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Section 1

Introduction: Matrix Exponential

§ 1.1 Linear ODEs

◦ First order linear ODE

We begin with a first order linear ODE:

du

dt
(t) = au(t), u(0) = u0.

We can solve it as follows. Multiply e−at, and we have

d

dt

(
e−atu(t)

)
= 0, so that e−atu(t) = e−a0u(0) = u0.

Thus we obtain a solution

u(t) = eatu0.

We can further generalize this argument.
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◦ Second order linear ODE

Next we consider a second order linear ODE:

d2u

dt2
(t) = au(t), u(0) = u0,

du

dt
(0) = u1

Let us set u =

(
u
u′
)
, and then

du

dt
=

(
u′
u′′
)

=

(
u′
au

)
=

(
0 1
a 0

)
u.

Thus, if we set A =

(
0 1
a 0

)
, u0 =

(
u0
u1

)
, the equation is

rewritten as

du

dt
(t) = Au(t), u(0) = u0. (♣)
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For a square matrix X define a matrix exponential eX as

eX =
∞∑

n=0

1

n!
Xn.

It is well known that each component of eX is convergent, and

for X = tA it satisfies

e0A = 1, etAesA = e(t+s)A,
detA

dt
= AetA = etAA.

Now multiply e−tA on the equation (♣), and then

d

dt

(
e−tAu

)
= 0, so that e−tAu(t) = e−0Au(0) = u0.

Hence we obtain a solution to (♣) as

u(t) = etAu0.

5

§ 1.2 Evolution Equations

We shall call a PDE that describes an evolution of a state func-
tion u an evolution equation. Examples are the following.

Heat (or diffusion) equation:

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
, u(0, ·) = u0.

Wave equation:

∂2u

∂t2
=

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
, u(0, ·) = u0,

∂u

∂t
(0, ·) = u1.

Schrödinger equation:

i
∂u

∂t
= −

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
+ V u, u(0, ·) = u0.
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◦ Heat (or diffusion) equation

The space of the temprature (or concentration) distritutions
would be given by the space of the functions

X =
{
u : R3 → R

}
.

This is obviously a vector space. We define the Laplacian as a
linear operator acting on X as

Δ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
: X → X.

Then we can regard the heat (or diffusion) equation as describing
the evolution of the distribution u(t) ∈ X by

du

dt
(t) = Δu(t), u(0) = u0.

Hence we obtain a solution u(t) = etΔu0 (?)
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◦ Wave equation

The space of the displacements of particles in a medium would

be given by

X =
{
u : R3 → R

}
.

Consider the Laplacian Δ a linear operator acting on X. Then we

can regards the wave equation as describing the time-evolution

of a displacement vector u(t) ∈ X by

d2u

dt2
(t) = Δu(t), u(0) = u0,

du

dt
(0) = u1.
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Let us further set

X̃ = X ×X, u =

(
u
u′
)

, u0 =

(
u0
u1

)
, A =

(
0 1
Δ 0

)
,

and then the wave equation is rewritten as

du

dt
(t) = Au(t), u(0) = u0.

Hence we obtain a solution u(t) = etAu0 (?)

We can argue similarly for the Schrödinger equation.

Now the problem is “How could and should we define the

exponential function of a linear operator on a vector space

of infinite dimension?”
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§ 1.3 Review of Matrix Exponentials

Let us recall a matrix exponential eA for a square matrix A of

order d. For simplicity first let us assume A is diagonalizable:

P−1AP =

⎛
⎜⎝ λ1

. . .
λd

⎞
⎟⎠

for some invertible matrix P . Then

eA =
∞∑

n=0

1

n!
An = P

[ ∞∑
n=0

1

n!

(
P−1AP

)n]
P−1

= P

⎡
⎢⎣ ∞∑

n=0

1

n!

⎛
⎜⎝ λn

1 . . .
λn

d

⎞
⎟⎠
⎤
⎥⎦P−1 = P

⎛
⎜⎝ eλ1

. . .

eλd

⎞
⎟⎠P−1.

Hence we obtain an expression of eA.
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In general we can always transform A into a Jordan normal form

P−1AP =

⎛
⎜⎝ J1

. . .
Jp

⎞
⎟⎠ , Ji =

⎛
⎜⎝ λi 1

.. . 1
λi

⎞
⎟⎠ .

for some invertible matrix P . Then, similarly to the above,

eA = P

[ ∞∑
n=0

1

n!

(
P−1AP

)n]
P−1

= P

⎡
⎢⎣ ∞∑

n=0

1

n!

⎛
⎜⎝ Jn

1 . . .
Jn

d

⎞
⎟⎠
⎤
⎥⎦P−1

= P

⎛
⎜⎝ eJ1

. . .
eJd

⎞
⎟⎠P−1.

It reduces to the exponential function of a Jordan block Ji.
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Let J be a Jordan block of order s, and we compute eJ. Let

J = λI + N.

Then, noting that Ns = 0, we have

eJ =
∞∑

n=0

1

n!
Jn =

∞∑
n=0

1

n!

min{n,s−1}∑
k=0

n!

(n− k)!k!
λn−kNk

=

⎛
⎝ s−1∑

n=0

n∑
k=0

+
∞∑

n=s

s−1∑
k=0

⎞
⎠ λn−k

(n− k)!k!
Nk

=

⎛
⎝s−1∑

k=0

s−1∑
n=k

+
s−1∑
k=0

∞∑
n=s

⎞
⎠ λn−k

(n− k)!k!
Nk

=
s−1∑
k=0

∞∑
n=k

λn−k

(n− k)!k!
Nk =

s−1∑
k=0

eλ

k!
Nk.
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Thus we obtain

eJ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eλ eλ eλ/2! eλ/3! · · · eλ/(s− 1)!
0 eλ eλ eλ/2! · · · eλ/(s− 2)!
0 0 eλ eλ · · · eλ/(s− 3)!
0 0 0 eλ · · · eλ/(s− 4)!
... ... ... ... . . . ...
0 0 0 0 · · · eλ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Problem. 1. Show that, if λ ∈ C is an eigenvalue of A, then so is

eλ for eA. The converse is not true. Give a counterexapmle.

2. Similarly to the above, compute etJ for t ∈ R.
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Solution. 1. Omitted. 2. We can proceed as

etJ =
∞∑

n=0

tn

n!

min{n,s−1}∑
k=0

n!

(n− k)!k!
λn−kNk

= · · ·

=
s−1∑
k=0

tketλ

k!
Nk

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

etλ tetλ t2etλ/2! t3etλ/3! · · · ts−1etλ/(s− 1)!
0 etλ tetλ t2etλ/2! · · · ts−2etλ/(s− 2)!
0 0 etλ tetλ · · · ts−3etλ/(s− 3)!
0 0 0 etλ · · · ts−4etλ/(s− 4)!
... ... ... ... . . . ...
0 0 0 0 · · · etλ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Section 2

Review of Banach Spaces



§ 2.1 Linear Operators on Banach Space

◦ Banach space

Definition.Let X be a complex vector space. We call a mapping

‖ · ‖ : X → R a norm if it satisfies

1. For any u ∈ X one has ‖u‖ ≥ 0;

2. ‖u‖ = 0 holds if and only if u = 0;

3. For any c ∈ C and u ∈ X one has ‖cu‖ = |c|‖u‖;
4. For any u, v ∈ X one has ‖u + v‖ ≤ ‖u‖+ ‖v‖.

In addition, we call a pair (X, ‖ · ‖) of a vector space X and a

norm ‖ · ‖ on X a normed space. We denote it simply by X.
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Proposition 2.1. A normed space X is a metric space with re-

spect to the natural metric

dist(u, v) = ‖u− v‖; u, v ∈ X.

Proof. We leave it to the reader as Problem.

Definition. A normed space is called a Banach space if it is

complete with respect to the natural metric.
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◦ Linear operators

For the rest of the section we let X be a Banach space.

Definition. Let D ⊂ X be a linear subspace. A linear mapping
A : D → X is called a linear operator, or simply an operator,
on X. We denote the domain and the range of A by

D(A) = D and RanA,

respectively.

Remark. We shall NOT write

A : X → X

since D �= X is often the case, but DO call it an operator on X.
We distinguish them.
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Definition. A densely defined operator A on X is said to be
bounded if there exists C ≥ 0 such that for any u ∈ D(A)

‖Au‖ ≤ C‖u‖.
We denote the set of all the bounded operators on X by B(X).

Proposition 2.2. A bounded operator on X extends uniquely
as a continuous linear operator with domain X. Convesely, a
continuous linear operator with domain X is bounded.

Proof. We leave it to the reader as Problem.

Remarks. 1. In the following we may always assume that a
bounded operator A has a domain D(A) = X.

2. A general operator on X is sometimes called an unbounded
operator in contrast to a bounded operator.
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Proposition 2.3. B(X) is a Banach space with respect to the

operator norm

‖A‖ := sup
‖u‖=1

‖Au‖ = inf
{
C ≥ 0; ∀u ∈ X ‖Au‖ ≤ C‖u‖

}

Proof. We leave it to the reader as Problem.

Definition. A linear operator A on X is said to be closed if for

any sequence (un)n∈N on D(A) with limits

lim
n→∞un =: u, lim

n→∞Aun =: v

these limits satisfy

u ∈ D(A), Au = v.
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Proposition 2.4. A linear operator A on X is closed if and only

if its graph

G(A) =
{
(u, Au) ∈ X ×X; u ∈ D(A)

}
is a closed subspace of X × X. Here X × X is a Banach space

with the norm

‖(u, v)‖X×X = ‖u‖X + ‖v‖X.

Proof. It is straightforward from the definition.
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Definition. Let A, B linear operators on X. We say B is an

extension of A, or A is a restriction of B, if

D(A) ⊂ D(B), ∀u ∈ D(A) Au = Bu,

and we denote it by A ⊂ B.

Definition. A linear operator A on X is said to be closable if

it has a closed extension. The minimum closed extension of a

closable operator A is called a closure, and is denoted by Ā.
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Proposition 2.5.A linear operator A on X is closable if and only

if for any sequence (un)n∈N on D(A) with limits

lim
n→∞un = 0, lim

n→∞Aun =: v

the latter limit satisfies v = 0.

Proof. We leave it to the reader as Problem.

Theorem 2.6 (Closed graph theorem). Let A be a closed op-

erator on X. If D(A) = X, then A is bounded.

Proof. The proof depends on the Baire category theorem, and

we omit it.
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§ 2.2 Calculus for Vector-Valued Functions

In this section we continue to let X be a Banach space.

◦ Continuity and differetiability

Definition. Let I ⊂ R be an inverval.

1. An X-valued function u : I → X is said to be continuous on
I if for any t ∈ I

u(t) = lim
h→0

u(t + h) in (the topology of) X.

2. An X-valued function u : I → X is said to be differentiable
on I if for any t ∈ I there exists the limit

du

dt
= u′(t) := lim

h→0
h−1

(
u(t + h)− u(t)

)
in X.

24

3. Similarly, we extend terminologies for scalar-valued functions

to X-valued ones. For each k ∈ N0 ∪ {∞} we denote by

Ck(I;X) the set of all the X-valued Ck functions on I.

Problem. Let u ∈ C1(R;X). Show, if u′(t) ≡ 0, then u(t) ≡ u(0).

Solution. Let v(t) = ‖u(t)−u(0)‖, and we show v(t) ≡ 0. By the

triangle inequality and the assumption we have, as h → 0,

h−1|v(t + h)− v(t)| ≤ h−1‖u(t + h)− u(t)‖ → 0,

hence v′(t) ≡ 0. Then by the mean value theorem for real-valued

functions we obtain v(t) ≡ v(0) = 0.
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◦ Riemann integral

Let u ∈ C0([a, b];X) with a < b. Let Δ = {t0, t1, . . . , tn} be a
partition of the interval [a, b], i.e.,

a = t0 < t1 < · · · < tn = b,

and let τj ∈ [tj−1, tj]. The sum

n∑
j=1

u(τj)(tj − tj−1) (♥)

is called a Riemann sum. The Riemann sum (♥) is known to
converges as |Δ| := maxj(tj− tj−1)→ 0. We denote the limit by

∫ b

a
u(t) dt = lim

|Δ|→0

n∑
j=1

u(τj)(tj − tj−1),

and call it the Riemann integral of u on [a, b].
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Remark. The fundamental theorem of calculus extends to the

X-valued continuous functions. We omit the arguments.

◦ Holomorphy

For the rest of the section we let D ⊂ C be a domain.

Definition. An X-valued function u : D → X is said to be holo-

morphic on D if for any z ∈ D there exists the limit

du

dz
= u′(z) := lim

h→0
h−1

(
u(z + h)− u(z)

)

We omit the definition of a line integral of an X-valued function

along a path, which is completely parallel to the C-valued case.

27



Theorem 2.7 (Cauchy’s integral theorem). Let D be simply
connected, and u : D → X holomorphic. Then for any closed C1

path Γ ⊂ D ∫
Γ

u(z) dz = 0.

Proof. It is the same as the C-valued case, and we omit it.

Theorem 2.8 (Cauchy’s integral formula). Let D be simply
connected, and u : D → X holomorphic. Then for any a ∈ D and
any simple closed C1 path Γ ⊂ D encircling a

u(a) =
1

2πi

∫
Γ
(z − a)−1u(z) dz.

Proof. We omit it by the same reason as above.
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Corollary 2.9. An X-valued holomorphic function u : D → X is

analytic on D, i.e., u is infinitely complex-differentiable on D,

and for any a ∈ D there exists a neighborhood U ⊂ D of a such

that for any z ∈ U

u(z) =
∞∑

n=0

(z − a)n

n!
u(n)(a).

Proof. We omit it by the same reason as above.
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◦ Strong operator topology

Definition. A sequence (An)n∈N on B(X) is said to converge in

norm to A ∈ B(X) if

lim
n→∞‖A−An‖B(X) = 0.

We denote it by

lim
n→∞An = A.

The corresponding topology of B(X) is called the norm topol-

ogy, or the uniform (operator) topology.

Remark. The above topology obviously coincides with that of

B(X) as a Banach space equipped with the operator norm.
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Definition. A sequence (An)n∈N on B(X) is said to converge

strongly to A ∈ B(X) if for any u ∈ X

lim
n→∞‖Au−Anu‖X = 0, or lim

n→∞Anu = Au.

We denote it by

s-lim
n→∞An = A.

The corresponding topology of B(X) is called the strong (op-

erator) topology.

Remark. More precisely, the strong topology is a locally convex

topology induced by the family of seminorms A �→ ‖Au‖X indexed

by u running over X. We do not discuss the detail.
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Theorem 2.10 (Uniform boundedness principle).Let (Aλ)λ∈Λ
be a family of elements in B(X). If for each u ∈ X

sup
λ∈Λ

‖Aλu‖X < ∞,

then

sup
λ∈Λ

‖Aλ‖B(X) < ∞.

Proof. The proof depends on the Baire category theorem. We

omit it.
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Corollary 2.11.Let (An)n∈N be a sequence on B(X), and assume
that for each u ∈ X there exists the limit

Au := lim
n→∞Anu.

Then A is a bounded operator on X, or A ∈ B(X).

Remark.This says completeness of the strong topology of B(X).

Proof. The mapping A : X → X is obviously linear, and it suffices
to show the boundedness. For any u ∈ X we have

‖Au‖ = lim
n→∞‖Anu‖ ≤ sup

n∈N
‖Anu‖ ≤

(
sup
n∈N

‖An‖
)
‖u‖.

By the uniform boundedness principle we can see

sup
n∈N

‖An‖ < ∞,

and thus the assertion is verified.
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◦ Operator-valued functions

Definition. Let I ⊂ R be an interval.

1. An operator-valued function A : I → B(X) is continuous in

norm if for any t ∈ I

A(t) = lim
h→0

A(t + h).

2. An operator-valued function A : I → B(X) is strongly con-

tinuous if for any t ∈ I

A(t) = s-lim
h→0

A(t + h).

3. .... (We define other terminologies similarly.)
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Cauchy’s integral theorem and consequences derived from it hold

for operator-valued strongly holomorphic functions as well as

those in norm. We do not present their precise statements.

Theorem 2.12. Let D ⊂ C be a domain. An operator-valued

function A : D → B(X) is strongly holomorphic on D if and only

if it is holomorphic in norm on D.

