a. However, the
oscillation is slightly milder at the stationary point z = 0 of
the phase function. This is why the behavior of a at around
x = 0 dominates the asymptotics.

2. The semiclassical parameter h > 0, rooted in the Planck
constant, plays a fundamental role in the semiclassical
analysis. However, in this course we do not discuss it.
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Problem. Show the following extended version of the “pointwise
Fourier inversion formula”: For any a € A?(Rd) with m € R and
§ <1 and for any o € N§ and 2/ € RY

(27T)_d /RQd ei(:f’—x)ggaa(m) dzd¢ = (D%a)(2').

Remark. This is an oscillatory integral on R2¢ = RZ x Rg, not on
R, with a phase function

—2g=4"H(@- %~ (z+8)?)

and an amplitude e¥€¢%(z) € Aﬁ;t{rg%ﬁ{m’o}(]l&m).
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Solution. By Lemma 1.3 it suffices to prove the assertion for
a = 0. By definition of oscillatory integrals, take any x € S(Rd)
with x(0) = 1, and then we can compute

(2r) @ /]1.{2‘1 ei(xlfw)ga(x) dzdé

= tim @m~! [ 00 (@) x(e)alr) dra

= lim 2r) ™2 [ (F)((= - =) /)x(ex)a(a) da

= tim 2m) "2 [ (FOmx(e(’ +en)ala’ + en) an

= @M [ a()(F) @) dn
= a(2)).
Hence we are done. []
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Chapter 2
Pseudodifferential Calculus




§ 2.1 Pseudodifferential Operators

Definition. Let m, p,§ € R. We denote by S;”d(R%) the set of all
the functions a € C*°(R?9) satisfying that for any «, 3 € NJ there

exists C > 0 such that for any (z,¢) € R% x R4
0200 a(z, )| < C(gymFolal=rlfl,

We call Sm (RQd) the Kohn—Nirenberg (or Hormander) sym-
bol class and its element a symbol of order m. In addition,
we set

S;%(de)= U SZL(;(RQd), S~ OO(RQd)_ m S de)
meR meR

We often write 5™(R2%) = S5 (R2%) for short.
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Remarks. 1. In order to have an appropriate pseudodifferential
calculus available it is typically assumed that

0<d<p<l, or 1—p<d<p<Ll.

2. Some authors define S;”(;(RQd) as the set of all the functions
a € C(R?%) satisfying that for any a,8 € N§ and K e R?
there exists C' > 0 such that for any (z,¢) € K x R?

0907 a(z, €)| < C(gmHolel=rlAl,

3. There are many other variations of symbol classes, including
semiclassical ones.
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4. The symbol class S}T(;(R%) is a Fréchet space with respect
to a family of seminorms given by

lalj = lalsm; = sup{ ()"l oro a(x, €)];
laf + 18] < 4, (x,€) € R4}
Problem. 1. Show that, if I <m, o > p and € <, then

Sh (R4 € S75(R2T).

2. Show that for any a € SZ}(;(RQd), be Sf),a(RQd) and o, 3 € N¢

o0 e syHlel=PPlR2d) - ap € s (R2D),

Solution. We omit it. []
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Examples. 1. Consider

a(z,&) = Y aa(2)*  aa € CP(RY).

|a|<m

If ao for all |a| < m satisfy that for any 8 € Ng

sup |8f8aa(m)| < 0o, )
z€R?

then obviously a € S™(R2%). Even if a, dissatisfy (©), take
any x € C2(R%), and then

x(@)a(z,§) € ST(R).

We can still discuss local properties of a PDO by letting
x(xz) = 1 in a neighborhood of a point of our interest.
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2. For any m € R we have ()" € S™(R2%).

3. Assume a € C®°(R2%) is positively homogeneous of degree
meRIn[¢]>1, e, forany z€RY |¢[>1and t>1

a(z,t§) = t"a(z,§).
In addition, assume for simplicity

m1(suppa) € R,

where 71 R? x R? — R? is the first projection. Then we have
a € S™(R24).
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Definition. Let a € ST S(R24) with m € R, p > —1 and § < 1.
Define the pseudodlfferentlal operator a(xz, D) of order m as,
for any u € S(RY),

ae, Dyu(a) = 2m)~* [ | &T=ea(a, €)u(y) dyd.
We denote
ms(RY = {a(z, D); a € SR},

and similarly for W;O(;(Rd), W—°(R%) and W™(R?). In particular,
an element of W—°(R4) is called a smoothing operator.
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Remarks. 1. Such a systematic procedure to assign operators
to symbols is called a quantization, as in the quantum me-
chanics. There are various quantizations.

2. It is also common to use the notation Op(a) for a(zx, D).

3. The semiclassical pseudodifferential operator is defined
as
Opy(a) = a(x, hD).

Here h > 0 is the semiclassical parameter.

4. The operator e P@D/2 from the previous chapter may be con-
sidered as a pseudodifferential operator, but the associated
symbol e€Q¢/2 is in a much worse class.
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Theorem 2.1. Let a € S;”a(RQd) with m € R, p> —1 and § < 1.
Then a(z, D) is a continuous operator on S(R%).

Proof. For any N € Ny we can write
ae, Dyu(a) = @M~ [ | 708N a(a, €)(D,)2Nu(y) dyde.
Here the integrand is estimated as, for any g € Nd,

’8§ei(ﬂc—y)€<§>—21\’a(m §)<Dy>2Nu(y)\
< Cale)™ =2V (D) 2V u(y),

and hence we can differentiate a(z, D)u(z) as much as we want
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by retaking N be larger beforehand. Thus for any B € Ng

8 _ —d B i(a—
8%a(z, Dyu(z) = (2m)~% 3 <T> /Rgde'( 3
TGNg
- (1)P7T(e) 2N o a(x, €)(Dy) N u(y) dyde.
Futhermore, by Lemma 1.3 for any a € N¢

xaaﬁa(x,D)u(x) = (27T)7d Z <Oé> (B) /RQd ei(xfy)ﬁyafa

T,G’GN% 7 T
((=De)7 ()7 7(€) 2N oL a(=, &) ) (Dy)*Nu(y) dyde.

Therefore for any k£ € Ng by letting N be sufficiently large we can
find C > 0 and | € Ng such that for any u € S(R%)

la(z, D)ulg,s < Clulys.

This implies the assertion. []
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§ 2.2 Asymptotic Summation

Theorem 2.2. For each j € Ny given a; € S;ng(RQd) such that
mi=mg>my>mp>--+>mj——00 aAS j — 00,
and p <1 and § € R. Then there exists a € S;”(;(de) such that
for any k € Ng
k—1

a— Y aj€ S HR). (&)
j=0

Such a is unique up to S~°°(R2%). Moreover, one can choose
ac S;”(;(RQd) such that

S
suppa C < U suppaj>. ()
=0
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Definition. Under the setting of Theorem 2.2 we write
oo
a~ 3y aj
j=0

and call it the asymptotic sum or asymptotic expansion. In
addition, when ag Z 0, we call ag the principal symbol of a, or
of A :=a(z,D), and often write it as

oc(A) = agp.

Note the principal symbol is not unique by definition, and the
above identity has to be understood up to lower order errors.

42

Proof. Step 1. Fix x € C>®°(R%) satisfying

0 for € <1,

X(&) = {1 for |g| > 2,

and we construct a € S%(R%) of the form
o0
a(z, &) = Y x(ejé)aj(z,€)
J=0
with
1>e>e1 > >¢ —+0.

Note the above sum is locally finite, and hence is locally bounded
and smooth. Note also, then, (©) is automatically satisfied.
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Step 2. Here we are going to choose
1>e>€1>->¢ —+0
such that for any j € Ng and «, 8 € N with |a| + |8] < j
18207 (x(e;€)a;(x, €))| < 279 (gymsF1Holal=rlf] (%)

For that we note for any j € Ng and a,8 € Ng there exists
Cjap > 0 such that uniformly in e € (0,1)

0207 (x(e©)a;(2,))] < Cjapleymtolel=rlA, (©)

since

e <2t <41+ (gD on supp (87 (x(e€))) with |y| > 1.
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However, since

1 < elé] < e(€) on supp x(ef),
we can further deduce uniformly in ¢ € (0,1)
820 (x(e€)a;(x, )| < Cjage(e)mitiFolal=eldl
Now we first choose

eg < min{l, (Cooo)_l},

and then (&) is satisfied for j = 0. Next, suppose we have found

€o,---,€j—1 as claimed, and then it suffices to choose
ej <min{i 71, 6_1,27(Cjap) ™t lal + 18] < 4}
Thus by induction we obtain €g,€1,... as claimed.
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Step 3. Here we prove a from Steps 1 and 2 belongs to S;%(]R%).
In fact, for any «, 3 € N‘é, if we choose k € Ng such that

k>lal+16 and my+1<m,
then by (&) and (&)

k—1
020 a(e, &) < 37 |00 (x(e;€)a;(x,€)))|
7=0
+ 3 0202 (u(es)a . )|
j=k

k—1
<3 Cpapleymitilal=ol8l 4 3 omiieymi+1+olal—old
Jj=0 Jj=k
< C&ﬁ<£>m+5\a|*1)|5\.
This implies the claim.
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Step 4. Let us verify (#). For any k € Ny decompose

k—1 k—1 0o
a— Y aj=Y (x(¢8) — 1)aj(z,©) + 3 x(g€)aj(,€).
J=0 =0 j=k

Then the first sum on the right-hand side belongs to S~ (R24)
since it vanishes for || > 2/¢;, while the second to S;”g(]RQd)
similarly to Step 3. Thus the claim follows.

Step 5. Finally we discuss the uniqueness up to S—OO(RQd). If
both of a,b € S;né(R%) satisfy (#), then for any k € Ny

k—1 k—1
a—b= (a— Z aj> - (b— Z aj> S S:%“(RM),
j=0 j=0 ’
so that a — b € S~°°(R24). Thus we are done. L
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Definition. Let m € R. a € S™(R2%), or a(z, D) € W™ (RY), is
classical (or polyhomogeneous) if a has an expansion

o0
a ~ Z aj
j=0

such that, for each j € Ng, a; € S™7J(R?9) is positively homo-
geneous of degree m — j in £ %= 0. Although we actually need
modifications around & = 0, we often abuse notation as above.
We denote

m(R24) = {a € S™(R2Y): g is classical},

Wi(RY = {a(z, D); a € SER?)}.

Remark. Under homogeneity the principal symbol is unique.
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Examples. 1. Any partial differential operator of order m € Ng:
A=qa(z,D) = >  aa(z)D?,
|a|<m

where aq € C°(R%) has bounded derivatives, is classical. The
principal symbol is given by

o(A)(z,€) = Y aa(z)E™.

la[=m

2. For any m € R the operator (D)™ ¢ W™ (R24) is classical. In
fact, by the Taylor expansion for any [£]| > 1

©m = le(1+ 1g72)"™
_ 2 22,

(m/2—5+1) im0
‘ i €] :
Jj=0 ’
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Problem (Borel’s theorem). Show that, given ¢, € R for all
a € N¢, there exists f € C°(R?) such that for any a € Ng

(0°f)(0) = ca.

