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In this paper, we will give a complete geometric background for the geometry of Painlevé
VI and Garnier equations. By geometric invariant theory, we will construct a smooth fine moduli space
M2 (t, X, L) of stable parabolic connections on P! with logarithmic poles at D(t) = t; + - - - -+t as well
as its natural compactification. Moreover the moduli space R(Phr,t)a of Jordan equivalence classes of
S Ly (C)-representations of the fundamental group 71 (P1\ D(t), *) are defined as the categorical quotient.
We define the Riemann-Hilbert correspondence RH : M (t,A, L) — R(Pn,t)a and prove that RH is
a bimeromorphic proper surjective analytic map. Painlevé and Garnier equations can be derived from
the isomonodromic flows and Painlevé property of these equations are easily derived from the properties
of RH. We also prove that the smooth parts of both moduli spaces have natural symplectic structures
and RH is a symplectic resolution of singularities of R(Pp ¢)a, from which one can give geometric
backgrounds for other interesting phenomena, like Hamiltonian structures, Biacklund transformations,
special solutions of these equations.

1. INTRODUCTION

1.1. The purpose.

The purpose of the series of papers is to give a complete geometric background for Painlevé equations
of type VI or more generally for the so-called Garnier equations.

As is well-known, these nonlinear differential equations have the Painlevé property which means that
generic solutions of these equations have no movable singularity except for poles so that solutions have
the analytic continuations on whole of the universal covering of the space of time variables.

Besides the Painlevé property, there are several interesting phenomena related to these equations which

have been investigated by many authors.

e Each of these equations can be written in a Hamiltonian system by a natural symplectic coordinate
system ([Mal], [03], Iw1], Iw2], [K], [ST]).

e These equations have natural parameters A = (A,...,\,) € C™. Moreover there exist birational
symmetries of these equations, called Bdcklund transformations of these equations, which act on
both of variables and the parameters and preserve the equations. ([O4]).

e In Painlevé VI case, the group of all Bicklund transformations is isomorphic to the affine Weyl

group W (D) of the type D{M. ([04], [Sakai], [AL2], [NY], [1IS0]).
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e In Painlevé VI case, if A € C* lies on a reflection hyperplane of a reflection in W(Dfll)), then the
corresponding equation has one parameter family of Riccati solutions. ([LY], [FA], [W], [STe],
[SUD).

e A natural compactification of each space of initial conditions for Py, introduced by Okamoto
[01], can be obtained by a series of explicit blowing-ups of P x P& or Fs. The compactification
is given by a smooth projective rational surface S and it has a unique anti-canonical divisors
—Kgs =Y such that S\ Y,..q4 is the space of initial conditions for Py ;. The pair (S,Y") becomes
an Okamoto-Painlevé pair of type Dil) in the sense of [STT]. (See also [Sakai]).

Though these phenomena are discussed and investigated by many authors, the intrinsic mathematical
background for these facts remains to be understood. Therefore, for example, it is worthwhile to ask the

following fundamental questions:

e What is the geometric meaning of Painlevé property for these equations?
e What is the geometric meaning of the symplectic structure ?
e What is the geometric origin of Bécklund transformations?

e Why Riccati solutions or some classical solutions appear for the parameters
on the reflection hyperplanes of the Backlund transformations ?

In the series of the papers, the authors will give answers to these questions in a natural intrinsic

framework.

1.2. Natural Framework.

It is already known (cf. [F], [Gal, [Sch], [IMU], [03], [Iwl] and [Iw2] ) that these equations can be
derived from the isomonodromic deformation of the systems of linear equations of rank 2 with regular
singularities over P! or equivalently linear connections on vector bundles of rank 2 with logarithmic poles
over P1. Although we will follow this line in this paper, for several essential reasons, we have to introduce
a slight generalization of linear connections which will be explained as follows.

Let n > 3 and let us set T, = {t = (t1,... ,tn) € (PE)" | ti Zt;, (i £ N}, An={A=(\1,...,\n) €
C"}. Fix a data (t,A) € T}, x A, and set D(t) =¢; + - + t,. We also fix a line bundle L on P§ with
a logarithmic connection Vi, : L — L ® Q%)}: (D(t)).