Remark. Hence we do not need to distinguish the strong holo-

morphy and the holomorphy in norm. We shall simply say A is

holomorphic (or analytic).
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Proof. If A is holomorphic in norm, then obviously it is strongly

holomorphic. Thus it suffices to prove the converse. Let z ∈ D,

and take a sufficiently small, simple closed path Γ ⊂ D encircling

z. Then by the assumption for any u ∈ X

A(z)u =
1

2πi

∫
Γ
(ζ − z)−1A(ζ)udζ. (♦)

Since A(z) is strongly continuous and Γ is compact, we have for

any u ∈ X

sup
ζ∈Γ

‖A(ζ)u‖ < ∞,

and this implies by the uniform boundedness principle

sup
ζ∈Γ

‖A(ζ)‖ < ∞. (♣)
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Then it follows that A is continuous in norm. In fact, for any w

close to z and any u ∈ X by (♦)

‖A(z)u−A(w)u‖ ≤ |z − w|‖u‖
2π

∫
Γ

‖A(ζ)‖
|ζ − z||ζ − w| dζ,

which with (♣) implies

‖A(z)−A(w)‖ ≤ C|z − w|.
Therefore

1

2πi

∫
Γ
(ζ − z)−1A(ζ) dζ

is convergent in norm, and again by (♦) we obtain

A(z) =
1

2πi

∫
Γ
(ζ − z)−1A(ζ) dζ.

The last expression implies A is holomorphic in norm.

37

§ 2.3 Resolvent

In this section we let X be a Banach space.

Definition. Let A be an injective linear operator on X. Then
the inverse mapping of A defined on RanA is called the inverse
operator of A. We denote it by A−1.

Remarks. 1. The inverse operator may not be defined on all of
X, but we do say A−1 exists if A is injective.

2. Obviously, if A−1 exists, then

D(A−1) = RanA, RanA−1 = D(A).

3. A linear operator A on X is injective if and only if

Ker A := {u ∈ D(A); Au = 0} = {0}.
38

Let A be a closed linear operator on X, and z ∈ C. Then one of
the following holds:

1. (z −A)−1 does not exist;

2. (z −A)−1 exists, but does not belong to B(X);

3. (z −A)−1 exists, and belong to B(X),

Here z denotes a multiplication operator by the scalar z, or zI.

Problem. Under the above notation show the following.

1. z −A is closed.

2. If (z −A)−1 exists, it is closed as well.

3. If (z − A)−1 exists, Ran(z − A) ⊂ X is dense, and (z − A)−1

is bounded (in the original sense), then Ran(z −A) = X.
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Definition. Let A be a closed linear operator on X. We call

ρ(A) =
{
z ∈ C; ∃(z −A)−1 ∈ B(X)

}
,

the resolvent set of A, and

σ(A) = C \ ρ(A)

the spectrum of A. For each z ∈ ρ(A) we denote

R(z) = RA(z) = (z −A)−1,

and call it the resolvent of A.

Remark. The spectrum is a generalization of eigenvalues.
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Proposition 2.13 (Neumann series). Let A ∈ B(X) satisfy

‖A‖ < 1.

Then (1 − A)−1 exists and belongs to B(X). Moreover, it is

expressed by the Neumann series as

(1−A)−1 =
∞∑

n=0

An.

Remark.The Neumann series is analogous to a geometric series:

For any α ∈ C with |α| < 1

1

1− α
= 1 + α + α2 + · · · .
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Proof. We have, as ν > μ →∞,∥∥∥∥∥
ν∑

n=0

An −
μ∑

n=0

An

∥∥∥∥∥ ≤
ν∑

n=μ+1

‖A‖n = ‖A‖μ+11− ‖A‖ν−μ

1− ‖A‖ → 0,

and thus the Neumann series is convergent and bounded:

∞∑
n=0

An ∈ B(X).

In addition, we can compute the compositions as

(1−A)
∞∑

n=0

An =
∞∑

n=0

An −
∞∑

n=1

An = 1,

( ∞∑
n=0

An

)
(1−A) =

∞∑
n=0

An −
∞∑

n=1

An = 1,

which implies the assertion.
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Corollary 2.14. Let A ∈ B(X). Then

ρ(A) ⊃ {z ∈ C; |z| > ‖A‖}, σ(A) ⊂ {z ∈ C; |z| ≤ ‖A‖}.

Proof. Let z ∈ C with |z| > ‖A‖. Then, since ‖z−1A‖ < 1, we

have by Proposition 2.13

1 ∈ ρ(z−1A).

This implies z ∈ ρ(A), hence the assertion.
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Theorem 2.15 ((First) resolvent identity). Let A be a closed

linear operator on X. Then for any z, w ∈ ρ(A)

R(z)−R(w) = (w − z)R(z)R(w) = (w − z)R(w)R(z).

Remark. Formally we can write it as

1

z −A
− 1

w −A
=

w − z

(z −A)(w −A)
=

w − z

(w −A)(z −A)
.

Proof. Noting Ran(R(w)) ⊂ D(A), we can compute

R(z)−R(w) = R(z)(w −A)R(w)−R(z)(z −A)R(w)

= (w − z)R(z)R(w).

The second identity can be verified similarly.
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Theorem 2.16. Let A be a closed linear operator on X. Then
ρ(A) is an open subset of C, and R(z) is holomorphic on ρ(A).
Moreover,

R′(z) = −R(z)2.

Proof. Let z ∈ ρ(A), and take any ζ ∈ C with |ζ − z| < ‖R(z)‖−1.
Then

R :=
∞∑

n=0

(−1)n(ζ − z)nR(z)n+1

is convergent in norm in B(X). This operator satisfies

R(ζ −A) =
∞∑

n=0

(−1)n(ζ − z)nR(z)n

+
∞∑

n=0

(−1)n(ζ − z)n+1R(z)n+1 = 1,
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and

(ζ −A)R =
∞∑

n=0

(−1)n(ζ − z)nR(z)n

+
∞∑

n=0

(−1)n(ζ − z)n+1R(z)n+1 = 1.

It follows that ζ ∈ ρ(A), and hence ρ(A) ⊂ C is open. In addition,

we obtain

R(ζ) = R =
∞∑

n=0

(−1)n(ζ − z)nR(z)n+1,

implying that R(z) is analytic, or holomorphic, on ρ(A). Finally

by the resolvent identity we obtain

lim
w→z

(w − z)−1(R(w)−R(z)) = − lim
w→z

R(w)R(z) = −R(z)2.

Thus we are done.
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◦ Resolvent of matrix

As an example, let us compute R(z) = (z − A)−1 for a square
matrix A of order d. Let us first assume A is diagonalizable, i.e.,

P−1AP =

⎛
⎜⎝ λ1

. . .
λd

⎞
⎟⎠

for some invertible matrix P . Then obviously

ρ(A) = C \ {λ1, . . . , λd}, σ(A) = {λ1, . . . , λd},
and for any z ∈ ρ(A)

R(z) = P
(
z − P−1AP

)−1
P−1

= P

⎛
⎜⎝ (z − λ1)

−1

. . .
(z − λd)

−1

⎞
⎟⎠P−1.
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In a general case consider a Jordan normal form

P−1AP =

⎛
⎜⎝ J1

. . .
Jp

⎞
⎟⎠ , Ji =

⎛
⎜⎝ λi 1

.. . 1
λi

⎞
⎟⎠

for some invertible matrix P . Then, similarly to the above,

ρ(A) = C \ {λ1, . . . , λd}, σ(A) = {λ1, . . . , λd},
and for any z ∈ ρ(A)

R(z) = P
(
z − P−1AP

)−1
P−1

= P

⎛
⎜⎝ (z − J1)

−1

. . .
(z − Jp)−1

⎞
⎟⎠P−1.

Thus it reduces to the resolvent of a Jordan block Ji.
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Let J = λI + N be a Jordan block of order s, and let z �= λ.

Similarly to the Neumann series, we can compute, noting Ns = 0,

(z − J)−1

= (z − λ)−1
(
1− (z − λ)−1N

)−1

= (z − λ)−1
s−1∑
k=0

(z − λ)−kNk

=

⎛
⎜⎜⎜⎜⎜⎜⎝

(z − λ)−1 (z − λ)−2 (z − λ)−3 · · · (z − λ)−s

0 (z − λ)−1 (z − λ)−2 · · · (z − λ)−s+1

0 0 (z − λ)−1 · · · (z − λ)−s+2

... ... ... . . . ...
0 0 0 · · · (z − λ)−1

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Section 3

Semigroups and Hille–Yosida Theorem

§ 3.1 One-Parameter Semigroups

Let X be a Banach space.

Theorem 3.1. Let A ∈ B(X). For any t ∈ C the series

etA :=
∞∑

n=0

tn

n!
An = lim

N→∞

N∑
n=0

tn

n!
An (♦)

converges in norm in B(X), and satisfies the following.

1. e0A = 1.

2. For any t, s ∈ C one has e(t+s)A = etAesA.

3. etA is analytic in t ∈ C, and

d

dt
etA = AetA = etAA.
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Proof. The proof is similar to that for eαt with α ∈ C, and we

omit it.

Corollary 3.2. Let A ∈ B(X), and u0 ∈ X. Then an abstract

evolution equation

du

dt
(t) = Au(t) for t > 0, u(0) = u0 (♣)

has a unique solution in C([0,∞);X) ∩ C1((0,∞);X), which is

given by

u(t) = etAu0. (♦)
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Proof. By Theorem 3.1 (♦) obviously solves (♣), and it suffices

to show the uniqueness. Let

u, v ∈ C([0,∞);X) ∩ C1((0,∞);X)

be solutions to (♣). Set w = u− v, and then it follows that

w′(t) = Aw(t) for t > 0, w(0) = 0.

Multiplying e−tA to the above equation, we obtain

(e−tAw)′ = 0,

so that for any t > 0

e−tAw(t) = lim
s→+0

e−sAw(s) = 0.

Thus w ≡ 0, and this implies the asserted uniqueness.
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Definition. An operator-valued function U : [0,∞) → B(X) is

called a one-parameter semigroup on X if

1. U(0) = 1;

2. For any t, s ≥ 0 it satisfies U(t + s) = U(t)U(s).

In addition, if U is strongly continuous on [0,∞), i.e., for any

u ∈ X and t ≥ 0

lim
s→t

U(s)u = U(t)u,

then U is called a C0-semigroup on X.
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Proposition 3.3. A one-parameter semigroup U : [0,∞)→ B(X)
is a C0-semigroup if (and only if)

s-lim
t→+0

U(t) = 1.

Proof. Step 1. Here we claim that there exist M ≥ 1 and β ≥ 0
such that for any t ≥ 0

‖U(t)‖ ≤ Meβt.

For that we first show that there exists δ > 0 such that

sup
t∈[0,δ]

‖U(t)‖ < ∞.

In fact, otherwise, there exists a sequence (tn)n∈N on (0,∞) such
that as n →∞

tn → 0, ‖U(tn)‖ → ∞.
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However this contradicts the uniform boundedness principle since

by the assumption for any u

U(tn)u → u.

Now we choose M ≥ 1 and β ≥ 0 such that

M = eβδ = sup
t∈[0,δ]

‖U(t)‖ ≥ 1.

Then for any t ≥ 0 we can find k ∈ N0 such that kδ ≤ t < (k+1)δ,

and it follows that

‖U(t)‖ ≤ ‖U(t− kδ)‖‖U(δ)‖k ≤ Meβkδ ≤ Meβt.
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Step 2. Let u ∈ X. It suffices to show the continuity of U(t)u at

t > 0. Due to Step 1 and the assumption, as h → +0,∥∥∥U(t + h)u− U(t)u
∥∥∥ ≤ ‖U(t)‖‖U(h)u− u‖
≤ Meβt‖U(h)u− u‖
→ 0,

and ∥∥∥U(t− h)u− U(t)u
∥∥∥ ≤ ‖U(t− h)‖‖u− U(h)u‖
≤ Meβ(t−h)‖U(h)u− u‖
→ 0.

These prove the assertion.

57

Corollary 3.4. Let U : [0,∞) → B(X) be a C0-semigroup. Tnen

there exist M ≥ 1 and β ∈ R such that for any t ≥ 0

‖U(t)‖ ≤ Meβt.

Proof. It is clear from Step 1 of the proof of Proposition 3.3.

Definition. A C0-semigroup U : [0,∞) → B(X) is called a con-

traction semigroup if one can take β ≤ 0 and M = 1 in Corol-

lary 3.4, or

‖U(t)‖ ≤ 1 for all t ≥ 0.
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§ 3.2 Infinitesimal Generator

Let X be a Banach space.

Definition. Let U : [0,∞) → B(X) be a C0-semigroup. An in-

finitesimal generator, or simply a generator, of U is a linear

operator A on X defined as

D(A) =
{
u ∈ X; ∃ lim

h→+0
h−1

(
U(h)u− u

)}
,

Au = lim
h→+0

h−1
(
U(h)u− u

)
for u ∈ D(A).

If A is the generator of U , we say A generates U , and denote

U(t) = etA for t ≥ 0.

Remark.The last notation is well-defined due to Proposition 3.8.
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Proposition 3.5. Let U : [0,∞)→ B(X) be a C0-semigroup with

generator A. Suppose M ≥ 1 and β ∈ R satisfy that for any t ≥ 0

‖U(t)‖ ≤ Meβt.

1. The generator A is a densely defined closed operator X.

2. One has

σ(A) ⊂ {z ∈ C; Re z ≤ β}, {z ∈ C; Re z > β} ⊂ ρ(A),

and for any z ∈ C with Re z > β and any n ∈ N

‖(z −A)−n‖ ≤ M(Re z − β)−n.

Proof. The proof reduces to Lemmas 3.6 and 3.7 below.
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Lemma 3.6. For any Re z > β the improper integral

Rz :=
∫ ∞
0

e−ztU(t) dt

converges srongly in B(X), and it satisfies

s-lim
R�λ→∞

λRλ = 1, Rz = (z −A)−1.

In particular, A is a densely defined closed operator on X, and

σ(A) ⊂ {z ∈ C; Re z ≤ β}, {z ∈ C; Re z > β} ⊂ ρ(A).

Lemma 3.7. For any z ∈ C with Re z > β and any n ∈ N

‖(z −A)−n‖ = M(Re z − β)−n.
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Proof of Lemma 3.6. Step 1. Let u ∈ X and Re z > β. The

mapping

[0,∞)→ X, t �→ e−ztU(t)u

is continuous, and satisfies

‖e−ztU(t)u‖ ≤ Me−(Re z−β)t‖u‖.
Therefore the improper integral∫ ∞

0
e−ztU(t)udt

converges absolutely in X, which in turn implies the strong con-

vergence of the improper integral Rz.
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Step 2. Let u ∈ X. For any λ > max{2β,0} and K ≥ 0 let us
decompose

‖λRλu− u‖ =
∥∥∥∥
∫ ∞
0

e−t
[
U(t/λ)u− u

]
dt

∥∥∥∥
≤
∫ K

0

∥∥∥U(t/λ)u− u
∥∥∥dt +

∫ ∞
K

(
Me−t/2 + e−t

)
‖u‖dt.

Now for any ε > 0 we can find K ≥ 0 such that∫ ∞
K

(
Me−t/2 + e−t

)
‖u‖dt < ε.

We then let λ →∞, and obtain

lim sup
R�λ→∞

‖λRλu− u‖ < ε.

Hence

s-lim
R�λ→∞

λRλ = 1.
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Step 3. Let u ∈ X and Re z > β. For any h > 0 we can compute

U(h)Rzu = U(h)
∫ ∞
0

e−ztU(t)udt

= ezh
∫ ∞
h

e−zsU(s)uds

= ezhRzu− ezh
∫ h

0
e−zsU(s)uds,

and this implies

h−1
(
U(h)− 1

)
Rzu = h−1

(
ezh − 1

)
Rzu− ezhh−1

∫ h

0
e−zsU(s)uds.

Now by letting h → +0 we obtain

Rzu ∈ D(A), ARzu = zRzu− u.

Particularly with Step 2, A is densely defined operator on X, and

(z −A)Rz = 1.
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Next let u ∈ D(A). Write

h−1U(t)
(
U(h)− 1

)
u = h−1

(
U(h)− 1

)
U(t)u,

multiply e−zt, and integrate it in t ∈ [0,∞). Then we have

h−1Rz

(
U(h)− 1

)
u = h−1

(
U(h)− 1

)
Rzu,

so that by letting h → +0

RzAu = ARzu.

This and the result above imply

Rz(z −A) = (z −A)Rz|D(A) = idD(A).

Hence

Rz = (z −A)−1.

Since Rz is bounded, we have z ∈ ρ(A). In addition, since Rz is
closed, so is its inverse z −A. Thus A is closed as well.

65

Proof of Lemma 3.7. Let u ∈ X. By Lemma 3.7 for any z ∈ C

with Re z > β we have

(z −A)−1u =
∫ ∞
0

e−ztU(t)udt.

We differentiate both sides (n− 1)-times in z, to obtain

(−1)n−1(n− 1)!(z −A)−nu =
∫ ∞
0

(−t)n−1e−ztU(t)udt.

Then it follows that

‖(z −A)−nu‖ =
1

(n− 1)!