Solution. Step 1. Fix x € C®(R%) satisfying

@y |1 orl<L
) =
X 0 for |z| > 2,

and we construct f € C®(R%) of the form

oo
f(w)=ZX(ij) Zio:xa; 1<Rg<R;<--<Rj— o0
=0 jal=5
Note the above sum is locally finite on R%\ {0}, hence locally
bounded there. In addition, it is obviously finite at x = 0.
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Step 2. Here we are going to choose

1<Ry< Ry <--<Rj—>o00
such that any j € Ng and 8 € N with 8] < j

oP (x(ij) > Z);xa)

lal=3

< 2—j|x|j—1—|ﬁ|

Note that, thanks to supporting property of x(Rx), for any 7 € Ng
and g € Ng there exists ng > 0 such that uniformly in R>1

85(x(R:c) > Zo;:co‘>

lal=j

< CjgR™Hap 118l

Then we can discuss similarly to the proof of Theorem 2.2. We
omit the details.
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Step 3. Now let 8 € N¢, and consider the following series:

- 8
goa ( (Rj) 30 a) - iaﬂ( (Rj) 3 “a a)

o=y laf=J

o0

> 85( Bw) % )
J=|8|+1 laj=j ¢

The sum is pointwise finite on R4 similarly to Step 1. Moreover,

it is uniformly and absolutely convergent due to the result from

Step 2. Since 8 € Ng is arbitrary, we can conclude f € COO(Rd)

by induction, and differetiate it under the summation. Thus

- C/B'

=0

@) =3 ¥ (x(R ) Y S a)

7=0 le|=7

We are done. []
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§ 2.3 Formal Adjoint

Theorem 2.3. Let a € 57 (R2d)wuthmeR 0<§<p<1and

6 # 1, and define

a*(2,6) = PP, €) = @M [ | e Wa(a 4y, & + ) dyan.

Then a* € S;’%(RQC[), and
a(z,D)* = a*(z, D).

Moreover, if § < p, then

CL ~ Z ||OC‘ 8“8
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Remarks. 1. The formal adjoint of an operator A on S(R?) is
an operator A* on S(R?%) such that for any u,v € S(R%)

(Au,v) = (u, A*v).

2. By Proposition 2.5 below we can also see uniqueness of the
“adjoint symbol" a* € S/%(RQd).

Proof. Step 1. We first show a* € S%(de). For that we are
going to prove for any a, 8 € N§
0200 a" (2, )] < Cogte)mHolel=rlfl. (©)
However, since, as we can easily see,
080;a"(w,€) = (2m) ™ [ | e V(8200a) (a + v, & + ) dydn,

it suffices to prove () only for a = 8= 0.
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Fix any x € C®°(R%) satisfying
_J1 for |z| <1,
x(@) = {0 for |z| > 2,

and we set

x1(&ym) = x((€)°y)x(2¢7 (&) *n),
x2(&y,m) = [1 = x((©)°y)|x(2¢71(&)n),
x3(&y,m) = x(e (&) M) —x(2¢7 (&) n),
xa(&y,m) =1 —x(e1&) ),

where € > 0 is a fixed small constant such that

c(€) < (&+mn) <C(€) on suppxi Usupp xz Usupp xs,
(&) <C(n), (£+n) <C{n) on supp xa.

(&)
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Using these cut-off functions, we split a* into four parts as
=L+ Ir+1I3+ 14
with
1(@,€) = @m) 7 [ eV (€ v mita +y. & + ) dydn,

The terms I, I3 and I4 are estimated by integrations by parts.

In fact, to estimate I, let

_ -2 _ _
'Ly =€) “(1 (&2 uDy), 'Lp=—|y|"2yDy.
Then, noting (&), we have for any N >d—+ 1

[12(2,9)] < €1 [, [EA LY xa(€ v, Mt + y, € + m)| dydn

<G /RQd<<€>6y>_N<<£>_p77>_N<§>m_(p_6)N dydn
< C3(g)m (P (N=d),

56

Thus I, satisfies () for a = 8 = 0. Similarly, as for I3, let

_ )
'Ly =—[n|"nDy, 'La= (&)%) ~(1-(€)*yDy).
Then, noting (#), we have for any N >d—+ 1

13(2,&)| < Ca [, Y IR xa(6,y mao + ,¢ + )| dyd

< s [, (n+1©7) (@) @ ayy
< Cg(eym—(p=0)(N—d)

Thus I3 also satisfies () for a = 8 = 0. As for I, let
"Ly = ((y,m) 2(1 = nDy — yDy),
and fix Ng € N such that
—Ng 4+ |m| + 6Ng < —2d.
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Then, noting (#), we have for any N > Ng
a4l < Cq4 /de Ly pxa(€,y,m)alz +y, & + )| dydn
< 05/ (Cysm)) ™ () mIHoN gyan
n>e(€)

< Colg)~ AN =No),

Thus by letting N be large I3 satisfies () for a = 3 = 0.

Finally consider I;. We change variables and use Theorem 1.4,

so that
I = 2m)~HeHW= [ e MOy (y)x(n/e)
ca(z 4+ (€) 0y, € + (€)Pn) dydn

— ei<§>5*"DyDnX(y)X(n/e)a(a: + (&) %y, £+ (&)n)

R2d

‘(ym)=(070)'

58

Apply Theorem 1.5, and then we obtain for any N € N

N—-1 ik
=3 g(Dgng)’“c'z(aa5) + Ry (x,£)
k=0 """
with
(e, ©)1 < TIN5 95Dy Dy) N x()x(n/)

la|<2d+1
(et © e+ @),

< Cglg)m (PO,

Thus we can estimate I; as desired, and the claim is verified.
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Step 2. The asserted asymptotic expansion is essentially done in
Step 1. We omit the details.

Step 3. Finally we prove a*(z, D) is the formal adjoint of a(zx, D).
For any u,v € S(R?) we rewrite

(2m)3"?(a(x, DYu, v)

= (27r)d/2 /]Rd (/de ei(xfy)ga(a:, Ouly) dydﬁ)?)(m) dz

= [e7 ([, e " at@ Oule +y)(FD) () dyde ) dady.

Implement integrations by parts in (y,£), so that the integrand
gets integrable in (y,&,z,m). Then by Fubini's theorem and
Lemma 1.3 we can rewrite it as an oscillatory integral in (y, &, z,n)
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as
(2m)34/2(a(z, D)u,v)

= [ae@ a2, ©)ule +y) (F*5)(n) dydgdady

= [oau® VT a(e + v, €+ m)uly) (F7D) (n) dydédadn.

Next, again, implement integrations by parts in (z,£) to have
an integrable integrand, and apply Fubini’'s theorem. Then the
definition of a* appears, and we obtain

(2m)3%2(a(z, D)u,v)
= @m)? [, e7"a* (g, mu(y) (F*5)(n) dydn
= (27)3%2(u, a*(z, D)v).

Hence we are done. L]
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Example. Let
A=a(z,D)= Y aa(z)D% aq € C®(RY).
|a|<m

Then the formal adjoint of A on C°(R%) is computed by the
Leibniz rule as

A= 3 D)= 3 <°‘>(Dﬁaa)(x)pa—ﬁ.
la|<m BeNd lal<m
Hence the adjoint symbol a* is given by
=Y Y (g>(Dﬁaa><x>sa—ﬁ= >
BeNG la|<m BENG

which coincides with the asymptotic expansion.

1

B_
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o Extension to tempered disributions

Corollary 2.4. Let a € S,%(R%) with m eR, 0< 6§ < p<1 and
8§ # 1. Then a(z, D) extends as a continuous operator on &'(R%).

Proof. For any u € S'(RY) define a(z, D)u € S'(R%) as, for any
¢ € S(RY),

(a(z, D)u, ¢) = (u,a*(z, D)¢).
Obviously this provides a continuous extension of a(x, D) from
S(R%) to S’'(R?). We are done. O
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Proposition 2.5.Let me R, 0<d<p<1and §* 1. Then for
any a € S%(Rm)

e g (z, D)e¢ = a(x, €).
In particular, the quantization
S’,??a(R2d) — W;’fa(Rd), a(z,&) = a(zx, D)

is bijective.
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Proof. For any ¢ € S(Rd) we can compute

(2ﬂ)3d/2(e—ix§a(x’D)eim§7¢> — (27r)3d/2<ei“"5,a*(m,D)eiqub)
= [ e ( /R I S 2L AP ) ( /Rd e M FH(0) dg) dydn) da
— iyn —i(z+y)¢
= [([ema@ern([,e F3(0) d¢) dydn) da.
We integrate by parts in (y,n) to make the integrand integrable
in (¢,y,n). Then apply the Fubini's theorem, and we can proceed

(27T)3d/2<efiw£a(w’D)eim§7¢>
— <‘/R2d</Rd eiyn—i(x+y)€a*(x7§+n) ]:d)(c) dydn) dC) da

_Rd

- (/de( /Rd eV=iwC e (2, € + 0 + ) FH(Q) dydn> dg) da.

_Rd
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We integrate by parts in (y,n) and in (z,¢), and then we can
verify

(27T)3d/2 (e—izrfa(w7 D)eimé’ d))

- ﬁw VI ax (@ —y, € + n) F(C) dydnd¢da

= @02 [ ([, €"a" @~ y,€+n) dydn ) (=) do
= @m*"2 [ (a)*(2,£)é(x) da.

Since (passing through the Fourier space expression)

(CL*)* — eIDmD£<eIDmD€a> — (l,

we obtain the assertion. []
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§ 2.4 Composition

Theorem 2.6. Let a € S;né(R%) and b e Sf)a(m@d) with m,l € R,
0<d§<p<1landd*1. Then there uniquely exists a#b €
S;”Q'l(]RQd) such that

a(xz, D) ob(x, D) = (a#b)(x, D).
Moreover, a#b is expressed as
__ AiDyD
(a#) (@, ) = P PaCe, by, O, o) ©
= @m™ [, e "a(a,& + mb(z +y,€) dydn,
and, if 6 < p, then

1
d :

aeNG
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Proof. Let a#b be given by (V). Then we can verify a#b €
SZ}?Z(RM) and the asserted asymptotic expansion similarly to
Steps 1 and 2 of the proof of Theorem 2.3. We omit the de-
tails. The uniqueness of the “composite symbol” is clear by
Proposition 2.5 as long as it exists. Hence it remainds to show

a(xz,D) ob(x, D) = (a#b)(z, D),

where a#b is given by (©). For any u € S(R?) we can rewrite by
change of variables

(27)%%(z, D) o b(z, D)u(zx)

= Jyoa e ¥q(z, £) (/RQd e M (z + y, ulz + y + 2) dzdn) dyd€.

Integrate it by parts in (z,n) sufficiently many times, and then in
(y, &), so that the resulting integrand gets integrable in (z,7n,y, ).
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Then by Fubini's theorem and Lemma 1.3 we can rewrite it as
(27)%%(z, D) o b(z, D)u(zx)

= ﬁw e W ¥a(a, )b(z + y, nue +y + 2) dzdndydé

= s e_iyé_izna(gc7 &+ n)b(x + y,n)u(x + 2) dzdndydé.

Again, integrate it by parts first in (y,£), and then in (z,7n), and
apply Fubini's theorem. (Note integrations by parts in (z,n) do
not make anything worse.) Then we obtain

(27)%%(z, D) o b(z, D)u(zx)
= (27)¢ /IR?d e ¥ (a#b) (z, n)u(z + 2) dzdn
= (2m)?¥(a#tb) (z, D)u(x).

Hence we are done. L]
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Example. Let

A=a(z,D)= Y aa(z)D® B=b(z,D)= Y bs(x)D?
lo]<m |8I<i

With aa,bg € C°(R?). Then by the Leibniz rule

AB= 3. > > <a>aa(x)(mbg)(x)pa+ﬂ—v_

~eNd [al<m |BI<1

Hence the composite symbol a#b is given by

(a#tb)(z,8) = ) ( > <a>aa(w)§°‘_7> ( > (D”/bﬁ)(:v)fﬁ)
veNg \le|<m |8I1<l
1
= ng W(aga(wé))(agb(x,&)),
0

being compatible with the asymptotic expansion.
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o Commutator and Possion bracket

Definition. 1. Define the commutator of operators A, B on
S(RY) as

[A, B] = AB — BA.

