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Section 1
Introduction: Matrix Exponential

¢ 1.1 Linear ODEs

o First order linear ODE

We begin with a first order linear ODE:

d
“26) = au(®),  u(0) = uo.
dt
We can solve it as follows. Multiply e~ %, and we have
d
&(e_“tu(t» =0, sothat e %u(t) = e u(0) = up.
Thus we obtain a solution

u(t) = e“tuo.

We can further generalize this argument.




o Second order linear ODE

Next we consider a second order linear ODE:
d? d
G =au®, w0 =u, (0)=u

Let us set u = ( :j, ) and then

du u’_u’_Olu
dte ~ \«" ) " \Vauw /] \a O )

Thus, if we set A = (0 L > ug = <u0 ) the equation is
a O uq

rewritten as

%(t) = Au(t), w(0) =ug. (%)

For a square matrix X define a matrix exponential eX as
X_ w1
et = —X".
nzzzo n!
It is well known that each component of eX is convergent, and
for X = tA it satisfies

detA
eOA — 1’ etAeSA — e(t+s)A’ " — AetA — etAA.

Now multiply e~t4 on the equation (&), and then

d

a(e_“‘u) =0, sothat e 'u(t) = e %44(0) = uo.
Hence we obtain a solution to (&) as

u(t) = etAuo.

§ 1.2 Evolution Equations

We shall call a PDE that describes an evolution of a state func-
tion u an evolution equation. Examples are the following.

Heat (or diffusion) equation:
u  8%u  8%u 8%

p 8x2+8y2+8z2’ u(0,-) =wug

Wave equation:

8%y 8%u  8%u  H%u ou
- ) Oa ©) = Y Ay 07 Y) = .
oz ~ o2 Vo2 T oz WO =uo, 50 =wu

Schrodinger equation:

ou 8%u  0%u  H%u
—=——4+ -4+ —= 1% 0,-) = ug.

o Heat (or diffusion) equation

The space of the temprature (or concentration) distritutions
would be given by the space of the functions

X = {u: R3 - R}.
This is obviously a vector space. We define the Laplacian as a
linear operator acting on X as

2?2 9% 92
=—+——=+—7: X X.
0x2 T 0y T 022 -
Then we can regard the heat (or diffusion) equation as describing
the evolution of the distribution u(t) € X by

%7:(75) — Au(t),  u(0) = up.

Hence we obtain a solution u(t) = et®ug (?)




o Wave equation

The space of the displacements of particles in a medium would
be given by

X = {u: R3 - R}.
Consider the Laplacian A a linear operator acting on X. Then we

can regards the wave equation as describing the time-evolution
of a displacement vector u(t) € X by

d2y du
CAW=Au(®), u®) =uo, S(0)=uy,

Let us further set
& [ u _ [ ug . 0 1
soxx wm(3) () 4=(28)
and then the wave equation is rewritten as
d
G (0= Au®),  u(©0)=wuo.
Hence we obtain a solution u(t) = et4ug (?)

We can argue similarly for the Schrodinger equation.

Now the problem is “How could and should we define the
exponential function of a linear operator on a vector space
of infinite dimension?”

§ 1.3 Review of Matrix Exponentials

Let us recall a matrix exponential el for a square matrix A of
order d. For simplicity first let us assume A is diagonalizable:
A1
pPlAp =
Ad

for some invertible matrix P. Then

A _ — 1 n __ — 1 -1 nlp—1
el=3 —A"=F Z;(P AP)"| P
n=0""" n=0 """
o 1 [ M e
=Py = pl=rp Pt
n!
n=0 G eMd

Hence we obtain an expression of %
10

In general we can always transform A into a Jordan normal form

J1 Ao 1
P lApP = . J = 1
for some invertible matrix P. Then, similarly to the above,
A — 1 1 L
et=p|> =(PtapP)"| P
n=0n!
JTL
=P|> = p1
AN
n=0 Jg
el
=P pL

ela
It reduces to the exponential function of a Jordan block J;.

11




Let J be a Jordan block of order s, and we compute el Let

J=X + N.
Then, noting that N = 0, we have
o q oo q min{n,s—1} |
l=3 o= - > ™ \n—knk
s—1 n oo s—1 )\nfk .
= + .
nz=:O k:go 'nX::s kgo (n — k)k!
s—1 s—1 s—1 oo )\nfk .
= + AN
k:go nz::k kgo 1122:5 (n - k)!k!
s—1 oo —k s—1 A
AT
=Y 3y -~ Nh= Y SNk
k=0n=k (n — k)'k! =0 k!

12

Thus we obtain

et et er/21 eM/31 L. M /(s—1)!

0 et ed et ... M (s—2)!
Jj_| 0 o & et ... eM(s—3)!
e = A A

0 O 0 e e (s —4)!

0 0 o0 o - et

Problem. 1. Show that, if A € C is an eigenvalue of A, then so is
e for eA. The converse is not true. Give a counterexapmle.

2. Similarly to the above, compute et’ for t € R.

13

Solution. 1. Omitted. 2. We can proceed as

00 4n min{n,s—1} nl

tJ : n—k nrk
e = — ——A N
“=on! kgo (n—Kk)k!

8_21 thetA

=0 k!
eth tetr 2etA /21 3etA 31 L. gsTletd /(s — 1)1
0 et tetr  2etr/21 .. 5 2elh /(5 — D)1
0 O etA teth .. 157 3eth /(s — 3)!
0 O 0 eth o p5Theth /(s — 4)!

0O O 0 0 etA
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Section 2
Review of Banach Spaces




§ 2.1 Linear Operators on Banach Space

o Banach space

Definition. Let X be a complex vector space. We call a mapping
II-]: X — R a norm if it satisfies

1. For any u € X one has |ju|]| > 0;

2. |Jul]| = 0 holds if and only if u = 0;

3. For any c€ C and u € X one has ||cul| = |¢|||ul];
4. For any u,v € X one has [ju+ v|| < |lu]] + ||v].

In addition, we call a pair (X,]| -]) of a vector space X and a
norm || - || on X a normed space. We denote it simply by X.
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Proposition 2.1. A normed space X is a metric space with re-
spect to the natural metric

dist(u,v) = |lu —v||; w,ve X.

Proof. We leave it to the reader as Problem. []

Definition. A normed space is called a Banach space if it is
complete with respect to the natural metric.

17

o Linear operators
For the rest of the section we let X be a Banach space.

Definition. Let D C X be a linear subspace. A linear mapping
A: D — X is called a linear operator, or simply an operator,
on X. We denote the domain and the range of A by

D(A) =D and RanA,

respectively.

Remark. We shall NOT write
A X - X

since D # X is often the case, but DO call it an operator on X.
We distinguish them.
18

Definition. A densely defined operator A on X is said to be
bounded if there exists C' > 0 such that for any v € D(A)

[Aul| < Cllul.
We denote the set of all the bounded operators on X by B(X).

Proposition 2.2. A bounded operator on X extends uniquely
as a continuous linear operator with domain X. Convesely, a
continuous linear operator with domain X is bounded.

Proof. We leave it to the reader as Problem. []

Remarks. 1. In the following we may always assume that a
bounded operator A has a domain D(A) = X.

2. A general operator on X is sometimes called an unbounded
operator in contrast to a bounded operator.

19




Proposition 2.3. B(X) is a Banach space with respect to the
operator norm

Al := sup_[|Au]| = inf{C >0; Vu e X ||Au|| < C|lul|}
I=1

[lull=

Proof. We leave it to the reader as Problem. []
Definition. A linear operator A on X is said to be closed if for
any sequence (up),ecn oN D(A) with limits

lim up, =:u, |lim Au, =:v

n—oo n—oo
these limits satisfy

u € D(A), Au=n.

20

Proposition 2.4. A linear operator A on X is closed if and only
if its graph

G(A) = {(v, Au) € X x X; u e D(A)}

is a closed subspace of X x X. Here X x X is a Banach space
with the norm

1w, )llxxx = llullx + llvllx-

Proof. It is straightforward from the definition. []

21

Definition. Let A, B linear operators on X. We say B is an
extension of A, or A is a restriction of B, if

D(A) c D(B), VYue D(A) Au= Bu,
and we denote it by A C B.

Definition. A linear operator A on X is said to be closable if
it has a closed extension. The minimum closed extension of a
closable operator A is called a closure, and is denoted by A.

22

Proposition 2.5. A linear operator A on X is closable if and only
if for any sequence (un),ecy ON D(A) with limits

lim u, =0, |lim Aup=:v
n—od n—oo

the latter limit satisfies v = 0.
Proof. We leave it to the reader as Problem. []

Theorem 2.6 (Closed graph theorem). Let A be a closed op-
erator on X. If D(A) = X, then A is bounded.

Proof. The proof depends on the Baire category theorem, and
we omit it. []
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§ 2.2 Calculus for Vector-Valued Functions

In this section we continue to let X be a Banach space.
o Continuity and differetiability

Definition. Let I C R be an inverval.

1. An X-valued function u: I — X is said to be continuous on
I ifforanytel

u(t) = }Ilimou(t + k) in (the topology of) X.

2. An X-valued function w: I — X is said to be differentiable
on [ if for any t € I there exists the limit

% = /() := Jim &~ (u(t 4+ h) — u(®) in X.

24

3. Similarly, we extend terminologies for scalar-valued functions
to X-valued ones. For each k € NgU {co} we denote by
Ck(I; X) the set of all the X-valued C¥ functions on I.

Problem. Let u € C1(R; X). Show, if «/(t) =0, then u(t) = u(0).

Solution. Let v(t) = ||u(t) —u(0)]||, and we show v(¢) = 0. By the
triangle inequality and the assumption we have, as h — 0,

Aot + k) — v(@®)] < R u(t 4+ h) —u(@®)| — O,

hence v/(t) = 0. Then by the mean value theorem for real-valued
functions we obtain v(t) = v(0) = 0. []
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o Riemann integral
Let u € C9([a,b]; X) with a < b. Let A = {tg,t1,...,tn} be a
partition of the interval [a,b], i.e.,

a=tg<t1 <---<th =0,
and let Tj € [tj_]_,tj]. The sum

n

> ulr)(t;—tj-1) ©)
j=1
is called a Riemann sum. The Riemann sum (Q) is known to
converges as |A] ;= max;(t; —t;_1) — 0. We denote the limit by

b ' n
/a u@dr=lim S u(r)(t — 1),

and call it the Riemann integral of « on [a,b].
26

Remark. The fundamental theorem of calculus extends to the
X-valued continuous functions. We omit the arguments.

o Holomorphy
For the rest of the section we let D ¢ C be a domain.

Definition. An X-valued function u: D — X is said to be holo-

morphic on D if for any z € D there exists the limit
du

p W(z) = }ILTO h_1<u(z +h) — u(z))

We omit the definition of a line integral of an X-valued function
along a path, which is completely parallel to the C-valued case.

27




Theorem 2.7 (Cauchy’s integral theorem). Let D be simply
connected, and u: D — X holomorphic. Then for any closed ol
path ' C D

dz = 0.
/l_u(z) z
Proof. It is the same as the C-valued case, and we omit it. [

Theorem 2.8 (Cauchy’s integral formula). Let D be simply
connected, and v: D — X holomorphic. Then for any a € D and
any simple closed ClpathrcD encircling a

_ 1 -1
u(a) = Q—M/I_(z —a)” u(z)dz.

Proof. We omit it by the same reason as above. []

28

Corollary 2.9. An X-valued holomorphic function uw: D — X is
analytic on D, i.e., u is infinitely complex-differentiable on D,
and for any a € D there exists a neighborhood U C D of a such
that for any z € U

- (z—a)"

u(z) = Y Tu(”)(a).

n=0

Proof. We omit it by the same reason as above. []

29

o Strong operator topology

Definition. A sequence (Ap),cy On B(X) is said to converge in
norm to A € B(X) if
Jim [|A = Anllgxy = 0.
We denote it by
nleoo An, = A.
The corresponding topology of B(X) is called the norm topol-
ogy, or the uniform (operator) topology.

Remark. The above topology obviously coincides with that of
B(X) as a Banach space equipped with the operator norm.

30

Definition. A sequence (An),cny On B(X) is said to converge
strongly to A € B(X) if for any u € X

Jim [|[Au — Apu||x = 0, or Jim Apu = Au.
We denote it by
Sl An = A,
The corresponding topology of B(X) is called the strong (op-
erator) topology.

Remark. More precisely, the strong topology is a locally convex

topology induced by the family of seminorms A — ||Aul|x indexed
by uw running over X. We do not discuss the detail.

31




Theorem 2.10 (Uniform boundedness principle). Let (A))ca
be a family of elements in B(X). If for each u € X

sup [|[Ayullx < oo,
AEA

then
sup ||A < 0.
,\e/\H Al

Proof. The proof depends on the Baire category theorem. We
omit it. |

32

Corollary 2.11. Let (An),c be a sequence on B(X), and assume
that for each u € X there exists the limit

Au = nli_)moo Anu.
Then A is a bounded operator on X, or A € B(X).

Remark. This says completeness of the strong topology of B(X).

Proof. The mapping A: X — X is obviously linear, and it suffices
to show the boundedness. For any u € X we have

lul = fim_ | Anal| < sup [[Awul < (sup [ 4all) ull
n—0oo neN neN
By the uniform boundedness principle we can see
sup || An|| < oo,
neN

and thus the assertion is verified. []

33

o Operator-valued functions

Definition. Let I C R be an interval.

1. An operator-valued function A: I — B(X) is continuous in
norm if forany te Il

A) = lim At + h).

2. An operator-valued function A: I — B(X) is strongly con-
tinuous if forany te I

A(t) =s-limA(t+ h).
(t) = s-lim A(t + h)
3. .... (We define other terminologies similarly.)

34

Cauchy'’s integral theorem and consequences derived from it hold
for operator-valued strongly holomorphic functions as well as
those in norm. We do not present their precise statements.