∫ ∞
0

tn−1|e−zt|‖U(t)u‖dt

≤ M

(n− 1)!
‖u‖

∫ ∞
0

tn−1e−(Re z−β)t dt

= M(Re z − β)−n‖u‖,
which implies the assertion.
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Proposition 3.8. Let U : [0,∞)→ B(X) be a C0-semigroup with

generator A.

1. Let u ∈ D(A). Then for any t ≥ 0 one has

U(t)u ∈ D(A).

Moreover, U(·)u ∈ C1((0,∞);X), and

d

dt
(U(t)u) = AU(t)u = U(t)Au.

2. If V : [0,∞)→ B(X) is a C0-semigroup with the same gener-

ator A, then

U ≡ V.
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Proof. 1. Let u ∈ D(A). For any t ≥ 0 write

h−1
(
U(h)− 1

)
U(t)u = h−1U(t)

(
U(h)− 1

)
u,

and let h → +0. Then the above right-hand side converge to

U(t)Au, from which it follows that

U(t)u ∈ D(A).

It also follows that we have the right derivative

lim
h→+0

h−1
(
U(t + h)u− U(t)u

)
= AU(t)u = U(t)Au.

To examine the left derivative let t > 0. Then for small h > 0∥∥∥(−h)−1
(
U(t− h)u− U(t)u

)
− U(t)Au

∥∥∥
≤ ‖U(t− h)‖

∥∥∥h−1
(
U(h)u− u

)
− U(h)Au

∥∥∥.
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Recalling ‖U(t− h)‖ ≤ Meβ(t−h), we obtain

lim
h→+0

(−h)−1
(
U(t− h)u− U(t)u

)
= AU(t)u = U(t)Au.

Hence the assertion 1 is verified.

2. Let u ∈ D(A) and T > 0. Then for any t ∈ [0, T ],

d

dt

(
U(T − t)V (t)u

)
= −U(T − t)AV (t)u + U(T − t)AV (t)u = 0,

and therefore

U(T − t)V (t)u = U(T )u = V (T )u.

This certainly implies U ≡ V .

Problem. Let A be a generator of a C0-semigroup on X. Show

that etA extends analytically in t ∈ C if and only if A ∈ B(X).
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§ 3.3 Hille–Yosida Theorem

Let X be a Banach space

Theorem 3.9 (Hille–Yosida). A linear operator A on X is a

generator of a C0-semigroup U : [0,∞) → B(X) with constants

M ≥ 1 and β ∈ R such that for any t ≥ 0

‖U(t)‖ ≤ Meβt

if and only if both of the following hold:

1. A is closed and densely defined on X;

2. One has (β,∞) ⊂ ρ(A), and for any λ > β and n ∈ N

‖(λ−A)−n‖ ≤ M(λ− β)−n.
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Theorem 3.9 (continued). In addition, in the affirmative case,

one has

{z ∈ C; Re z > β} ⊂ ρ(A),

and for any Re z > β and n ∈ N

‖(z −A)−n‖ ≤ M(Re z − β)−n.

Remarks. 1. Theorem 3.9 was proved by E. Hille and K. Yosida

independently at almost the same time. Their proofs are

different from each other, and we shall present both of them.

2. The necessity and the last part of the assertion is already

done in Proposition 3.5. We will prove only the sufficiency.
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Yosida’s idea. If A were bounded, we could apply Theorem 3.1

to construct the C0-semigroup U with generator A. In fact, it

would suffice to set

U(t) = etA =
∞∑

n=0

tn

n!
An.

However, this construction fails when A is unbounded. Yosida’s

idea is to approximate A by a squence (Aλ)λ>0 of bounded op-

erators defined as

Aλ = AJλ ∈ B(X); Jλ = λ(λ−A)−1, s-lim
λ→∞

Jλ = 1.

Then we could construct the desired C0-semigroup as

U(t) = etA = s-lim
λ→∞

etAλ.

The operator Aλ is called the Yosida approximation to A.
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Yosida’s proof. It suffices to prove the sufficiency.

Step 1. For λ > β we set

Jλ = λ(λ−A)−1, Aλ = AJλ = λJλ − λ ∈ B(X).

Here we prove that for any u ∈ D(A)

lim
λ→∞

Aλu = Au.

In fact, for any u ∈ D(A) we have

Aλu = AJλu = λJλu− λu = JλAu,

and thus it suffices to show

s-lim
λ→∞

Jλ = 1.
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To prove it let v ∈ X. For any ε > 0 take w ∈ D(A) such that

‖v − w‖ < ε.

Then, as λ →∞,

‖Jλv − v‖ ≤ ‖Jλ(v − w)‖+ ‖Jλw − w‖+ ‖w − v‖
≤ λ‖(λ−A)−1(v − w)‖+ ‖(λ−A)−1Aw‖+ ε

≤ λM(λ− β)−1ε + (λ− β)−1‖Aw‖+ ε

→ Mε + ε,

hence

Jλv → v.

The claim is verified.
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Step 2. Next we prove for any λ > β and t ≥ 0

‖etAλ‖ ≤ M exp

(
λβ

λ− β
t

)
,

but this is straightforward. In fact, noting that

Aλ + λ = λ2(λ−A)−1,

we can bound the operator norm by the assumptions as

‖etAλ‖ = e−tλ‖et(Aλ+λ)‖ ≤ e−tλ
∞∑

n=0

tn

n!
‖(Aλ + λ)n‖

≤ Me−tλ
∞∑

n=0

(tλ2)n

n!
(λ− β)−n

= M exp

(
λβ

λ− β
t

)
.

75



Step 3. Now we prove there exists a strong limit

U(t) := s-lim
λ→∞

etAλ ∈ B(X)

locally uniformly in t ≥ 0. First let u ∈ D(A). By the fundamental
theorem of calculus for any λ > μ > β and t ≥ 0

∥∥∥etAλu− etAμu
∥∥∥ =

∥∥∥∥
∫ t

0
e(t−s)AμesAλ(Aλ −Aμ)uds

∥∥∥∥
≤ ‖Aλu−Aμu‖

∫ t

0
‖e(t−s)Aμ‖‖esAλ‖ds.

Let us show that the the last integral is bounded locally uniformly
in t ≥ 0. After some computations employing Step 2 we obtain∫ t

0
‖e(t−s)Aμ‖‖esAλ‖ds

≤ M2(λ− β)(μ− β)

(λ− μ)β2

[
exp

(
μβ

μ− β
t

)
− exp

(
λβ

λ− β
t

)]
.
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Then by the mean value theorem there exists θ = θλ,μ,t ∈ (0,1)

such that∫ t

0
‖e(t−s)Aμ‖‖esAλ‖ds ≤ tM2 exp

[
(1− θ)

μβ

μ− β
t + θ

λβ

λ− β
t

]
.

From the above estimates it follows that (etAλu)λ>β is a Cauchy

sequence on X locally uniformly in t ≥ 0, and hence has a limit

locally uniformly in t ≥ 0 as λ →∞.

Problem. Let u ∈ X. Show by using the denseness of D(A) ⊂ X

that there exists the limit

lim
λ→∞

etAλu

locally uniformly in t ≥ 0.

Thus the claim is done.
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Step 4. Here we prove that U is a C0-semigroup on X satisfying
for any t ≥ 0

‖U(t)‖ ≤ Meβt. (♣)

By definition we can immediately see U(0) = 1. Let t, s ≥ 0.
Then by Steps 2 and 3 for any u ∈ X∥∥∥U(t + s)u− U(t)U(s)u

∥∥∥ = lim
λ→∞

∥∥∥e(t+s)Aλu− etAλU(s)u
∥∥∥

≤ lim
λ→∞

M exp
(

λβ

λ− β
t

)∥∥∥esAλu− U(s)u
∥∥∥

= 0,

so that

U(t + s) = U(t)U(s).

Hence U is certainly a one-parameter semigroup on X. In addi-
tion, since the strong limit in Step 3 is locally uniform in t ≥ 0,
U is a C0-semigroup. The estimate (♣) follows from Step 2.
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Step 5. Lastly we prove the generator of U , denoted by B,
coincides with A. For any u ∈ D(A), λ > β and t ≥ 0 by the
fundamental theorem of calculus

etAλu− u =
∫ t

0
esAλAλuds,

so that by taking a limit as λ →∞

U(t)u− u =
∫ t

0
U(s)Auds.

Therefore by the fundamental theorem of calculus again

lim
t→+0

t−1
(
U(t)u− u

)
= t−1

∫ t

0
U(s)Auds = Au.

This implies A ⊂ B. However, note that for any λ > β both A−λ
and B − λ are injective, and

X = Ran(A− λ) ⊂ Ran(B − λ).

Then it follows that A− λ = B − λ, or A = B.
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Hille’s idea. Let us discretize the differential equation

d

dt
U(t) = AU(t), U(0) = 1,

replacing the differentiation in t by the backward difference of

step size h > 0. Then we have

h−1(Un − Un−1) = AUn, U0 = 1,

which in fact has an explicit solution: Un = (1 − hA)−n. In the

continuum limit as h → +0 and n →∞ with nh → t we expect

Un = (1− hA)−n → U(t).

Now, letting h = t/n, we adopt

Un(t) =
(
1− t

n
A

)−n

as an approximation of the desired C0-semigroup as n →∞.
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Hille’s proof. It suffices to prove the sufficiency.

Step 1. We first define the approximate operator Un(t), and state

its basic properties. For any n ∈ N we let

Tn =

⎧⎨
⎩n/β if β > 0,

∞ if β ≤ 0,

and define for n ∈ N and t ∈ [0, Tn)

Un(t) =
(
1− t

n
A

)−n
∈ B(X).

For t �= 0 we may write it also as

Un(t) =
(

n

t

)n(n

t
−A

)−n
.
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Now it is straightforward from the assumptions that

‖Un(t)‖ ≤ M

(
1− βt

n

)−n
. (♠)

In addition, for any u ∈ D(A) the vector-valued function Un(·)u
is differentiable on [0, Tn), and

d

dt
(Un(t)u) = Un(t)

(
1− t

n
A

)−1
Au. (♥)

Here we omit a verification of (♥).

Problem. Verify the claimed identity (♥) based on the definition

of differentiation. (Except at t = 0 we may verify it by the

holomorphy of resolvent as well.)
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Step 2. Here we prove existence of a strong limit

U(t) := s-lim
n→∞ Un(t)

locally uniformly in t ≥ 0. First let u ∈ D(A). For any T > 0 take

n ≥ m large enough that Tn ≥ Tm > T . Then for any t ∈ [0, T ] by

the fundamental theorem of calculus and Step 1∥∥∥Un(t)u− Um(t)u
∥∥∥

=

∥∥∥∥∥
∫ t

0
Um(t− s)Un(s)

[(
1− s

n
A

)−1
Au−

(
1− t− s

m
A

)−1
Au

]
ds

∥∥∥∥∥
≤ M2

(
1− βT

m

)−m(
1− βT

n

)−n

·
∫ T

0

∥∥∥∥∥
(
1− s

n
A

)−1
Au−

(
1− t− s

m
A

)−1
Au

∥∥∥∥∥ds.
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Here, similarly to Step 1 of Yosida’s proof, we have

lim
n→∞

(
1− t

n
A

)−1
Au → Au

uniformly in t ∈ [0, T ]. Therefore by the above aruguments

(Un(t)u)n∈N is a Cauchy sequence on X uniformly in t ∈ [0, T ],

hence has a uniform limit in t ∈ [0, T ] as n →∞.

For general u ∈ X we can argue similarly to Step 3 of Yosida’s

proof, using the denseness of D(A) ⊂ X and the bound (♠) from

Step 1. Thus the claimed strong limit exists.
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Step 3. Here we prove U from Step 2 is a C0-semigroup on X

satisfying for any t ≥ 0

‖U(t)‖ ≤ Meβt.

Obviously we have U(0) = 1. For any t, s ≥ 0 let n ∈ N be

sufficiently large. Then for any u ∈ D(A) by the fundamental

theorem of calculus

Un(t + s)u− Un(t)Un(s)u

=
∫ s

0
Un(t + r)Un(s− r)

[(
1− t + r

n
A

)−1
−
(
1− s− r

n
A

)−1
]
Audr.

Letting n →∞, we obtain for any u ∈ D(A)

U(t + s)u = U(t)U(s)u.

By the denseness of D(A) ⊂ X it follows that U is certainly a

one-parameter semigroup on X.
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Since the strong limit in Step 2 is locally uniform in t ≥ 0, the

one-parameter semigroup U is strongly continuous, and hence is

a C0-semigroup on X.

By (♠) from Step 1 we obtain the claimed estimate for U(t).
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Step 4. Lastly we prove the generator of U , denoted here by B,

coincides with A. For any u ∈ D(A) by the fundamental theorem

of calculus and (♥) from Step 1

Un(t)u− u =
∫ t

0
Un(s)

(
1− s

n
A

)−1
Auds,

so that by letting n →∞

U(t)u− u =
∫ t

0
U(s)Auds.

This implies by the fundamental theorem of calculus again

lim
t→+0

t−1
(
U(t)u− u

)
= t−1

∫ t

0
U(s)Auds = Au.

Thus we have A ⊂ B. Now, repeating the same argument as in

Step 5 of Yosida’s proof, we obtain A = B. We are done.
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Corollary 3.10. Let A be a generator of a C0-semigroup on X.

Then etA for any t ≥ 0 has the expressions

etA = s-lim
λ→∞

exp
(
tλA(λ−A)−1

)
and

etA = s-lim
n→∞

(
1− t

n
A

)−n

Proof. These expressions are straightforward from the proofs of

Theorem 3.9.
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Corollary 3.11. Let A be a generator of a C0-semigroup on X,

and let u0 ∈ D(A). Then an abstract evolution equation

du

dt
(t) = Au(t) for t > 0, u(0) = u0 (♥)

has a unique solution in{
u ∈ C([0,∞);X) ∩ C1((0,∞);X); ∀t > 0 u(t) ∈ D(A)

}
, (♦)

which is given by

u(t) = etAu0.

Remark. Sometimes, even for general u0 ∈ X, the vector-valued

function

u(t) = etAu0

is called a solution to (♥), though it is not differentiable in t > 0.
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Proof. By Proposition 3.8 u(t) = etAu0 certainly solves (♥). On

the other hand, let v be a solution to (♥) belonging to (♦).

Then for any T > 0 and any t ∈ (0, T )

d

dt

(
e(T−t)Av(t)

)
= −e(T−t)AAv(t) + e(T−t)AAv(t) = 0.

Hence by continuity of v at t = 0, T we obtain

e(T−t)Av(t) = eTAu0 = v(T ).

This implies v(t) = etAu0 for any t ≥ 0. We are done.

90

§ 3.4 Analytic Semigroups

Let X be a Banach space. In this course we denote for any θ > 0

Cθ = {z ∈ C \ {0}; |arg z| < θ}.

◦ Analytic semigroup on closed sector

Definition. An operator-valued function U : Cθ → B(X) with θ ∈
(0, π/2] is called an analytic semigroup on X (defined on Cθ) if

1. U(0) = 1;

2. For any z, w ∈ Cθ one has U(z + w) = U(z)U(w);

3. U is strongly continuous on Cθ, and analytic on Cθ.
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Definition.A generator of an analytic semigroup U : Cθ → B(X)

with θ ∈ (0, π/2] is the generator of the C0-semigroup U |[0,∞). If

A is the generator of U , we say A generates U , and denote

U(z) = ezA for z ∈ Cθ.

Remark. Due to the analytic continuation U is uniquely deter-

mined by its restriction U |[0,∞), which in turn is uniquely de-

termined by the generator A. Therefore the last notation is

well-defined.

Problem. Let A be a generator of an analytic semigroup on X.

Show that, if ezA extends analytically in z ∈ Cθ for some θ > π/2,

then ezA extends entirely in z ∈ C, and in particular A ∈ B(X).
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Proposition 3.12.Let A be a generator of an analytic semigroup

defined on Cθ with θ ∈ (0, π/2].

1. For any u ∈ X, z ∈ Cθ and n ∈ N one has ezAu ∈ D(An), and

dn

dzn
(ezAu) = AnezAu.

2. Let u0 ∈ X. Then an abstract evolution equation

du

dt
(t) = Au(t) for t > 0, u(0) = u0 (♥)

has a unique solution in{
u ∈ C([0,∞);X) ∩ C1((0,∞);X); ∀t > 0 u(t) ∈ D(A)

}
,

which is given by

u(t) = etAu0.
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Remark.See also Proposition 3.8 and Corollary 3.11. The above

assertions hold for all u, u0 ∈ X.

Proof. 1. Since ezA is analytic in z ∈ Cθ, ezAu for any u ∈ X is

infinitely differentialble in z ∈ Cθ. Then it is straightforward to

see ezAu ∈ D(A) and

d

dz
(ezA) = lim

h→0
h−1(ehA − 1)ezAu = AezAu.

We can discuss the higher derivatives similarly, noting that A and

ehA commute. The detail is omitted.