2. Define the Poisson bracket of a,b € C1(R2%) as

{a,b} = Oa Ob 8(1@

geov J¢ 2d
O€ Oz axagGC(R )-
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Corollary 2.7. Let a € S;”(;(R%) and b e S/ljg(R?d) with m,l € R
and 0<d<p< 1.
1. If suppansuppb =0, then
a#tb € STO(R?9).

2. One has
[a(z, D), b(x, D)] € W=D (rd),
and the associated symbol satisfies

(a#b — b#a) + i{a,b} € S’Pj}jl‘Q(p‘@ (R2%).

Proof. The assertions are clear by Theorem 2.6. L]
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Remark. According to Theorems 2.3 and 2.6, a multiplication
operator by
a(z,€) on the phase space R??

may be ‘“comparable” to a pseudodifferential operator

a(z,D) on the configuration space R%

up to errors of lower order. Such a comparison gets more accu-
rate in the high energy (frequency) limit || — oo.
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§ 2.5 Parametrix

Definition. Let a € S;”§(R2d) withmeRand 0<d<p<1.

1. We say a(z,§), or a(x,D), is elliptic if there exists ¢, R > 0
such that for any (z,¢) € R2? with |¢| > R

la(z, )] > elg|™.
2. We call b(z,D) € \U;%”(Rd) a parametrix for a(z, D) if

a(z, D) ob(z, D) — 1 € W~X(RY),
b(z, D) o a(x, D) — 1 € W™ (RY).

Problem. Show a parametrix is unique up to \U—OO(Rd) if it exists.
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Theorem 2.8. Let a € S;”(g(RQd) with meR and 0 < § < p < 1.
The following conditions are equivalent to each other:

1. a is elliptic;

2. There exists by € S;g”(RM) such that

a(x, D) o bo(z, D) — 1 € W ¥~ (RY) (W)
or

bo(z, D) 0 a(z, D) — 1 € W, ¥~ (&b, (@)

3. a(z, D) has a parametrix b(z, D) € W;?(Rd).
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Proof. 1 = 2. Take x € C*°(R%) such that

_JOo for €] <1,
X(g)_{l for [¢] > 2,

and set for large R >0

bo(z,€) = x(¢/R)a(x, &) L.

Then we can easily verify bg € S;g”(RQd). Moreover, by Theo-
rem 2.6 it clearly satisfies both (&) and (Q).
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2 = 3. We first note that by Corollary 2.7, if either (#) or (©)
holds, then both of them hold. Let by € S;Z;”(RQd) be as in the
condition 2, and we set

r=a#by - 1€ 5, VR,
Then, since
bo#t(—r) i ¢ S;gn_j(p_é)(RQd),
we can take their asymptotic sum: For some b € S;E”(de)
00
b Y bo#(—r)#.
=0
Now we have a#b— 1 € S~°(R%). In fact, noting
a#tbo#t (—r)# = (—r)#T — (-r)#UHD),

7

we have for any k € N
k—1 ' s
a#tb —1=a#t|b— Y bo#t(—r)#/ | — (=r)#F e 5 J7V (R,
j=0
Similarly, we can construct ¢ € Sp_g”(]RQd) such that
c#ta—1 € ST°(R?).
However, then
b= c#a#b+ (1 — c#a)#b
= c+ c#(a#b — 1) + (1 — c#a)#b,
so that
b—ce STO(R?).

Thus b(z, D) gives a parametrix for a(xz, D) as desired.
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3 = 1. By the assumption and Theorem 2.6 there exists C1 > 0
such that

la(z, €)b(z, &) — 1| < Cq(¢)~(P=9)

On the ohter hand, since b € Sp_g”(R%), there exists C» > 0 such
that

|la(z, £)b(z, )| < Cala(z, §)|(§) ™™
Hence, combining these estimates, we obtain
jaz,)| = C5 (e, )b, O)I(6)™
> 05 (1 = la(z, bz, €) — 1]) ()™
> Cy (1= ()=,
implying the ellipticity of a. []
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§ 2.6 Weyl Quantization

Definition. Let a € 57" s(R24) with m € R, p > —1 and § < 1,
and let ¢ € [0,1]. Deflne the t-quantization of a as, for any
u € S(RY),

a'(z, D)u(z) = (2r) ¢ /de ei(xfy)ga((l —t)x + ty, §>u(y) dydé.

In particular, we call:
1. a(z, D) = a%(z, D) the standard (or left) quantization;
2. al(x, D) the right quantization;

3. aW(z, D) := a'/2(x, D) the Weyl quantization.
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o Continuity

Proposition 2.9. Let a € 57" S(R24) with m € R, p > —1 and
6 <1, and let ¢t € [0,1]. Then at(a:,D) is a continuous operator
on S(RY).

Proof. We can prove it similarly to Theorem 2.1. The details
are omitted. []

Problem. Fill out the details of the above proof.
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Proposition 2.10. Let a € S;né(R%) with m € R, p > —1 and
<1, and let t € [0,1]. Then

al(z, D)* = (a)}~(z, D).
In particular, the following holds.
1. al(z, D) extends as a continuous operator on S’(R?).
2. If a is real-valued, aW(x,D) is formally self-adjoint, i.e
aWV(z,D)* = aW(z, D).
Proof. We prove only the former assertion since the latter ones

are obvious. We implement integrations by parts to change the
order of integrations as follows. Take large N € Ng such that

m—2(1—38)N < —d,
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and then we can compute
(2m)(al(x, D)u,v)
= Jea (/de ei(xfy)£a<(1 — )z + ty, §>u(y) dyd{)f)(m) dz
= | @O T2V a (1~ D) + ty, € )u(y) () dededy

— ei(:v—y)§<§> —4N

R3d
(D)2 (Dy)?Na((1 = t)a + ty, €)u(y)v(x) dededy

— ei(ﬂﬂ—y)§<§>—2N(Dm>2Na<(1 — )z + ty, g)i(x)u(y) dzdédy

R3d
= Jea u(y) (/R2d ei(r_y)ga((l -tz + ty,f)i(x) dxd§> dy
= (2m)%(u, @' (z, D)v).

Hence we obtain the former assertion. We are done. []
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o Change of quantization

Theorem 2.11. Let a € S;né(RQd) withm e R, 0<§<p<1
and § # 1, and let t,s € [0,1] with ¢t # s. There uniquely exists
be S{%(RQd) such that
a'(z, D) = b*(z, D). (©)

Moreover, b is expressed as

b(,€) = =P Deq (s, ¢)

= @m =7 [, e/ a(a 4+ y,¢ + ) dydn,
and, if 6 < p, then
(t__sﬂal aaQ

d
aeNG

84

Proof. Step 1. We first let b be given by (&). Then we can verify
b e S%(de) and the asserted asymptotic expansion in exactly
the same way as in the proof of Theorem 2.3. We omit the
details.

Step 2. Next we prove (<) for b given by (&), but only present
the outline. By (&) we can write

(27)2%5 (2, D)u(z)

—|t—s? / ei(x—z)&( / o—iyn/(t—s)
R2d R2d

ca((1 = )+ sz 4,6+ 1) dydn)u(z) dzde.
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We change variables, integrate it by parts and change the order
of integrations, so that

(2m)2%* (z, D)u(x)

= Joag® (e 4 52 4 (t = $)y, € + n)ulx + 2) dydndzde.
We further change variables, and apply the Fourier inversion
formula:

(27)29%5 (2, D)u(z)

= Joaa® T Va(w + 2+ ty, Mu(z +y + 2) dydnd=zdg

= @m? [, ,e™"a(@ + ty,n)ule + y) dydn
= (27)%t (z, D)u(z).

Hence () is verified for b given by (é&).
86

Step 3. We finally discuss the uniqueness. Suppose that both
b,c€ S%(Rm) satisfy (). If we let

iSDg;ng7 eiSDzD£C7

c=

b=e
then we have b(z, D) = &(z, D), so that by Proposition 2.5
b=2¢.
Now we note that e*P+P¢ is pijective from S%(RM) to itself,

since etisDzDs map it into itself, being the inverses to each other
on &’(R2?). Hence we can conclude b = c. We are done. [
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o Composition

Theorem 2.12. Leta € S;”(S(de) and b e sf) s(R21) with m,l € R,
0<d§<p<1land§#1, and let t € [0,1]. Then there uniquely
exists a#lb € S;”;Z(RQd) such that

al(z, D) o b'(z, D) = (a#£'b)!(z, D).
Moreover, a#!b is given by

(a#'b)(, €)

y=z=z,

— & PuDi=D-DIq (1 — )z + t2,b((L — )y + t,0)| *)
n=¢=¢§

= @m)72 [ e 0a(a + 2,6 + )
b((1 = t)y + z,§ + ¢)dydndzdg,
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and, if § < p, then

a#tb~ >
keNg

kkl (8y0y — 920:)"

a((1 = O)a + tz,mb((1 — )y + t=,Q)),

Proof. Step 1. Here we prove a#t'b given by (&) belongs to
S;”Q'I(RM). However, we only present the strategy since the
proof is similar to that of Theorem 2.3. It suffices to show

|(a#'b) (=, €)| < C (&)™,
Fix any x € C°°(R249) satisfying

1 for |(x, <1,
x(z,y) = (=, 9)]
0 for |(z,y)| = 2,
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and we set
x1(&y.m) = x((€)%, <s>5) ( o f’n,ze L&) ¢),
x2(&y,m) = [1 = x((€)°y, (©)°2)]x(2¢7 (&) ~Pn, 2¢ 1)),
x3(&ym) = x(e 1O In, e 1) TX)

—x(2¢7? <§>—Pn, 2¢71(e)7¢),
xa(&ym) =1 —x(e 1O e HE) ),
where € > 0 is a sufficiently small constant. The we split a#£%,

using these cut-off functions, and estimate them similarly to
Theorem 2.3. We omit the rest of the arguments.

Step 2. The asserted asymptotic expansion is obtained similarly
to Theorem 2.3. We omit the details.
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Step 3. Now, let a#£tb be given in the assertion, and we prove
al(z, D) o b'(x, D) = (a#:'b)!(z, D).
For that we first construct c € S;’j‘g"l(RQd) such that
al(z, D) o b'(x, D) = c(z, D),
and then verify
e tDzDe, — gty

The following computations can be verified by integrations by
parts, change of variables and change of order of integrations,
though the details are omitted for simplicity. For any u € S(R%)
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we compute
(27T)3dat(m, D)o bt(x, D)u(z)
= (27)3%¢t (2, D) o bt (z, D) (F*Fu)(z)
= J0u €% = D) + ty,6) [ Joaa @Y7L = Dy + t2,m)
: (/dee‘(#w)fu(w) dwd()dzdn} dyde
= Joea® VTl + 1y, )b(w +y + t2,m)
~u(x +y + 2z + w) dwd{dzdndydé
= [0 (s e + .+ 0

- R2d
bz +y+tz, ¢+ n)dzdndydf)u(m + w) dwd(.
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Hence we should set

o(a,¢) = @M [ | e Na(a +ty,¢ +©)
b+ + t2,¢ + 1) dzdndyde.

Similarly to Theorem 2.12, we can show ¢ € SZ?’(R%). Then
we further proceed along with the Fourier inversion formula

4d

(27T)3de_itDID<C(LL‘, C)

= t7 [, €T e w4 by, C 40+ 6)

bz +w+y+tz, + 0+ n) dzdndydédwdd
= Joea® T 0z 4 tw, (4 )

“b(x 4+ (1 —t)y + tz,( + n) dzdndydédwdo.
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Hence with the Fourier inversion formula
(2m)3e 1P Pee(a,¢) = (2m) [, e a(a + tw,¢ +)
-b(z + (1 —t)y, ¢ + n) dndydédw
= (2m)3(a#'b) (2, ¢).