A quadruple (E,V,p,l = {l;} ;) consisting of:

1) a rank 2 vector bundle E on P!,
2
3
4

a logarithmic connection V : E — E ® Qp, (D(t))

(1)
(2)
(3) a bundle isomorphism ¢ : A°E — L and

(4) one dimensional subspace l; of the fiber E;, of E at t;,l; C Ey,,i=1,... ,n,

is called a (t, A)-parabolic connection with the determinant (L, V) if they satisfy the following conditions:
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(1) for any local sections sj,s2 of E,
(p®id)(Vsy A sz + s1 A Vss) = Vi (p(s1 A s2)),

(2) I; C Ker(resy, (V) — A;), that is, A; is an eigenvalue of the residue res;, (V) of V at ¢; and [; is a

corresponding one-dimensional eigensubspace of res;, (V).

We introduce a series of rational numbers a = (a1,... ,a9,) such that 0 < a3 < ... < ag, < 1,
which is called a weight. By using a weight «, one can define parabolic degrees for (t, A)-parabolic
counections (E, V, ¢, [) and introduce the notion of the parabolic stability. Let M (t, A, L) be the coarse
moduli space of stable (t, A)-parabolic connections on P! with the determinant (L, V). Considering the

relative setting over the parameter space T}, x A,, = {(t, A)}, we can construct a family of moduli spaces
(1) Tt ML) — T, x A,

such that m 1(t,\) ~ M>(t,\,L). Later, we have to extend the family by a finite étale covering
T! — T, and for simplicity, we denote it also by m,, : M¥(L) — T} x A,,.

Next, let us fix t € 7, and consider arepresentation p : 1 (P&\D(t), x) —> SL2(C) of the fundamental
group m1 (P& \ D(t),*) with a fixed base point * € P§. Two representations p; and ps are said to be
equivalent if there exists an element P € SL,(C) such that p, = P~1p; P. To each representation p, one
can associate a local system E, of rank 2 on P&\ D(t) with an isomorphism A’E,, ~ Cp1\p(t)- Moreover,
two representations p; and py are equivalent to each other if and only if E,, and E,, are isomorphic as
local systems. Hence the moduli space of the isomorphism classes of local systems on P!\ D(t) with
trivial determinants is isomorphic to the moduli space of equivalence classes of the representations.

Since 71 (P& \ D(t), %) is a free group generated by ; for 1 <i <n — 1 where ~; is a loop around the
point ¢;, such a representation can be determined by M; = p(y;) € SL2(C) for 1 <i <n — 1. Therefore
the moduli space should be a quotient space of SLy(C)"~! by a diagonal adjoint action of SL»(C).

However there is no canonical way to give a scheme structure on the set of equivalence classes of
the representations. In this sense, we have to introduce a stronger equivalence relation. Two SLy(C)-
representations p; and py of m (Pg \ D(t), %) are said to be Jordan equivalent if their semisimplifications
are equivalent. This means that if a local system E, is an extension of rank one local systems L; and
Lo one can not distinguish the extension classes. As is shown by Simpson [Sim?2], the set of the Jordan
equivalence classes of the local systems or representations is equal to the set of closed points of the

categorical quotient

R(Pnt) = SLa(C)" "' /Ad(S Ly (C)),
of SLo(C)"~! by the diagonal adjoint action of SLy(C). The categorical quotients is defined as the affine
scheme of the ring of invariant functions on SL(C)"~! by the action of SLy(C). (Cf. §4) .

Fixing the canonical generators v; (1 < i < n) of m (P& \ D(t),*), to each representation p :

1 (P& \ D(t), %) — SL,(C), we can associate n-algebraic functions on SL,(C)"*

Tr(p(vi)) = ai,  Tr(p((71 - Yn-1)")) = Tr(p(vn)) = an
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which are clearly invariant under the adjoint action. Setting 4,, = Spec Clay, ... ,a,] ~ C", we obtain
a natural morphism
Dn : R(Pnt) — An.
For a fixed closed point a = (ay, ... ,a,) € A,, let us denote by R(P, +)a = p,;'(a) the closed fiber at a,
that is, we set
R(Pnt)a={1p] € R(Pns) | Tr(p(7)) = ai, 1 <i<n}.
Moreover, taking a finite étale covering 7)) — T,, we can obtain a family of moduli spaces

(2) bn:Rn — T} x A,

such that ¢, !(t,a) = R(Pnt)a (cf. §4).