2. The proof is almost the same as that of Corollary 3.11, and

is omitted.
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Proposition 3.13. Let U : Cθ → B(X), θ ∈ (0, π/2], be an ana-

lytic semigroup. Then there exist M ≥ 1 and β ∈ R such that for

any z ∈ Cθ

‖U(z)‖ ≤ Meβ|z|.
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Proof. Fix any T > 0. For any u ∈ X, since U(·)u is continuous,

sup
|z|≤T

‖U(z)u‖ < ∞,

so that by the uniform boundedness principle we can find M ≥ 1

and β ≥ 0 such that

M = eβT = sup
|z|≤T

‖U(z)‖ ∈ [1,∞).

Now for any z ∈ Cθ \ {0}, choosing k ∈ N0 such that kT ≤ |z| <

(k + 1)T , we obtain

‖U(z)‖ ≤
∥∥∥U(z − kzT/|z|

)∥∥∥∥∥∥U(zT/|z|
)∥∥∥k ≤ MeβkT ≤ Meβ|z|.

Hence we are done.
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Theorem 3.14. A linear operator A on X is a generator of an

analytic semigroup U : Cθ → B(X), θ ∈ (0, π/2], with constants

M ≥ 1 and β ∈ R such that for any z ∈ Cθ

‖U(z)‖ ≤ Meβ|z|

if and only if both of the following hold:

1. A is closed and densely defined on X;

2. One has {
eiωλ ∈ Cθ; λ > β, |ω| ≤ θ

}
⊂ ρ(A),

and for any λ > β, |ω| ≤ θ and n ∈ N

‖(eiωλ−A)−n‖ ≤ M(λ− β)−n.
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Theorem 3.14 (continued). In addition, in the affirmative case,

one has {
eiωz ∈ C; Re z > β, |ω| ≤ θ

}
⊂ ρ(A),

and for any Re z > β, |ω| ≤ θ and n ∈ N

‖(eiωz −A)−n‖ ≤ M(Re z − β)−n.

Proof. Necessity. Let A be a generator of an analytic semigroup

U with constants θ, M, β as in the assertion. For any |ω| ≤ θ we

let Aω be a generator of a C0-semigroup Uω defined as

Uω(t) = U(e−iωt) for t ≥ 0.
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Then by the Hille–Yosida theorem Aω is a densely defined closed

operator on X with (β,∞) ⊂ ρ(Aω), and for any λ > β and n ∈ N

‖(λ−Aω)−n‖ ≤ M(λ− β)−n.

Therefore it suffices to show that Aω = e−iωA, from which we

remark also the last assertion follows.

For that first let u ∈ D(A). Since U(·)u is analytic on Cθ, we

have for any z ∈ Cθ

U(z)u ∈ D(A) ∩D(Aω), AωU(z)u = e−iωAU(z)u.

By u ∈ D(A) it follows AU(z)u = U(z)Au, so that

AωU(z)u = U(z)e−iωAu.

Now let z → 0. Then, since Aω is closed, we have u ∈ D(Aω) and

Aωu = e−iωAu, or e−iωA ⊂ Aω. The converse is proved similarly.
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Sufficeincy. Next assume conditions 1 and 2 of the assertion,

and set for any |ω| ≤ θ

Aω = e−iωA.

This Aω satisfies the conditions of the Hille–Yosida theorem, and

thus the strong limit

etAω = s-lim
n→∞

(
1− t

n
Aω

)−n
for t ≥ 0

exists, and it gives a C0-semigroup. Now we set

U(z) = s-lim
n→∞

(
1− z

n
A

)−n
for z = e−iωt ∈ Cθ.
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For each n ∈ N the operator on the right-hand side above is

analytic (where it is defined). In addition, by repeating the agr-

guments of Hille’s proof the above strong limit is locally uniform

in z ∈ Cθ. Thus it follows that U is strongly continuous on Cθ,

and analytic on Cθ.

Moreover, for any t, s ≥ 0 we have

U(t + s) = U(t)U(s),

and hence by the identity theorem for any z, w ∈ Cθ

U(z + w) = U(z)U(w).

Thus U is an analytic semigroup on X, and by the construction

its generator coincides with A.
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Corollary 3.15. Let A be a generator of an analytic semigroup
on X defined on Cθ, θ ∈ (0, π/2]. Then ezA for any z ∈ Cθ has
expressions

ezA = s-lim
zλ∈R, λ→∞

exp
(
zλA(λ−A)−1

)

and

ezA = s-lim
n→∞

(
1− z

n
A

)−n
.

Proof. From the proof of Theorem 3.14 we obtain

ezA = exp
[
t(e−iωA)

]
for z = e−iωt ∈ Cθ.

Hence the asserted expression follows by Corollary 3.10.

Remark. There is yet another expression for an analytic semi-
group, see Theorem 3.16 below.

102

◦ Analytic semigroup on open sector

Definition. An operator-valued function U : Cθ → B(X) with θ ∈
(0, π/2] is called an analytic semigroup on X (defined on Cθ) if

1. For any ω ∈ (0, θ) one has

s-lim
Cω�z→0

U(z) = 1;

2. For any z, w ∈ Cθ one has U(z + w) = U(z)U(w);

3. U is analytic on Cθ.
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Remarks. 1. In this course we shall always extend an analytic

semigroup U defined on an open sector to z = 0 as U(0) = 1.

2. Usually analytic semigroups on open and closed sectors are

not really distinguished. (Essentially the distinction is not

really needed, either.) It is only in this course.

Definition.A generator of an analytic semigroup U : Cθ → B(X)

with θ ∈ (0, π/2] is the generator of the C0-semigroup U |[0,∞). If

A is the generator of U , we say A generates U , and denote

U(z) = ezA for z ∈ Cθ.
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Theorem 3.16. A linear operator A on X is a generator of an

analytic semigroup defined on Cθ with θ ∈ (0, π/2] if and only if

1. A is closed and densely defined on X;

2. For any ω ∈ (0, θ) there exist Rω, Mω > 0 such that{
z ∈ Cπ/2+ω; |z| ≥ Rω

}
⊂ ρ(A),

and for any z ∈ Cπ/2+ω with |z| ≥ Rω

‖(z −A)−1‖ ≤ Mω|z|−1.

In addition, in the affirmative case, ezA for any z ∈ Cθ has an

integral expression

ezA =
1

2πi

∫
Γ
ezζ(ζ −A)−1 dζ. (♠)
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Theorem 3.16 (continued). Here for any ω ∈ (|arg z|, θ) a

piecewise C1 path Γ = {ζ(t) ∈ C; t ∈ R} is chosen such that

Γ ⊂
{
z ∈ Cπ/2+ω; |z| ≥ Rω

}
,

and further that there exists T > 0 such that for any |t| ≥ T

ζ(t) = |t|e±i(π/2+ω).
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Proof. Necessity. Let A be a generator of an analytic semigroup

U defined on Cθ with θ ∈ (0, π/2], and take any ω ∈ (0, θ). Then

for any τ ∈ (ω, θ) the restriction U |
Cτ

is an analytic semigroup,

and thus the necessity follows immediately from Theorem 3.14.

Sufficiency. Suppose A satisfies conditions 1 and 2 of the asser-

tion. In the following we are going to show that the integral on

the right-hand side of (♠) provides an analytic semigroup defined

on Cθ, and that its generator coincides with A.
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Step 1. Fix z ∈ Cθ, and take any Γ = {ζ(t) ∈ C; t ∈ R} with

ω ∈ (| arg z|, θ) and T > 0 as in the assertion. We first show that

UΓ(z) :=
1

2πi

∫
Γ
ezζ(ζ −A)−1 dζ

is absolutely convergent. In fact, by condition 2∫
Γ

∥∥∥ezζ(ζ −A)−1
∥∥∥ |dζ|

≤ Mω

[∫ −T

−∞
|t|−1

∣∣∣exp (|zt|ei(arg z−π/2−ω))
)∣∣∣dt

+
∫ T

−T

∣∣∣ezζ(t)
∣∣∣|ζ(t)|−1|ζ′(t)|dt

+
∫ ∞
T
|t|−1

∣∣∣exp (|zt|ei(arg z+π/2+ω))
)∣∣∣dt

]

≤ C + 2Mω

∫ ∞
T

t−1e−t|z| sin(ω−| arg z|) dt < ∞,

and this implies the claim.
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Step 2. Fix z ∈ Cθ again, and we prove UΓ(z) is independent of

choice of Γ. Take any paths Γ1 and Γ2 as in the assertion, and

let | arg z| < ω1 ≤ ω2 < θ be the associated angles. By Cauchy’s

integral theorem we can estimate∥∥∥UΓ1
(z)− UΓ2

(z)
∥∥∥

≤ 1

2π
lim sup

r→∞

∫
|ζ|=r, π/2+ω1≤| arg ζ|≤π/2+ω2

∥∥∥ezζ(ζ −A)−1
∥∥∥ |dζ|.

Then by the condition 2 we can proceed as∥∥∥UΓ1
(z)− UΓ2

(z)
∥∥∥

≤ Mω

2π
lim sup

r→∞

(∫ π/2+ω2

π/2+ω1

+
∫ −π/2−ω1

−π/2−ω2

) ∣∣∣exp (|z|rei(arg z+τ)
)∣∣∣dτ

≤ Mω(ω2 − ω1)

π
lim sup

r→∞ e−r|z| sin(ω1−| arg z|) = 0.
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Thus UΓ(z) is independent of Γ, and we may write it simply as

U(z) := UΓ(z) =
1

2πi

∫
Γ
ezζ(ζ −A)−1 dζ.

Note that it also follows that U(z) is analytic in z ∈ Cθ.

Step 3. Here, take any z, w ∈ Cθ, and we prove

U(z + w) = U(z)U(w).

Choose paths Γ1 and Γ2 as in the assertion, and let

|arg z| < ω1 < θ, |argw| < ω2 < θ

be the associated angles, respectively. We may assume that Γ1
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lies in a region to the left of Γ2. By the resolvent identity

U(z)U(w) =
1

(2πi)2

∫
Γ1

ezζ1(ζ1 −A)−1
[∫

Γ2

ewζ2(ζ2 −A)−1 dζ2

]
dζ1

=
1

(2πi)2

∫
Γ1

[∫
Γ2

ezζ1ewζ2

ζ2 − ζ1
(ζ1 −A)−1 dζ2

]
dζ1

− 1

(2πi)2

∫
Γ2

[∫
Γ1

ezζ1ewζ2

ζ2 − ζ1
(ζ2 −A)−1 dζ1

]
dζ2

=
1

2πi

∫
Γ1

ezζ1ewζ1(ζ1 −A)−1 dζ1

= U(z + w).

In the above third equality we have used the identities

1

2πi

∫
Γ2

ewζ2

ζ2 − ζ1
dζ2 = ewζ1,

1

2πi

∫
Γ1

ezζ1

ζ2 − ζ1
dζ1 = 0,

the verification of which is left to the reader as Problem.
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Step 4. Now in order to see that U is an analytic semigroup it

remains to show that for any ω ∈ (0, θ)

s-lim
Cω�z→0

U(z) = 1.

Fix any ω ∈ (0, θ). We first let u ∈ D(A). Choose a path Γ as in

the assertion with the associated angle ω ∈ (0, θ). Noting that

0 ∈ C is in a region to the left of Γ, we have as Cω � z → 0

U(z)u− u =
1

2πi

∫
Γ
ezζ(ζ −A)−1udζ − 1

2πi

∫
Γ
ezζζ−1udζ

=
1

2πi

∫
Γ
ezζζ−1(ζ −A)−1Audζ

→ 1

2πi

∫
Γ

ζ−1(ζ −A)−1Audζ.
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However, the last integral vanishes. In fact, by Cauchy’s integral
theorem and the condition 2 of the assertion∥∥∥∥

∫
Γ

ζ−1(ζ −A)−1Audζ

∥∥∥∥
=
∥∥∥∥ lim
r→∞

∫
|ζ|=r, | arg ζ|≤π/2+ω

ζ−1(ζ −A)−1Audζ

∥∥∥∥
≤ lim

r→∞ r−1Mω(π + 2ω)‖Au‖ = 0.

Hence we obtain for any u ∈ D(A)

lim
Cω�z→0

U(z)u = u.

To verify the same limit for general u ∈ X, due to denseness of
D(A) ⊂ X, it suffices to show that U(z) is bounded uniformly in
small z ∈ Cω. Choose Γ′ along with ω′ ∈ (ω, θ) as

Γ′ =
{
|z|−1eiτ ; |τ | ≤ π/2 + ω′

}
∪
{
te±i(π/2+ω′); t ≥ |z|−1

}
.
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For any sufficiently small z ∈ Cω the above path Γ′ certainly

satisfies the properies required to define U(z). Then by the

condition 2 of the assertion

‖U(z)‖ ≤ Mω′
2π

∫
Γ′
|ezζ||ζ|−1 |dζ|

=
Mω′
2π

[∫ −1/|z|
−∞

|t|−1
∣∣∣exp(|zt|ei(arg z−π/2−ω′))∣∣∣dt

+
∫ π/2+ω′

−π/2−ω′

∣∣∣exp(ei(arg z+τ)
)∣∣∣dτ

+
∫ ∞
1/|z|

|t|−1
∣∣∣exp(|zt|ei(arg z+π/2+ω′))∣∣∣dt

]

≤ Mω′
2π

[
e(π + 2ω′) + 2

∫ ∞
1

s−1e−s sin(ω′−| arg z|) ds

]
.

The last formula is obviously bounded uniformly in z ∈ Cω. Thus

we can conclude that U is an analytic semigroup.
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Step 5. Finally we prove that the generator of U , denoted by B,

coincides with A. For sufficiently large λ > 0 by Lemma 3.6

(λ−B)−1 =
∫ ∞
0

e−λtU(t) dt

=
1

2πi

∫ ∞
0

e−λt
{∫

Γ
etζ(ζ −A)−1 dζ

}
dt

with an appropriate path Γ. If we choose Γ to be inside of the

half-plane {ζ ∈ C; Re ζ < λ}, we can change the order of the

integrations, so that

(λ−B)−1 =
1

2πi

∫
Γ

{∫ ∞
0

et(ζ−λ) dt

}
(ζ −A)−1 dζ

=
1

2πi

∫
Γ
(λ− ζ)−1(ζ −A)−1 dζ.

The last integral coincides with (λ−A)−1 (Problem), and hence

(λ−B)−1 = (λ−A)−1. This implies B = A.
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Theorem 3.17. A generator A of a C0-semigroup on X is a

generator of an analytic semigroup defined on Cθ with θ ∈ (0, π/2]

if and only if both of the following hold:

1. etA is differentiable in norm in B(X) with respect to t > 0,

and therefore for any t > 0

etAX ⊂ D(A),
d

dt
etA = AetA ∈ B(X);

2. There exist M > 0 and β ∈ R such that for any t > 0

‖AetA‖ ≤ Mt−1eβt.

In addition, if the above 1 and 2 hold with Me ≥ 1, then one can

choose

θ = arcsin[(Me)−1].
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Remark. Let A be a generator of a C0-semigroup on X, and

assume the condition 1. Then the condition 2 holds for some

M > 0 and β ∈ R if and only if there exist δ, K > 0 such that for

any t ∈ (0, δ]

‖AetA‖ ≤ Kt−1. (♦)

In fact, the necessity is obvious, and let us show the sufficiecy.

If (♦) holds, the condition 2 for t ∈ (0, δ] is straightforward, and

it suffices to discuss t > δ. By Corollary 3.4 we can find L, γ > 0

such that for any t ≥ 0

‖etA‖ ≤ Leγt. (♣)

By (♦) and (♣) it follows that for any t > δ

‖AetA‖ = ‖AeδA‖‖e(t−δ)A‖ ≤ KLδ−1e−γδeγt.

Hence the condition 2 is verified also for t > δ.
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Proof. Necessity. Suppose that A is a generator of an analytic

semigroup defined on Cθ with θ ∈ (0, π/2]. The condition 1 is

obvious by definition of a generator, see also Proposition 3.12.

To verify the condition 2 we use Theorem 3.16 to write

AezA =
1

2πi

∫
Γ
ezζζ(ζ −A)−1 dζ.

Let z = t > 0 be small, fix any ω ∈ (0, θ) and choose Γ as

Γ =
{
t−1eiτ ; |τ | ≤ π/2 + ω

}
∪
{
se±i(π/2+ω); s ≥ t−1

}
.

Then a computation similar to Step 4 of the proof of Theo-

rem 3.16 shows that for any small t > 0

‖AetA‖ ≤ Mω

2πt

[
e(π + 2ω) + 2

∫ ∞
1

e−s sinω ds

]
,

where Mω is from Theorem 3.16. This and the above Remark

certainly implies the condition 2.
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Sufficiency. Assume the conditions 1 and 2 of the assertion. We
may let Me ≥ 1 by retaking M > 0 larger if necessary.