Thus we obtain the claim.
Step 4. Finally it remains to discuss the uniqueness. The unique-

ness of the ‘“t-symbol” can be shown as in Step 3 of the proof
of Theorem 2.11, and we omit it. Thus we are done. []
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Corollary 2.13. Let a € S;”(;(RM) and b e Slpé(RQd) with m,l € R
and 0<d<p<1l. Then

Wy u1/2p (=1)le anB \(aaalb
aF b= 0D ﬂzeNd (2Bl O O ) (£ 0:).
@, 0

Moreover,

a# Wb — b#Wa + i{a, b} € S7H30D (R2Y),
Proof. The expansion is verified by Theorem 2.12 and the multi-
nomial theorem. Under interchange of the indices a« and 8 a

partial sum over |a|+ |8| = k € Ng is even or odd according to k
even or odd, respectively. Thus the latter assertion follows. [
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Problem. Let a € S§ o(R??).

1. Verify
FaW(z, Dp)F* = aV(~Dg,€): SRY) —» SRY. (V)
2. For any t € R define the free Schrodinger propagator as
QA2 = Fre 21 S(RY) - S(RYD).
Then verify

e tA2W (5 DYetA/2 = (W (x4 tD, D).
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Remarks. 1. These identities support the idea that «"V(z, D) is
merely a multiplication operator by a(z,&) on R24, with F
and el'® peing symplectic transforms

(xag) = (—5,1'), (l‘7£) — ($+t€,€),

respectively.

2. Due to the symmetry (Q) in z and &, it is also possible to
develop the theory of WDOs for symbols satisfying

020 a(, €)] < Cogta)mPlolHl8l

Such a class is useful, for example, in the quantum scattering
theory. This is just an example of various symbol classes.
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Chapter 3
Pseudodifferential Estimates

§ 3.1 L2-boundedness

Theorem 3.1.Let 0 < § < p < 1. Then there exist C > 0 and
j € Ng such that for any a € Sg(;(Rm) and u € S(R%)

lla(z, D)ull 2 < C|a|j75'25”u”L2'

In particular, a(z, D) is bounded on L2(RY).
Remark. Recall the seminorm | - |j gm on S75(R2) is defined as
p, s

lal = lalj,sm, = sup{(&) ™A o0  a(a, €));
o + 18] < j, (=,€) € R?}.
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Proposition 3.2 (Schur’s lemma). Let K : RYxR? — C be mea-
surable, and assume there exist «,5 > 0 such that

/Iéd|K(:v,y)|dy <a fora.e. zeRY
/Rd|K(m,y)|dm < B fora.e. yeR%

Then, for any u € L2(R%) and for a.e. z € R?, K(z, )u is inte-
grable, and

H/Rd K(,y)uly) dyHL2 < (@B)?|[u]l 2.
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Proof. Let v € L2(R%). Then by Fubini's theorem and the
Cauchy—=Schwarz inequality

/]Rd (-/Rd |K (@, y)uly)| dy>2 dx

< [ 1K @ )IIK (2. 2)]u(w)][u(=)| dydzda
1

< —

- 2 JR3d

1
+5 g K@ 0IIK (@, ) [u(2)? dydzda

< [P ([ 1K@l ([ 1K@ 2] dz) do) dy
< aBllul?..

Hence by Fubini's theorem again the assertion is verified. L]

|K (z, )| K (, 2)[[u(y)|? dydzdz
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Proof of Theorem 3.1. For simplicity we shall not keep track of
dependence of constants on seminorms, but it is not difficult.

Step 1. We first prove the assertion for a € S;“(;(RQd) with m < —d.
Let u € S(Rd). By the assumption and Fubini's theorem

— —d i(z—y)¢
a(e, Dyu(x) = @m) 4 [ ([ € a(e,6) de) u(y) dy,
so that a(x, D) has the Schwartz kernel
K(z,y) = (20~ [ ™ a(a,6) de.
By integrations by parts we can verify that for any N € Ng
K (2,9)| < C1(x —y) 2",
Schur's lemma applies for large N, hence a(z, D) € B(L2(R%)).

102

Step 2. Next we prove the assertion for a € S%(Rm) with m < 0.
By Step 1 and induction it suffices to show, if for some [ < 0

Wl (RY) C B(L2(RY)), ()
then
w2®Y) C BL2(RY).
Suppose (&), and take any a € Sﬁ/;(RQd). Then for any u € S(R%)
by the Cauchy—Schwarz inequality
la(z, D)ul|?> < |la*(x, D)a(x, D)ul| fol|ul 2-
However, by a*(z, D)a(z, D) € \Ué s(RY) and (&) it follows that

late, D)lls(r2y < lla* (2, D)a(, D)y < 0.

Thus the claim is verified.




Step 3. Finally let a € Sgé(RQd). We set

b(z,&) = \/2|al3 - la(z, )2 € 595(R?).
Then there exists ¢ € S;§p_5)(R2d) such that
a*#a + b*#b = 2|l + c.
Now for any u € S(R%)
la(z, D)ull?2 < [la(z, D)ul|72 + [|b(z, D)ul?.
= 2a3||ull?2 4 (c(z, D)u, u) ;2
< (2lald + lle(z, D) | g 12)) 1l 22,

and hence we obtain the assertion. []
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o Calderon—Vaillancourt theorem

Theorem 3.3 (Calderon—Vaillancourt). There exist C > 0 and
j € Ng such that for any a € S§ ,(R??) and u € S(R?)

la(a. Dyullyz < Clal, g lull 2

In particular, a(z, D) is bounded on L2(R%).
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Lemma 3.4 (Cotlar—Stein lemma). Let H be a Hilbert space,
and assume a family {A;},en C B(H) satisfies for some M >0

1/2 * 1/2
sup > [[A;A% <M, sup Y [|AZAL < M.
jeN g B jeN iy T TIBOY

Then the series

S = ZA]

jEN
converges strongly in B(H), and

1Sl 5(aey < M.
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Proof. Step 1. Here we prove that for any n € N

n
ISnll < M; Sy = Z Aj € B(H).
j=1
For that we shall compute and bound ||Sy||?™ for m € N. Since
S;Sp is bounded on #H, we have
1Sal> = sup [[Spull? = sup (S;Snu,u) = [|S;Snl-

llully=1 [lul[y=1

Then, since S;;S, is self-adjoint,

1Sn 2™ = [|S}:SnlI™ = [|(S;Sn)™|I-

Hence we are lead to compute and bound

n
(S*S)mzl Z AS Ay AT A,
]17"'732m=1
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Denote the above summand by A]1 o Then we have

||A]132m|| < ||A;<1Aj2|| o ||A;2m_1Aj2m||7
and
||Aj1~-~j2m|| < ”A ||||A]2 33” “ Jom—2 ij 1H||A]2m||
Noting

14511 = 11431l = [ A34;]11/2 < M,
we can deduce

1A gy | < M(IA3 Al A A%l 14T, Ago,l

Therefore by the assumption

)1/2

1Sn]|2™ < nM2™, or ||Su|| < nt/ ™) pr,

Now by letting m — oo we obtain the claim.
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Step 2. To prove Sy is strongly convergent as n — oo we split

H=Gagh; g:span(U RanAZ).
keN

Note S, = 0 on G since for any ue gL and v e H

n
(Spu,v) = Zl(u,A;v) =0.
j:

Thus it suffices to discuss the limit of S,u for v € G, however,
due to Step 1 and the density argument it further reduces to the
case u € Ran A;;. Let u= A;;v for some v € H, and then

Z | Ajull < Z A ALY 2 A ALY 2 o)l < M2Jo].
j=1 j=1

This implies Spu is absolutely convergent for u € Ran AZ-
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Step 3. Finally we estimate ||S||. However, it is straightforward.
For any u € H

[Sull = Jim_[[Spull < Jim ([Snllllufl < Mlul.

n—oo

Hence we are done. []

Proof of Theorem 3.3. Step 1. By Theorem 2.11 it suffices to
show aW(z, D) is bounded on L2(R%). Let x € CX(R2?%) be such
that

o oxp=1 xu()=xC-p)

M€Z2d

(construction of such y is left to the reader as a Problem), and
we microlocally cut off and set

ay = xpa, Ay = axv(m, D).

Step 2. Here we let u € Cgo(Rd), and prove pointwise convergence
aV(z, Dyu(z) = > Auu(z). (®)
ﬂEZ2d

We introduce
L1 = ()72(1 - ¢Dy),
and rewrite a partial sum of the right-hand side of (#) as

Z Auu(x)—(Qﬂ') d/ i(xfy)f Z levau<x+y,§>u(y)dyd£.

lu|<n lnl<n
Since the partition {Xu}uezgd of unity is uniformly locally finite,
we have for any (z,y,&) € R3¢ and n € Ny

Z Ly au<

|p|<n

y,s)u(y)' < Crlaln V.




Hence by the Lebesgue convergence theorem

> Awu) = @m0 [ dei@—y)ﬁLiVa(xTﬂ,s)u(y) dyde,

R2
MEZ2d

and we obtain ().

Step 3. Now it suffices to verify the assumptions of the Cotlar—
Stein lemma for # = L2(R%) and {Au} ,,czpa- Let us write

ApAju(z) =/RdK,uu(CU7y)u(y) dy
with
— —2d i(w§—26+2n—yn)
Ku(o,y) = (@m) 24 [ e

. a#<w + Z,g)a,,(y JQF Z,n) dndzde.

2
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We are going to apply Schur’'s lemma. Note K, € C®(R??).
Set
2
"o=((@-y.e-n) (14 (@-y)(D¢+ Dy) — (€ —n)D-),
and we rewrite

Ky (z,y) = (2m) =2 /R3d ol (@E—28+2n—yn)

L ay (%FZé) ay <%+z n) dnd=de.

Note on the support of the integrand we have for N > 2d + 2
c+z \_ (y+=z
(5 e)m(5 )
2 ap & )av 5 7
> -N
< Conlal{(z —v,e =)

d—1

H1=Np —yy=d=1,

2
< C3,nlaly(p —v)
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so that
sup /d | Kz, y)| dy < Cq nlal|Z (u — v)23T27N,
zeRd /R

and

sup [ 1Ko, )] da < Ca laff e — )20 +2Y,

yeRd
Hence by Schur's lemma it follows that

2 2d+2—-N
[ApAS|| < Ca nlalR(p — v)2P 2N,

Similarly we obtain
147 Avl < Cs Nlale{p — w2 T2,

Now the Cotlar—Stein lemma applies for sufficiently large N, and
along with Step 2 we obtain the assertion. []
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§ 3.2 Sobolev Spaces

Definition. 1. Define the weighted L2-space of order s € R as
L2(RY) = {u e S'(RY); (2)*u € L2(RY)},
which is a Hilbert space with respect to the inner product

()7 = [ (@) u(@)v(@) da.

2. Define the Sobolev space of order s € R as
B (RY) = {ue S'(RY; Fue LZ(RD},
which is a Hilbert space with respect to the inner product

(wo)s = [ (62 (Fu)(©F0)(E) de.
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We further set
H®@®RY = ) H®RY), H R = J H®RY.
seR selR

Note that for any s <t

S(RY ¢ HX(RY) c HY(RY) c H*(RY) ¢ H=®(RY) ¢ S'(RY).

Proposition 3.5. Let s € R. Then S(R?) is dense in H5(R%).

Proof. It is straightforward if we discuss it in the Fourier space.
We omit the details. []
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Theorem 3.6 (Sobolev embedding theorem). Let s € R and
k € Ng with s > k4 d/2. Then

H*(RY c CE(RY).
Moreover, there exists C' > 0 such that for any u € H5(R%)
lull g = sup{|0°u(@)|; |a| <k, = € R} < Cllufgs.