Theorem 2.12.Let D ¢ C be a domain. An operator-valued
function A: D — B(X) is strongly holomorphic on D if and only
if it is holomorphic in norm on D.

Remark. Hence we do not need to distinguish the strong holo-

morphy and the holomorphy in norm. We shall simply say A is
holomorphic (or analytic).

35




Proof. If A is holomorphic in norm, then obviously it is strongly
holomorphic. Thus it suffices to prove the converse. Let z € D,
and take a sufficiently small, simple closed path I' C D encircling
z. Then by the assumption for any v € X

_1 -1
A= 5= /r<c — 2)"TA(Qudc. )

Since A(z) is strongly continuous and I is compact, we have for
any u € X

sup [A(Qul| < oo,
¢cer
and this implies by the uniform boundedness principle

sup [|A(Q)]] < oo. (%)
cer

36

Then it follows that A is continuous in norm. In fact, for any w
close to z and any u € X by ()

|z — w||u]] A

|A(z)u — A(w)ul| < dg,
2r I —z[l¢ — w]
which with (&) implies
|A(z) — A(w)[| < Clz —wl.
Therefore
1 -1
— — A(O)d
o =t a
is convergent in norm, and again by ({) we obtain
1 _
A = 5= [=27tAQ o
i Jr
The last expression implies A is holomorphic in norm. L]

37

§ 2.3 Resolvent

In this section we let X be a Banach space.

Definition. Let A be an injective linear operator on X. Then
the inverse mapping of A defined on Ran A is called the inverse
operator of A. We denote it by A~1.

Remarks. 1. The inverse operator may not be defined on all of
X, but we do say A1 exists if A is injective.

2. Obviously, if A~ exists, then
D(A 1) =Ran4, RanA~!= D(A).
3. A linear operator A on X is injective if and only if
Ker A := {u € D(A); Au= 0} = {0}.

38

Let A be a closed linear operator on X, and z € C. Then one of
the following holds:

1. (z— A)~1 does not exist;
2. (2 — A)~1 exists, but does not belong to B(X);
3. (z — A)~1 exists, and belong to B(X),

Here z denotes a multiplication operator by the scalar z, or zI.

Problem. Under the above notation show the following.
1. z— A is closed.
2. If (z — A)~1 exists, it is closed as well.

3. If (z — A)~1 exists, Ran(z — A) C X is dense, and (z — A)~1
is bounded (in the original sense), then Ran(z — A) = X.

39




Definition. Let A be a closed linear operator on X. We call
p(A) ={z€C; I(z—A) e B(X)},
the resolvent set of A, and
o(A) =C\ p(A)
the spectrum of A. For each z € p(A) we denote
R(z) = Ryg(2) = (2 — A) 1,

and call it the resolvent of A.

Remark. The spectrum is a generalization of eigenvalues.

40

Proposition 2.13 (Neumann series). Let A € B(X) satisfy

|A]l < 1.

Then (1 — A)~1 exists and belongs to B(X). Moreover, it is
expressed by the Neumann series as

(1—4)"1= i A",
n=0

Remark. The Neumann series is analogous to a geometric series:
For any a € C with |o| < 1
1

—~ =14a+a’+---.
1—«

41

Proof. We have, as v > u — oo,
- 1—[lA[H
< A" = AP
2 1— (4]

v |4
2 AT Y AT
n=0 n=0 n=p+1

and thus the Neumann series is convergent and bounded:

— 0,

o0
> A" e B(X).
n=0
In addition, we can compute the compositions as

[e.e] [e.e] o0
(1-A4) Y A= > A"— > A"=1,
n=0 =0 n=1

o0 o0 o0
(z A”)(I—A) — S A- S A=,
n=0 n=0 n=1
which implies the assertion.
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Corollary 2.14. Let A € B(X). Then
p(A) D {z€C; [z| > [|All}, o(A) C{z€C; [z < |Al}
Proof. Let z € C with |z| > ||A|. Then, since |[z714| < 1, we

have by Proposition 2.13

1€ p(z"1A).
This implies z € p(A), hence the assertion. [
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Theorem 2.15 ((First) resolvent identity). Let A be a closed
linear operator on X. Then for any z,w € p(A)

R(z) — R(w) = (w — 2) R(z)R(w) = (w — 2) R(w)R(2).

Remark. Formally we can write it as

1 _ 1 w—z . w— Z
z2—A w—A (z—-A)(w-A4) (w—A)(z—A)

Proof. Noting Ran(R(w)) C D(A), we can compute

R(2) — R(w) = R(z)(w — A)R(w) — R(2)(z — A)R(w)
= (w - 2)R(z)R(w).

The second identity can be verified similarly. []
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Theorem 2.16. Let A be a closed linear operator on X. Then
p(A) is an open subset of C, and R(z) is holomorphic on p(A).
Moreover,

R'(z) = —R(2)2.

Proof. Let z € p(A), and take any ¢ € C with |¢ — 2| < ||R(2)| 1.
Then

o0

Ri= Y (-1)"(¢ - 2)"R(z)" !
n=0

is convergent in norm in B(X). This operator satisfies

RC—A) = 3 (=1)"(C = 2)"R(=)"

n=0
43 (C1)(C — )" HRG)M = 1,
n=0

45

and
C—AR=3 (—1)"(C — 2)"R(=)"
n=0

oo
+ 3 (DMC - D" HRE)T =1
n=0
It follows that ¢ € p(A), and hence p(A) C C is open. In addition,
we obtain

o0
RO =R= Y (-1)"(¢—2)"R()"1,
n=0
implying that R(z) is analytic, or holomorphic, on p(A). Finally
by the resolvent identity we obtain
) 1 o _ 2
ul}lmz(w —2) " (R(w) — R(2)) = J;'an R(w)R(z) = —R(2)~.

Thus we are done. []
46

o Resolvent of matrix

As an example, let us compute R(z) = (2 — A)~! for a square
matrix A of order d. Let us first assume A is diagonalizable, i.e.,

A1
P7lApP =
Ad
for some invertible matrix P. Then obviously
p(A) =C\{)1,..., Ny}, o(A)={r1,..., ¢},
and for any z € p(A)
-1
R(z)=P(z—P7taP) P!

(z—21)7t
=P p1
(z—Ag)~ 1

a7




In a general case consider a Jordan normal form

J1 A1
P lap= . J= |
Jp )\Z

for some invertible matrix P. Then, similarly to the above,
p(A) =C\{A1,...,Aq},  o(A) ={A1,..., \g},
and for any z € p(A)
-1
R(z) = P(z— P~tAp) P71

(z—J1)7 1t
=P p1
(z— Jp)_l

Thus it reduces to the resolvent of a Jordan block J;.
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Let J = A + N be a Jordan block of order s, and let z # A.
Similarly to the Neumann series, we can compute, noting N = 0O,

(z—J) 1
=GE-N(1- G-

s—1
=G-N"1Y (z-N"FNF
k=0

(Z—/\)_l_ (Z—)\)_2 (z—,\)_3 s (2= A)78
0 (z=N)"1 (z=N)"2 ... (z—N)"st!
= 0 0 (z—)\)—l (z—)\)_5+2
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Section 3
Semigroups and Hille—Yosida Theorem

§ 3.1 One-Parameter Semigroups

Let X be a Banach space.

Theorem 3.1. Let A c B(X). For any t € C the series

ootn

ed:i= 3 —A"= |im % 2 yn )
=0 n! N—oo = n!
converges in norm in B(X), and satisfies the following.
1. e04 =1,
2. For any t,s € C one has e(tt9)4 = gtAgsA,
3. et4 is analytic in t € C, and

Aot _ petd — gtdy,
dt
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Proof. The proof is similar to that for e® with a € C, and we
omit it. |

Corollary 3.2. Let A € B(X), and ug € X. Then an abstract
evolution equation

du

a(t) = Au(t) for t>0, u(0)=ug ()

has a unique solution in C([0,00); X) N C((0,00); X), which is
given by

u(t) = etug. ()

52

Proof. By Theorem 3.1 (<») obviously solves (&), and it suffices
to show the uniqueness. Let

u,v € C([0,00); X) N CL((0,00); X)

be solutions to (&). Set w = u — v, and then it follows that

w'(t) = Aw(t) fort >0, w(0)=0.
Multiplying e~ 4 to the above equation, we obtain

(e tw) =0,
so that for any t >0
ety (t) = Jim e 54w (s) = 0.

Thus w = 0, and this implies the asserted uniqueness. []
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Definition. An operator-valued function U: [0,00) — B(X) is
called a one-parameter semigroup on X if

1. U(0) =1;
2. For any t,s > 0 it satisfies U(t 4+ s) = U(t)U(s).

In addition, if U is strongly continuous on [0,c0), i.e., for any
ue X and t >0

Lm U(s)u = U(t)u,

then U is called a Cp-semigroup on X.
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Proposition 3.3. A one-parameter semigroup U : [0,00) — B(X)
is a Cp-semigroup if (and only if)

s-limU(t) = 1.
t——+40 ()

Proof. Step 1. Here we claim that there exist M > 1 and >0
such that for any t > 0

U@ < Me,
For that we first show that there exists § > 0 such that

sup ||U(t)] < oo.

In fact, otherwise, there exists a sequence (tn),cn on (0, 00) such
that as n — oo

tn — 0, [[U(tn)|| — oo.

55




However this contradicts the uniform boundedness principle since
by the assumption for any u

U(tn)u — u.
Now we choose M > 1 and 3 > 0 such that

M =e% = sup U@ > 1.
te[0,0]

Then for any ¢ > 0 we can find k € Ng such that k§ <t < (k+1)94,
and it follows that

U@ < U~ kS)|U@)|* < Me*o < el
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Step 2. Let u € X. It suffices to show the continuity of U(t)u at
t > 0. Due to Step 1 and the assumption, as h — +0,

Ut + Ryu—U@u| < [UONU R~ u]
< MU (hyu —ul|

— 0,
and
UG = hyu— U@ < UE=R)|[llu - Uh)ul
< MU (hyu — u]
— 0.
These prove the assertion. []
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Corollary 3.4.Let U: [0,00) — B(X) be a Cyp-semigroup. Tnen
there exist M > 1 and B € R such that for any ¢t > 0

U@ < me.
Proof. It is clear from Step 1 of the proof of Proposition 3.3. [

Definition. A Cyp-semigroup U: [0,00) — B(X) is called a con-
traction semigroup if one can take <0 and M =1 in Corol-
lary 3.4, or

U@ <1 forallt>0.
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¢ 3.2 Infinitesimal Generator

Let X be a Banach space.

Definition. Let U: [0,00) — B(X) be a Cg-semigroup. An in-
finitesimal generator, or simply a generator, of U is a linear
operator A on X defined as

_ . : -1
D(A)_{uex, 3, lim (U(h)ufu)},
— i -1 .
Au = Jim h (U(h)u u) for u € D(A).
If A is the generator of U, we say A denerates U, and denote
U(t) =et* fort> 0.

Remark. The last notation is well-defined due to Proposition 3.8.
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Proposition 3.5. Let U: [0,00) — B(X) be a Cg-semigroup with
generator A. Suppose M > 1 and 3 € R satisfy that for any t > 0

U@ < MePt.

1. The generator A is a densely defined closed operator X.
2. One has
c(A)Cc{z€C; Rez< B}, {2€C; Rez> 3} C p(A),
and for any z € C with Rez > 3 and any n € N

|(z— A" < M(Rez—p3)""

Proof. The proof reduces to Lemmas 3.6 and 3.7 below. []
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Lemma 3.6. For any Rez > 3 the improper integral
2t
R, = /0 e A'U(t) dt
converges srongly in B(X), and it satisfies
s-lim ARy =1, R,=(z—A)"L
RoA 00 A Z ( )

In particular, A is a densely defined closed operator on X, and

oc(A)Cc{z€C; Rez<p}, {z€C; Rez> 3} C p(A).

Lemma 3.7. For any z € C with Rez > 8 and any n € N

|[(z—A)™™| =M(Rez—-p)""
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Proof of Lemma 3.6. Step 1. Let w € X and Rez > 3. The
mapping
[0,00) = X, t— e #U(t)u
is continuous, and satisfies
le™* U (tyul| < Me~(Re==A)t ||y,

Therefore the improper integral

© t

/0 e U (t)u dt

converges absolutely in X, which in turn implies the strong con-
vergence of the improper integral R,.
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Step 2. Let w € X. For any A > max{23,0} and K > 0 let us
decompose

IARyu — ul| = H/Ooo e ! [U(t/Nu — ] dtH

K 00
_ —t/2 —t
< '/O |Ut/3yu — uf at + /K (Me™2 4 &) |[ull dt.
Now for any ¢ > O we can find K > 0 such that
oo
/ (Me™2 4 e 1) ful dt < c.
K
We then let A — oo, and obtain

limsup || ARy u — ul|| < e.
R3A—00

Hence

s-lim ARy, = 1.

R3A—00
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Step 3. Let w € X and Rez > (. For any h > 0 we can compute
gl
U(h)Rsu = U(R) /O e AU (t)udt
b 0
=e* /h e U (s)uds
zh zh h —2z8
=e*"Ru—e /O e **U(s)uds,
and this implies
h
WY (Uh) — 1) Reu = h (e — 1) Rou — eZhh_l/O e~ U (s)u ds.
Now by letting h — 40 we obtain

R,u e D(A), ARu=z2R,u— u.
Particularly with Step 2, A is densely defined operator on X, and

(z— AR, =1.
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Next let u € D(A). Write
R tU@)(UR) = 1)u=h"HU(R) - 1)U (),
multiply e~*t, and integrate it in ¢t € [0,00). Then we have
R R.(U(R) = 1)u = h~H(U(R) - 1) Rau,

so that by letting h — 40

R.Au = AR,u.
This and the result above imply

R:(z — A) = (2 = A)R:z[pay = idp(a)-

Hence

R, = (z—A)"L.