Step 1. We first prove that etA is infinitely differentiable in norm
in B(X) with respect to t > 0, and moreover that for any n ∈ N

and t > 0

(etA)(n) = (Ae(t/n)A)n,
∥∥∥(Ae(t/n)A)n

∥∥∥ ≤ eβt(Mn/t)n. (♥)

In fact, the latter estimate of (♥) is clear from the condition 2.
For any ε > 0 and t > ε, if we rewrite

(etA)′ = AetA = e(t−ε)AAeεA,

then the last formula is clearly differentiable in t > ε. Repeating
this argument, we can differentiate etA in t > 0 as many times
as we would like. Moreover, the same argument indeed shows
the former expression of (♥).
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Step 2. Here we prove etA extends as an analytic operator-valued

function U : Cθ → B(X) for θ = arcsin[(Me)−1]. By Step 1 and

Taylor’s theorem for any t, a > 0 and n ∈ N we can find τ > 0

between a and t such that

etA = eaA +
n−1∑
k=1

(t− a)k

k!
(Ae(a/k)A)k +

(t− a)n

n!
(Ae(τ/n)A)n.

The above remainder term is estimated by (♥) from Step 1 and

Stirling’s approximation as∥∥∥∥∥(t− a)n

n!
(Ae(τ/n)A)n

∥∥∥∥∥ ≤ |t− a|n
n!

eβτ

(
Mn

τ

)n

≤ eβτ

(2πn)1/2

(|t− a|Me

τ

)n

.
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Now let us choose ε ∈ (0,1) sufficiently small, so that

εMe

1− ε
< 1.

Then for any t, a > 0 with |t− a| < εa, as n →∞,∥∥∥∥∥(t− a)n

n!
(Ae(τ/n)A)n

∥∥∥∥∥ ≤ eβ(1+ε)a

(2πn)1/2

(
εMe

1− ε

)n

→ 0.

Hence etA is analytic in t > 0, and the analytic extension is given

by the pewer series

U(z) = eaA +
∞∑

k=1

(z − a)k

k!
(Ae(a/k)A)k. (♠)

Computations similar to the above show that (♠) is convergent

for z ∈ C and a > 0 with |z−a| < a/(Me), and thus etA is extends

analytically to a sector Cθ with θ = arcsin[(Me)−1].
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Step 3. By the identity theorem the analytic extension U of etA

from Step 2 satisfies that for any z, w ∈ Cθ

U(z + w) = U(z)U(w).

Hence to verify U is an analytic semigroup it suffices to show

that for any ω = arcsin ε ∈ (0, θ) with ε ∈ (0,1/(Me))

s-lim
Cω�z→0

U(z) = 1.

For that we first let u ∈ D(A). By the expression (♠) from Step 2

for any z ∈ C and a > 0 with |z − a| < εa

U(z)u− eaAu =
∞∑

k=1

(z − a)k

k!
(Ae(a/k)A)k−1e(a/k)AAu.
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Using the condition 2 and the estimate (♣) from the previous

Remark, we can bound

‖U(z)u− eaAu‖ ≤ aLe(β+γ)a‖Au‖
M

∞∑
k=1

|z − a|k
k!

(
Mk

a

)k
.

Computations similar to Step 2 show the last sum is bounded

uniformly in z ∈ C and a > 0 with |z − a| < εa, and thus as z → 0

and a → +0 with |z − a| < εa

‖U(z)u− u‖ ≤ ‖U(z)u− eaAu‖+ ‖eaAu− u‖ → 0.

To verify the same limit for general u ∈ X, due to denseness of

D(A) ⊂ X, it suffices to show U(z) is bounded uniformly in small

z ∈ Cω. However, this can be shown by the expression (♠) and

computations similar to Step 2 again. We omit the detail.
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Problem. 1. Show that ezA extends entirely in z ∈ C if the
conditions 1 and 2 from Theorem 3.17 hold with Me < 1. In
particular, A ∈ B(X) in this case.

2. Discuss if it is possible to take

θ > arcsin[(Me)−1]

in general in Theorem 3.17.

Hint for 2. Suppose A has an eigenvalue z = λ+iμ ∈ C, and then
it would follow from the condition 2 that for any t > 0

|zetz| ≤ Mt−1eβt, or |z|te−t(β−λ) ≤ M.

Since β > λ would hold, we could deduce

|z|(β − λ)−1 ≤ Me,

and therefore ... what does this mean?
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§ 3.5 Semigroups on Hilbert Space

Definition.Let H be a complex vector space. We call a mapping

(·, ·): H×H → C an inner product if it satisfies

1. For any u, v ∈ H one has (u, v) = (v, u);

2. For any a, b ∈ C and u, v, w ∈ H one has (u, av+bw) = a(u, v)+

b(u, w);

3. For any u ∈ H one has (u, u) ≥ 0, and (u, u) = 0 if and only

if u = 0.

We call a pair (H, (·, ·)) of a vector space H and an inner product

(·, ·) on H an inner product space. We denote it simply by H.
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Remark. We follow a convention that an inner product is linear

in the second variable, and conjugate-linear in the first.

Proposition 3.18. An inner product space is a normed space

with respect to the natural norm

‖u‖ =
√

(u, u) for u ∈ H,

and hence has the natural metric.

Proof. The proof is omitted.

Definition.An inner product space that is complete with respect

to the natural metric is called a Hilbert space.
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For the rest of this section we let H be a Hilbert space.

Definition. Let A be a linear operator on H. We define the

numerical range of A as

ν(A) =
{
(u, Au) ∈ C; u ∈ D(A), ‖u‖ = 1

}
.

Remark.The numerical range ν(A) may be considered an “outer

approximation” of the spectrum σ(A).
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Example. Let A be a square matrix of order d. With (·, ·) being

the standard inner product on Cd, we have

ν(A) =
{
(u, Au) ∈ C; u ∈ Cd, ‖u‖ = 1

}
.

Then it follows that

σ(A) ⊂ ν(A).

In fact, if λ ∈ C is an eigenvalue of A, then letting u ∈ Cd be the

associated unit eigenvector, we obtain

λ = λ‖u‖2 = (u, λu) = (u, Au) ∈ ν(A).

Problem.Show that, if A is unitarily similar to a diagonal matrix,

then ν(A) coincides with the convex hull of σ(A).
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Definition. Let A be a densely defined closed operator on H.

1. A is said to be accretive if

ν(A) ⊂ {z ∈ C; Re z ≥ 0}.
A is said to be maximal accretive, or m-accretive, if in

addition there does not exist a proper accretive extension.

2. A is said to be dissipative if

ν(A) ⊂ {z ∈ C; Re z ≤ 0}.
A is said to be maximal dissipative, or m-dissipative, if in

addition there does not exist a proper dissipative extension.

Remarks. 1. We will not discuss accretive operators. They are

just introduced as opposed to dissipative operators.
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Remarks (Continued). 2. These notions are generalized to a

Banach space with some variations. In particular, ‘maximal

dissipative’ and ‘m-dissipative’ are often distinguished there.

3. Obviously, A is dissipative if and only if for any u ∈ D(A)

Re(u, Au) ≤ 0.

If in addition A generates a C0-semigroup, then this implies

that for any u ∈ D(A)

d

dt
‖etAu‖2 = 2Re(etAu, AetAu) ≤ 0.

We can interpret it as a dissipation of certain energy ‖etAu‖2,
as time passes, of the system under consideration.
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Proposition 3.19. Let A be a dissipative operator on H. Then

the following conditions are equivalent to each other.

1. A is maximal dissipative.

2. For all Re z > 0 one has Ran(z −A) = H.

3. For some Re z > 0 one has Ran(z −A) = H.

4. For all Re z > 0 one has z ∈ ρ(A).

5. For some Re z > 0 one has z ∈ ρ(A).

Remark. The m-dissipativity on a Banach space is usually de-

fined by employing either of the above conditions 2–5.
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Proof. Let us first note that for any Re z > 0 and u ∈ D(A)

(Re z)‖u‖2 ≤ Re(u, (z −A)u), (♠)

hence

(Re z)‖u‖ ≤ ‖(z −A)u‖. (♥)

1 ⇒ 2: Let Re z > 0. Then, due to (♥) and that A is closed,

the subspace Ran(z −A) ⊂ H is closed. Set

N = (Ran(z −A))⊥,

and then by (♠) we can see D(A) ∩ N = {0}. Now define an

extension B of A as

B(u + v) = Au− z̄v for u + v ∈ D(A) + N =: D(B).
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This operator B is dissipative. In fact, for any u + v ∈ D(A)+ N

Re(u + v, B(u + v))

= Re(u + v, Au− z̄v)

= Re(u, Au) + Re(u,−z̄v) + Re(v, zu) + Re(v,−z̄v)

= Re(u, Au)− (Re z)‖v‖2 ≤ 0.

Since A is maximal dissipative, it follows that D(A) = D(B), and

hence N = {0}, or Ran(z −A) = H.

2 ⇒ 3: This is trivial.
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3 ⇒ 1: Let Re z > 0 satisfy Ran(z − A) = H, and take any
dissipative extension B of A. Then for any u ∈ D(B) by the
assumption there exists v ∈ D(A) such that

(z −B)u = (z −A)v = (z −B)v.

Since B also satisfies (♥), it follows that

(Re z)‖u− v‖ ≤ ‖(z −B)(u− v)‖ = 0, or u = v.

This says D(B) ⊂ D(A), and thus A maximal dissipative.

2 ⇒ 4: For any Re z > 0 the operator z − A is injective due to
(♥), hence has the inverse (z −A)−1. Then by the closed graph
theorem (z −A)−1 is bounded, and thus z ∈ ρ(A) follows.

4 ⇒ 2: This is trivial by the definition of resolvent.

3 ⇔ 5: We can argue similarly to the above 2 ⇔ 4.
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Theorem 3.20. Let A be a linear operator on H. The following
conditions are equivalent:

1. A is maximal dissipative.

2. A is a generator of a contraction semigroup.

Proof. We first let A be maximal dissipative. In particular, A is
closed and densely defined. In addition, by Proposition 3.19 it
follows that (0,∞) ⊂ ρ(A). Moreover, due to (♥) in the proof of
Proposition 3.19, for any λ > 0 and u ∈ D(A)

λ‖u‖ ≤ ‖(λ−A)u‖,
which implies for any n ∈ N

‖(λ−A)−n‖ ≤ ‖(λ−A)−1‖n ≤ λ−n.

Now the Hille–Yosida theorem verifies the condition 2.
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Next, let A be a generator of a contraction semigroup. By the

Hille–Yosida theorem A is closed and densely defined on H. More-

over, (0,∞) ⊂ ρ(A) and for any λ > 0

λ‖(λ−A)−1‖ ≤ 1.

Thus for any λ > 0 and u ∈ D(A)

λ‖u‖ = λ‖(λ−A)−1(λ−A)u‖ ≤ ‖(λ−A)u‖,
so that

‖Au‖2 − 2λRe(u, Au) = ‖(λ−A)u‖2 − λ2‖u‖2 ≥ 0.

Now this implies that for any u ∈ D(A)

Re(u, Au) ≤ 0,

and hence A is dissipative. Since (0,∞) ⊂ ρ(A), it follows from

Proposition 3.19 that A is maximal dissipative.
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Definition. Let A be a densely defined closed operator on H. A

is said to be sectorial if there exists θ ∈ (0, π/2) such that

ν(A) ⊂ C \ Cπ/2+θ.

A is said to be maximal sectorial, or m-sectorial, if in addition

there does not exist a proper sectorial extension of A.

Remarks. 1. A definition of sectorial operators varies according

to context. It is often the case that −A for the above A is

defined to be sectorial.

2. A genaralization of a sectorial operator to a Banach space

corresponds to an m-sectorial operator on a Hilbert space.
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Proposition 3.21. Let A be a sectorial operator on H with

ν(A) ⊂ C \ Cπ/2+θ for some θ ∈ (0, π/2). Then the following

conditions are equivalent to each other.

1. A is maximal sectorial.

2. For all z ∈ Cπ/2+θ one has Ran(z −A) = H.

3. For some z ∈ Cπ/2+θ one has Ran(z −A) = H.

4. For all z ∈ Cπ/2+θ one has z ∈ ρ(A).

5. For some z ∈ Cπ/2+θ one has z ∈ ρ(A).

Proof. It suffices to repeat the proof of Proposition 3.19 for eiωA

with |ω| ≤ θ. The detail is omitted.
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Theorem 3.22. Let A be a linear operator on H. The following

conditions are equivalent.

1. A is maximal sectorial.

2. A is a generator of an analytic contraction semigroup.

Proof. First let A be maximal sectorial, and let θ ∈ (0, π/2) be the

associated angle. Then eiωA for any |ω| ≤ θ is maximal dissipa-

tive, hence by Theorem 3.20 generates a contraction semigroup.

This implies that eiωA for any |ω| ≤ θ satisfies the conditions of

the Hille–Yosida theorem with β = 0, M = 1, and then by Theo-

rem 3.14 A generates an analytic contraction semigroup.

We can go backward along the above arguments, and therefore

the converse is also true.
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Section 4

Application to PDEs, I

§ 4.1 Schwartz Distributions

Let Ω ⊂ Rd be an open subset, and we write D(Ω) = C∞c (Ω).

Definition.A linear functional T : D(Ω)→ C is called a Schwartz

distribution on Ω if for any compact subset K ⊂ Ω there exist

C > 0 and k ∈ N0 such that for any φ ∈ D(Ω) with suppφ ⊂ K

|〈T, φ〉| ≤ C max
x∈K, |α|≤k

|∂αφ(x)|.

Here we have written 〈T, φ〉 = Tφ = T (φ). We denote the set of

all the Schwartz distributions on Ω by D′(Ω).
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We denote the set of all the locally integrable functions on Ω by

L1
loc(Ω) =

{
u : Ω→ C; ∀K � Ω u|K ∈ L1(K)

}
.

Note that for any p ∈ [1,∞] the inclusion Lp(Ω) ⊂ L1
loc(Ω) holds.

Proposition 4.1. For any u ∈ L1
loc(Ω) let Tu : D(Ω) → C be a

linear functional defined as

〈Tu, φ〉 =
∫
Ω

u(x)φ(x) dx for φ ∈ D(Ω).

Then one has Tu ∈ D′(Ω). Moreover, the linear mapping

L1
loc(Ω)→ D′(Ω), u �→ Tu

is injective, i.e., if u, v ∈ L1
loc(Ω) satisfy Tu = Tv as distributions,

then u = v a.e. on Ω.

Proof. The proof is omitted (Problem).
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Remark. In the following we identify u ∈ L1
loc(Ω) and Tu ∈ D′(Ω),

writing simply

u = Tu,

and regard

L1
loc(Ω) ⊂ D′(Ω).

In particular, Lp(Ω) ⊂ D′(Ω) for any p ∈ [1,∞].

Definition. For any T ∈ D′(Ω) and α ∈ Nd
0 define ∂αT ∈ D′(Ω) as

〈∂αT, φ〉 = (−1)|α|〈T, ∂αφ〉 for φ ∈ D(Ω).

Problem. 1. Prove ∂αT ∈ D′(Ω).

2. Prove ∂αTu = T∂αu for any u ∈ C∞(Ω).
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For any k ∈ N0 define the Sobolev space of order k as

Hk(Ω) =
{
u ∈ D′(Ω); |∀α| ≤ k ∂αu ∈ L2(Ω)

}
.

Here ∂α is of course understood as a distributional derivative.

Hk(Ω) is a Hilbert space with respect to the inner product

(v, u)Hk =
∑
|α|≤k

(∂αv, ∂αu)L2.

In addition, define

H1
0(Ω) = D(Ω) in H1(Ω).

H1
0(Ω) is regarded as the space of functions with the Dirichlet

boundary condition on ∂Ω.
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§ 4.2 Drift-Diffusion Equation

Let Ω ⊂ Rd be a domain, and P be a differential operator on Ω
of the form

P =
d∑

i,j=1

∂

∂xi
aij(x)

∂

∂xj
+

d∑
i=1

(
b
(1)
i (x)

∂

∂xi
+

∂

∂xi
b
(2)
i (x)

)
+ c(x).

We discuss a Cauchy problem of the PDE

∂

∂t
u = Pu in (0,∞)×Ω

for unknown function u = u(t, x) with Cauchy data

u(0, ·) = u0 on Ω, u = 0 on (0,∞)× ∂Ω.

In addition, if Ω is unbounded, we further impose

lim
x∈Ω, |x|→∞

u(·, x) = 0 on (0,∞).
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Remark. We can physically interpret the coefficients, for exam-

ple, as follows.

• (aij)i,j represents the diffusivity depending on directions.

• (b(1)
i )i and (b(2)

j ) provide a velocity field of the media.

• c represents a rate of self-creation or self-annihilation.