Therefore the embedding H*(R?) — CE(R?) is continuous.
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Proof. Let s > k+ d/2. We first note that for any u € S(Rd),
la] < k and z € R?

IDu(@)| = (2m) 2| [ e (Fu)(e) de

< omy /2 ([ 16262 0¢) " e = Clullr.
Let v € H5(R?). Take a sequence (vn),eny on S(R?) such that
vp — v in HS(RY).
Due to the above bound (vn),cn is also a Cauchy sequance on
CE(R?Y), and thus there exists w € CF(R?) such that
vp = w in C’b“(]Rd).

By uniquness of limit in &'(R?) it follows that v = w € C’g(Rd).
The asserted bound also follows from the above one. []
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Proposition 3.7. Let s,t € R. The operator (D)® is unitary as
HTS(RY) — HY(RY).
Moreover, it also gives linear isomorphisms
H®(RY - H®RY), H (R — H~°(RY).
Proof. By the Fourier transform we may reduce the assertion to

that for the corresponding weighted L2-spaces. Then the proof
is straightforward. We omit the details. L]




Theorem 3.8. Let a € sg%(R?d) or a € SFH(R2%) with m € R
and 0 < §d < p<1, and let s € R. Then a(x,D) is bounded as
H3(RY) — H5~™M(RY).

Proof. Set

b(z, &) = (&) "#a(z, ) #(E) € 9 5;(R?) or S§ o(R).
By Theorems 3.1 or 3.3 there exists C > 0 such that for any
u € L2(R%)
[6(z, D)ull 2 < Cllull 2.
Now we let u = (D)%v with v € S(R?), and then it follows that
lla(z, D)o grs—m < Cllv||gs-
Since S(R%) ¢ H*(R?) is dense, the assertion is verified. O
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o Smoothing operators

Proposition 3.9. Let a € S™°(R29).

1. For any u € S'(R%) there exists N € Ng such that
a(z, D)u € (z)NH®(RY) c C®(RY).
2. a(z, D) has the Schwartz kernel K (z,z—y) with K € C°°(R2%)
satisfying for any a, 3,y € Ng
sup ‘zaagagK(w,z)‘ < 0.
(z,2)€R2d
3. Conversely, any operator with the Schwartz kernel K(z,z—y)

satisfying the above properties belongs to \U—OO(Rd).
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Proof. 1. Due to the structure of S'(R?) for any u € S'(R%)
there exists N € Ng and s € R such that
v = (z) 72Ny e HS(R?).

Then we can write for some b, € S~°°(R2%)
ae, Dyu(a) = )~ [ €%((Dg)*Ne™¥ ) aa, €)v(y) dyd

=@n™ ¥ 2 [, (2 Ouly) dyde,
la|<2N

so that by Theorem 3.8

(@) 2Na(e, Dyua) = Y @(2)"2Nba(e, D)v(z) € HO(R?.
la|<2N

The inclusion H®(R?) ¢ C*°(R?) is obvious by Theorem 3.6.
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2. For any u € S(Rd) we can write by Fubini's theorem
ae, Dyu(@) = [ K (2@~ y)uly) dy
with
K(z,2) = (2r) ¢ /R Lea(z, ) de.

The asserted properties of K follows by integrations by parts.

3. We can construct the associated symbol as
— —iz€
a(x, &) = /]Rde K(x,z)dz.

It is easy to see a € S~°(R2%9), and that a(z, D) in fact has the
Schwartz kernel K(z,z —y). We omit the details. [




o Compactness criterion

Theorem 3.10. Let a € 526(]1%) with0<d<p<lorp=4=0,
and assume for any «, 8 € NJ there exists m € L>®(R?%) such that
020 a(z, €)] < m(x, €)(g)21I=r17|

and

Iim m(x, &) = 0.

[(@,8)| =00

Then a(z, D) is a compact operator on L2(R%).
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Proof. We first reduce the proof to the case a € CX(R2%). In
fact, take any x € C2°(R24) such that

1 for [(z,8)] <1,

e = {o for |(z,6)| > 2,

and set for e > 0

ae(x,§) = x(ex, ef)a(x,§).

Then by the assumption we can see for any j € Ng
|a—a5|50 — 0 as e— 40.
0,0
This implies by Theorems 3.1 or 3.3
lim ae(z, D) = a(z, D) in B(L?(RY)),
e——+0

and thus the reduction is valid.
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Now suppose a € C(R24), and let (uj)jen be a bounded se-
quence on L2(R%). By the assumption there exists a compact
subset K C R% such that for any j € N
supp a(x,D)u]‘ C K.
In addition, since a(z, D) € W—°(R%), by Theorems 3.6 and 3.8
there exists C' > 0 such that for any j €N, |a| <1 and = € R¢
‘aaa(x,D)uj(a:)‘ <C.

Then by the Ascoli—Arzela theorem we can choose a uniformly
convergent subsequence of (a(x, D)u;) cn, and it also converges
in L2(R%). Hence we are done. ]
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Remark. Let us present a heuristic. Let a be asin Theorem 3.10,

and take any bounded sequence (u;);ey ON L2(R%). Suppose we

could regard wu;(x) as a function wu;(z,&) on R24, and look at
a(z,&uj(x,&) instead of a(z, D)u;(x).

By the assumption and the uncertainty principle u;(z,§) should

be “uniformly bounded” on R24. Thus we would have

uniformly in j € N. Then by the diagonal argument we would
be able to extract a subsequence of (a(z,&)uj(z,§)) en that con-
verges on any compact subsets of R24,
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§ 3.3 Garding-Type Inequalities

Theorem 3.11 (Elliptic a priori estimate). Let a € 57", S (R24)
be elliptic with m e R and 0 < § < p <1, and let s,t € R Then
there exists C' > 0 such that for any u € S(R%)

[ull gotm < C(llalz, DYullzs + llull g0
Proof. By the assumption and Theorem 2.8 there exist b €
ST (R24) and r € ST°(R?9) such that
1 =b(x,D)a(x, D) + r(z, D),
so that for any u € S(R%)
(D>S+mu = <D)S+mb(x, D)a(xz,D)u + (D)S+mr(ac, D)u. (®)
Then the assertion follows by Proposition 3.8. []
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Example. Let a € S;na(R%) be ellipticwithm e Rand 0 < 4§ < p <
1. Given f e H5(R%) with s € R, we consider an inhomogeneous
elliptic equation

a(z,D)u = f

Suppose we find a solution w in a wide Sobolev space H*N(Rd)
with N > 1. However, then it automatically follows by the a
priori estimate, or more presicely by (#), that

u e HT(RY).

We can always recover the regularity of a solution w. Such a
property is called the elliptic regularity. See also Theorem 4.1.
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Theorem 3.12 (Garding inequality). Let a € S;”(;(de) with
meR and 0 < § < p< 1. Assume there exist eg >0 and R >0
such that for any z € R% and |¢| > R

Rea(z,&) > (€)™

Then for any e € (0,e9) and I < m there exists C > 0 such that,
as quadratic forms on H™/2(R%),

Re(a(z, D)) > e(D)™ — C(D),
i.e., for any u € H™/2(R4)
Re(a(aﬁ7 D)u,u)

2
122 ellullny2 — CllulZyyo.
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Remarks. 1. In general, for an operator A we define
Re A = %(A £ A%, ImA= %(A _ A%,
These conform with the associated quadratic forms as
(Re Au,u) = Re(Au,u), (ImAu,u) =Im(Au,u).
2. We can say symbol estimates are translated into the associ-
ated operators up to lower order errors.

3. Inner product is more informative than norm.

Problem. Deduce the elliptic a priori estimate from the Garding
inequality.




Proof. Take sufficiently large C; > 0, so that for any (z, &) € R2d

Rea(z,€) > (€)™ — C1 (€)™ T,
Set for any € € (¢, €q)

b(a, &) = (Rea(e,€) — (€)™ + C1 (™ +9) /% ¢ 5/ (w29,

Then there exists ¢ € S:)”gp""‘s(RQd) such that

(0.0 +a"(@,0) = F#D) @ O + ¢ — (.0,
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Hence we obtain for sufficiently large Cs > 0

Rea(z, D) = b*(x, D)b(x, D) + (D)™ — c(x, D)
> (D)™ — Co(D)y™ PO,

Finally for any I <m we can find C3 > 0 such that
—Co(D)"PH0 > (€ — €)(D)™ — C3(D).

Thus we obtain the assertion.

133

Theorem 3.13 (Sharp Garding inequality). Let a € S%(RQCI)
with m € R and 0 < § < p < 1. Assume there exists R > 0 such
that for any =z € R and |¢| > R

Rea(z, &) > 0.
There exists C > 0 such that, as quadratic forms on H™/2(R%),

Re(a(x, D)) > —C(Dy™—P+9,

Remark. The Fefferman—Phong inequality further improves
the right-hand side of the sharp Garding inequality.

Proof. We omit the proof. []

Problem. Deduce the Garding inequality from the sharp Garding
inequality.
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Chapter 4
Application I: Analysis of Singularities




§ 4.1 Pseudolocality

Definition. Define the support and singular support of u €
S'(R?) as

(&
suppu = <U{U c R% U is open, and uly = O}) ,
(&
singsuppu = (U{U c R% U is open, and uly € OOO(U)}) ,
respectively.
Remark. By definition u|y = 0 iff
(u,¢) =0 for any ¢ € C°(U).
Similarly, u|yy € C*°(U) iff there exists v € C>°(U) such that

(u, @) = /Uv(x)gb(;c) dz for any ¢ € CX(U).
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Theorem 4.1. Let a € Sg%(;(RQd) with meR and 0<d < p< 1.

1. a(z, D) is pseudolocal, i.e., for any u € &'(R%)

sing supp a(z, D)u C sing supp u.

2. If a is elliptic, a(z, D) is hypoelliptic, i.e., for any u € S'(R%)

sing supp a(x, D)u = sing supp u.

Remark. An operator A on &’(R%) is said to be local if it satisfies
for any u € S'(R%)

supp Au C supp u.

See also Proposition 4.2 below.
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Proof. 1. Let u € S'(R%). Let U c R? be an open subset such
that

uly € COO(U).
Take any x3 € C&(U), and choose xo € C&°(U) such that
x2 =1 on a neighborhood of supp xi.

We decompose

x1a(z, D)u = x1a(z, D)xou + x1a(z, D)(1 — x2)u.
Then, since you € S(RY),

x1a(z, D)xou € S(RY).
On the other hand, since yja(z, D)(1 — x2) € W—°(R%),
x1a(z, D)(1 — x2)u € S(RY).
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Thus we obtain yia(z, D)u € S(RY), and hence
(a(z, D)u)|y € C*(U).

This implies the assertion.
2. If a is elliptic, then by Theorem 2.8 there exist b € S;g”(]de)
and r € ST°(R2%) such that for any u € S'(R%)

u = b(x, D)a(x, D)u + r(x, D)u.
Then by Proposition 3.9 and the assertion 1

singsuppu C sing supp b(x, D)a(x, D)u C singsupp a(z, D)u.

Thus the assertion follows. []




o Topic: Local ¥DOs

Proposition 4.2. Let a € 57" S(R24) with m e R, 0 <6 < p <1,
§#1and p#0. a(z,D) is Iocal if and only if it is a PDO.

Proof. Step 1. First, assume m < —d, and we show a = 0. In
this case we can write for any u € S(R%)

ale, Dyu(a) = [ K(z.y)u(y) dy
with
K(z,y) = 20~ [ e (a,6) de.

By the locality we obtain K(z,y) = 0 for = # y, hence the claim.
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Step 2. Next, let a € N‘é, and we prove (B?a)(m,D) is also local.
However, it is straightforward since by integration by parts we
can write for any u € S(R%)

(9¢a)(z, D)u(z) = (-l 3= (- 1)5l< ) 2 Pa(z, D)xPu(z).