Since R is bounded, we have z € p(A). In addition, since R; is
closed, so is its inverse z — A. Thus A is closed as well. L]
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Proof of Lemma 3.7. Let v € X. By Lemma 3.7 for any z € C
with Rez > 3 we have
1 Lzt
(z— A)lu= /O e~ #U(t)udt.
We differentiate both sides (n — 1)-times in z, to obtain
1 > 1 t
(=1)" L(n = 1)1(z — A) "y = /O (=) Le=#U(t)u dt.

Then it follows that
-n 1 X -1zt
IG = Al = gy e U@l e

< M [ /oo tn—le—(Rez—ﬁ)t dt
(n—1)! 0

= M(Rez—8)""||ull,
which implies the assertion. []
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Proposition 3.8. Let U: [0,00) — B(X) be a Cp-semigroup with
generator A.

1. Let we D(A). Then for any ¢ > 0 one has
U(t)u € D(A).
Moreover, U(-)u € C1((0,00); X), and
d
SWOW = AU = U@ Au.

2. If V:[0,00) — B(X) is a Cp-semigroup with the same gener-
ator A, then

Uu=V.
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Proof. 1. Let u € D(A). For any t > 0 write
YU () = 1)Uu=hr U@ (UR) = 1)u,

and let h — 4+0. Then the above right-hand side converge to
U(t)Au, from which it follows that

U(t)u € D(A).
It also follows that we have the right derivative
Jim R YU+ h)u — Ut)u) = AU(#)u = U(¢) Au.
To examine the left derivative let t > 0. Then for small h > 0
H(—h)—l (Ut = hyu—U)u) - U(t)AuH
< Ut = m||p~H (Uh)u - u) — U(h) Aul.
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Recalling [|U(t — )| < MeP(=h) we obtain
, —1 _ _
hirpro(—h) (Ut = hyu— U(t)u) = AU(t)u = U(t) Au.

Hence the assertion 1 is verified.

2. Let u e D(A) and T > 0. Then for any t € [0,T],

d
&(U(T ~ OV (H)u) = —U(T = ) AV (t)u + U(T — ) AV (t)u = 0,
and therefore
U(T —-t) V() u =U(T)u = V(T)u.
This certainly implies U = V. []
Problem. Let A be a generator of a Cp-semigroup on X. Show

that e!4 extends analytically in ¢ € C if and only if A € B(X).
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§ 3.3 Hille—-Yosida Theorem

Let X be a Banach space

Theorem 3.9 (Hille—Yosida). A linear operator A on X is a
generator of a Cp-semigroup U: [0,00) — B(X) with constants
M > 1 and g € R such that for any t >0

IU@Il < MeP?
if and only if both of the following hold:
1. A is closed and densely defined on X;
2. One has (B,00) C p(A), and for any A > 3 and n € N
(A=A <MAX-p)""
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Theorem 3.9 (continued). In addition, in the affirmative case,
one has

{z € C; Rez> 3} C p(A),
and for any Rez > 3 and n € N
[(z—A)" < M(Rez—p3)""
Remarks. 1. Theorem 3.9 was proved by E. Hille and K. Yosida

independently at almost the same time. Their proofs are
different from each other, and we shall present both of them.

2. The necessity and the last part of the assertion is already
done in Proposition 3.5. We will prove only the sufficiency.

71




Yosida's idea. If A were bounded, we could apply Theorem 3.1
to construct the Cp-semigroup U with generator A. In fact, it
would suffice to set

[o.°] tn
Uty =et =3 —an

n=0
However, this construction fails when A is unbounded. Yosida's
idea is to approximate A by a squence (A)),-g of bounded op-
erators defined as

n!

Ay =AJy € B(X);, Jy=AA—-A)"1 slimJy=1.
—00
Then we could construct the desired Cp-semigroup as
U(t) = et4 = s-lim et
A—00

The operator A) is called the Yosida approximation to A.
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Yosida’s proof. It suffices to prove the sufficiency.

Step 1. For A > 3 we set
IH=MA—A)"1 Ay =AJ, = AJ, — )€ B(X).

Here we prove that for any u € D(A)

lim Ayu = Au.

—00
In fact, for any u € D(A) we have

Ayu = AJyu = AJyu — Au = JyAu,

and thus it suffices to show

s-lim J)\ =1.

A—00
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To prove it let v € X. For any € > 0 take w € D(A) such that
lv —w| <e.
Then, as A — oo,

| v — vl < [[Ix(v —w)[| + [[/axw — w|| + [[w — v
SAIA= AT w=—w)[+ (A= A" Aw|| + €
SAMOA=8)"te+ (A= B) | Aw|| + €
— Me + €,

hence

Jyv — wv.

The claim is verified.
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Step 2. Next we prove for any A > g and ¢t >0

A
et < M exp by ,
A—p

but this is straightforward. In fact, noting that
Ay+A=20-4)1
we can bound the operator norm by the assumptions as

B B (o] tn
||etA)\|| —e t>\||et(A)\+>\)|| S e tA Z E”(A)‘ —+ )\)nH

n=0 """
00 2\n
<me Y 0 gy

n=0

e

n!
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Step 3. Now we prove there exists a strong limit
U(t) ;= s-limet € B(X)
A—00

locally uniformly in t > 0. First let u € D(A). By the fundamental
theorem of calculus for any A>pu > and t >0

t
HetA)\u - etA”uH = H/O e(t_s)A“eSA)\(A,\ — Ap)uds

t
—s)A A
< 1A = Ay [ [l et ds.

Let us show that the the last integral is bounded locally uniformly
in t > 0. After some computations employing Step 2 we obtain

t
/ JeCt==) )l ds

PPl ) ol )]
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Then by the mean value theorem there exists 6 =0, ,; € (0,1)
such that

/ [e(t=5)Au|||e34N | ds < tMZexp|(1 — e)ﬂt +o0- .

B A=p
From the above estimates it follows that (etAAu))\>5 is a Cauchy
sequence on X locally uniformly in ¢ > 0, and hence has a limit
locally uniformly in ¢t > 0 as A — oo.

Problem. Let v € X. Show by using the denseness of D(A) C X
that there exists the limit

lim et4ry
A—00

locally uniformly in ¢ > 0.

Thus the claim is done.
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Step 4. Here we prove that U is a Cp-semigroup on X satisfying
for any ¢t > 0

U@ < me. (&%)

By definition we can immediately see U(0) = 1. Let t,s > 0.
Then by Steps 2 and 3 for any ue€ X

HU(t + 8)u — U(t)U(s)uH = A|LmOOHe(tJrSV‘Au - etA/\U(s)uH
< Ilm Mexp(}\/\_ )HeSAAu U(s)uH

= o,
so that

Uit+4s) =U@)U(s).
Hence U is certainly a one-parameter semigroup on X. In addi-

tion, since the strong limit in Step 3 is locally uniform in ¢t > 0,
U is a Cp-semigroup. The estimate (&) follows from Step 2.
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Step 5. Lastly we prove the generator of U, denoted by B,
coincides with A. For any uw € D(A), A > 3 and ¢t > O by the
fundamental theorem of calculus

t
ety —u = /O eSA'\AAu ds,
so that by taking a limit as A\ —
t
U)u —u = /O U(s)Auds.
Therefore by the fundamental theorem of calculus again
t
t£r+n0 t_l(U(t)u - u) = t_l/o U(s)Auds = Au.

This implies A C B. However, note that for any A > 8 both A— A\
and B — X\ are injective, and

X = Ran(A - X)) C Ran(B — \).
Then it follows that A— A= B — )\, or A= B. L]
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Hille's idea. Let us discretize the differential equation

d
&U(t) =AU(1), U(0) =1,

replacing the differentiation in t by the backward difference of
step size h > 0. Then we have

W (Up — Up_1) = AUn, Uy =1,

which in fact has an explicit solution: U, = (1 — hA)~™. In the
continuum limit as h — 4+0 and n — oo with nh — ¢t we expect

Up=(1-hA)""—>U®).
Now, letting h = t/n, we adopt

Un(t) = (1 _ %A) -

as an approximation of the desired Cp-semigroup as n — oo.
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Hille's proof. It suffices to prove the sufficiency.

Step 1. We first define the approximate operator U,(t), and state
its basic properties. For any n € N we let

o s ifs>0,
"7l ifB<O,

and define for n € N and ¢ € [0,T})

Un(t) = (1 _ %A) e B(X).

For t # 0 we may write it also as

o= () )

81

Now it is straightforward from the assumptions that

waeyl < m(1- 27" *)

In addition, for any u € D(A) the vector-valued function Uy(-)u
is differentiable on [0,7},), and

—1
%(Un(t)u) — Un(t)<1 _ %A) Au. ©)

Here we omit a verification of (Q).

Problem. Verify the claimed identity (©) based on the definition
of differentiation. (Except at ¢ = 0 we may verify it by the
holomorphy of resolvent as well.)
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Step 2. Here we prove existence of a strong limit
Ut) = %—_h& Un(t)

locally uniformly in t > 0. First let w € D(A). For any T > 0 take
n > m large enough that T;, > Ty, > T. Then for any t € [0,T] by
the fundamental theorem of calculus and Step 1

HUn(t)u - Um(t)uH

- '/Ot Un(t — $)Un(s) {(1 - %A>_1Au - (1 - t;sA>_1Au} ds
e ) ")
./OT (1 - %A)ilAu - (1 - t;SA)ilAu ds.
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Here, similarly to Step 1 of Yosida’'s proof, we have
t -1
lim (1 — —A) Au — Au
n—oo n
uniformly in ¢t € [0,7]. Therefore by the above aruguments
(Un(t)u),en is @ Cauchy sequence on X uniformly in t € [0,T],
hence has a uniform limit in ¢ € [0,T] as n — oo.

For general uw € X we can argue similarly to Step 3 of Yosida's

proof, using the denseness of D(A) C X and the bound (&) from
Step 1. Thus the claimed strong limit exists.
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Step 3. Here we prove U from Step 2 is a Cp-semigroup on X
satisfying for any ¢t > 0

U@ < MePt.

Obviously we have U(0) = 1. For any t,s > 0 let n € N be
sufficiently large. Then for any u € D(A) by the fundamental
theorem of calculus

Un(t + s)u — Up(t)Un(s)u
— /OS Un(t 4+ r)Un(s — 1) {(1 _t+ TA>_1 - (1 _5z TA>_1] Audr.

n n

Letting n — oo, we obtain for any v € D(A)
U(t+ s)u=U@)U(s)u.

By the denseness of D(A) C X it follows that U is certainly a
one-parameter semigroup on X.
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Since the strong limit in Step 2 is locally uniform in ¢t > 0, the
one-parameter semigroup U is strongly continuous, and hence is
a Cp-semigroup on X.

By (#) from Step 1 we obtain the claimed estimate for U(t).
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Step 4. Lastly we prove the generator of U, denoted here by B,
coincides with A. For any u € D(A) by the fundamental theorem
of calculus and (Q) from Step 1

t -1
Un(H)u —u = /0 Un(s)<1 — iA) Auds,
n
so that by letting n — oo
t
U)u —u= /O U(s)Auds.
This implies by the fundamental theorem of calculus again
t
tir—P—O til(U(t)u — u) =t /O U(s)Auds = Au.

Thus we have A C B. Now, repeating the same argument as in
Step 5 of Yosida's proof, we obtain A = B. We are done. []
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Corollary 3.10. Let A be a generator of a Cg-semigroup on X.
Then et for any t > 0 has the expressions

e = s-lim exp(tAA(A - A)_1>
A—o00
and
—n
etd = s—lim(l - 3A)
n—oo n

Proof. These expressions are straightforward from the proofs of
Theorem 3.9. []
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Corollary 3.11. Let A be a generator of a Cp-semigroup on X,
and let ug € D(A). Then an abstract evolution equation
) = Au(t) for t>0, u(0) =uo ©)
has a unique solution in
{u € C(10,00); X) NCH((0,00); X); Vt >0 u(t) € D(A)}, ()
which is given by

u(t) = etAuo.

Remark. Sometimes, even for general ug € X, the vector-valued
function

u(t) = etAuo

is called a solution to (Q©), though it is not differentiable in ¢t > 0.
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Proof. By Proposition 3.8 u(t) = et4ug certainly solves (V). On
the other hand, let v be a solution to (V) belonging to ().
Then for any T'> 0 and any t € (0,T)
d
dt
Hence by continuity of v at t = 0,7 we obtain

(eTD4y(t)) = —eT =D A0(t) + T D4 4p(t) = 0.

eT=DA4(1) = eTAug = v(T).

This implies v(t) = et4ug for any t > 0. We are done. [
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§ 3.4 Analytic Semigroups

Let X be a Banach space. In this course we denote for any 6 > 0

Cyp={z€ C\ {0}, |argz| < 6}.

o Analytic semigroup on closed sector

Definition. An operator-valued function U: Cy — B(X) with 6
(0,7/2] is called an analytic semigroup on X (defined on Cy) if

1. U(0) = 1;
2. For any z,w € Cy one has U(z +w) = U(2)U(w);
3. U is strongly continuous on @9, and analytic on Cy.
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Definition. A generator of an analytic semigroup U: Cy — B(X)
with 0 € (0,7/2] is the generator of the Co-semigroup Ul ). If
A is the generator of U, we say A generates U, and denote

U(z) =e** for z € Cy.

Remark. Due to the analytic continuation U is uniquely deter-
mined by its restriction U|[g ), Which in turn is uniquely de-
termined by the generator A. Therefore the last notation is
well-defined.

Problem. Let A be a generator of an analytic semigroup on X.
Show that, if e¥4 extends analytically in z € Cy for some 0 > 7/2,
then e*4 extends entirely in z € C, and in particular A € B(X).
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Proposition 3.12. Let A be a generator of an analytic semigroup
defined on Cy with 6 € (0,7/2].