In order to discuss the unique solvability of the given Cauchy

problem we need to fix a “mathematical framework” to deal with

it. Here we are going to reformulate it in terms of the functional

analysis with the following assumptions on the coefficients.
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Assumption 4.2. 1. For any i, j = 1, . . . , d and k = 1,2

aij, b
(k)
i , c ∈ L∞(Ω) = L∞(Ω;C).

2. There exists ε > 0 such that for any x ∈ Ω

Re(aij(x))i,j :=
1

2

(
aij(x) + aji(x)

)
i,j
≥ ε

as a quadratic form on Cd, i.e., for any (x, ξ) ∈ Ω× Cd

Re
d∑

i,j=1

aij(x)ξ̄iξj ≥ ε|ξ|2.

Now we define a realization P of P on L2(Ω) as

D(P ) =
{
u ∈ H1

0(Ω); Pu ∈ L2(Ω)
}
, P = P|D(P ).
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Remarks. 1. We use the notation P for a general distributional

derivative, and distinguish it from its restriction P , an oper-

ator on L2(Ω).

2. To be sure, let us discuss how we should interpret

Pu =
d∑

i,j=1

∂iaij∂ju +
d∑

i=1

(
b
(1)
i ∂iu + ∂ib

(2)
i u

)
+ cu ∈ D′(Ω)

for u ∈ H1
0(Ω). We understand the term ∂iaij∂ju as a dis-

tributional derivative of aij∂ju ∈ L2(Ω) which is a product

of aij ∈ L∞(Ω) and ∂ju ∈ L2(Ω). If one first considered

∂ju ∈ D′(Ω), then we could not take a product aij∂ju even

in D′(Ω). The term ∂ib
(2)
i u is understood similarly. On the

other hand, the remaining terms are are naturally in L2(Ω) as

products of b
(1)
i , c ∈ L∞(Ω) and ∂iu, u ∈ L2(Ω), respectively.
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Theorem 4.3. Under Assumption 4.2 there exists γ ∈ R such
that P − γ is maximal sectorial on L2(Ω). In particular, the
operator P generates an analytic semigroup on L2(Ω).

Corollary 4.4. For any u0 ∈ L2(Ω) an evolution equation

du

dt
(t) = Pu(t) for t > 0, u(0) = u0 (♣)

has a unique solution in{
u ∈ C

(
[0,∞);L2(Ω)

)
∩C1

(
(0,∞);L2(Ω)

)
; ∀t > 0 u(t) ∈ D(P )

}
,

which is given by

u(t) = etPu0 for t ≥ 0.

Proof. The assertion follows from Theorems 4.3 and Proposi-
tion 3.12.
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Proof of Theorem 4.3. Step 1. Let γ ∈ R, and define a quadratic

form q on D(Ω) as, for u, v ∈ D(Ω),

q(v, u) = −(v, (P − γ)u)L2

=
d∑

i,j=1

(∂iv, aij∂ju)L2 −
d∑

i=1

(
(v, b

(1)
i ∂iu)L2 − (∂iv, b

(2)
i u)L2

)

− (v, cu)L2 + γ(v, u)L2.

Here we claim that, if we fix sufficiently large γ ∈ R, then there

exist c1, C1 > 0 such that for any u, v ∈ D(Ω)

Re q(u, u) ≥ c1‖u‖2H1, |q(v, u)| ≤ C1‖v‖H1‖u‖H1. (♥)

In particular, q extends uniquely to a bounded quadratic form

defined on H1
0(Ω).
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Let us show (♥). The latter inequality from (♥) is clear by
Assumption 4.2 and the Cauchy–Schwarz inequality. As for the
former, by Assumption 4.2 and the Cauchy–Schwarz inequality
again there exists C2 > 0 such that for any u ∈ D(Ω)

Re q(u, u) ≥ ε
d∑

i=1

‖∂iu‖2L2 − C2

d∑
i=1

‖u‖L2‖∂iu‖L2 − C2‖u‖2L2

+ γ‖u‖2
L2.

We further apply the Cauchy–Schwarz inequality, to obtain

Re q(u, u) ≥ ε

2

d∑
i=1

‖∂iu‖2L2 +
(
γ − C2 −

dC2

2ε

)
‖u‖2

L2.

Then the assertion follows for sufficiently large fixed γ ∈ R.

In the following we consider q as defined on H1
0(Ω). Of course,

(♥) holds true for any u, v ∈ H1
0(Ω) for this extended q.
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Step 2. We next prove that there exists an isomorphism between

Hilbert spaces:

J : H1
0(Ω)→ H1

0(Ω)

such that for any u, v ∈ H1
0(Ω)

q(v, u) = (v, Ju)H1.

(This is essentially the Lax–Milgram theorem.)

Let u ∈ H1
0(Ω). By (♥) and the Riesz representation theorem

there uniquely exists Ju ∈ H1
0(Ω) such that for any v ∈ H1

0(Ω)

q(v, u) = (v, Ju)H1.
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By the uniqueness this correspondence J : H1
0(Ω) → H1

0(Ω) is
clearly linear. Furthermore, for any u ∈ H1

0(Ω)

c1‖u‖H1 ≤ ‖Ju‖H1 ≤ C1‖u‖H1. (♦)

In fact, it follows from (♥) that

c1‖u‖2H1 ≤ Re q(u, u) = Re(u, Ju)H1 ≤ ‖u‖H1‖Ju‖H1,

and that

‖Ju‖H1 = sup
‖v‖

H1=1
|(v, Ju)H1| = sup

‖v‖
H1=1

|q(v, u)| ≤ C1‖u‖H1.

Hence J is bounded and injective.

Due to (♦) it suffices to show that J is surjective. By (♦) the
subspace Ran J ⊂ H1

0(Ω) is closed. If u ∈ (Ran J)⊥, then by (♥)

c1‖u‖2H1 ≤ Re q(u, u) = Re(u, Ju)H1 = 0,

so that u = 0. Thus Ran J = H1
0(Ω), and the claim is verified.
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Step 3. Here we prove that D(P ) is dense in L2(Ω). For that let
us show

J−1
(
H1

0(Ω) ∩H2(Ω)
)
⊂ D(P ). (♠)

In fact, let u ∈ H1
0(Ω) ∩H2(Ω). Then for any v ∈ D(Ω)

(v, (−Δ + 1)u)L2 = (v, u)H1

= q(v, J−1u)

= −(v,PJ−1u)L2 + γ(v, J−1u)L2,

which implies

J−1u ∈ D(P ), PJ−1u = PJ−1u = Δu− u + γJ−1u,

hence (♠). By Step 2 and the general theory subspaces

J−1
(
H1

0(Ω) ∩H2(Ω)
)
⊂ H1

0(Ω), H1
0(Ω) ⊂ L2(Ω)

are dense in each topology. This and (♠) imply the claim.
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Step 4. Here we prove that P is closed. Let u1, u2, . . . ∈ D(P )

satisfy as n →∞
un → u in L2(Ω), Pun → w in L2(Ω).

We first claim that we then actually have

un → u in H1
0(Ω).

In fact, we have for any u ∈ D(P ) and v ∈ D(Ω)

q(v, u) = −(v, Pu)L2 + γ(v, u)L2,

and, if we let v → u in H1
0(Ω), it follows that

q(u, u) = −(u, Pu)L2 + γ(u, u)L2. (♣)
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By (♥) and (♣) we obtain

c1‖un − um‖2H1 ≤ −Re(un − um, Pun − Pum)L2 + γ‖un − um‖2L2,

hence the claim. Now by definition for any v ∈ D(Ω)

(v,Pun)L2 = (v, Pun)L2,

and here we take the limit n → ∞. Due to the above claim it

follows that

(v,Pu)L2 = (v, w)L2,

so that

u ∈ D(P ), Pu = w.

Thus P is closed.
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Step 5. We prove that P −γ is sectorial, but it is rather straight-

forward. In fact, (♣) and (♥) implies that for any u ∈ D(P )∣∣∣Im(u, (P − γ)u)
∣∣∣ = | Im q(u, u)| ≤ |q(u, u)| ≤ C1‖u‖2H1

≤ C1

c1
Re q(u, u) = −C1

c1
Re(u, (P − γ)u).

Step 6. Now we prove that P − γ is maximal sectorial. Due to

Proposition 3.21 it suffices to show 0 ∈ ρ(P − γ), since then a

neighborhood of 0 is contained in ρ(P − γ). By (♥) and (♣) for

any u ∈ D(P )

c1‖u‖2H1 ≤ Re q(u, u) = −Re(u, (P − γ)u).

Thus P − γ is injective, and (P − γ)−1 exists.
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By the closed graph theorem it suffices to show that P − γ is

surjective. For that let u ∈ L2(Ω). Then, for any v ∈ H1
0(Ω)

|(v,−u)L2| ≤ ‖v‖L2‖u‖L2 ≤ ‖v‖H1‖u‖L2,

and therefore by the Riesz representation theorem there exists

w ∈ H1
0(Ω) such that for any v ∈ D(Ω)

(v,−u)L2 = (v, w)H1 = q(v, J−1w)

= −(v,PJ−1w)L2 + γ(v, J−1w)L2.

Now it follows that

J−1w ∈ D(P ), (P − γ)J−1w = u

and hence P − γ is surjective.
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Step 7. Finally we prove that P generates an analytic semigroup.

By Step 6 and Theorem 3.22 the operator P − γ generates an

analytic semigroup defined on Cθ for some θ ∈ (0, π/2). Set

U(z) = eγzez(P−γ) for z ∈ Cθ,

and then U is obviously an analytic semigroup, and its generator

coincides with P . Hence we are done.

Remark. As for Step 7, we may also use Theorems 3.14 or 3.16,

instead.
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Corollary 4.5. Define ‖ · ‖q : H1
0(Ω)→ R as, for u ∈ H1

0(Ω),

‖u‖q = (Re q(u, u))1/2,

where q is from Step 1 of the proof of Theorem 4.3. Then ‖·‖q is

a norm on H1
0(Ω), and is equivalent to ‖ · ‖H1. Moreover, define

(·, ·)q : H1
0(Ω)×H1

0(Ω)→ C as, for u, v ∈ H1
0(Ω),

(u, v)q =
1

4

(
‖u + v‖2q − ‖u− v‖2q + i‖u + iv‖2q − i‖u− iv‖2q

)
.

Then (·, ·)q is an inner product on H1
0(Ω) compatible with ‖ · ‖q.
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Proof. To prove the former assertion, due to Step 1 of the proof

Theorem 4.3, it suffices to verify the triangle inequality for ‖ · ‖q.
By a direct computaion it further reduces to verify that for any

u, v ∈ H1
0(Ω)

|Re(q(u, v) + q(v, u))| ≤ 2‖u‖q‖v‖q.
However, this easily follows by taking the discriminant of

t2‖u‖2q + tRe(q(u, v) + q(v, u)) + ‖v‖2q = ‖tu + v‖2q ≥ 0.

As for the latter assertion, it suffices to verify the parallelogram

law: For any u, v ∈ H1
0(Ω)

‖u + v‖2q + ‖u− v‖2q = 2
(
‖u‖2q + ‖v‖2q

)
.

This immediately follows by a direct computation employing that

q is a quadratic form on H1
0(Ω).
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§ 4.3 Wave Equation with Certain Damping

Similarly to the previous section, let Ω ⊂ Rd be a domain, and

P =
d∑

i,j=1

∂

∂xi
aij(x)

∂

∂xj
+

d∑
i=1

(
b
(1)
i (x)

∂

∂xi
+

∂

∂xi
b
(2)
i (x)

)
+ c(x).

We discuss a Cauchy problem of the PDE

∂2

∂t2
u = Pu in (0,∞)×Ω

for unknown function u = u(t, x) with Cauchy data

u(0, ·) = u0,
∂u

∂t
(0, ·) = u1 on Ω, u = 0 on (0,∞)× ∂Ω.

If Ω is unbounded, we of course impose

lim
x∈Ω, |x|→∞

u(·, x) = 0 on (0,∞).
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Remark. We can physically interpret the coefficients, for exam-

ple, as follows.

• (aij)i,j provides squares of the wave propagation speeds de-

pending on directions.

• (b(1)
i )i and (b(2)

i )i represent a certain damping or amplifying

effect.

• c represents a certain external field.
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Assumption 4.6. 1. For any i, j = 1, . . . , d and k = 1,2

aij, b
(k)
i , c ∈ L∞(Ω) = L∞(Ω;C).

2. For each x ∈ Ω the matrix (aij(x))i,j is Hermitian. Moreover,

there exists ε > 0 such that for any x ∈ Ω

(aij(x))i,j ≥ ε

as a quadratic form on Cd.
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Under Assumption 4.6 define a realization P of P on L2(Ω) as

in the previous section, and we set

H = H1
0(Ω)× L2(Ω), A =

(
0 1
P 0

)
, D(A) = D(P )×H1

0(Ω).

The inner product (·, ·)H on H is defined as, for (u, v), (f, g) ∈ H,

((f, g), (u, v))H = (f, u)q0 + (g, v)L2.

Here (·, ·)q0 is an inner product on H1
0(Ω) from Corollary 4.5

associated with a differential operator

P0 :=
d∑

i,j=1

∂

∂xi
aij(x)

∂

∂xj
+

d∑
i=1

(
−b

(2)
i (x)

∂

∂xi
+

∂

∂xi
b
(2)
i (x)

)
.
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Theorem 4.7. Under Assumption 4.6 there exists γ ∈ R such

that A−γ is maximal dissipative on H. In particular, A generates

a C0-semigroup on H.

Corollary 4.8. For any (u0, u1) ∈ D(P ) × H1
0(Ω) an evolution

equation

d2u

dt2
(t) = Pu(t) for t > 0, u(0) = u0,

du

dt
(0) = u1 (♣)

has a unique solution in{
u ∈ C

(
[0,∞);H1

0(Ω)
)
∩ C1

(
(0,∞);H1

0(Ω)
)

∩ C1
(
[0,∞);L2(Ω)

)
∩ C2

(
(0,∞);L2(Ω)

)
; ∀t > 0 u(t) ∈ D(P )

}
,

which is given by the first component of etA(u0, u1).
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Proof of Theorem 4.7. By Theorem 4.3 P is closed and densely
defined on L2(Ω). Then clearly A is also closed and densely
defined on H. In addition, for any (u, v) ∈ D(A)

Re
(
(u, v), (A− γ)(u, v)

)
H = Re(u, v)q0 + Re(v, Pu)L2

− γ‖u‖2q0 − γ‖v‖2
L2.

Here by Corollary 4.5 and definition of (·, ·)q0, fixing a constant
γ0 ∈ R that defines q0, we can write

Re(u, v)q0 = −1

2

(
Re(u, (P0 − γ0)v)L2 + Re(v, (P0 − γ0)u)L2

)

= −1

2
Re(v, (P0 + P ∗0)u)L2 + γ0 Re(v, u)L2.

Thus, if we note

P − 1

2
(P0 + P ∗0) =

d∑
i=1

(
b
(1)
i (x) + b

(2)
i (x)

)
∂

∂xi
+ c(x),
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we can bound by the Cauchy–Schwarz inequality as

Re
(
(u, v), (A− γ)(u, v)

)
H ≤ −γ‖u‖2q0 + C1‖u‖2H1 − (γ − C1)‖v‖2L2.

Therefore, by Corollary 4.5, letting γ ∈ R be sufficiently large,
we can verify that A− γ is dissipative.

To prove A−γ is maximal dissipative, let (f, g) ∈ H, and we solve

(A− γ)(u, v) = (f, g) or v − γu = f, Pu− γv = g,

for (u, v) ∈ D(A). Eliminating v, we have

(P − γ2)u = γf + g.

Since P − γ2 is maximal sectorial for sufficiently large γ, we can
find a solution u ∈ D(P ). Then it suffices to take

v = γu + f ∈ H1
0(Ω).

The last assertion follows similarly to Theorem 4.3.
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Proof of Corollary 4.8. Let (u0, u1) ∈ D(P ) × H1
0(Ω) = D(A),

and set

(u, v) = etA(u0, u1).

Then it follows that

u ∈ C1
(
[0,∞);H1

0(Ω)
)
, v ∈ C1

(
[0,∞);L2(Ω)

)
,

and, moreover, that for any t > 0

du

dt
(t) = v(t),

dv

dt
(t) = Pu(t), u(t) ∈ D(P ).

Hence u is a solution to the Cauchy problem (♣) belonging to

the asserted function space, or in fact a slightly better space.
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Conversely, let u be a solution to the Cauchy problem (♣) be-
longing to the asserted function space. Define

w ∈ C
(
[0,∞);H

)
∩ C1

(
(0,∞);H

)
as, for t ≥ 0,

w(t) =
(
u(t),

du

dt
(t)
)

.

It obviously satisfies

w(t) ∈ D(A) for any t > 0,

and
dw

dt
(t) = Aw(t) for t > 0, w(0) = (u0, u1).