BeENG

Step 3. Here we prove the assertion. By Taylor's theorm and
Steps 2 and 1 it follows that for any N € Ng with m — pN < —d

@O = Y —(3fa)(z,0)€",

la]<N

This implies a(z, D) is a PDO. L
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§ 4.2 Wave Front Set

Definition. We say I C R? is conic if it satisfies

Eel, t>0 = tEel.

We also say " ¢ R2¢ js conic if it satisfies

(2, ) el t>0 = (a,t8) el

In the following we shall write
R>\ 0 =R? x (R?\ {0})

for short.
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Definition. The wave front set of v € S'(R%):
WF(u) c R??\ 0

is defined such that (zg,&y) ¢ WF(u) if and only if there exist
x € C(R%) with x(zg) # 0 and a conic neighborhood I ¢ R%\ {0}
of £p such that for any N > 0O there exists Cy > 0 such that

((Fxu)(©)] < Oy~ for g er.

Remark. By definition WF(u) c R24\ 0 is closed and conic.
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Theorem 4.3. Let u € S/(R%). Then
m(WF(u)) = singsupp u,
where
RN\ 0= RY (2,8) >z
is the first projection.

Remark. WF(u) represents ‘“direction-wise singularities” at each
point.
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Proof. Step 1. Let xg & m(WF(u)). For each ¢ € S%1 we have

(z0,€) € WF(u),
so that we can find x € CX(R%) and T c R%\ {0} as in the
definition of the wave front set. Since S 1 is compact, we can
choose ¢; € 891, j =1,...,k, and the corresponding x; and T,
such that

k
U r; =r%\ {0}
i=1
Now we set
X = X1 Xk € CX(RY).

Then obviously x(zg) # 0, and moreover we can verify that for
any N > 0 there exists C > 0 such that

[(Fxu)(€)] < On(e)™N for € e RL
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(The verification is left to the reader as a Problem.) Thus
xu = F*Fxu € C®(R%),
and this implies zqg ¢ sing supp u.
Step 2. Conversely, let zg ¢ singsuppu. Then there exists x €
CX(R?) such that
x(z0) # 0,  xu € CE®RY) C S(RY.
Since Fxu € S(R%), for any N > 0 there exists Cy > 0 such that

[(Fxuw)(©] < On(€)~N for ¢ e R
Thus for any ¢ € R4\ {0} we obtain (zg,£) ¢ WF(u). O]
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Problem. Compute the wave front sets of the following distri-
butions.

1. The Dirac delta funcion § on R%;
2. §(2") ® 1(2") for (2/,2") € RP x RY;
3. dga1 On RY;

4. (z+i0)~! on R;

5. The characteristic function xr of an angular domain " C R2.
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§ 4.3 Microlocal Ellipticity

Definition. Let a € S7(R??) with m e R and 0 <5 < p < 1.

1. We say a(z,£), or a(z, D), is elliptic at zg € R? if there exists
¢, R > 0 and a neighborhood 2 C R? of xg such that for any
x € and || > R

la(z, £)| = €l¢™.

2. We say a(z,€), or a(z, D), is elliptic at (zq,&) € R24\ 0 if
there exist ¢, R > 0 and a conic neighborhood I' C R24 of
(zg,&p) such that for any (z,&) € I with |¢§| > R

la(z, £)] > €l¢™.
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3. Define the characteristic set of a(xz, &), or a(x, D), as
chara = char(a(z, D))
= {(x,g) € R?%\ 0; a is not elliptic at (m,f)}.

Remark. By definition chara ¢ R2?\ 0 is closed and conic. Note,
if a is elliptic, it is elliptic at any (z,¢) € RQd\O and chara = 0.
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Theorem 4.4. Let u € S'(RY) and (zg,&0) € R2?\ 0. Then
(z0,&0) ¢ WF(u) if and only if there exists a € Sg}(;(RQd) with
m€R and 0 <6 < p <1 such that it is elliptic at (zg,&g) and

a(z, D)u € C°(R?).
Proof. Necessity. First let (zg,&) ¢ WF(u). Take x € C2(R?)

and I c R%\ {0} as in the definition of the wave front set. Let
n € C°(R%) be such that

n(§o) #0, suppncCTl, n(t&) =n(€) fort>1 and [{] > 1.
Then for any N > 0 there exists Cy > 0 such that

In(€) (Fxu)(€)] < On(€)™N for all ¢ € RY,
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which implies

(X(@)7(D))*u = F*nFxu € C°(RY).
Thus it suffices to take a(z, &) = (x(2)77(€))* € SO(R2D).
Sufficiency. Conversely, assume we can find a € S;”S(RM) as in
the assertion. Note we may assume

suppu @ Rd, suppa(z, D)u €@ RY.
In fact, take ¢, € C°(R%) such that

¢(xz0) 70, =1 0n supp ¢,
and decompose
¢(z)a(z, D)u = ¢(x)a(z, D)Y(x)u + ¢(z)a(z, D)(1 — (z))u.

Then it suffices to prove the assertion for ¥u and ¢a instead of
u and a, respectively.




Next, by the assumption there exist ¢, R > 0 and a conic neigh-
borhood " € R2% of (zg,&) such that

la(z, )| = el¢|™ for (z,€) € T with |¢] > R.

Then we can construct b € S;Z{‘(RM) and r € ST°°(R24) such
that

b(z, D)a(z, D) = n(D)x(z) + r(z, D),
where x,n € C®(R?) satisfy

x(xo)n(R&o/|0l) 70, suppxnCT,
n(t&) =n(€) for || > R and t > 1.

In fact, let bg = xna~1, and then there exist ¢1 € S;§+5(]R2d) and
r1 € ST°(R249) such that

bo#a =n#x +c1+r1, suppcy CsSuppxmn.
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Then, let by = —cja~?, and there exist ¢y € Sp_g(p_é)(RQd) and
ro € ST°(R24) such that

bi#a = —c1 +co+ro, sSuppcy Csuppxm.
Repeat this procedure, and we take the asymptotic sum
o0
b~ Y bj,
j=0
which satisfies the claimed identity.

Now we obtain, noting the support of v and a(x, D)u,
n(D)xu = b(x, D)a(x, D)u — r(x, D)u € S(RY),
cf. Proposition 3.9. Therefore (zg,&g) € WF(u). L
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Theorem 4.5. Let a € S%(de) withmeRand 0<d < p< 1.
Then for any u € §'(R%)

WF(a(z, D)u) C WF(u) C WF(a(z, D)u) U char a.
In particular, if a is elliptic, then for any u € S’(]Rd)

WF(a(x, D)u) = WF(u).

Remarks. 1. These are microlocal refinements of pseudolocality
and hypoellipticity, see Theorem 4.1.

2. If a(x, D) is elliptic, the wave front set of a solution u to
a(x,D)u=f
is completely determined by that of f: WF(u) = WF(f).
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Proof. Step 1. Assume (zq, &) ¢ WF(a(z, D)u) U chara. Then,
since (zq,&g) ¢ WF(a(z, D)u), by Theorem 4.4 there exists b €
S, ((R2d) with I € R and 0 < e < o < 1 such that it is elliptic at

(z0,&0) and
b(z, D)a(z, D)u € CX(RY).

On the other hand, since (zq,&p) ¢ chara, b#a is also elliptic at
(z0,£&0). Hence by Theorem 4.4 we obtain (zg,&y) € WF(u).
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Step 2. Next, let (zg,&0) ¢ WF(u). Take x,X¥ € CX(R?) and
n,7 € C°(RY) such that
x(zo)n(€o) # 0, (D)X (z)u € H(R?)
n(t&) =n(8), (&) =€) fort>1and [¢] > |£of
x(x)n(€) =1 on a neighborhood of supp x(z)n(§).

We decompose
n(D)x(@)a(z, D)u = n(D)x(z)a(z, D)ii(D)X(z)u
+ n(D)x(2)a(z, D)(1 - H(D)R(z) )u.
Then the first term on the right-hand side belongs to H>(R?).
In addition, since
n(D)x(z)a(z, D)(1 - H(D)X(z)) € W™=(RY),

the second term belongs to C°(R%). Thus we obtain (zg,&g) ¢
WF(a(x, D)u). We are done.
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§ 4.4 Propagation of Wave Front Set

o Hamilton flow

Definition. Let ' c R29 pbe open. Define the Hamilton vector
field associated with a Hamiltonian p € C>*(I"; R) as

opd 9pd d (op & op O
= ehe ” Aege = O (apa o ) e x(1).
Cox  O0x0¢ =9 \0¢;0z;  Ox;0¢;
In addition, a solution to the Hamilton equations
dz; _ Op d¢; op .
7‘]:7(‘%75)7 7‘]:_7(1‘,5), ]:1,...,d,
dt 353 dt (91'J

is called a bicharacteristic of p.
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Proposition 4.6. Let p € C°(I";R) with I ¢ R2¢ open. For any
bicharacteristic v: I — T, I C R, of p, po~ is constant on I.

Proof. Let us write simply v = (z,£). Then by definition

d 4 (dz; dp dg; ap
eo=3 (Preo+Gteo
]_
Hence the assertion follows. []

Definition. A bicharacteristic v of p is called a null bicharac-
teristic if poy = 0.
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Proposition 4.7. Let ' C R2d\0 be open and conic, and let
p € C®(I;R) be positively homogeneous of degree m € R in
E#0. If

vt y,m) = (@t y,m), €t y,m), v(05y,m) = (y,m),
is a bicharacteristic of p, then for any A >0

YAty m) = (2 (N ym) A (EA My, n))
are bicharacteristics of +p, respectively.

Proof. It is straightforward due to direct computations. []




o Propagation theorem

Theorem 4.8. Let a € ST(R24) with principal symbol p, and let
u, f € S'(R?) satisfy

a(xz,D)u = f.

Let v: [0,7] — R24\ 0 be a null bicharacteristic of Rep, and
suppose for some conic neighborhood I” ¢ R24\ 0 of ~([0,77])

Imp>0 inT.
If
7(0) € WF(u) and ~([0,T]) NWF(f) =9,
then ~(T) € WF(u).
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Remarks. 1. WF(u) propagates forward/backward along the
null bicharacteristics of Rep where £Imp > 0, respectively,
until they hit WF(f). As for the backward propagation for
Imp <0, it suffices to apply the assertion to

—a(z,D)u = —f

along with Proposition 4.7. Note, if Imp = 0, then WF(u)
propagates both forward and backward, see Corollary 4.9
below.

2. In other words, along null bicharacteristics, singularities may
only be amplified/damped according to +Imp > 0, respec-
tively. We avoid WF(f) since the external force f could
create or annihilate singularities there.
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3. The conclusion is equivalent to the converse propagation of
regularities: “If

Y(T) ¢ WF(u) and ~([0,T]) NWF(f) =0,

then v(0) ¢ WF(u)."” In fact, the proof keeps track of prop-
agation of regularities.

4. Recall Theorem 4.5 implies
WF(u) N (charp)® = WF(f) N (charp)®.

This is why we consider only the null bicharacteristics. (How-
ever, note also

charp = {Rep =0} n{Imp = 0},
see Corollary 4.10 below.)
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Corollary 4.9. Let a € ST(R??) have a real principal symbol p,
and let u, f € S'(R%) satisfy

a(z,D)u = f.

If v: [0,7] — R24\ 0 is a null bicharacteristic of p such that
~([0,T]) NWF(f) = 0, then either

([0, T]) € WF(uw) or ~([0,T]) C (WF(u))*“
holds.

Proof. The assertion is obvious by Theorem 4.8 and the subse-
quent remarks. []




Corollary 4.10. Let a € SQ(RZC’) have a principal symbol p with
Imp >0, and let v € S/(R%) and f € C®°(R?) satisfy

a(z,D)u = f.