Now, we have obtained two kinds of moduli spaces M (t, A, L) and R(P, +)a for fixed (t,A) € T, x A,
and (t,a) € T} x A,. Moreover we have two families of moduli spaces as in (1) and (2). (Note that we
have already pulled back the family in (1) by the finite covering T, — T,.)

Next, let us assume that eigenvalues of res;, (V) are integers for all 1 < i < n. Then we can define

the Riemann-Hilbert correspondence RH,, : M% (L) — R, such that the following diagram commutes:

Mz (L)

(3) @ pn

T x A, B T g,

Here, the map 1 X p,, in the bottom row in (3) is given by the map (1 x u,)(t,A) = (t,a) where

4) a; = 2cos2m\; ‘ for 1 <i<n.

Under these relations, RH,, induces the analytic morphism of the fibers for each (t,\) € T x A,:
(5) RHt)\ : Mg(t, }\, L) — R(Pn,t)a-

To define the correspondence, take a stable (t, A)-parabolic connection (E,V, ¢, {l;}). Then restricting
the connection V to Pg \ D(t), define the local system on Pg \ D(t) by

(6) E(V) := ker (V‘PE\D“))W .

an
(Here (V|PE\D(t)) denotes the analytic connection associated to V‘Pé\D(t)). Then it is easy to see
that the map (E,V, ¢, {l;}) = E(V) induces the correspondence in (3) or (5). Basically, our framework
for understanding the Painlevé or Garnier equations is the Riemann-Hilbert correspondences in (3) and
(5).

There exists one more thing which we should mention here. Let (31,82 be positive integers, o' =
(of,...,a),) a series of rational numbers with 0 < of < ... < ab,, <1 and set B8 = (51, 32). Setting
a= a'ﬁ, we obtain a weight a for (t, A)-parabolic connections. (Note that since ay, = a;nﬁ,ﬁﬁ <

Bi_ this gives a restriction for the weight a). For the weight «, we counsider the family of moduli
B1+PB2

spaces M&(L) — T! x Ap. On the other hand, we will introduce the notion of (o', 3)-stable (t, A)-

parabolic ¢-connection which is a generalization of a-stable (t, A)-parabolic connections. The moduli
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space Mﬁ‘lﬁ(t,/\,L) contains the moduli space M (t, A\, L) as a Zariski open set. Moreover we can

construct the family of the moduli spaces such that the following diagram commutes:

ML) <& MXP(L)

(7) ml lﬂ

T x A, T x A,,.

n

1.3. Main Results.

In the framework as above, we can state our main results in this paper as follows.

1.3.1. Projectivity of the moduli space W(t, A, L), Smoothness, Irreducibility and the Symplectic Struc-
ture of M&(t, A, L). We first prove that the moduli space W(t, A, L) is a projective scheme. Moreover
one can show that the moduli space M2 (t, A, L) for each (t,A) € T, x A, is smooth and endowed with
a natural intrinsic symplectic structure induced by Serre duality of tangent complexes. The irreduciblity
of the moduli space M (t, A, L) for each (t,A) € T), x A, follows from the irreduciblity of R(P, ¢)a via

the Riemann-Hilbert correspondece (5).

Theorem 1.1. (Cf. Theorem 2.1, Theorem 5.2, Proposition 6.2 and Proposition 9.1).
(1) For a generic weight (o', 3), Ty, : W(L) — T! x A,, is a projective morphism. In particular,
the moduli space W(t, A, L) is a projective algebraic scheme for all (t,\) € T x A,,.
(2) For a generic weight o, mp, : M (L) — T! X A,, is a smooth morphism of relative dimension 2n—

6 with irreducible closed fibers. Therefore, the moduli space M2 (t, A, L) is a smooth, irreducible
algebraic variety of dimension 2n — 6 for all (t,\) € T! x A,,.

Theorem 1.2. (Cf. Proposition 6.1). There exists a global relative 2-form
(8) Qe HO(M#(L)vﬂ?\/I,?(L)/TnxAn)'

which induces a symplectic structure on each fiber of m,. Consequently, for each (t, ), the moduli space

M2 (t, A\, L) becomes a smooth symplectic algebraic variety.

1.3.2. Irreducibility, symplectic structure and singularities of R(Pn.t)a-

Let us call a data A € A, a set of local exponents of connections.