1. For any u € X, z € Cy and n € N one has e*dy € D(A™), and

d"  .a A
z

2. Let ug € X. Then an abstract evolution equation
du
a(t) = Au(t) fort >0, u(0)=ug )
has a unique solution in
{ue C([0,00); X) N CH((0,00); X); ¥t >0 u(t) € D(A)},
which is given by
u(t) = etAuo.
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Remark. See also Proposition 3.8 and Corollary 3.11. The above
assertions hold for all u,ug € X.

Proof. 1. Since e*4 is analytic in z € Cy, e*u for any u € X is
infinitely differentialble in z € Cy. Then it is straightforward to
see e*4u € D(A) and

d
d—(eZA) = }Ilimo (e — 1)e* 4y = Ae*Au.
z —_

We can discuss the higher derivatives similarly, noting that A and
ehd commute. The detail is omitted.

2. The proof is almost the same as that of Corollary 3.11, and
is omitted. []
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Proposition 3.13. Let U: Cy — B(X), 0 € (0,7/2], be an ana-
lytic semigroup. Then there exist M > 1 and 8 € R such that for
any z € Cy

|U(2)|| < MePll,
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Proof. Fix any T'> 0. For any u € X, since U(-)u is continuous,
sup || U(2)u|| < oo,
|z|<T
so that by the uniform boundedness principle we can find M > 1
and g > 0 such that

M =eT = sup ||U2)| € [1, ).
l2|<T

Now for any z € Cy \ {0}, choosing k € Ng such that kT < |z| <
(k+ 1)T', we obtain

U@ < |U(= = kez/12]) [0 (=1 /120) [ < MePT < aredlel,

Hence we are done. []
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Theorem 3.14. A linear operator A on X is a generator of an
analytic semigroup U: Cy — B(X), 0 € (0,7/2], with constants
M > 1 and 3 € R such that for any z € Cy

U]l < pell?!
if and only if both of the following hold:
1. A is closed and densely defined on X;
2. One has
{ei“)\ €Cyp A>3, |w < 0} c p(A),
and for any A > 3, |w| <0 and neN

[(e“X —A)™"| < M(A—B)"
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Theorem 3.14 (continued). In addition, in the affirmative case,
one has

{e“z€C; Rez>p, |w| <0} Cp(A),
and for any Rez > 3, |w| <6 and ne N

[(e“z — A)™"| < M(Rez—3)™"™

Proof. Necessity. Let A be a generator of an analytic semigroup
U with constants 0, M, 3 as in the assertion. For any |w| < 0 we
let A, be a generator of a Cyp-semigroup U,, defined as

Uo(t) = U(e “t) for ¢t > 0.
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Then by the Hille=Yosida theorem A, is a densely defined closed
operator on X with (8,00) C p(Ay), and for any A > 3 and n e N

[A=A) " < M=)~

Therefore it suffices to show that A, = e~ %A, from which we
remark also the last assertion follows.

For that first let w € D(A). Since U(-)u is analytic on Cy, we
have for any z € Cy

U(z)u € D(A)ND(AL), AuU(z)u=e WAU(2)u.
By u € D(A) it follows AU(z)u = U(z)Au, so that
ALU(2)u = U(2)e ' Au.

Now let z — 0. Then, since A, is closed, we have u € D(A,) and
Apu=e" WAy, or e7'WA C A,. The converse is proved similarly.
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Sufficeincy. Next assume conditions 1 and 2 of the assertion,
and set for any |w| <0

Ay, =e WA,

This A, satisfies the conditions of the Hille=Yosida theorem, and
thus the strong limit

A t -
etdw = s—Iim<1 - wa> fort >0
n—o0 n
exists, and it gives a Cp-semigroup. Now we set

—-n . .
U(z) = s—lim(l — EA) for z = e “t € Cp.
n—00 n
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For each n € N the operator on the right-hand side above is
analytic (where it is defined). In addition, by repeating the agr-
guments of Hille's proof the above strong limit is locally uniform
in z € Cy. Thus it follows that U is strongly continuous on Cy,
and analytic on Cy.

Moreover, for any t,s > 0 we have
Ut+s) =U@)U(s),

and hence by the identity theorem for any z,w € @9
U(z4+w) =U(z)U(w).

Thus U is an analytic semigroup on X, and by the construction
its generator coincides with A. []
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Corollary 3.15. Let A be a generator of an analytic semigroup
on X defined on Cy, 0 € (0,7/2]. Then e*4 for any z € Cy has
expressions

4 =  s-lim exp(zAA()\ - A)*1>

2ZAER, A—00
and

Proof. From the proof of Theorem 3.14 we obtain
e = exp [t(e*i“’A)] for z = e Wt € Cy.
Hence the asserted expression follows by Corollary 3.10. []

Remark. There is yet another expression for an analytic semi-
group, see Theorem 3.16 below.
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o Analytic semigroup on open sector

Definition. An operator-valued function U: Cy — B(X) with 6 €
(0,7/2] is called an analytic semigroup on X (defined on Cy) if

1. For any w € (0,60) one has

s-lim U(z) =1,

WwIZ—
2. For any z,w € Cy one has U(z + w) = U(2)U(w);

3. U is analytic on Cy.
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Remarks. 1. In this course we shall always extend an analytic
semigroup U defined on an open sector to 2 =0as U(0) = 1.

2. Usually analytic semigroups on open and closed sectors are
not really distinguished. (Essentially the distinction is not
really needed, either.) It is only in this course.

Definition. A generator of an analytic semigroup U: Cy — B(X)
with 0 € (0,7/2] is the generator of the Co-semigroup Ul ). If
A is the generator of U, we say A generates U, and denote

U(z) = e*4 for z € Cy.
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Theorem 3.16. A linear operator A on X is a generator of an
analytic semigroup defined on Cy with 6 € (0,7/2] if and only if

1. A is closed and densely defined on X;
2. For any w € (0,0) there exist Ry, M, > 0 such that
{2 € Crogur 121> R} C p(A),
and for any z € C, /o4, With |z[ > Ry
I(z = A)7H| < M|zl

In addition, in the affirmative case, e*4 for any z € Cy has an
integral expression

== [e(c- Mt (&)

T o7
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Theorem 3.16 (continued). Here for any w € (Jargz|,0) a
piecewise C'1 path ' = {¢(t) € C; t € R} is chosen such that

M C {Z S Cﬂ/?-l—w; |Z| Z Rw},
and further that there exists T' > 0 such that for any |t| > T

¢(8) = [t (/4.
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Proof. Necessity. Let A be a generator of an analytic semigroup
U defined on Cy with 6 € (0,7/2], and take any w € (0,0). Then
for any 7 € (w,0) the restriction U\@ is an analytic semigroup,
and thus the necessity follows immediately from Theorem 3.14.

Sufficiency. Suppose A satisfies conditions 1 and 2 of the asser-
tion. In the following we are going to show that the integral on
the right-hand side of (#) provides an analytic semigroup defined
on Cy, and that its generator coincides with A.
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Step 1. Fix z € Cy, and take any ' = {¢(t) € C; t € R} with
w € (Jargz],0) and T > 0 as in the assertion. We first show that

RN N
Ur() i= 5 [ (¢ = ) a¢

is absolutely convergent. In fact, by condition 2
et =7 ac
S e S C L
+/ " <O ¢ o) at
+ / ~exp |zt|e'(ar92+7f/2+w)))‘dt}

< C+2M, /T ¢t~ Lle—tlelsin(o—laraz)) qp o oo

and this implies the claim.
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Step 2. Fix z € Cy again, and we prove Ur(z) is independent of
choice of I'. Take any paths '; and ', as in the assertion, and
let |argz| < w; < wp < 6 be the associated angles. By Cauchy'’s
integral theorem we can estimate

U, (2) = Ur, ()
1 . i _
<~ limsup HGZC(C—A) 1H|dC|~
2w r—oo J|¢|=r,7/24wi<|arg ¢|<n/24wo
Then by the condition 2 we can proceed as

|Ur,(2) = Ur, ()
< % limsup (/ﬂ/}m +/._7T/2_w1> ‘exp (Izlrei(arg Z+T>>‘ dr

T =0 7'(/2-‘1-0.)1 771'/270.12
< My(w2 — w1) lim Supe—r|z|sin(w1—|arg z]) — 0.
T r—00
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Thus Ur(z) is independent of I', and we may write it simply as

U = Ur(e) = 5 [ (- ) Hac,

Note that it also follows that U(z) is analytic in z € Cy.

Step 3. Here, take any z,w € Cy, and we prove

Uiz4+w) =U()U(w).

Choose paths I'1 and ', as in the assertion, and let

largz| <wi <0, |argw| <wp <O

be the associated angles, respectively. We may assume that M
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lies in a region to the left of '>. By the resolvent identity

(2;)2 J e - [ J e - 46| déy

B 1 eZC1ewC2 1
= G2 /rl[/rz oo G- d@}dcl

. 201 W
= o [ e - A)—l ac;
=U(z + w).
In the above third equality we have used the identities

1 / ewCZ 1 eZCl
— di=ev, [ d¢y =0,
271y o — (1 271/ (2 — (1

the verification of which is left to the reader as Problem.
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U()U(w) =




Step 4. Now in order to see that U is an analytic semigroup it
remains to show that for any w € (0,0)

Ci_al,lzrﬂoU(z) =5
Fix any w € (0,0). We first let u € D(A). Choose a path I as in
the assertion with the associated angle w € (0,0). Noting that
0 € C is in a region to the left of ', we have as C, 22 — 0

1 1
o = 20 -1 o 2¢,—1
U(2)u u_in/re (¢ — A~ lude 27ri/re ¢~ ludc
— (=10 -1
— 21ri/re ¢ = A) T Aude
-1 -1
- /rg (¢ — A)~Audc.
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However, the last integral vanishes. In fact, by Cauchy’s integral
theorem and the condition 2 of the assertion

| [ehe - auac

M- M) M ud|

lim /
r=ee JiCl=r, |arg (|<m/2+w
. -1 —
< lim r My,(7 + 2w)||Aul| = 0.
Hence we obtain for any u € D(A)

lim U(z)u = u.
Cu32z—0

To verify the same limit for general u € X, due to denseness of
D(A) C X, it suffices to show that U(z) is bounded uniformly in
small z € C,. Choose I'" along with ' € (w, ) as

r— {|Z|flei7; 7| < 7 /2 +w/} U {teii(ﬂ'/2+w/); . |Z|71}.
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For any sufficiently small z € C, the above path I’ certainly
satisfies the properies required to define U(z). Then by the
condition 2 of the assertion
M, 2Cp~1—1

e d
2 | 1l g

= %{/ﬁ*l/\z‘ |t|*1)exp(|zt|ei(arg Zﬁﬂ_/in,))‘ at

U2 <

L

+ [ e (tlelCro /2 )

exp(ei(arg Z+T)) ‘ dr

< 7]\24“’ {e(ﬂ' 12wy 42 /1°° s~ le—ssin(w/—|argz)) ds}.
s

The last formula is obviously bounded uniformly in z € C,. Thus
we can conclude that U is an analytic semigroup.
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Step 5. Finally we prove that the generator of U, denoted by B,
coincides with A. For sufficiently large A > 0 by Lemma 3.6

o0
(A—B)l= /O e~ MU(t) dt
1 oo —)\t{/ i —1 }
= — e e —A d¢y dt
27Ti/0 r (€ ) ¢
with an appropriate path I'. If we choose I to be inside of the
half-plane {¢ € C; Re({ < A}, we can change the order of the
integrations, so that
1 o0
\N_B —1=7/{/ et(C_A)dt} —A)ld
OB t= ] (c—A)tac

_ 1 1 —1
—Q—ﬁi/r(xfo (¢ —A)Ldc.

The last integral coincides with (A—A)~1 (Problem), and hence
(A=B)"1=(—A4)"1 This implies B = A. ]
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Theorem 3.17. A generator A of a Cp-semigroup on X is a
generator of an analytic semigroup defined on Cy with 6 € (0, 7/2]
if and only if both of the following hold:

1. etA s differentiable in norm in B(X) with respect to t > 0,
and therefore for any ¢ > 0

d
e X c D(A), &em = Aett € B(X);

2. There exist M > 0 and B € R such that for any ¢t > 0
|Aetd|| < Mt 1eft,

In addition, if the above 1 and 2 hold with Me > 1, then one can
choose
0 = arcsin[(Me)1].
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Remark. Let A be a generator of a Cp-semigroup on X, and
assume the condition 1. Then the condition 2 holds for some
M >0 and B € R if and only if there exist §, K > 0 such that for
any t € (0,4]

|Aet < Kt )

In fact, the necessity is obvious, and let us show the sufficiecy.
If () holds, the condition 2 for t € (0, 4] is straightforward, and
it suffices to discuss t > §. By Corollary 3.4 we can find L,v >0
such that for any ¢t > 0

le™| < Le. €
By (¢) and (&) it follows that for any ¢t > ¢
A" = (| Ae®|[e =4 < KLo~te %,

Hence the condition 2 is verified also for ¢t > §.
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Proof. Necessity. Suppose that A is a generator of an analytic
semigroup defined on Cy with 6 € (0,7/2]. The condition 1 is
obvious by definition of a generator, see also Proposition 3.12.
To verify the condition 2 we use Theorem 3.16 to write

1

Ae*A = —/ e*Ce(¢ — A)~Ldc.

27 JIT

Let z =t > 0 be small, fix any w € (0,6) and choose I as
r= {tileiT; || < 7/2 —I—w} U {seii(w/z'ﬂ"); s> til}.

Then a computation similar to Step 4 of the proof of Theo-
rem 3.16 shows that for any small ¢t > 0
aetd) < Mo {e(w 1 ow) 42 /OO essinw ds},
27t 1
where M, is from Theorem 3.16. This and the above Remark
certainly implies the condition 2.
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Sufficiency. Assume the conditions 1 and 2 of the assertion. We
may let Me > 1 by retaking M > 0 larger if necessary.