If v: [0,7] — R24\ 0 is a null bicharacteristic of Rep such that
Imp(v(T)) > 0, then

([0, T]) € (WF(u))*©
holds.

Proof. The assertion is obvious by Theorems 4.5 and 4.8, and
the remarks subsequent to Theorems 4.8. []
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Example. Consider the 1D wave equation

92 02
<8t2_ 82> u(t,z) =0 for (t,z) € R x R.
X

We can apply Theorems 4.5 and 4.8, or Corollary 4.9, with
at,z,7,6) = p(t,,7,6) = —1° + &%, f=0,
and conclude that WF(u) is a subset of the light cone
{(t,m€) eR*\0; —r2+ €2 =0}

and that WF(u) is invariant under the Hamilton flow of p. Note
all the null bicharacteristics of p are given by

(t,z,7,6) = (to — 2s70, 70 + 2560, 70,€0) With — 78 + €3 = 0.
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Outline of proof of Theorem 4.8. Step 1. We microlocalize in a
conic neighborhood of ~([0,T]) with factor |D|1~™, so that we
may let
m=1, Imp>0, feCP®RY), ue HRY) for some s € R.
In fact, choose x € SJ ™ (R?%) and ¥ € SY(R??) both supported
in a small conic neighborhood of ~([0,T]) such that
x(z, &) = |§|1_m in a conic neighborhood of ~([0,T7),
x(z,£) =1 in a conic neighborhood of supp x.

Then the claim follows by the decomposition
x(z, D)a(z, D)X(x, D)u
- X(.’I}, D)f - X(mv D)a(gc, D)(l - >~<(957 D))u7
and the structure of compactly supported distributions. Note

~([0,T]) remains the same up to scaling of time parameter.
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Step 2. Let (y,n) € R2?\ 0, and take ¢ € S5 (R??) supported in a
small conic neighborhood of (y,n) with

Y(z, &) = (eg>*1/2<§>3+1/2 in a conic neighborhood of (y,n).

Here ¢ € (0,1] is a parameter to be let ¢ — 0, cf. Yosida ap-
proximation. Now we solve a transport equation

0
&b - {Rep7 b} = 07 b(O,x,f) = w(%ﬁ)

In fact, if v(¢; z, &) is a bicharacteristic with initial data (z, &),
Ob(t7(t52,9) =0, and hence b(t,z,€) = (1(~1,2,0)).

Note b are bounded in Sz;l-l/?(de) for t € [0,T] and € € (0, 1].
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Step 3. In the following let us write for short

A=a(z,D), Pr= (Rep)V(z,D), P,= Imp)"(z, D),
B=0o"(t,z,D), R=rV(t,z,D),

Here we are going to show there exist > 0 and r € S3¥(R2%),
bounded uniformly in ¢t € [0,T] and e € (0, 1], such that

%(e“tBQ) —2e"Im(A*B?) > R,
as quadratic forms, e.g., on S(Rd). In fact, we can compute
%(e“tBQ) = pet*B? 4 ieM[P,, B]B + ie" B[P, B] + Ry
= pe*B? 4+ 2eMIm(P-B?) + Ry

= pettB2? 4 2eM Im(A*B2) + 2eM Re(P;B?)
+ Qe“tlm((Pr —ipP — A*)B2) + Ry,
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where Ry € W2 (RY). We continue by using the L2-boundedness
theorem and the sharp Garding inequality as

d
—(eM*B?) = pet*B? 4 2eM Im(A*B?)

" + 2¢#'BP;B + e'[[P;, B], B]
+ 2e“tB(Im(PT —ip - A*))B
+2¢1m([P; - iP, — A*, B]B) + Ry
= (u— C1)eMB? 4+ 26 Im(A*B?) + R,

with Rs € \Ugl"’(Rd). Therefore the claim follows for large p > 0.
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Step 4. Now let ~(T';y,n) € WF(u). By Step 3 and the funda-
mental theorem of calculus
2 T 2 2 2
1BO)ul2, < T B(TYul22 + C([ulFs + 1£1Z041)
uniformly in e € (0, 1]. If we choose supp ¥ small enough, and let
and let ¢ — 40, then by the monotone convergence theorem
wis H5T1/2in a (microlocal) neighborhood of (y,n).

Hence w is H511/2 in a neighborhood of ~([0,T]). We repeat the
above arguments, and obtain at last u is C*° in a neighborhood
of v([0,7T]). (We have to be careful that these neighborhoods
should not shrink to ~([0,77]).) Thus we are done. []
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Chapter 5
Application II: Local Solvability of PDOs




§ 5.1 Local Solvability

o Definition and reduction

Throughout the chapter we study a PDO
a(z,D) = Y aa(z)D% aa € CP(RY).

la|<m

Definition. a(z, D) is locally solvable at zg € R? if there exists
a neighborhood U C R% of zg such that for any f € C°°(R?) there
exists u € S'(R%) satisfying

a(z,D)u=f on U.
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Theorem 5.1. 1. If a(x, D) is locally solvable at zg € R?, then
there exist a neighborhood U C R4 of zo, S, t €R and ¢ >0
such that for any v € C&°(U)

lla*(@, D)ol -5 = cllvll g—-

2. Conversely, if there exist U C R4, s,t € R and ¢ > 0 as above,
then for any f € HY(R?) there exists u € H*(R%) such that

a(z,D)u=f on U.
In partiucular, a(x, D) is locally solvable at zg.
Remark. We may say, very roughly, a(z, D): H® — H! is surjec-
tive if and only if a*(x, D): H~t — H—% is injective.
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Proof. 1. Step 1. Assume a(x, D) is locally solvable at zg, and
take a neighborhood U c RY of xzg as in the definition. We may
let U be bounded. For each v € C(U) we define

¢u: X 1= H®RY) = C, frr (fv)0,
and set for each n,k € Ng
Xpg = {f € X; Yo € CEW) |po(f)| < nlla* (@, D)ol g }-

We are going to apply the Baire category theorem for X and
Xnk- Note X is a complete metric space with respect to a
distance given by

1 f —9gllg
d(f,9) = :
ke%o 2K1 4|1 f = gll g

174

Step 2. We verify the assumptions the Baire category theorem.
To see X, C X is closed let us rewrite

Xppe= () {feXi leu(NI<nlla*(z, D)ol g}
veC(U)
Thus it suffices to show ¢, is continuous, however it is staight-
forward since

|pu ()] = 1(f,0) 2| < N1l gollvll go-

Next we prove X, , with n,k € Ng exhaust X. Take any f € X C
C>(R%), and then by the assumption there exists u € &’(R%) such
that

a(z,D)u=f on U.
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Now by the continuity of u, boundedness of U and the Sobolev
embedding theorem there exist C,C’ > 0 and k, k' € Ng such that
for any v € C&(U)

|¢U(f)| = |(uaa’*($7D)’U)L2|
< Csup{|0°a*(z, DY)v(2)|; |a| <k, z €U}
< C'la* (@, D)vl| -

This implies the claim.

Step 3. Now by the Baire category theorem there exist g € X,
l € Ng and ¢ > 0 such that
{heX; Ih—glly <€} C Xppe
Thus for any v € C°(U) and f e X with ||fl| ;1 < e
(O < |ou(f + 9| + |Pu(9)| < 2nfla™(z, D)vl| g,
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which in turn implies for any v € C&°(U) and f € X

|(f,0) 2| < 2ne” Y| fllgpulla* (@, DYl -
Hence it follows that for any v € C(U)

0]l -1 < 2ne™|a* (z, D)l gy,
and the assertion 1 is verified.
2. Assume that there exist U ¢ R?, s,t € R and ¢ > 0 as in the
assertion 2. Take any f € Ht(Rd). Define
¢y L—C; L=a"(z,D)C(U),
as, for any w = a*(z, D)v € L,
¢p(w) = (v, f) 2.
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Note it is well-defined since a*(z, D): H Y(R%) — H—5(R%) is in-
jective. Since

@ ()| < vl el fll gt < Cllwll gl fll g,

we can extend ¢5 to <Ef e (H—3%(R%))* by the Hahn—Banach the-
orem. Then we can write for some u € H5(R?)

(gf = ('7u)L27
and hence for any w = a*(z, D)v € L

(v, )2 = ¢p(w) = (w,u) 2 = (a*(z, D)v,u) ;2 = (v,alz, D)u) 2.
Thus the assertion 2 is verified. []
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o Topic: Derivative loss
We present a refinement of local solvability for reference.

Definition. a(z, D) is locally solvable at zy € R? with deriva-
tive loss p > 0 if for any s € R there exists a neighborhood U C R4
of zg such that for any f € H5(R?%) there exists u € Hstm—1(RD)
satisfying

a(z,D)u=f on U.

Remark. 1. If a(xz, D) is locally solvable at zg with derivative
loss p > 0, then it is locally solvable at zg.

2. The smaller p gets, the stronger the above property gets,
since we have to seek for w in a smaller Sobolev space.
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§ 5.2 Examples

o Elliptic PDOs

Theorem 5.2. Assume a(z, D) is elliptic at zg € R%. Then there
exist a neighborhood U C R? of xg and ¢ > 0 such that for any
v e CXWU)

lla*(z, D)l ;2 = cllv]l gm.

In particular, a(x, D) is locally solvable at zg.

Proposition 5.3 (Poincaré inequality). For any k € Ny there
exist C,C’ > 0 such that for any bounded open subset U C R4
and any u € C(U)

[ull jgx < C(diam U) ||| Dlul| e < C'(diam U)||u]| ge1,

where diam U denotes the diameter of U.
180

Proof. The latter inequality is obvious, and we verify only the
former one. We may let O € U by translation. Then for any
u € C°(U) we can estimate we can estimate

||“||12qk < C1 Y (i[D1,21]D%, D)2

o <k

S Cl Z i{(mlDau, DlDau)LQ - (DlDau,xlDau)Lz}
la|<k

<2Cy(diamU) Y | D%ul| j2l| D1 D%ul| 12

lor| <k
< Co(diam U) [|ull g [l Dful| g

Thus we obtain the assertion. L]

Remark. It is obvious from the above proof that the assertion
extends for any U c R? bounded only in one direction.
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Proof of Theorem 5.2. The assertion is obvious for m = 0, and
we may let m > 1. By the assumption we can find ¢;, R > 0 and
x € C(R%) such that

0<x<1l, x=1ina neighborhood of zg,
and that for any (z,¢) € R24 with [¢| > R

x(@)2Ja(z, )12 + (1 — x(2)?)|€[2™ > cqle*™.
Then by the Garding inequality we obtain for any v € Hm(Rd)

Ixa*(z, D)v||72 > callvl|Frm — Callvll gm-1 |0 grm.

Next, by the Poincaré inequality, if we take a sufficiently small
neighborhood U C R of zq, then for any v € C(U)

2 2
lla*(z, D)vl|72 > e3llv]IFm.

Thus we obtain the assertion. []
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o PDOs of principal type

We shall denote the principal symbol of a(x, D) by p, i.e.,
p(z,&) = Y aa(x)E™.

laj=m

Definition. a(z, D) is of principal type at zg € R4 if

9ep(xo,€) # 0 for any ¢ € R4\ {0} with p(zq,&) = 0.




Remarks. 1. The condition says, even if ellipticity is lost, a
configuration component of the Hamilton vector field is alive.

2. Suppose m = 0. Then a(z, D) is of principal type at zg € R4
if and only if it is elliptic there, since a PDO of order O is
just a multiplication operator.

3. Suppose m #= 0. Then a(x, D) is of principal type at zg € R
if and only if

O¢p(x0,€) # 0 for any € € R? \ {0}.
In fact, if p(zo,€) # 0, then d¢p(xq,&) # 0, since
€ - 9¢p(z0,€) = mp(zo,£)

due to Euler's homogeneous function theorem.
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Theorem 5.4. Let m # 0, and assume a(x, D) is of principal
type at zg.