Then by the uniqueness from Corollary 3.11 we obtain

w = etA(u0, u1).

Hence we are done.
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Section 5

Application to PDEs, II



§ 5.1 Growth of Generalized Eigenfunction

◦ Settings

Let Ω ⊂ Rd be a domain. In this section we discuss generalized

eigenfunctions for the free Schrödinger operator

H = H0 =
1

2
p2 = −1

2
Δ.

Here pi = −i∂i, i = 1, . . . , d, denote the momentum operators.

In the following we shall often work in the Hilbert space

H = L2(Ω),

and its inner product is denoted by 〈·, ·〉, which is conjugate-linear

in the first variable. The associated norm is denoted by ‖ · ‖.
172

Throughout the section we assume the following.

Assumption 5.1. There exists an escape function f ∈ C∞(Ω)

such that:

1. The image f(Ω) coincides with [1,∞);

2. For any α ∈ Nd
0 with |α| ≥ 1 the derivative ∂αf is bounded.

3. There exists r0 ≥ 1 such that for any x ∈ Ω with f(x) ≥ r0

f(x) = r(x) = |x|;

4. The gradient vector field ∇f ∈ X(Ω) is forward complete,

i.e., the integral curve for ∇f exists for any initial point x ∈ Ω

and any non-negative time parameter t ≥ 0.
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Remarks. 1. This is an assumption imposed on the domain Ω.

We have assumed almost nothing on the set

{x ∈ Ω; f(x) < r0},
which could possibly be unbounded.

2. The arguments of the section directly generalize to a mani-

fold with asymptotically Euclidean and/or hyperbolic funnel

ends. In the present setting each component of the set

{x ∈ Ω; f(x) > r0}
may be considered an end of Ω.

3. We can also include appropriate potential and metric pertur-

bations, but we omit them for simplicity.
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◦ Dirichlet realization

Let

H1 = H1
0(Ω), H−1 = (H1)′.

Note that we may embed and regard H±1 ⊂ D′(Ω).

Lemma 5.2. H is bounded as an operator H1 → H−1.

Proof. Let ψ ∈ H1. Then for any φ ∈ D(Ω)

|〈φ, Hψ〉| = 1

2
|〈pφ, pψ〉| ≤ 1

2
‖φ‖H1‖ψ‖H1.

This implies that Hψ ∈ H−1, and moreover that H is bounded

as H1 →H−1.
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We realize the associated operator H on H by restricting its

domain to

D(H) =
{
ψ ∈ H1; Hψ ∈ H

}
.

It coincides with the Dirichlet realization discussed in Section 4.

Remark. In this section we shall NOT really notationally dis-

tinguish distributional derivatives and the associated operators,

e.g., on H. Hence the meaning of the notation H changes ac-

cording to the context.
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Problem. Show that the operator H on H is self-adjoint, i.e.,

H = H∗.

Solution. In this proof we always regard H as an operator on H
with the given domain D(H).

Step 1. We first show that H is symmetric. It suffices to verify

that for any ψ, φ ∈ D(H)

〈φ, Hψ〉 = 1

2
〈pφ, pψ〉 = 〈Hφ, ψ〉. (♠)

Choose φj ∈ D(Ω) such that φj → φ in H1, and then

〈φ, Hψ〉 = 1

2
lim

j→∞〈φj, p
2ψ〉 = 1

2
lim

j→∞〈pφj, pψ〉 = 1

2
〈pφ, pψ〉.

The latter identity of (♠) follows similarly.
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Step 2. We next show H is closed essentially by repeating Step 4
of the proof of Theorem 4.3. Let ψj ∈ D(H) satisfy as j →∞

ψj → ψ in H, Hψj → φ in H.

Then, due to (♠)

‖ψj − ψk‖2H1 = ‖ψj − ψk‖2 + 2〈ψj − ψk, Hψj −Hψk〉,
and this implies that

ψj → ψ in H1, in particular ψ ∈ H1.

In addition, by the assymption for any η ∈ D(Ω)

〈η, Hψ〉 = 〈Hη, ψ〉 = lim
j→∞〈Hη, ψj〉 = lim

j→∞〈η, Hψj〉 = 〈η, φ〉,
so that

Hψ = φ ∈ H.

Hence H is certainly closed.
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Step 3. Here we show −1/2 ∈ ρ(H) essentially by repeating Step 6
of the proof of Theorem 4.3. In fact, by (♠) for any ψ ∈ D(H)

‖ψ‖2 ≤ ‖pψ‖2 + ‖ψ‖2 = 〈ψ,2Hψ〉+ 〈ψ, ψ〉 ≤ ‖ψ‖‖(2H + 1)ψ‖,
and this implies that 2H + 1 is injective.

On the other hand, let φ ∈ H. Since 〈φ, ·〉 provides a bounded
linear functional on H1, there exists ψ ∈ H1 such that for any
η ∈ D(Ω)

〈φ, η〉 = 〈ψ, η〉H1 = 〈2Hψ, η〉+ 〈ψ, η〉.
Then it follows that

ψ ∈ D(H), (2H + 1)ψ = φ,

and hence 2H + 1 is surjective.

By Step 2 and the closed graph theorem we obtain −1/2 ∈ ρ(H)．
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Step 4. Finally we show that H is self-adjoint. By Step 1 it

suffices to show D(H∗) ⊂ D(H). Let ψ ∈ D(H∗). Then due to

Step 3 there exists φ ∈ D(H) such that

(H + 1/2)φ = (H∗+ 1/2)ψ.

Then by (♠) from Step 1 for any η ∈ D(H)

〈(2H + 1)η, ψ〉 = 〈η, (2H∗+ 1)ψ〉
= 〈η, (2H + 1)φ〉 = 〈(2H + 1)η, φ〉.

It follows that

ψ = φ ∈ D(H),

and thus H is self-adjoint.
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◦ Function spaces

We introduce for s ∈ R

Hs = f−sH, Hloc = L2
loc(Ω).

We also intruduce the Agmon–Hörmander spaces defined as

B∗ =
{
ψ ∈ Hloc; ‖ψ‖B∗ := sup

ν∈N0

2−ν/2‖Fνψ‖H < ∞
}
,

B∗0 =
{
ψ ∈ B∗; lim

ν→∞2−ν/2‖Fνψ‖H = 0
}
.

Here we have set for each ν ∈ N0

Fν = F
({

x ∈ Ω; 2ν ≤ f(x) < 2ν+1
})

,

where F (ω) is the characteristic function for a subset ω ⊂ Ω.
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Problem. Show the following inclusions hold for any s > 1/2:

H � H−1/2 � B∗0 � B∗ � H−s.

In addition, show B∗0 coincides with the closure of D(Ω) in B∗.

Furthermore, choose χ ∈ C∞(R) such that

χ(t) =

{
1 for t ≤ 1,
0 for t ≥ 2,

χ′ ≤ 0,

and define χn, χ̄n, χm,n ∈ C∞(Ω) for n, m ∈ N0 as

χn = χ(f/2n), χ̄n = 1− χn, χm,n = χ̄mχn.

Then we introduce

N =
{
ψ ∈ Hloc; ∀n ∈ N0 χnψ ∈ H1

}
.

This is a space of functions on Ω satisfying the Dirichlet bound-
ary condition on ∂Ω, possibly with infinite H1-norms.
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◦ Main theorem: Rellich’s theorem

Theorem 5.3 (Rellich). If φ ∈ Hloc and λ > 0 satisfy

1. (H − λ)φ = 0 in the distributional sense,

2. there exists l ∈ N0 such that χ̄lφ ∈ B∗0 ∩N ,

then φ ≡ 0 in Ω. In particular, the operator H on H has no

positive eigenvalues, i.e., σp(H) ∩ (0,∞) = ∅.
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Remarks. 1. For each λ > 0 we can show

Eλ := {φ ∈ B∗ ∩ N ; (H − λ)φ = 0} �= {0},
and therefore the space B∗0 in the assertion is optimal with

respect to a configuration weight. Physically, the growth rate

of B∗ conforms with that of a stationary wave with minimal

source and sink only at infinity.

2. We can drop the space N in the assertion if the obstacle Ωc

is bounded.

3. We shall prove Theorem 5.3 by a commutator method ac-

cording to I.–Skibsted ’20. We will realize and investigate a

commutator with the help of some C0-semigroup on H. See

also a book by Amrein–Boutet de Monvel–Georgescu.
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§ 5.2 Commutator Realization

◦ Semigroup of radial translations

Let y : M→ Ω with M⊂ R×Ω be the maximal flow generated
by ∇f . By definition it satisfies

∂tyi(t, x) = (∂if)(y(t, x)) for i = 1, . . . , d, y(0, x) = x.

Note that by Assumption 5.1

[0,∞)×Ω ⊂M.

Define the associated radial translation of a function ψ ∈ H as

(T (t)ψ)(x) =

⎧⎨
⎩J(t, x)1/2ψ(y(t, x)) if (t, x) ∈M,

0 otherwise,

where J(t, ·) denotes the Jacobian for y(t, ·): Ω→ Ω.
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Proposition 5.4. 1. For each t ≥ 0, T (t) provides a surjective

partial isometry on H with initial subspace L2(y(t,Ω)). More-

over, T (t) with t ≥ 0 form a C0-semigroup on H.

2. For each t ≥ 0, T (−t) provides an isometry on H with final

subspace L2(y(t,Ω)). Moreover, T (−t) with t ≥ 0 form a

C0-semigroup on H.

3. For any t ∈ R

T (t)∗ = T (−t).

4. For any ψ ∈ H and (t, x) ∈M

(T (t)ψ)(x) = exp
(
1

2

∫ t

0
(Δf)(y(s, x)) ds

)
ψ(y(t, x)).
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Proof. 1. Let t ≥ 0. By change of variables for any ψ ∈ H

‖T (t)ψ‖2 =
∫
y(t,Ω)

|ψ(x)|2 dx,

and hence T (t) is a partial isometry on H with initial subspace

L2(y(t,Ω)). Obviously, T (t) with t ≥ 0 form a one-parameter

semigroup by the corresponding properties of the flow y and the

Jacobian J. Note that these properties also guarantee that T (t)

is surjective for each t ≥ 0. In fact, for any ψ ∈ H
ψ = T (t)T (−t)ψ, T (−t)ψ ∈ H.

Finally to see the strong continuity of T (t) in t ≥ 0 it suffices to

verify it on a dense subspace D(Ω) ⊂ H. This is straightforward

due to smoothness of y and J.
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2. Note that for any t ≥ 0 and ψ ∈ H by change of variables

‖T (−t)ψ‖2 =
∫
Ω
|ψ(x)|2 dx.

Then we can argue more or less similarly to the assertion 1. We
only note that the final subspace of T (−t) for t ≥ 0 is determined
by the identity

ψ = T (−t)T (t)ψ for any ψ ∈ L2(y(t,Ω)).

We omit the rest of the aruguments.

3. This is a direct consequence of change of variables and the
(semi)group properties of y and J. We omit the detail.

4. Obviously, it suffices to show that for any (t, x) ∈M
∂tJ(t, x) = (Δf)(y(t, x))J(t, x).
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Differentiating the definition of determinant, we can write

∂tJ(t, x) =
d∑

i=1

det(J (i)(t, x)),

where matrix-valued functions J (i) are given by

J (i)
jk =

⎧⎨
⎩∂kyj for j �= i,

∂t∂kyi for j = i.

However, we can compute

∂t∂kyi(t, x) = ∂k[(∂if)(y(t, x))] = (∂l∂if)(y(t, x))∂kyl(t, x).

Here the Einstein convention is adopted without tensorial super-
scripts. Then, since determinant is alternating and multilinear,

det(J (i)(t, x)) = (∂2
i f)(y(t, x))J(t, x).

Thus the assertion is verified. We are done.
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◦ Generator

Define a differential operator A as

A = Re pf =
1

2
(pf + p∗f) = pf −

i

2
(Δf) = p∗f +

i

2
(Δf)

with

pf = −i∂f, ∂f = (∂if)∂i.

We let A± be the corresponding operators on H defined as

D(A+) = {ψ ∈ H; Aψ ∈ H}, A+ = A|D(A+),

and

A− = A|D(Ω).

Problem. Show that A|D(Ω) is closable as an operator on H.
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Proposition 5.5. The operators ±iA± generate C0-semigroups

formed by T (±t) with t ≥ 0:

T (±t) = e±itA±,

respectively. Moreover, they satisfy

A− ⊂ A+, A∗± = A∓,

respectively, and in particular

D(Ω) ⊂ D(H) ⊂ H1 ⊂ D(A−) ⊂ D(A+).

Remark. After the proof we will write simply A = A±, and dis-

tinguish e±itA = e±itA±, respectively, only by their signs.
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Proof. By definitions of A± it is not difficult to verify that

A− ⊂ A+, A∗− = A+.

In particular, we have the asserted inclusions. By taking the

adjoint we also obtain

A∗+ = A∗∗− = A− = A−.

Now it remains to show that the generators of T (±t), denoted

for the moment by ±iB±, coincide with ±iA±, respectively. Let

us start with the lower sign. First note that by Proposition 5.4

and the Hille–Yosida theorem

A− ⊂ B−, T (−t)D(Ω) ⊂ D(Ω) for any t ≥ 0. (♥)
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Since i ∈ ρ(B−) by the Hille–Yosida theorem again, it follows by

(♥) that A− − i is injective, and that

(A− − i)−1 ⊂ (B− − i)−1.

Assume ψ ∈ (Ran(A− − i))⊥. Then by (♥) for any φ ∈ D(Ω)

d

dt
〈ψ, T (−t)φ〉 = −i〈ψ, A−T (−t)φ〉 = 〈ψ, T (−t)φ〉,

so that

〈ψ, T (−t)φ〉 = et〈ψ, φ〉.
Letting t →∞, we can deduce ψ = 0, and hence

(A− − i)−1 = (B− − i)−1.

This implies A− = B−.
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We next show A+ = B+. Let ψ ∈ D(B+). Then for any φ ∈ D(Ω)

〈φ, B+ψ〉 = lim
t→+0

〈φ, (it)−1(T (t)− 1)ψ〉
= lim

t→+0
〈(−it)−1(T (−t)− 1)φ, ψ〉 = 〈Aφ, ψ〉,

and hence ψ ∈ D(A+) and B+ψ = A+ψ, i.e.,

B+ ⊂ A+.

Conversely, let ψ ∈ D(A+). Then for any φ ∈ D(Ω) and t > 0

〈φ, (it)−1(T (t)− 1)ψ〉 = (it)−1〈(T (−t)− 1)φ, ψ〉
= t−1

〈∫ t

0
AT (−s)φds, ψ

〉

=
〈
φ, t−1

∫ t

0
T (s)A+ψ ds

〉
,
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so that

(it)−1(T (t)− 1)ψ = t−1
∫ t

0
T (s)A+ψ ds.

Letting t → +0, we conclude D(A+) ⊂ D(B+).

◦ Radial and spherical decomposition

We introduce a differential operator

L = pi�ijpj with �ij = δij − (∂if)(∂jf),

which may be considered the spherical part of −Δ on the set

{x ∈ Ω; f(x) ≥ r0}. (Let us note here again that the Einstein

convention is always assumed.)
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Lemma 5.6. One has a decomposition

H =
1

2
A2 +

1

2
L + q with q =

1

8
(Δf)2 +

1

4
(∂fΔf).

Proof. We can compute, e.g., as

H =
1

2
p∗fpf +

1

2
L =

1

2

(
A− i

2
(Δf)

)(
A +

i

2
(Δf)

)
+

1

2
L.

We omit the rest of the computations.

Problem. Show that on the set {x ∈ Ω; f(x) ≥ r0}

0 ≤ � ≤ 1, �ij(∂jf) = 0, Lf = 0, q =
(d− 1)(d− 3)

8f2
.
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Lemma 5.7. For each t ≥ 0, e−itA is bounded as H1 →H1, and

sup
t∈[0,1]

‖e−itA‖B(H1) < ∞. (♦)

Moreover, e−itA is strongly continuous in t ≥ 0 in B(H1).

Proof. By Proposition 5.4 and the chain rule we can write for

any ψ ∈ D(Ω), (−t, x) ∈M and i = 1, . . . , d

pi(e
−itAψ)(x) =

1

2i
(e−itAψ)(x)

∫ −t

0
(∂iyα(s, x))(∂αΔf)(y(s, x)) ds

+ (e−itApαψ)(x)(∂iyα(−t, x)).

Since derivatives of y and f are bounded, we can see from the

above expression that e−itA for each t ≥ 0 is bounded as H1 →
H1. We can also see that for each ψ ∈ D(Ω) the H1-valued

function e−itAψ is continuous in t ≥ 0.
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Now it remains to show (♦), since then we can also deduce the

strong continuity of e−itA ∈ B(H1) in t ≥ 0 by density argument.