Step 1. We first prove that eld s infinitely differentiable in norm
in B(X) with respect to ¢t > 0, and moreover that for any n € N
and t >0

(&™) = (ael/mAyr,(aem | < (/. (V)
In fact, the latter estimate of (V) is clear from the condition 2.
For any e > 0 and ¢ > ¢, if we rewrite
(etA)/ — Aetd — e(t—e)AAeeA’

then the last formula is clearly differentiable in ¢ > ¢. Repeating
this argument, we can differentiate et in ¢+ > 0 as many times
as we would like. Moreover, the same argument indeed shows
the former expression of (Q).
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Step 2. Here we prove et4 extends as an analytic operator-valued
function U: Cy — B(X) for 0 = arcsin[(Me)~1]. By Step 1 and
Taylor’s theorem for any t,a > 0 and n € N we can find = > 0
between a and ¢ such that

oA (a k)A k (t—a)” (t/n)A\n
+Z_A/) (e,

The above remainder term is estimated by (©) from Step 1 and
Stirling’'s approximation as

‘(t (A (T/n)A)n

el (2’

n! T

- efr [t —a|Me\"
~ (27n)1/2 T ’
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Now let us choose ¢ € (0, 1) sufficiently small, so that

eMe

1—e¢
Then for any t,a > 0 with |t — a| < ea, as n — oo,

eB+e)a [ cpre\™

— — 0.
(2mn)1/2\1—¢
Hence e/ is analytic in t > 0, and the analytic extension is given
by the pewer series

< 1.

(t— a) T (Ae (T/n)A)n

zZ —
U = e+ 3 EZ D ey @
= K
Computations similar to the above show that (#) is convergent
for z € C and a > 0 with |z—a| < a/(Me), and thus et/ is extends
analytically to a sector Cy with 6 = arcsin[(Me)~1].
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Step 3. By the identity theorem the analytic extension U of etA
from Step 2 satisfies that for any z,w € Cy

U(z+ w) =U()U(w).

Hence to verify U is an analytic semigroup it suffices to show
that for any w = arcsine € (0,0) with € € (0,1/(Me))

s-lim U(z) = 1.

(Cwaz—>
For that we first let u € D(A). By the expression (&) from Step 2
for any z € C and a > 0 with |z —a| < ea

U(z)u — ety = Z e =) e/ Ay T/ A 4,
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Using the condition 2 and the estimate (&) from the previous
Remark, we can bound

aLeB+1)a|| Ay|| i |z — alk (Mk)k

M = K '
Computations similar to Step 2 show the last sum is bounded
uniformly in z € C and a > 0 with |z —a| < ea, and thus as z — 0
and a — 40 with |z —a| < ea

U (2)u — e*u| <
a

1U(2)u — ull < |U(2)u — e*u|| + ||e®u — u|| — 0.

To verify the same limit for general u € X, due to denseness of
D(A) C X, it suffices to show U(z) is bounded uniformly in small
z € C,. However, this can be shown by the expression (#) and
computations similar to Step 2 again. We omit the detail. []
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Problem. 1. Show that e*4 extends entirely in z € C if the
conditions 1 and 2 from Theorem 3.17 hold with Me < 1. In
particular, A € B(X) in this case.

2. Discuss if it is possible to take

0 > arcsin[(Me) 1]
in general in Theorem 3.17.

Hint for 2. Suppose A has an eigenvalue z = A+ip € C, and then
it would follow from the condition 2 that for any t > 0

|zet?| < Mt~ 1ePt or |zjte T BN < .
Since g > A would hold, we could deduce
2[(B8 =) < Me,
and therefore ... what does this mean? L
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¢ 3.5 Semigroups on Hilbert Space

Definition. Let H be a complex vector space. We call a mapping
(-,): Hx H — C an inner product if it satisfies

1. For any u,v € H one has (u,v) = (v,u);

2. Foranya,b e Cand u,v,w € H one has (u,av+bw) = a(u,v)+
b(u,w);

3. For any u € ‘H one has (u,u) > 0, and (u,u) = 0 if and only
if u=20.

We call a pair (H, (-,-)) of a vector space H and an inner product
(+,-) on H an inner product space. We denote it simply by H.
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Remark. We follow a convention that an inner product is linear
in the second variable, and conjugate-linear in the first.

Proposition 3.18. An inner product space is a normed space
with respect to the natural norm

lul| =/ (u,u) for u € H,

and hence has the natural metric.
Proof. The proof is omitted. []

Definition. An inner product space that is complete with respect
to the natural metric is called a Hilbert space.
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For the rest of this section we let H be a Hilbert space.

Definition. Let A be a linear operator on H. We define the
numerical range of A as

v(A) = {(u, Au) € C; ue D(A), |ul| = 1}.

Remark. The numerical range v(A) may be considered an “‘outer
approximation” of the spectrum o(A).
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Example. Let A be a square matrix of order d. With (-,-) being
the standard inner product on (Cd, we have

v(A) = {(u, Au) € C; we T, Jlul = 1}.
Then it follows that
a(A) C v(A).

In fact, if A € C is an eigenvalue of 4, then letting u € C% be the
associated unit eigenvector, we obtain

A= )\Hu||2 = (u, ) = (u, Au) € v(A).

Problem. Show that, if A is unitarily similar to a diagonal matrix,
then v(A) coincides with the convex hull of o(A).
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Definition. Let A be a densely defined closed operator on H.

1. A is said to be accretive if
v(A) C {z€C; Rez>0}.

A is said to be maximal accretive, or m-accretive, if in
addition there does not exist a proper accretive extension.

2. A is said to be dissipative if
v(A) c{z €C; Rez<O0}.

A is said to be maximal dissipative, or m-dissipative, if in
addition there does not exist a proper dissipative extension.

Remarks. 1. We will not discuss accretive operators. They are
just introduced as opposed to dissipative operators.
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Remarks (Continued). 2. These notions are generalized to a
Banach space with some variations. In particular, ‘maximal
dissipative’ and ‘m-dissipative’ are often distinguished there.

3. Obviously, A is dissipative if and only if for any v € D(A)
Re(u, Au) < 0.

If in addition A generates a Cp-semigroup, then this implies
that for any uw € D(A)

d
a||e“‘u||2 = 2 Re(etu, 4etu) < 0.

We can interpret it as a dissipation of certain energy ||etAu\|2,
as time passes, of the system under consideration.
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Proposition 3.19. Let A be a dissipative operator on H. Then
the following conditions are equivalent to each other.

1. A is maximal dissipative.

2. For all Rez > 0 one has Ran(z — A) = H.

3. For some Rez > 0 one has Ran(z — A) = H.
4. For all Rez > 0 one has z € p(A).

5. For some Rez > 0 one has z € p(A).

Remark. The m-dissipativity on a Banach space is usually de-
fined by employing either of the above conditions 2—5.
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Proof. Let us first note that for any Rez > 0 and u € D(A)
(Rez)|lull* < Re(u, (z — A)u), (&)
hence

(Rez2)lull < [|(z — Aull. (@)

1 = 2: Let Rez > 0. Then, due to (V) and that A is closed,
the subspace Ran(z — A) C H is closed. Set

N = (Ran(z — A))™T,

and then by (#) we can see D(A) N N = {0}. Now define an
extension B of A as

B(u+v) =Au—zv for u+v € D(A)+ N =: D(B).
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This operator B is dissipative. In fact, for any u+v € D(A)+ N

Re(u + v, B(u 4+ v))

= Re(u + v, Au — zv)

= Re(u, Au) + Re(u, —zv) + Re(v, zu) + Re(v, —zv)

= Re(u, Au) — (Re 2)|[v[|> < 0.
Since A is maximal dissipative, it follows that D(A) = D(B), and
hence N = {0}, or Ran(z — A) = H.

2 = 3: This is trivial.
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3 = 1: Let Rez > 0 satisfy Ran(z — A) = H, and take any
dissipative extension B of A. Then for any u € D(B) by the
assumption there exists v € D(A) such that

(z—=B)u=(z— A)v= (2 — B)v.
Since B also satisfies (Q), it follows that
(Re2)[lu—v] <|[(z = B)(u—v)| =0, or u=v.
This says D(B) C D(A), and thus A maximal dissipative.
2 = 4: For any Rez > 0 the operator z — A is injective due to

(V), hence has the inverse (z — A)~1. Then by the closed graph
theorem (z — A)~1 is bounded, and thus z € p(A) follows.

4 = 2: This is trivial by the definition of resolvent.

3 < 5: We can argue similarly to the above 2 < 4. []
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Theorem 3.20. Let A be a linear operator on H. The following
conditions are equivalent:

1. A is maximal dissipative.

2. A is a generator of a contraction semigroup.

Proof. We first let A be maximal dissipative. In particular, A is
closed and densely defined. In addition, by Proposition 3.19 it
follows that (0, 00) C p(A). Moreover, due to (©) in the proof of
Proposition 3.19, for any A > 0 and v € D(A)
Allul] < [[(A = A)ull,
which implies for any n € N
A=A <[[A—A) <A

Now the Hille=Yosida theorem verifies the condition 2.
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Next, let A be a generator of a contraction semigroup. By the
Hille—Yosida theorem A is closed and densely defined on H. More-
over, (0,00) C p(A) and for any A >0

A=A~ < 1.
Thus for any A > 0 and u € D(A)
Aful = MO = A7 A = Aul < (A= Ay,
so that
[ Aul|® — 2XA Re(u, Au) = [|(A — A)ul|> = A?||u||> > 0.
Now this implies that for any u € D(A)
Re(u, Au) <0,

and hence A is dissipative. Since (0,00) C p(A), it follows from
Proposition 3.19 that A is maximal dissipative. []
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Definition. Let A be a densely defined closed operator on ‘H. A
is said to be sectorial if there exists 6 € (0,7/2) such that

I/(A) C (C \ (Cﬂ./2+9.
A is said to be maximal sectorial, or m-sectorial, if in addition
there does not exist a proper sectorial extension of A.

Remarks. 1. A definition of sectorial operators varies according
to context. It is often the case that —A for the above A is
defined to be sectorial.

2. A genaralization of a sectorial operator to a Banach space
corresponds to an m-sectorial operator on a Hilbert space.
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Proposition 3.21. Let A be a sectorial operator on H with
v(A) C C\ Cy/p44 for some 6 € (0,7/2). Then the following
conditions are equivalent to each other.

1. A is maximal sectorial.

2. For all z € C; /549 one has Ran(z — A) =H.

3. For some z € C; /549 One has Ran(z — A) =H.
4. For all z € C; /519 one has z € p(A).

5. For some z € C; /o4 One has z € p(A).

Proof. It suffices to repeat the proof of Proposition 3.19 for elv A
with |w| < 6. The detail is omitted. L
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Theorem 3.22. Let A be a linear operator on H. The following
conditions are equivalent.

1. A is maximal sectorial.

2. Ais a generator of an analytic contraction semigroup.

Proof. First let A be maximal sectorial, and let 8 € (0,7/2) be the
associated angle. Then e“A for any |w| < 0 is maximal dissipa-
tive, hence by Theorem 3.20 generates a contraction semigroup.
This implies that e“A for any |w| < # satisfies the conditions of
the Hille=Yosida theorem with § =0, M =1, and then by Theo-
rem 3.14 A generates an analytic contraction semigroup.

We can go backward along the above arguments, and therefore
the converse is also true. [
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Section 4
Application to PDEs, I

§ 4.1 Schwartz Distributions

Let Q c R4 be an open subset, and we write D(2) = C2°(R).

Definition. A linear functional T: D(2) — C is called a Schwartz
distribution on 2 if for any compact subset K C 2 there exist
C > 0 and k € Ng such that for any ¢ € D(2) with supp¢ C K
T, <C max [o% .
(T < max |07 ()]

Here we have written (T,¢) = T¢ = T'($). We denote the set of
all the Schwartz distributions on Q by D/(R2).
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We denote the set of all the locally integrable functions on 2 by
Lipe(Q) = {ui Q—C; VK eQul|g € Ll(K)},

Note that for any p € [1,00] the inclusion LP(Q2) C LY () holds.

Proposition 4.1. For any u € L} () let Ty: D(2) — C be a
linear functional defined as

(Tu, ¢) = /Q u(z)p(z) dz for ¢ € D(S).
Then one has T, € D'(£2). Moreover, the linear mapping
Lige() = D(Q), Ty
is injective, i.e., if u,v € L1 () satisfy Ty, = T, as distributions,

loc
then u =wv a.e. on Q.

Proof. The proof is omitted (Problem). ]
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Remark. In the following we identify u € Llloc(Q) and Ty, € D'(2),
writing simply

u = Ty,
and regard
L () Cc D'().
In particular, LP(2) C D'(2) for any p € [1, o).

Definition. For any T € D'(R2) and a € N¢ define 0°T € D/(Q2) as

(0°T, ¢) = (—1)\*NT, 0%) for ¢ € D(R).

Problem. 1. Prove 9°T € D'(Q).

2. Prove 9%Ty = Ta,, for any u € C°(2).
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For any k € Ng define the Sobolev space of order k as
H () = {u e D'(Q); Vol <k 0%u e L2(Q)}.

Here 0% is of course understood as a distributional derivative.
Hk(Q) is a Hilbert space with respect to the inner product

(vau)Hk == Z (8av7aau)L2'
|| <k

In addition, define
H}(2) =D(Q) in HY().