Definition 1.1. (1) A set of local exponents A = (A1,...,A,) € A, is said to be special if

(a) A is resonant, that is, for some 1 <1i < n,
9) 2\ € Z,
(b) or A is reducible, that is, for some (e1,... ,€,) € {£1}"
(10) S e ez
i=1

(2) If A € A, is not special, A is said to be generic.
(3) The data a = (ay,...,a,) € A, is said to be special if u,,(A) = a for some special A € A,,.
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For a monodromy representation p : w1 (P! \ D(t),*) — SL2(C), set M; = p(vi) € SL2(C) for

1 <@ < n. We cousider the following conditions which are invariant under the adjoint action of SLo(C).

(11) The representation p is irreducible.

(12) For all i,1 <7 <n, the local monodromy matrix M; around t; is not equal to 1.

Theorem 1.3. (Cf. Proposition 8.1, Proposition 6.3 and Theorem 7.1 ). Assume that n > 4.

(1) For any a € A,,, the moduli space R(P.,.+)a is an irreducible affine scheme.

(2) Let R(Pn )b be the Zariski dense open subset of R(P,t)a whose closed points satisfy the condi-
tions (11) and (12). Then R(Pn )% is smooth and there exists a natural symplectic form Q; on
R(Pnt)k.

(3) The codimension of the locus R(Py )5 := R(Pnt)a \ R(Png)s is at least 2.

1.3.3. Surjectivity and Properness of the Riemann-Hilbert correspondence.

Next, the most important result for the Riemann-Hilbert correspondence is the surjectivity and the
properness. One can show that the correspondence RHy x in (5) gives an analytic isomorphism between
two moduli spaces if A € A,, is generic (i.e. non-special). However, for a special A € A,,, one can see that
the map (5) contracts some subvarieties of M (t, A, L) to singular locus of R(Py.t)a. Note that since
the correspondence is not an algebraic morphism, one can not directly apply the valuative criterion for

the proof of the properness.

Theorem 1.4. (Cf. Theoremn 7.1). Under the notation above and assume that n > 4 and o is general.

For all (t,\) € T!, x A,,, the Riemann-Hilbert correspondence
(13) RH; » : M2(6,A, L) — R(Ppt)a

s a bimeromorphic proper surjective morphism.

1.3.4. The Riemann-Hilbert correspondence as a symplectic resolution of singularities of R(P.t)a-
Moreover, we can introduce the natural intrinsic symplectic structure on the smooth part R(Pn,t)g
of the moduli spaces R(Ppnt)a. Together with the natural symplectic structure of the moduli space
M2 (t, X, L), the map RHg x gives a symplectic map, which means that the pullback of the symplectic
structure on the smooth part of R(Pp¢)a coincides with the symplectic structure on M (t, A, L). This
identification will be given by a kind of infinitesimal Riemann-Hilbert correspondence (cf. Lemma 6.6).
Together with the surjectivity, the properness of RHg x and the fact that M2 (t, A, L) is smooth, we can
say that RHg  gives an analytic symplectic resolution of the singularities of R(P,, ¢)a. Moreover, we can

say that the map RH,, in (3) gives a simultaneous resolution of the family ¢, : R,, — T}, x A, with
the base extension 1 X p, : T}, x A, — T x A,,. (For definition, see [Definition 4.26, [KM]]).

Theorem 1.5. (Theorem 7.1, Lemma 6.6). Under the assumption of Theorem (1.4), we have the fol-

lowing.



MODULI OF STABLE PARABOLIC CONNECTIONS 7

(1) For any (t,A), let R(Pny)i be as in Theorem 1.3, and set M (t,\,L)* = RH ) (R(Pns)b)-

)

Then the Riemann-Hilbert correspondence gives an analytic isomorphism
(14) RH x| pe eyt 2 My (t A, L)F =5 R(Pns)k-

(Note that if X is not special (cf. Definition 2.3, (36), (37)), R(Pn )% = R(Pn.t)a, hence RHg »
gives an analytic isomorphism between M2 (t, X, L) and R(Ppt)a.)

(2) The symplectic structures Q restricted to M (t, X, L)* and Qy on R(Pn+)% can be identified with
each other via RHg x, that s,

(15) gLy = RE 3 ey (1) on M&(t, A, L)*.