Let us show that there exists C1 > 0 such that for any ψ ∈ D(Ω)

and t ∈ [0,1]

f(t) := 〈e−itAψ, (H + 1)e−itAψ〉 ≤ C1‖ψ‖2H1.

In fact, noting that

[H, iA] = 2pi(∂i∂jf)pj + (∂fq) +
1

2
(LΔf), (♣)

we have

f ′(t) = −〈e−itAψ, [H, iA]e−itAψ〉 ≤ C2‖e−itAψ‖2H1 ≤ C3f(t).

This leads to f(t) ≤ f(0)eC3t, hence to (♦).

Problem. Verify the identity (♣).
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◦ Commutator and C0-semigroup

Here we formulate a weighted commutator

[H, iA]Θ := i(HΘA−AΘH)

first as a (quadratic) form on D(Ω), and then extend it as a
bounded form on H1, see Proposition 5.9.

A weight Θ will be given explicitly when applied in Section 5.3,
but for simplicity we for the moment assume only the following.

Assumption 5.8. A weight Θ = Θ(f) is a smooth function only
of f , and satisfies

f ≥ r0 on suppΘ, Θ ≥ 0, |Θ(k)| ≤ Ck for any k ∈ N0,

where Θ(k) denotes the k-th derivative of Θ in f .
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Proposition 5.9. Under Assumption 5.8, as a form on D(Ω),

[H, iA]Θ = AΘ′A + f−1ΘL− 1

4
Θ′′′ − (∂fq)Θ−Re(Θ′H).

Therefore [H, iA]Θ extends as a bounded form on H1, or equiv-

alently as a bounded operator H1 → H−1.

Remarks. 1. As for the second term, note by Assumption 5.8

f−1ΘL = Lf−1Θ = pif
−1Θ�ijpj.

2. In the Mourre theory the conjugate operator A is usually

chosen as the generator of dilations.
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Proof. By Lemma 5.6

[H, iA]Θ =
1

2
[A2, iA]Θ +

1

2
[L, iA]Θ + [q, iA]Θ

=
1

2
AΘ′A +

1

2
[L, iA]Θ − (∂fq)Θ− qΘ′.

Let us compute the second term on the last line as

1

2
[L, iA]Θ = · · · = f−1ΘL− 1

2
Θ′L,

so that

[H, iA]Θ =
1

2
AΘ′A + f−1ΘL− 1

2
Θ′L− (∂fq)Θ− qΘ′

= · · · = AΘ′A + f−1ΘL− 1

4
Θ′′′ − (∂fq)Θ−Re(Θ′H).

Hence the assertion is verified.

Problem. Complete missing details of the above computations.
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Next, we present an alternative expression for [H, iA]Θ employing

the C0-semigroup e−itA. We introduce an auxiliary operator

HΘ =
1

2
piΘpi.

Lemma 5.10. Under Assumption 5.8 one has

[H, iA]Θ = [HΘ, iA] + AΘ′A +
1

4
(∂fΔf)Θ′+ 1

4
(Δf)Θ′′, (♠)

and for any ψ ∈ H1

〈ψ, [HΘ, iA]ψ〉 = lim
t→+0

t−1
〈
ψ,
(
HΘ − eitAHΘe−itA

)
ψ
〉

. (♥)
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Proof. Step 1. The identity (♠) is due to a direct computation.

The proof is omitted.

Step 2. To prove (♥) we claim that there exists C1 > 0 such that

for any t ∈ [0,1] and ψ, φ ∈ H1

∣∣∣〈φ,
(
HΘ − eitAHΘe−itA

)
ψ
〉∣∣∣ ≤ C1t‖φ‖H1‖ψ‖H1.

In fact, by Proposition 5.5 we can write

HΘ − eitAHΘe−itA =
∫ t

0
eisA[HΘ, iA]e−isA ds

as a form on D(Ω). It is easy to see that HΘ and [HΘ, iA] extend

as bounded forms on H1 from D(Ω). By using Lemma 5.7 the

claim is verified first on D(Ω) and then on H1 by continuity.
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Step 3. It suffices to show (♥) for ψ ∈ D(Ω) due to density

argument employing Step 2 and continuity of the form [HΘ, iA]

on H1. For any ψ ∈ D(Ω) write

t−1
〈
ψ,
(
HΘ − eitAHΘe−itA

)
ψ
〉
− 〈ψ, [HΘ, iA]ψ〉

= t−1
∫ t

0

{〈
e−isAψ, [HΘ, iA]e−isAψ

〉
− 〈ψ, [HΘ, iA]ψ〉

}
ds.

Then we obtain the assertion by Lemma 5.7.
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◦ Undoing commutator

In the following we use the notation

Im(AΘH) =
1

2i
(AΘH −HΘA)

exclusively as a form on D(H), i.e., for any ψ ∈ D(H)

〈ψ, Im(AΘH)ψ〉 = 1

2i

(
〈Aψ,ΘHψ〉 − 〈Hψ,ΘAψ〉

)
.

Proposition 5.11. Under Assumption 5.8, as forms on D(H),

[H, iA]Θ ≤ 2 Im(AΘH).
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Remark. The above forms coincide on D(Ω), but not in general

on D(H) due to a contribution from boundary. Fortunately, here

the contribution has a sign. We also note it vanishes if ∇f is

both forward and backward complete.

Proof. Similarly to Lemma 5.10, we can write

2 Im(AΘH) = 2 Im(AHΘ) + AΘ′A +
1

4
(∂fΔf)Θ′+ 1

4
(Δf)Θ′′

as a form on D(H). Then by Lemma 5.10 it suffices to show

[HΘ, iA] ≤ 2 Im(AHΘ)

as forms on D(H).
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Let us write, as a form on H1,

HΘ − eitAHΘe−itA = HΘ

(
1− e−itA

)
+
(
1− eitA

)
HΘ

−
(
1− eitA

)
HΘ

(
1− e−itA

)
.

Then by Lemma 5.10 and Proposition 5.5 for any ψ ∈ D(H)

〈ψ, [HΘ, iA]ψ〉 ≤ lim
t→+0

t−1
{〈

HΘψ,
(
1− e−itA

)
ψ
〉

+
〈(

1− e−itA
)

ψ, HΘψ
〉}

= 〈HΘψ, iAψ〉+ 〈iAψ, HΘψ〉

= 〈ψ,2 Im(AHΘ)ψ〉.
Hence we are done.
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§ 5.3 Proof of Main Theorem

◦ A priori super-exponential decay estimates

Proposition 5.12. If φ ∈ Hloc and λ > 0 satisfy

1. (H − λ)φ = 0 in the distributional sense,

2. there exists l ∈ N0 such that χ̄lφ ∈ B∗0 ∩N ,

then χ̄le
αfφ ∈ B∗0 for any α ≥ 0.
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Now we introduce an explicit weight with parameters α, β, R ≥ 0

and m, n ∈ N0:

Θ = Θα,β
m,n,R = χm,ne

θ.

Here the exponent θ is given by

θ = θ
α,β
R = 2αf + 2βf(1 + f/R)−1.

cf. Yosida approximation. Set for notational simplicity

θ0 = 1 + f/R,

and then, for example,

θ′ = 2α + 2βθ−2
0 , θ′′ = −4βR−1θ−3

0 , . . . .

In particular, noting R−1θ−1
0 ≤ f−1, we have

|θ(k)| ≤ Ckβf1−kθ−2
0 for k = 2,3, . . . .
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Lemma 5.13. Let λ > 0, and fix any α0 ≥ 0. Then there exist

β, c, C, R0 > 0 and n0 ∈ N0 such that for any α ∈ [0, α0], n > m ≥
n0 and R ≥ R0,

Im(AΘ(H − λ)) ≥ cf−1θ−1
0 Θ− C

(
χ2

m−1,m+1 + χ2
n−1,n+1

)
f−1eθ

+ Re(γ(H − λ))

as forms on D(H), where γ = γm,n,R is a function satisfying

supp γ ⊂ suppχm,n, |γ| ≤ Cm,ne
θ.

Proof. Let λ > 0. To be rigorous all the estimates in Step 1

below are uniform in α ≥ 0, β ∈ [0,1], n > m ≥ 0 and R ≥ 0

with constants c∗, C∗ > 0 being independent of them. Finally in

Step 2 we restrict the parameter ranges to verify the assertion.
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Step 1. By Lemmas 5.11 and 5.9 and the Cauchy–Schwarz in-

equality we can estimate

Im(AΘ(H − λ))

≥ 1

2
Aθ′ΘA +

1

2
f−1ΘL

− 1

8
θ′3Θ− 3

8
θ′θ′′Θ− 1

2
Re(Θ′(H − λ))− C1Q

≥ 1

2
c1Af−1θ−1

0 ΘA +
1

2
c1f−1θ−1

0 ΘL

+
1

2
A
(
θ′ − c1f−1θ−1

0

)
ΘA +

1

4
f−1Θ

(
1− 2c1θ−1

0

)
L

− 1

8
θ′3Θ− 3

8
θ′θ′′Θ− 1

2
Re(Θ′(H − λ))− C2Q.

(♦)

Here c1 > 0 is chosen small enough that the fourth term on the

211



right-hand side of (♦) is non-negative. We have also absorbed

‘admissible error terms’ into

Q =
[
(1 + α2)f−2χm,n + (1 + α2)|χ′m,n|
+ (1 + α)|χ′′m,n|+ |χ′′′m,n|

]
eθ + pi

(
f−2χm,n + |χ′m,n|

)
eθpi,

which will be bounded later. Let us further compute and bound

terms on the right-hand side of (♦). By Lemma 5.6 the first

and second terms of (♦) get to be

1

2
Af−1θ−1

0 ΘA +
1

2
f−1θ−1

0 ΘL

≥ 1

2
Im
(
f−1θ−1

0 θ′ΘA
)
+

1

2
Re
(
f−1θ−1

0 Θ(A2 + L)
)
− C3Q

≥ (λ− q)f−1θ−1
0 Θ +

1

4
f−1θ−1

0 θ′2Θ + Re
(
f−1θ−1

0 Θ(H − λ)
)

− C4Q.
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We combine the third, fifth and sixth terms of (♦) as

1

2
A
(
θ′ − c1f−1θ−1

0

)
ΘA− 1

8
θ′3Θ− 3

8
θ′θ′′Θ

≥ 1

2

(
A +

i

2
θ′
) (

θ′ − c1f−1θ−1
0

)
Θ
(
A− i

2
θ′
)

− 1

8
c1f−1θ−1

0 θ′2Θ +
1

8
θ′θ′′Θ− C5Q.

Substitute these bounds into (♦), and we deduce

Im
(
AΘ(H − λ)

)
≥ c1(λ− q)f−1θ−1

0 Θ +
1

8
c1f−1θ−1

0 θ′2Θ +
1

8
θ′θ′′Θ

+
1

2

(
A +

i

2
θ′
) (

θ′ − c1f−1θ−1
0

)
Θ
(
A− i

2
θ′
)

+
1

2
Re
[(

2c1f−1θ−1
0 Θ−Θ′)(H − λ)

]
− C6Q.
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Now we bound Q as

Q ≤ C7(1 + α2)f−2Θ + C7(1 + α2)
(
χ2

m−1,m+1 + χ2
n−1,n+1

)
f−1eθ

+ 2Re
[(

f−2χm,n + |χ′m,n|
)
eθ(H − λ)

]
.

Then we finally obtain

Im(AΘ(H − λ))

≥
[
c1(λ− q)f−1θ−1

0 +
1

8
c1f−1θ−1

0 θ′2 +
1

8
θ′θ′′

− C8(1 + α2)f−2
]
Θ

+
1

2

(
A +

i

2
θ′
) (

θ′ − c1f−1θ−1
0

)
Θ
(
A− i

2
θ′
)

− C8(1 + α2)
(
χ2

m−1,m+1 + χ2
n−1,n+1

)
f−1eθ

+ Re(γ(H − λ))

(♣)
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with

γ = c1f−1θ−1
0 Θ− 1

2
Θ′ − 2C6f−2Θ− 2C6|χ′m,n|eθ.

Step 3. Fix any α0 ≥ 0. Choose β ∈ (0,1] small and n0 ∈ N0

large. Then the first term of (♣) is bounded below uniformly in

α ∈ [0, α0], n > m ≥ n0 and R ≥ 0 as[
c1(λ− q)f−1θ−1

0 +
1

8
c1f−1θ−1

0 θ′2 +
1

8
θ′θ′′ − C8(1 + α2)f−2

]
Θ

≥
[
c2f−1θ−1

0 − C9βf−1θ−2
0 − C9f−2

]
Θ

≥ c3f−1θ−1
0 Θ.

Next, since

θ′ − c1f−1θ−1
0 ≥ 2βθ−2

0 − C10f−1θ−1
0 ,
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by taking R0 > 0 large enough the second term of (♣) is non-

negative for any α ∈ [0, α0], n > m ≥ n0 and R ≥ R0. Hence the

desired bound is obtained.

Proof of Proposition 5.12. Let λ > 0, φ ∈ Hloc and l ∈ N0 be as

in the assertion, and set

α0 = sup{α ≥ 0; χ̄le
αfφ ∈ B∗0}.

Assume α0 < ∞, and we choose β, R0 > 0 and n0 ≥ 0 as in

Lemma 5.13. Note that we may assume n0 ≥ l + 3, so that for

all n > m ≥ n0

χm−2,n+2φ ∈ D(H).

We let α ∈ {0} ∪ [0, α0) such that α + β > α0.
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With these parameters fixed evaluate the form inequality from
Lemma 5.13 on the state χm−2,n+2φ ∈ D(H). Then for any
n > m ≥ n0 and R ≥ R0∥∥∥(f−1θ−1

0 Θ)1/2φ
∥∥∥2 ≤ Cm‖χm−1,m+1φ‖2

+ CR2−n‖χn−1,n+1e
αfφ‖2.

The above second term vanishes as n →∞, and consequently by
Lebesgue’s monotone convergence theorem∥∥∥(χ̄mf−1θ−1

0 eθ)1/2φ
∥∥∥2 ≤ Cm‖χm−1,m+1φ‖2.

Next we let R →∞. Again by Lebesgue’s monotone convergence
theorem it follows that

χ̄
1/2
m f−1/2e(α+β)fφ ∈ H.

Thus χ̄
1/2
m eκrφ ∈ B∗0 for any κ ∈ (0, α + β), but this is a contra-

diction, since α + β > α0. We are done.
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◦ Absence of super-exponentially decaying eigenstates

Proposition 5.14. If φ ∈ Hloc and λ > 0 satisfy

1. (H − λ)φ = 0 in the distributional sense,

2. there exists l ∈ N0 such that χ̄le
αfφ ∈ B∗0 ∩N for any α ≥ 0,

then φ ≡ 0 in Ω.

The proof is very similar to that of Proposition 5.12. Here we

choose

Θ = Θα
m,n = χm,ne

2αf,

formally letting β = 0 and R →∞ in the previous Θ = Θα,β
m,n,R.
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Lemma 5.15. Let λ > 0 and α0 > 0. Then there exist c, C > 0

and n0 ≥ 0 such that for any α > α0 and n > m ≥ n0,

Im(AΘ(H − λ)) ≥ cα2f−1Θ

− Cα2
(
χ2

m−1,m+1 + χ2
n−1,n+1

)
f−1e2αf

+ Re(γ(H − λ))

as forms on D(H), where γ = γm,n is a function satisfying

supp γ ⊂ suppχm,n, |γ| ≤ Cm,nαe2αf.

Proof. We can prove it similarly to Lemma 5.13, and in fact it

is slightly easier. We omit the proof.
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Proof of Proposition 5.14. Let λ > 0, φ ∈ Hloc and l ∈ N0 be

as in the assertion. Fix any α0 > 0, and choose n0 ≥ 0 as in

Lemma 5.15. We may assume that n0 ≥ l + 3, so that for all

n > m ≥ n0

χm−2,n+2φ ∈ D(H).

Evaluate the form inequality from Lemma 5.15 on the state

χm−2,n+2φ ∈ D(H), and then for any α > α0 and n > m ≥ n0

‖f−1/2Θ1/2φ‖2 ≤ C1‖χm−1,m+1e
αfφ‖2 + C12

−n‖χn−1,n+1e
αfφ‖2.

The above second term to the right vanishes as n → ∞, and

hence by Lebesgue’s monotone convergence theorem∥∥∥χ̄1/2
m f−1/2eα(f−2m+2)φ

∥∥∥2 ≤ C1‖χm−1,m+1φ‖2.

220

Now assume χ̄m+2φ �≡ 0. The left-hand side grows exponentially

as α →∞ whereas the right-hand side remains bounded. This is

a contradiction. Thus

χ̄m+2φ ≡ 0.

Now by the unique continuation property for the second order

elliptic operator H we conclude that φ ≡ 0 globally on Ω.
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