Hcl)(Q) is regarded as the space of functions with the Dirichlet
boundary condition on 0f2.
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§ 4.2 Drift-Diffusion Equation

Let 2 Cc R? be a domain, and P be a differential operator on
of the form
d

0 0 d (1) 0 9 ,(2)
P Lo g (bA @2+ -2 @)) + c().
i7j2=:1 8%2' K 81:]- 2;. ' awi (9.731' '
We discuss a Cauchy problem of the PDE
%u=7’u in (0,00) x

for unknown function u = u(t,z) with Cauchy data
u(0,:) =ug on 2, w=0 on (0,00) x ON.
In addition, if €2 is unbounded, we further impose

lim u(-,2) =0 on (0,00).
€, |x|—00
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Remark. We can physically interpret the coefficients, for exam-
ple, as follows.

e (a;j);; represents the diffusivity depending on directions.
o 0"); and (%) provide a velocity field of the media.

e c represents a rate of self-creation or self-annihilation.

In order to discuss the unique solvability of the given Cauchy
problem we need to fix a “mathematical framework’ to deal with
it. Here we are going to reformulate it in terms of the functional
analysis with the following assumptions on the coefficients.
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Assumption 4.2. 1. Forany i,j=1,...,dand k=1,2
az‘j,bz(k),c S LOO(Q) = LOO(Q; (C)
2. There exists e > 0 such that for any z € Q
Re(a;j(r));; = ! aij(@) + aji(z)), . > €
2 J

as a quadratic form on C¢, i.e., for any (z,£) € 2 x C¢
d

Re Y a;;(@)&€; > el€].
ij=1
Now we define a realization P of P on L2(2) as

D(P) = {ue H§(Q); PueL?()}, P="7P|pcp.
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Remarks. 1. We use the notation P for a general distributional
derivative, and distinguish it from its restriction P, an oper-
ator on L2(Q).

2. To be sure, let us discuss how we should interpret

d d
Pu= Y aidut Y (D0 + 05 u) + cu e D'(2)
ij=1 i=1
for u € H&(Q). We understand the term 0;a;;0;u as a dis-
tributional derivative of a;;0;u € L?(Q2) which is a product
of a;; € L>®(2) and dju € L2(2). If one first considered
dju € D'(£2), then we could not take a product a;;0ju even
in D'(2). The term 8,»b1(2)u is understood similarly. On the
other hand, the remaining terms are are naturally in LQ(Q) as
products of bgl),c € L>°(Q2) and d;u,u € L2(S2), respectively.

148

Theorem 4.3. Under Assumption 4.2 there exists v € R such
that P — ~ is maximal sectorial on L2(€2). In particular, the
operator P generates an analytic semigroup on L2(Q).

Corollary 4.4. For any ug € LQ(Q) an evolution equation
%(t) = Pu(t) fort>0, u(0)=ug (%)
has a unique solution in
{u € 0([0,00);: LX(2)) N €1 ((0,00); LA(S)); ¥t > 0 u(t) € D(p)},
which is given by
u(t) = etPug for t > 0.

Proof. The assertion follows from Theorems 4.3 and Proposi-
tion 3.12. [
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Proof of Theorem 4.3. Step 1. Let v € R, and define a quadratic
form ¢ on D(2) as, for u,v € D(2),
q(v,u) = —(v, (P —y)u) 2

d

d
= Z (8[1), aijaju)Lg — Z <(U, bz(l)aiu)l; - (8;1), bgz)u)lg)
i,j=1 =1

— (v,cu) 2 + 7(v,u) 2.
Here we claim that, if we fix sufficiently large v € R, then there
exist ¢1,Cq > 0 such that for any u,v € D(2)

Req(u,u) > c1lullr,  la(v,w)] < Crllvll gallull - (©)

In particular, ¢ extends uniquely to a bounded quadratic form
defined on H ().
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Let us show (Q). The latter inequality from (Q) is clear by
Assumption 4.2 and the Cauchy—Schwarz inequality. As for the
former, by Assumption 4.2 and the Cauchy—Schwarz inequality
again there exists C» > 0 such that for any u € D(2)

d d
2 2
Req(u,u) > e > [0ull72 — Co Y llull 2ll05ull 12 — Collull72
i=1 i=1

+ 7||u||%2.
We further apply the Cauchy—Schwarz inequality, to obtain
d
€ dCs
Req(uu) > 5 3 0ullfs + (7= C2 = 2 ull22.
i=1 ¢
Then the assertion follows for sufficiently large fixed v € R.

In the following we consider g as defined on H&(Q). Of course,
(©) holds true for any u,v € H&(S‘Z) for this extended gq.
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Step 2. We next prove that there exists an isomorphism between
Hilbert spaces:

J: HA () — HE(RQ)
such that for any u,v € H}(2)
Q(vvu) == (U? Ju)Hl

(This is essentially the Lax—Milgram theorem.)

Let v € H&(Q). By (©) and the Riesz representation theorem
there uniquely exists Ju € H}(2) such that for any v € H3(2)

q(v,u) = (v, Ju) 1.
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By the uniqueness this correspondence J: Hé(Q) — Hol(Q) is
clearly linear. Furthermore, for any u € Hé(Q)
crllullgr < [[Jullgr < Callull g )
In fact, it follows from (Q) that
c1llullfn < Req(u,u) = Re(u, Ju) g1 < full gl Jull 1,
and that
[Jullr = sup |(v,Ju)rl = sup |q(v,u)] < Crllull 1.
‘UHle |U|H1=
Hence J is bounded and injective.

Due to (<) it suffices to show that J is surjective. By (<) the
subspace RanJ C Hcl)(Q) is closed. If w € (Ran J)+, then by (©)
c1llullzy < Req(u,u) = Re(u, Ju) ;1 =0,
so that u = 0. Thus RanJ = Hé(Q), and the claim is verified.
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Step 3. Here we prove that D(P) is dense in L2(<2). For that let
us show

T HHE(Q) NH?(Q2)) € D(P). (&)
In fact, let uw € HA(2) N H?(2). Then for any v € D(S2)
(v, (A + Du) ;2 = (v,u) 1
= q(v, J"1u)
= _(U7 PJ_lu)L2 + 7(”7 J_lu)LQa
which implies
J ueDP), PIrtu=PJ tu=Au—u+~J"tu,
hence (#). By Step 2 and the general theory subspaces
JHHE(Q) NHA()) € HF(2), HE(Q) € L2(Q)

are dense in each topology. This and (&) imply the claim.
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Step 4. Here we prove that P is closed. Let ui,un,... € D(P)
satisfy as n — oo

up — u in L2(), Pun —w in L2().
We first claim that we then actually have
Up — u in Hé(Q)
In fact, we have for any u € D(P) and v € D(S2)

Q(U’u) = _(vvpu)[? + W(U’U)L%
and, if we let v — u in H}(S), it follows that

Q(u? u) = _(ua Pu)L2 + '7(“3 u)LQ' (*)
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By (©) and (&) we obtain
c1lun — u'mH?ql < —Re(un — um, Pun — Pum)L2 + vllun — um”%%
hence the claim. Now by definition for any v € D()
(U7Pu’n)L2 == (’U,Pun)LQ,

and here we take the limit n — oco. Due to the above claim it
follows that

(v, Pu) 2 = (v,w) 2,
so that

u € D(P), Pu=w.
Thus P is closed.
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Step 5. We prove that P —~ is sectorial, but it is rather straight-
forward. In fact, (&) and (©) implies that for any u € D(P)

M (u, (P = u)| = [1m q(u, w)| < |q(u, u)| < C1l|ullZ

< G Req(u,u) = G Re(u, (P —v)u).
c1 C1

Step 6. Now we prove that P — v is maximal sectorial. Due to
Proposition 3.21 it suffices to show 0 € p(P — «v), since then a
neighborhood of 0 is contained in p(P —~). By (V) and (&) for
any u € D(P)

cﬂ\u”%l < Req(u,u) = — Re(u, (P —y)u).
Thus P — v is injective, and (P —~)~1 exists.
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By the closed graph theorem it suffices to show that P — v is
surjective. For that let u € L?(€2). Then, for any v € H3(S2)

|(vs —w) 2| < [l p2llull g2 < vl gallull g2,

and therefore by the Riesz representation theorem there exists
w € H}(S2) such that for any v € D(Q2)

(Uv _U)LQ = (va)Hl = Q(Ua J_lw)
= —(v, 'Pjil’l,U)LQ + v(v, Jﬁlw)LQ.
Now it follows that
JtweDP), (P-—y\J w=u

and hence P — v is surjective.
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Step 7. Finally we prove that P generates an analytic semigroup.
By Step 6 and Theorem 3.22 the operator P — ~ generates an
analytic semigroup defined on Cy for some 6 € (0,7/2). Set

U(z) = e12e*(P=7) for » ¢ Cy,
and then U is obviously an analytic semigroup, and its generator

coincides with P. Hence we are done. L]

Remark. As for Step 7, we may also use Theorems 3.14 or 3.16,
instead.
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Corollary 4.5. Define | - ||lg: H3(Q2) — R as, for u € H3 (),
lullg = (Re q(u, u))*/2,

where ¢ is from Step 1 of the proof of Theorem 4.3. Then ||-||q4 is
a norm on H(2), and is equivalent to | - || ;1. Moreover, define
()q: H3(2) x HA(2) — C as, for u,v € H(R),

1 . ) . .
(u,0)g = (Il + 0l =l = ollf + ilju+ iv]F = illu — 0l]7).

Then (-,-)q is an inner product on H($2) compatible with || - [|q.
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Proof. To prove the former assertion, due to Step 1 of the proof
Theorem 4.3, it suffices to verify the triangle inequality for || - ||4.
By a direct computaion it further reduces to verify that for any
u,v € H&(Q)

| Re(q(u,v) + q(v,u))| < 2||ullqllv]lg-
However, this easily follows by taking the discriminant of

[lull2 + t Re(q(u, v) + q(v,u)) + [[v]|2 = [ltu +v[|7 > 0.
As for the latter assertion, it suffices to verify the parallelogram
law: For any u,v € H}(2)
2 2 2 2
lu+olZ + llu— o2 =2 (2 + [v]2) -

This immediately follows by a direct computation employing that
q is a quadratic form on H(%(Q). [
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§ 4.3 Wave Equation with Certain Damping

Similarly to the previous section, let 2 C RY be a domain, and

d d
0 0 (1) 0 0 (2)
P 2o g G.@>+b-m>+4m
i,jZZI 81‘2 Y 81,'] z;. ¢ a’Ez 8a:l ¢
We discuss a Cauchy problem of the PDE
32
ﬁuzpu in (0,00) x 2

for unknown function v = u(t,z) with Cauchy data
19}
u(0, ) = uo, a%‘(o,.) =u; on§, wu=0 on (0,00) x I
If 2 is unbounded, we of course impose

lim u(,z) =0 on (0, 00).
€, |z|—o00
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Remark. We can physically interpret the coefficients, for exam-
ple, as follows.

° (“ij)i,j provides squares of the wave propagation speeds de-
pending on directions.

° (bgl))i and (bgz))i represent a certain damping or amplifying
effect.

e c represents a certain external field.
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Assumption 4.6. 1. Forany i,j=1,...,dand k=1,2
a;;, b e € L®(Q) = L®(2; C).
2. For each z € Q the matrix (a;;(z)); j is Hermitian. Moreover,

there exists e > 0 such that for any z € Q2

(ajj(x))ij > €

as a quadratic form on Cq.
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Under Assumption 4.6 define a realization P of P on L2(2) as
in the previous section, and we set

01
P 0

The inner product (-,-)y on H is defined as, for (u,v), (f,g) € H,

((fa 9)7 (uvv))'H = (f, u)qo + (g,U)LQ.

Here (-,-)qo is an inner product on H&(Q) from Corollary 4.5
associated with a differential operator

H = H}(2) x L?(), A=< ) D(A) = D(P) x H§(S).

_ =9 O (@0, 0,@
Po= 3 @+ 3 (P54 W),

ij=1 9%
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Theorem 4.7. Under Assumption 4.6 there exists v € R such
that A—~ is maximal dissipative on H. In particular, A generates
a Cp-semigroup on H.

Corollary 4.8. For any (ug,u1) € D(P) x Hcl)(Q) an evolution
equation
d2u
dt?
has a unique solution in

(t) = Pu(t) fort>0, wu(0)=uo, %(0) =uy (%)

{u € 0([0,00); H3(€2)) 1 € ((0, 00); HH())
NG ([0,00); L2(2)) N C2((0,00); L2(2)); ¥t > 0 u(t) € D(P)},
which is given by the first component of et (ug, u1).
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Proof of Theorem 4.7. By Theorem 4.3 P is closed and densely
defined on L2(S'2). Then clearly A is also closed and densely
defined on H. In addition, for any (u,v) € D(A)

Re((u,v), (A = M(w,v)), = Re(u,v)qy + Re(v, Pu) 12

2 2
_’Y”quo - ’YH’UHL}
Here by Corollary 4.5 and definition of (-,-)4,, fixing a constant
Yo € R that defines gg, we can write

1
Re(u, v)qo = — (Re(u, (Fo —10)v) 12 + Re(v, (Po — 10)u) 1)
1
= Re(v, (Po 4 P3)u) 2 + vo Re(v, u) 2.

Thus, if we note

d -
PSR+ =Y (0@ +60@) 2+ e(w),

i=1 Ti

167




we can bound by the Cauchy—Schwarz inequality as

Re((u,v), (A =)(u,v)),, < =Allullg, + CullullZs = (v = CDlvl1Z2.
Therefore, by Corollary 4.5, letting v € R be sufficiently large,
we can verify that A — ~ is dissipative.

To prove A—+~ is maximal dissipative, let (f,g) € H, and we solve
(A=7)(u,v) =(f,9) or v—ru=f, Pu—vv=yg,
for (u,v) € D(A). Eliminating v, we have
(P=y)u=~f+g.

Since P —'72 is maximal sectorial for sufficiently large ~, we can
find a solution u € D(P). Then it suffices to take

v=ryu+ f € H&(Q)
The last assertion follows similarly to Theorem 4.3. []
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Proof of Corollary 4.8. Let (ug,u1) € D(P) x H§(Q2) = D(A),
and set

(u,v) = e (ug, u1).
Then it follows that
ue C1[0,00); HE(2)), v e C([0,00); L2(R)),
and, moreover, that for any ¢t > 0
Sy = v, 0 =Pu), u(®) € D(P).