1. There exist C,§ > 0 such that for any neighborhood U of zg
with diamU < § and u € C2°(U)

[ul|Z-1 < C(diam U) <||a(x, Dyul2, + [la*(z, D)ul|%2) .

2. In addition, assume p is real or purely imaginary in a neigh-
borhood of zg. Then there exist a neighborhood U of zg and
¢ > 0 such that for any u € C(U)

la*(z, D)ull 2 > ellull gm-1.

In particular, a(z, D) is locally solvable at zg
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Proof. We may let zg = 0 by translation. In addition, we denote
for any » >0

Br:{xeRd; |l’|<7’}.

1. Step 1. For simplicity let us write
A=a(z,D), Q;=i[Axj]= (8§ja)(x,D) forj=1,...,d

Note, although z; ¢ \lfzo(;(Rd), the above symbol calculus is valid
since A is a PDO. We will use such properties of PDOs below,
too, without mentioning. We shall compute and bound

d d
> (QQjuuw) = Y [lQjull32

from above and below for any u € C2°(B¢) with small € > 0.
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Step 2 (Bound from below). By the assumption there exist § > 0
and ¢ > 0 such that for any (z,£) € By x R

|0ep(, )7 > 4elePm2.
Take any x € C&°(Bss) such that x =1 on Bg, and then
X(2)19ep(z, €)1 + 4c(1 — x(2))[€[*"2 > 4clg|P™ 2,
so that we can apply the Garding inequality. Noting
d
> Q5xQ; — x|0¢pl?(z, D) € SZ3(RY),
j=1
we can find c¢1,Cy > 0 such that for any u € C2°(By)

d
3 (@5Qju,u) > 2¢1 [[ul|Fm-1 — Callull gm—2llull gm-—1-
;=1
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Now we use the Poincaré inequality. Let § > 0O be smaller if
necessary, and we obtain for any u € C&(B;)

d
3 (@Q3Qju,u) > cxlul|Zm-1-

J=1

Step 3 (Bound from above). On the other hand, we can compute
1Qjull2> = i((Azj — xjA)u, Qju)
= i(z;Qju, A™u) +1([Q], x;]u, A™u)
+i(zju, [A%, Q lu) — i(xjAu, Qju).
Here we express, using a finite number of some PDOs Ry, S of
order m — 1, as

[A*,Q;] =Y RSk,
%
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and then

1Qjull?2 = i(z;Qfu, A*u) 4+ 1([QF, x;]u, A*u) — i(zjAu, Qju)
+ Z i([Rk, ZL'j]u, Sku) + Z i(l’ij’u, Sku)
k k

By the Cauchy—Schwarz inequality, the Sobolev boundedness and
the Poincaré inequality we obtain for any e > 0 and u € C2°(Be)

1QullZ> < eCallull -1 Aull 12 + Collull -2l A"ull 12
+ €Ca| Au|| 2 lull grm-1 + Collull gm-—2|ull -1
+ ECQHUH?{md
< eC3(|Aull2 + A% ull72 + el 1)
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Step 4. Let § > 0 be from Step 2. Then by Steps 1-3 it follows
that for any € € (0,8) and u € C2°(Be)

(c1 — €C3)[ullZm_1 < C3([|AulZ2 + || A%u2,).

Let § > 0 be even smaller if necessary, and the assertion 1 follows.

2. If p is real/purely imaginary, then a(z, D) Fa*(x, D) is a PDO
of order m — 1, respectively. Then by the assertion 1 for any
e € (0,9) and u € C°(Be)

lullZm—1 < €Ca (lla* (@, DYulZo + l[ullZm-1) -

Letting € € (0,5) be small enough, we obtain the asserted bound.
This bound and Theorem 5.1.2 imply the local solvability. We
are done. L]
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o Topic: Conditions (¥) and (P)

Definition. Let U c R? be open, and let p € C®°(U x (R?\ {0})).

1. We say p satisfies condition (¥) if for any (z,¢) € p~1(0)
there exists a neighborhood Q2 C U x R™ of (z,£) such that
for z =1 or i the following holds:

(a) Hre(sp) does not vanish on Q;

(b) Along any null bicharacteristic of Re(zp) on €2, Im(zp)
does not change sign from negative to positive.

2. We say p satisfies condition (P) if both p and p satisfy
condition (W).




Remarks. 1. For a wWDO, or PDO, of principal type local solv-
ability is practically characterized by condition (W), or (P),
respectively. However, in this course, we will present simpler
characterizations under some non-degeneracy assumption.

2. Conditions (P) and (W) are equivalent for the principal sym-
bol of a PDO since it is a homogeneous polynomial in &.

Problem. 1. Verify the equivalence of conditions (P) and (W)
for a homogeneous polynomial in &.

2. Check the principal symbols from Theorems 5.2 and 5.4.2
satisfy conditions (P) and (W).
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§ 5.3 Characterization under Non-Degeneracy

o A necessary condition

Theorem 5.5. Assume a(z, D) is locally solvable at zq € R
Then there exists a neighborhood U ¢ R? of x5 € R? for which
Hormander’s condition holds, i.e.,

{7, p}(x, &) =0 for any (z,&) € U x R? with p(z,¢) = 0.

Proof. For the proof refer to Theorem 6.1.1 of “Linear Partial
Differential Operators” by L. Hormander. We omit it. []
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Remark. Suppose there exists (zg,&g) € U x R? such that

{ﬁvp}(lbvg()) 7'J: O, p(£07€0) =0.

Then we would be able to construct a quasi-mode for a*(z, D),
or a family of functions v = v(h), h € (0,1], on U such that

lo(R)]| =1, |la*(z, D)v(h)|| < CyhY for any N €N,

which dissatisfies the inequality from Theorem 5.1.1.
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In fact, multiplying i on p if necessary, we may let
(9: Rep)(zo, ££p0) # O.
On the other hand, (xo,gg) = (20, &p) or (zg, —&p) satisfies
(Hrep(Im5) ) (20,£5) = {Re p,Im p} (0, £0)
= S{5.pH(0,£0)
<0

since {p,p} is of odd degree in £. This implies that, along a null
bicharactristic of Rep, Im p changes sign at (xzg,&;) from positive
to negative. Thus we could construct a quasi-mode for a*(z, D)
that lives in an arbitrarily small conic neighborhood of (xo,§6),
cf. Theorem 4.8 and Corollary 4.10. See also condition (P).
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o A sufficient condition

Definition. a(z, D) is principally normal at zg € R? if there
exists a neighborhood U C R? of zg and q € C®°(U x (R?\ {0}))
homogeneous of degree m — 1 in £ such that

{p,p} = 2iRe(gp) on U x (R?\ {0}).

Remarks. 1. Let p=p; +ip2 and ¢ = g1 + igo With p1,p2,4q1, 92
being real-valued. Then the above condition is expressed as

{p,p} = 2i(q1p1 + q2p2).

This says {p,p} vanishes with the same order as p does. In
particular, Hormander's condition holds automatically.

2. If a(x, D) is principally normal, so is a*(zx, D).
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Theorem 5.6. Let m # 0, and assume a(x, D) is of principal type
and principally normal at zg € R%. There exist a neighborhood U
of zg and ¢ > 0 such that for any v € C&(U)

lla* (2, D)vll 2 = cllvll gm-1.

In partiulcar, a(x, D) is locally solvable at zg.

Proof. As in the proof of Theorem 5.4, we may let zg = 0. We
also use the notation B, there.
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Step 1. We first show there exist C1, > 0 such that for any
u € C°(By)

laCz, DyulZ2 < C1 (Jla* (., Dyull22 + [l 21

In fact, by the assumption there exist § > 0 and ¢ € C°°(Bys X
(R?\ {0})) homogeneous of degree m — 1 in ¢ such that

{p,p} = 2iRe(gp) on Bas x (R'\ {0}).
Fix any x € C&(Bpys) with x = 1 on Bgs, and then for any u €
Ce°(Bs)

[ Aul|2, = || A*ul|25 4+ (x[A*, Alxu, w).
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If we modify ¢ smoothly in a neighborhood of & = 0, then we
can find R € W2m—2(R4) such that
x[A% Alx = QA" + AQ* + R; Q= xq(z, D)x.
Now by the Cauchy—Schwarz inequality and the Sobolev bound-
edness we obtain for any u € C&°(By)
|Aul|2, = [|A*u]|25 + (A*u, Q*u) + (Q*u, A*u) + (Ru,w)
< | A%l 4 Call A%l 2 llull gpn1 + [l Fm—1
< Co(lA% 122 + l[ullZm-1)-

Hence the claim is verified.




Step 2. By Theorem 5.4.1 and Step 1 there exist C3,d’ > 0 such
that for any e € (0,8") and u € C(Be)

[l Zm-1 < eCs(lla* (@, DYulFa + l[ullZm-1)-
If we fix sufficiently small ¢, then for any u € C&°(Be)
|ull gm—1 < Calla™(z, D)ul| 2.

Thus we obtain the assertion. []
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o Characterization

Theorem 5.7. Let zg € R%, and assume the vectors

8{ Rep($0,§), aflmp(x()ag)

are linearly independent for any ¢ € R%\ {0} with p(zg,&) = 0.
Then the following conditions are equivalent:

[y

. a(z, D) is locally solvable at zq.

N

. a*(zx, D) is locally solvable at zg.

3. Hormander's condition holds in some neighborhood of zg.

N

. a(x, D) is principally normal at zq.
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Remarks. 1. By the assumption it automatically follows that
both a(z, D) and a*(z, D) are of principal type at zg.

2. The assertion does not extend to a general PDO of principal
type without non-degeneracy. In fact, for local solvability,
the principal normality is not necessary, and HOrmander's
condition is not sufficient either.

3. The principal symbol from Theorem 5.4.2 is degenerate in
the sense that it does not satisfy the assumption.

4. See also Conditions (P) and (W), and the subsequent re-
marks.
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Proof. If m = 0, then a(z, D) is merely a multiplication operator
non-vanishing at xg by the assumption. Hence we may let m # 0.

4 = (1 and 2). This follows by Theorem 5.6.
(1 or 2) = 3. This follows by Theorem 5.5.

3 = 4. Step 1. We are going to construct ¢ as in the definition
of principal normality. Note the construction reduces to that on
€] = 1 by homogeneity, and further to that in a neighborhood
of each (zq,&) with |£] = 1 by partition-of-unity arguments. If
p(x, &) # 0, we can actually take

{p,p}(=,8)
2ip(x, &)
and hence it suffices to find ¢ for p(zx, &) = 0.

q(z, &) =
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Step 2. Let &g € R4\ {0} satisfy p(xzg,&) = 0. It suffices to find
a neighborhood € c R24\ 0 of (xzq,&p) and ¢ € C*°(2) such that

{p,p} = 2iRe(qp).
By the assumption there exists a neighborhood 2 of (zq,&g) and
local coordinates X : €2 — R2? such that

X1(z,8) = Rep(z,8), Xo(z,£) =1Imp(z,$).

Then by Taylor's theorem we can find q1,...,qo4 € C*(2) such
that

1 1
E{ﬁa p}(xag) = a{ﬁap}(ango) + qIX]_ + o + quXQd'
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However, by Hormander's condition we have
{p, p}(x0,&0) = 0.
Moreover, by Hormander's condition again
q3=-~~=q2d:O fOFXlzXQIO,

so that, letting €2 be smaller if necessary, we can further find
d1,32 € C*°(R2) such that

1 _ - -
5{2971?} =1 X1+ pXo.

Therefore it suffices to take ¢ = ¢q1 + igp. We are done. [
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