Hence u is a solution to the Cauchy problem (&) belonging to
the asserted function space, or in fact a slightly better space.
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Conversely, let u be a solution to the Cauchy problem (&) be-
longing to the asserted function space. Define

w € C([0,00); 1) N C*((0, 00); H)
as, fort >0,
du
t) = t),—(t)) .
w(®) = (u(®), 5 )
It obviously satisfies
w(t) € D(A) for any ¢t > 0,
and
dw
E(t) = Aw(t) fort>0, w(0)= (ug,u1).
Then by the uniqueness from Corollary 3.11 we obtain
w = e (ug, uy).

Hence we are done. []
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Section 5
Application to PDEs, II




§ 5.1 Growth of Generalized Eigenfunction

o Settings

Let 2 c R? be a domain. In this section we discuss generalized
eigenfunctions for the free Schrodinger operator

1, 1
H=Hy=-p°"=—-=A
0= 5P 2
Here p;, = —i0;, i = 1,...,d, denote the momentum operators.

In the following we shall often work in the Hilbert space
H=L*(%),

and its inner product is denoted by (-, -), which is conjugate-linear
in the first variable. The associated norm is denoted by || - ||.
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Throughout the section we assume the following.

Assumption 5.1. There exists an escape function f € C*(Q)
such that:

1. The image f(£2) coincides with [1,00);
2. For any a € Ng with |a| > 1 the derivative 9%f is bounded.
3. There exists rg > 1 such that for any z € Q2 with f(x) > rg

f(@) =r(x) = |zf;

4. The gradient vector field Vf € X(2) is forward complete,
i.e., the integral curve for V f exists for any initial point z € Q
and any non-negative time parameter ¢t > 0.
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Remarks. 1. This is an assumption imposed on the domain 2.
We have assumed almost nothing on the set

{z € Q; f(x) <ro},
which could possibly be unbounded.

2. The arguments of the section directly generalize to a mani-
fold with asymptotically Euclidean and/or hyperbolic funnel
ends. In the present setting each component of the set

{z €2 f(x) >ro}
may be considered an end of Q.

3. We can also include appropriate potential and metric pertur-
bations, but we omit them for simplicity.
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o Dirichlet realization

Let
HY = HE(Q), H 1= mH).
Note that we may embed and regard H*l c D/(Q).

Lemma 5.2. H is bounded as an operator H1 — 1~ 1.

Proof. Let ¢p € H. Then for any ¢ € D(Q)

1 1
(&, Hip)| = S1{pds p)] < SlIellgallvllze-

This implies that Hy € H~!, and moreover that H is bounded
as HY — H 1 O
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We realize the associated operator H on H by restricting its
domain to

D(H) = {¢ € HY; Hy € H}.
It coincides with the Dirichlet realization discussed in Section 4.
Remark. In this section we shall NOT really notationally dis-
tinguish distributional derivatives and the associated operators,

e.g., on H. Hence the meaning of the notation H changes ac-
cording to the context.
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Problem. Show that the operator H on H is self-adjoint, i.e.,
H = H*.

Solution. In this proof we always regard H as an operator on 'H
with the given domain D(H).

Step 1. We first show that H is symmetric. It suffices to verify
that for any ¢,¢ € D(H)

(6, HY) = (oo, pu) = (Ho, ). ()

Choose ¢; € D(S2) such that ¢; — ¢ in ‘K1, and then

1

The latter identity of (#) follows similarly.

1 1
,Hy) = — lim — lim
(¢ Hy) 2 j—o0 2 j—o0
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Step 2. We next show H is closed essentially by repeating Step 4
of the proof of Theorem 4.3. Let +; € D(H) satisfy as j — oo

Yj— inH, Hy;—¢ inH.

Then, due to (#)
5 — PrllZa = Il — Grll® 4 205 — i, Hpj — Hipy),
and this implies that
Y — 3 in HL, in particular ¥ € HL.
In addition, by the assymption for any n € D(£2)
(n, HY) = (Hn, ) (Hn,v;) (n, HY;) = (n, ¢),

so that

= lim = lim
J—00 J—00
Hiyp = ¢ € H.
Hence H is certainly closed.
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Step 3. Here we show —1/2 € p(H) essentially by repeating Step 6
of the proof of Theorem 4.3. In fact, by (&) for any ¢ € D(H)

02 < lpwll? + 119112 = (¥, 2Hy) + (v, ¥) < [[$]l|(2H + 1)y,
and this implies that 2H 4+ 1 is injective.

On the other hand, let ¢ € H. Since (¢,-) provides a bounded
linear functional on H!, there exists ¢ € H! such that for any
n € D(Q)

Then it follows that

v € D(H), (2H+ 1)y = ¢,

and hence 2H + 1 is surjective.

By Step 2 and the closed graph theorem we obtain —1/2 € p(H).
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Step 4. Finally we show that H is self-adjoint. By Step 1 it
suffices to show D(H*) C D(H). Let ¢ € D(H*). Then due to
Step 3 there exists ¢ € D(H) such that

(H+1/2)¢p = (H" +1/2)3.
Then by (#) from Step 1 for any n € D(H)
((2H + 1)n,¢) = (n, QH* + 1)y)
=, (2H + 1)¢) = ((2H + 1)n, ¢).
It follows that
Y =¢ € D(H),
and thus H is self-adjoint. []
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o Function spaces

We introduce for s € R
Hs = f7"H, Hioc = Lipc()-

We also intruduce the Agmon—Hormander spaces defined as

B = { € Hioci I0llse = sup 272 Fuspll < oo},

reNg

B = {1/) e B lim 272 Fylly = o}.

Here we have set for each v € Ng
F=F({zeq 2" < f(z) <2/F1}),

where F(w) is the characteristic function for a subset w C Q.
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Problem. Show the following inclusions hold for any s > 1/2:
HCH 1/0C By B CHs.
In addition, show Bj coincides with the closure of D(2) in B*.

Furthermore, choose x € C*°(R) such that

_ 1 fort<1, ’
X(t)_{o for t > 2, X <0,

and define xn, Xn, Xxm,n € C°°(2) for n,m € Ng as
Xn = X(f/Qn)v Xn=1—=Xn, Xmn = XmXn-
Then we introduce
N = {1,!) € Hioc; Vn € Ng xntb € Hl}.

This is a space of functions on 2 satisfying the Dirichlet bound-
ary condition on 92, possibly with infinite H!-norms.
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o Main theorem: Rellich’s theorem

Theorem 5.3 (Rellich). If ¢ € H,oc and A > 0 satisfy

1. (H — X\)¢ = 0 in the distributional sense,

2. there exists | € Ng such that x;¢ € BfNN,

then ¢ = 0 in €2. In particular, the operator H on H has no
positive eigenvalues, i.e., op(H) N (0,00) = 0.
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Remarks. 1. For each A > 0 we can show

Ex:= {6 € B NN; (H—\¢=0}# {0},

and therefore the space 86 in the assertion is optimal with
respect to a configuration weight. Physically, the growth rate
of B* conforms with that of a stationary wave with minimal
source and sink only at infinity.

2. We can drop the space N in the assertion if the obstacle Q¢
is bounded.

3. We shall prove Theorem 5.3 by a commutator method ac-
cording to I.—Skibsted '20. We will realize and investigate a
commutator with the help of some Cp-semigroup on H. See
also a book by Amrein—Boutet de Monvel—-Georgescu.
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§ 5.2 Commutator Realization

o Semigroup of radial translations
Let y: M — Q with M C R x 2 be the maximal flow generated
by Vf. By definition it satisfies
8tyi(t7x) == (8Zf)(y(t7x)) for i = 17 RS d7 y(O,LB) = .
Note that by Assumption 5.1
[0,00) x 2 C M.
Define the associated radial translation of a function ¢ € 'H as

J(t,2)129(y(t,2)) if (t,2) € M,
0 otherwise,

() (z) = {

where J(t,-) denotes the Jacobian for y(¢,-): Q — Q.
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Proposition 5.4. 1. For each t > 0, T'(t) provides a surjective
partial isometry on H with initial subspace L2(y(t,2)). More-
over, T'(t) with t > 0 form a Cyp-semigroup on H.

2. For each t > 0, T'(—t) provides an isometry on H with final
subspace L2(y(t,€2)). Moreover, T(—t) with ¢ > 0 form a
Co-semigroup on H.

3. For any t e R
T(t) = T(—t).

4. For any ¢ € H and (t,z) € M

(T@)@) = ex0 (5 [[(ANs ) ds) byt a).
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Proof. 1. Let t > 0. By change of variables for any ¢ € H
2 __ 2
IT@l? = [, @R,

and hence T'(t) is a partial isometry on H with initial subspace
L2(y(t,€2)). Obviously, T(t) with t > 0 form a one-parameter
semigroup by the corresponding properties of the flow y and the
Jacobian J. Note that these properties also guarantee that T'(t)
is surjective for each t > 0. In fact, for any ¢ € H

v =TW)T(-t)p, T(-t)yp €H.

Finally to see the strong continuity of T'(¢) in ¢t > 0 it suffices to
verify it on a dense subspace D(2) C H. This is straightforward
due to smoothness of y and J.
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2. Note that for any ¢t > 0 and ¢ € ‘H by change of variables

170912 = [ [¥(2)? da.

Then we can argue more or less similarly to the assertion 1. We
only note that the final subspace of T'(—t) for ¢t > 0 is determined
by the identity

v =T(—t)T(t)y for any ¢ € L2(y(t,Q)).

We omit the rest of the aruguments.

3. This is a direct consequence of change of variables and the
(semi)group properties of y and J. We omit the detail.

4. Obviously, it suffices to show that for any (¢,z) € M

O (t,x) = (Af)(y(t,2)) I (t, ).
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Differentiating the definition of determinant, we can write
d .
0 (t,2) = Y det(TD (¢, 2)),
i=1

where matrix-valued functions j(i) are given by

(z) _ 6kyj for j # 1,

ik OOy, for j =1i.
However, we can compute

OOy (t, ) = OR[(0; ) (y(t, )] = (9;0; ) (y(t, x)) Oy (t, x).

Here the Einstein convention is adopted without tensorial super-
scripts. Then, since determinant is alternating and multilinear,

det(TD(t,2)) = (92 ) (y(t, 2)) I (¢, z).

Thus the assertion is verified. We are done. []
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o Generator

Define a differential operator A as
B 1 oy i . i
A=Rep; = E(pf +p7) =py— E(Af) =p;+ E(Af)
with
py = —idy, Op = (0;f)0;.
We let AL be the corresponding operators on ‘H defined as
D(A) ={YeH; Ay eH}, AL =Alpa,)
and
A= Alp)-

Problem. Show that Alp(q) is closable as an operator on H.
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Proposition 5.5. The operators +iA4 generate Cp-semigroups
formed by T'(%t) with ¢ > 0O:

T(£t) = etitAs,
respectively. Moreover, they satisfy
A_CA4, AL =Ag,
respectively, and in particular
D(Q) € D(H) c H € D(A_) € D(AY).

Remark. After the proof we will write simply A = Ay, and dis-
tinguish etitA = eFitA+  respectively, only by their signs.
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Proof. By definitions of Ay it is not difficult to verify that
A_C A+, Ai = A+

In particular, we have the asserted inclusions. By taking the
adjoint we also obtain

=AY =A =4

Now it remains to show that the generators of T'(+t), denoted
for the moment by +iB4, coincide with +iA4, respectively. Let
us start with the lower sign. First note that by Proposition 5.4
and the Hille—=Yosida theorem

A_C B_, T(-t)D(2) c D(2) for any t > 0. ()
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Since i € p(B_) by the Hille-Yosida theorem again, it follows by
(Q) that A_ —i is injective, and that

(A_ - tcB. -t
Assume v € (Ran(A_ —i))+. Then by (V) for any ¢ € D(Q)
S T(-06) = ~ilw, A-T(~)6) = (, T(~)),
so that
<¢7T(_t)¢> = et<¢7 ¢>

Letting t — oo, we can deduce ¢» = 0, and hence
(A - t=(B_-)"L
This implies A_ = B_.
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We next show Ay = B,. Lety € D(B4). Then for any ¢ € D(S2)
T -1 _
(¢, B4p) = tmow, (i) (T'() — 1)v)
— -1 _
= im (=) 7HT (1) = 1)6,u) = (A6, ),
and hence ¢ € D(A4) and By = AL, i.e.,
By C Ay
Conversely, let ¢ € D(A4). Then for any ¢ € D(2) and t >0
(@, ()™HT @) = 1)y) = ()" H((T(~1) — )¢, )
=1 </t AT(—s)éds ¢>
o ’
ey <¢,t_1/0 T(S)A_i_’l/) d8>,
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so that
t
()~ 1T () — 1) = 1 /O T(s)Aqt) ds.
Letting t — +0, we conclude D(Ay) C D(By). [

o Radial and spherical decomposition

We introduce a differential operator

L = pilijp; with £; = 6;5 — (9;£)(0; 1),
which may be considered the spherical part of —A on the set

{z € Q; f(z) > ro}. (Let us note here again that the Einstein
convention is always assumed.)

195




Lemma 5.6. One has a decomposition

1yt itho= (a2t
H= A4 JL+q with g= Z(AN)? + (0;Af).

Proof. We can compute, e.g., as
1 1 1 i i 1
H = —p% —L=—(A--(A A+ (A —L.
pivs+ol=5 (A= 2@an) (A+5@n)+3

We omit the rest of the computations. []

Problem. Show that on the set {z € ©2; f(z) > o}

_ (d-1)(d-3)
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Lemma 5.7. For each ¢t > 0, e 4 js bounded as H! — H!, and
sup [le | 51y < o0 )
te[0,1] B(HT)

Moreover, e~ 4 is strongly continuous in ¢ > 0 in B(H1).

Proof. By Proposition 5.4 and the chain rule we can write for
any ¥ € D(R2), (-t,x) e Mandi=1,...,d

pi(e ) (@) = 2N @) [ Giwals, ) (0a AN (s, 2)) ds

+ (e pa) (@) (Fjya(—t, ).
Since derivatives of y and f are bounded, we can see from the
above expression that e~i'4 for each ¢t > 0 is bounded as H! —
H1. We can also see that for each ¢ € D(2) the H!-valued
function e—‘tAzp is continuous in t > 0.
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Now it remains to show (<), since then we can also deduce the
strong continuity of e~ 1t4 ¢ B(H1) in t > 0 by density argument.
Let us show that there exists C; > 0 such that for any ¢ € D(2)
and t € [0,1]
F() == (e7 My, (H + 1)e " y) < Cy|l9)|2,4.
In fact, noting that
. 1

[(H,iA] = 2p;(9;0;f)p; + (9ra) + E(LAf)y (%)

we have
F/(1) = —(e "y, [H,iAle”Ay) < Colle™™y)I21 < C3f(1).

This leads to f(t) < f£(0)e®st, hence to (). O]

Problem. Verify the identity (é&).
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o Commutator and Cp-semigroup

Here we formulate a weighted commutator
[H,iAlg :=I(HOA — AGH)

first as a (quadratic) form on D(£2), and then extend it as a
bounded form on ’Hl, see Proposition 5.9.

A weight © will be given explicitly when applied in Section 5.3,
but for simplicity we for the moment assume only the following.

Assumption 5.8. A weight ©® = ©(f) is a smooth function only
of f, and satisfies

f>rgon supp®, ©>0, |©K)| < forany ke N,

where ©*) denotes the k-th derivative of © in f-
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Proposition 5.9. Under Assumption 5.8, as a form on D(£2),
1
[H,iAlg = A®'A+ f~loL - Z@”’ — (079)© — Re(©'H).

Therefore [H,iAlg extends as a bounded form on HL, or equiv-
alently as a bounded operator H! — H~1.

Remarks. 1. As for the second term, note by Assumption 5.8
fleL=Lf e =pif Tt ol;p;.

2. In the Mourre theory the conjugate operator A is usually
chosen as the generator of dilations.
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Proof. By Lemma 5.6

. 1 . 1 . .
[H,i4le = ;4% il + S[L.i4le + [¢.i4]e
1 1
= 5Ae’A + 5[L, iAle — (07q)© — q©'.
Let us compute the second term on the last line as
1 . -1 1_,
—[L,iAlg == ©L - -©O'L
2[ Jidle ! 9L
so that
1 1
[H,iAlg = 5A@’A + oL - 5e’L — (99)© — q©'
1
=...=A0'A+ floL - Z@”’ — (979)© — Re(©'H).
Hence the assertion is verified. []

Problem. Complete missing details of the above computations.
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Next, we present an alternative expression for [H,iA]g employing
the Cp-semigroup e~ 1tA We introduce an auxiliary operator

1
Ho = §pi@pz‘«

Lemma 5.10. Under Assumption 5.8 one has
. ) 1 1
[H,i4]e = [He, 1Al + AS'A+ (9;A))O'+ (AN)O",  (#)
and for any ¢ € H!

(. [Ho,14)y) = lim ! (v, (He — " Hoe ™) v). (V)
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Proof. Step 1. The identity (#) is due to a direct computation.
The proof is omitted.

Step 2. To prove (Q) we claim that there exists C; > 0 such that
for any ¢ € [0,1] and ¢, ¢ € H!
(¢, (Ho — " Hoe ) )| < C1tl|gllya | ¢ll1-
In fact, by Proposition 5.5 we can write
. . t . .
Hg — e'tAH@e_'tA — /0 elsA[H@7 iA]e—IsA ds

as a form on D(2). It is easy to see that Hg and [Hg, iA] extend
as bounded forms on H! from D(L2). By using Lemma 5.7 the
claim is verified first on D(£2) and then on HL by continuity.
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Step 3. It suffices to show (Q) for ¢ € D(2) due to density
argument employing Step 2 and continuity of the form [Hg,iA]
on HL. For any ¢ € D() write

1 <¢, (He _ eitAHee—itA> w> — (0, [Ho, 1A])
=¢1 /Ot{<e—‘”‘¢, [Ho,iAle™4) — (¥, [Ho,iAl¢) } ds.

Then we obtain the assertion by Lemma 5.7. []
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o Undoing commutator

In the following we use the notation
1
ImM(AGH) = E(A@H — HOA)
i
exclusively as a form on D(H), i.e., for any ¢ € D(H)

(0 IM(AS YY) = (A, ©HY) — (Hy, ©A)).

Proposition 5.11. Under Assumption 5.8, as forms on D(H),

[H,iA]lo < 2Im(AOH).
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Remark. The above forms coincide on D(£2), but not in general
on D(H) due to a contribution from boundary. Fortunately, here
the contribution has a sign. We also note it vanishes if Vf is
both forward and backward complete.

Proof. Similarly to Lemma 5.10, we can write
1 1
2IM(A©H) = 2Im(AHg) + A©'A + Z(afAf)e’ + Z(Af)e“
as a form on D(H). Then by Lemma 5.10 it suffices to show

[I‘I@7 iA] < 21m(AH@)

as forms on D(H).
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Let us write, as a form on H?t,

Heo — eitAHeefitA = He (1 _ eAtA) + (1 _ eitA) Ho

_ (1 _ eitA) Ho (1 _ e—itA) .
Then by Lemma 5.10 and Proposition 5.5 for any ¢ € D(H)
. . -1 —itA
(0, [Ho,1419) < lim " {(Hoy, (1-e"")v)
+((1-e") v, Hov)}
= (¢,2Im(AHg)%).

Hence we are done.
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§ 5.3 Proof of Main Theorem

o A priori super-exponential decay estimates

Proposition 5.12.1If ¢ € H|oc and X > 0O satisfy

1. (H — X\)¢ =0 in the distributional sense,

2. there exists | € Ny such that ;¢ € BfNWN,

then x;e%/¢ € By for any a > 0.
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Now we introduce an explicit weight with parameters o, 3, R > 0
and m,n € Ng:
e = @a,ﬁ = Xm,nee~

m,n,R —

Here the exponent 6 is given by

0=03" =2af +26f(1+ f/R)"L.
cf. Yosida approximation. Set for notational simplicity

6o =1+ f/R,
and then, for example,
0 =2a+28652, 6" =48R 1653,

In particular, noting R—legl < f~1, we have

00 < CppfiFog? for k=2,3,....
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Lemma 5.13. Let A > 0, and fix any ag > 0. Then there exist
B,¢,C, Rg > 0 and ng € Ng such that for any a € [0, aq], n > m >
ng and R > Ry,

IM(AS(H — X)) 2 ¢f 10510 = C(Xp_1my1 + Xao1n1) e’
+ Re(v(H = X))
as forms on D(H), where v = v, , g iS a function satisfying

SUpPP~ C SUPP xmn, || < Cmyne?.
Proof. Let A > 0. To be rigorous all the estimates in Step 1
below are uniform in « > 0, 8 € [0,1], n >m >0 and R >0

with constants c«, Cx > 0 being independent of them. Finally in
Step 2 we restrict the parameter ranges to verify the assertion.
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Step 1. By Lemmas 5.11 and 5.9 and the Cauchy—Schwarz in-
equality we can estimate

IM(A©(H — X))
1 1
> -A00A+ —f oL
Z 5 + 2f
- ée’:“e - ge’e”e - % Re(®'(H — \)) — C1Q

1
aAf~togteA+ 5clf—legleL (©)

>

N | =

1y 1,1 1,4 1
+§A<0 —ec1f 716, )6A+Zf O(1 - 2105 )L
1 1
- §9’3e - ga’e”e -5 Re(©'(H — \)) — C2Q.

Here ¢; > 0 is chosen small enough that the fourth term on the
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right-hand side of (<) is non-negative. We have also absorbed
‘admissible error terms’ into

Q= [+ ) Pxmn+ (1 + ) Xl
+ (1 + @)xinnl + i al]€” 4 pi(F2xmn + X nl ) %P
which will be bounded later. Let us further compute and bound

terms on the right-hand side of (<{»)). By Lemma 5.6 the first
and second terms of ({») get to be

%Af—logleA + %f—legleL
> %Im (rlogto@A) + % Re(f 16510(A% + 1)) — C3Q

> —q)f tote + %f—legleae + Re(f—legle(H - A))
— (4Q.
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We combine the third, fifth and sixth terms of () as
1 / —1p—1 1 /3 3 /ol
5A(e —ec1f 716 )eA—go ©-00"e

1 i / / —1p—1 i /
2§<A+§9) (6' = crf 205 )6<A—§0>
— éclf—legleﬂe + ée’e”e - C5Q.
Substitute these bounds into (<), and we deduce
Im(AS(H - \))
1 1
> (A —q)ft95te + gclfflegleﬂe + ge’e”e
1 i / —1p—1 Y,
+§(A+§0> (6 = crf 205 )6<A—§9>
1 1
+5 Re[(zclf loyto - e’)(H — A)] — C6Q.
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Now we bound Q as

Q< Cr(1402)f 20+ Cr(1+ 0 (X2, 11 + X2 101)f e
+2 Re[(f_2Xm,n + |X;n,n|>e9(H - A)]

Then we finally obtain

IM(AS(H — \))

> laO - af 15t + éclf‘lealoQ n ée’e”

—Cg(1 + a2)f*2]e
1 DN (11 iy
+5 (A+20> (9 e1f 165 )@ (A 29)

— Cg(1 +0®) (Xp—1mt1 + X1 mg1)f e
+ Re(v(H — X))

(%)
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with
1. 1 _
v=c1f 50 - 5e’ ~2C6f %0 — 2C6|Xmnle’.
Step 3. Fix any ag > 0. Choose 8 € (0,1] small and ng € Ny

large. Then the first term of (&) is bounded below uniformly in
a € [0,ag], n>m >ng and R>0 as

1 1
[cl(A ) f 05+ Serf 10502 + 00" — Ca(1+a?)f 2@
> [czf*1051 — Copf 052 — Cof2|O

> c3fl05to.

Next, since
0 —c1f1051 > 286052 — Crof 1051,
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by taking Rg > O large enough the second term of (&) is non-
negative for any a € [0,a0], » > m > ng and R > Rg. Hence the
desired bound is obtained. L

Proof of Proposition 5.12. Let X > 0, ¢ € H|oc and | € Ng be as
in the assertion, and set

ap = sup{a > 0; 5e*f¢ e Bo}

Assume ag < oo, and we choose B,Rg > 0 and ng > 0 as in
Lemma 5.13. Note that we may assume ng >l + 3, so that for
all n >m > ng

Xm—2n+42¢ € D(H).
We let a € {0} U [0, ag) such that a4+ 8 > ap.
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With these parameters fixed evaluate the form inequality from
Lemma 5.13 on the state x,,_»,42¢ € D(H). Then for any
n>m >ng and R > Ry

1 2
1(F 71051 0) 26|” < Conlixim—1.m 416112
+ Cr2 7" IXn-1,n116" 0|*.
The above second term vanishes as n — oo, and consequently by
Lebesgue’'s monotone convergence theorem

I P 2
H(me 190 1e9)1/2¢H < Cm||mel,m+1¢||2~
Next we let R — oco. Again by Lebesgue’'s monotone convergence
theorem it follows that
2%2f_1/2e(04+/3)f¢ c H.

Thus 92717{2e"“"¢> € B§ for any x € (0,a + 3), but this is a contra-

diction, since a4 8 > ag. We are done. []
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o Absence of super-exponentially decaying eigenstates

Proposition 5.14.1If ¢ € H|oc and A > O satisfy

1. (H — X\)¢ =0 in the distributional sense,

2. there exists | € Ng such that y,e®/¢ € B§NN for any a > 0,

then ¢ =0 in Q.

The proof is very similar to that of Proposition 5.12. Here we
choose

© =06, = xmne*,

formally letting 6 =0 and R — oo in the previous © = eo"ﬁ

m,n,R"
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Lemma 5.15.Let A > 0 and ag > 0. Then there exist ¢,C > 0
and ng > 0 such that for any a > ag and n > m > ng,

IM(AS(H — \)) > ca’f o

— CoP (X1 g1 T X1 0t1) f
+ Re(v(H - \))

as forms on D(H), where v = v n is a function satisfying

71e20¢f

SUPPy C SUpPP xmm, |7 < Cmnae?®f,

Proof. We can prove it similarly to Lemma 5.13, and in fact it
is slightly easier. We omit the proof. []
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Proof of Proposition 5.14. Let A > 0, ¢ € Hioc and | € Ng be
as in the assertion. Fix any ag > 0, and choose ng > 0 as in
Lemma 5.15. We may assume that ng > [ + 3, so that for all
n>m > ng
Xm—2n+42¢ € D(H).

Evaluate the form inequality from Lemma 5.15 on the state
Xm—2n+2¢ € D(H), and then for any a > ag and n > m > ng
I1F~Y2012¢|12 < C1llxm—1.m+1°T 1% + C12 " Ixp_1n4 1627 )%

The above second term to the right vanishes as n — oo, and
hence by Lebesgue's monotone convergence theorem

H)Z}n/Qf_1/2€a(f_27yl+2)¢H2 < C1llXm—1.m+19l1°-
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Now assume X,,42¢ # 0. The left-hand side grows exponentially
as a — oo Whereas the right-hand side remains bounded. This is
a contradiction. Thus

Xm42¢ = 0.
Now by the unigue continuation property for the second order
elliptic operator H we conclude that ¢ = 0 globally on €2. L]
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