(3) Putting together all results, the correspondence RH,, in (3) gives an analytic simultaneous sym-

plectic resolution of singularities after the base extension 1 X p, : T X A,, = T X A,,.

1.4. Painlevé and Garnier equations and their Painlevé property.
In the framework of this paper, we can derive the Painlevé and Garnier equations as follows. Take
the universal covering map T,, — T — T, and pull back the diagram (3) to obtain the following

commutative diagram:

(16) o) B2
T, x A, M T, x A,.
1.4.1. The case of generic X.

Now let us fix A € A,, and set a = p,(X). First, assume that A is generic. We denote by (m,)x :
M\, L) — T, and (¢n)a : (Rn)a — T,, the families obtained by restricting the families in (16) to
T, x {A} and T, x {a}. Moreover we denote by RHy : M®(X\, L) — (R,)a the restriction of RH,, to
the restricted families. Since A is generic, RH) induces an analytic isomorphism between Mﬁ‘()\, L) and
(7~2n)a. Fix a point tg € 7. Since the original fibration (¢,)a : (Rn)a — T}, x {a} is locally trivial, we
can obtain an isomorphism (7~2n),.j1 ~ R(Prty)a X T,, and the following commutative diagram for fixed A
and a.

MEAL) =2 (R)a = R(Pogy)a X Tn

(17) (x| [ @

T, x {\} —— T, x {a}.
By using this global trivialization, for each closed point x € R(P,, t,)a, We can define the unique constant
section sx : T — R(Pn.to)a X Tn for (¢n)a by the formula s, (t) = (x,t). Pulling back this constant
section s, via RH we obtain the global analytic section §x for the morphism (m,)x. Varying the initial
of R(Puty)a X T, —s T, and also

points x, we obtain the family of constant sections {sx}xer(p

for M(X, L).

n,to)a

the family of pullback sections {8x}xer (P, ¢)a

The family of sections {§x}xe7g(pn't0)a gives the splitting homomorphism

(18) O+ (M)A (OF, x () — O1a(a,L)
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for the natural surjective homomorphism © e 1y — (mn)3(0 4, ,(x})- Consider the following com-

mutative diagram:

M&(X, L) SN M&(X, L)
(19) (N [

T, x{A\} ——2—— T, x {A}L

universal covering

We can see that the splitting homomorphism (18) descends to a splitting homomorphism

(20) ox (M)A (OT, x(A}) — Oma(a,L)-

(One can show that this splitting is an algebraic homomorphism). Therefore, each algebraic vector field
6 on T, x {A\} determines an algebraic vector field vx(#) on M (A,L). The natural generators of the
tangent sheaf of T;, x {A} can be given by

(g )
Defining
(21) BN = o () € HOOIE A L), Oute a.0)
we obtain the differential system
(22) (V1 (A), .. ,ua(A))

on M (A, L). From the construction, it is obvious that these vector fields {v;(A) }1<i<n commute to each
other, that is, the differential systems are integrable. Since @ : M (X, L) — M™(X, L) in (19) is also a
covering map, each section 5 : T, x {A} — M%(, L) defines a multi-section for M (X, L) — T}, x {A},
which gives an integral submanifold of M (X, L) for the differential system (22) at least locally. Hence
the submanifold 5 (7, x {A\}) of M(X,L) given by the image of the section 3, can be considered as
the integral submanifold (or a solution submanifold) for (22) over the universal covering space T),. (It
is natural to call the submanifold 5, (T}, x {A}) an isomonodromic flow). Since the integral submanifold
5y (T, x{A}) is isomorphic to the parameter space T, x {A\} and the morphism 7, : M(X, L) — T, x {\}

is algebraic, we can conculde that

(23) ‘ the diffrential system {v;(A)}1<i<n on M (A, L) has Painlevé property. (See Figure 1). ‘

Actually, the dynamical system on M (X, L) detemined by {v;(A) }1<i<n has geometric Painlevé property
in the sense of [IISA] (cf. [Definition 2.2, [IISA]]). The differential system {v;(A)}1<i<n in (22) is called
Painlevé VI system for n = 4 and Garnier system for n > 5. (Moreover we call each vector field v;(A)
Painlevé or Garnier vector field).

By using a suitable algebraic local coordinate system for M (A, L), one can write down the differential
equations associated to v;(A) and see that these differential systems are equivalent to known Painlevé VI

systems and Garnier systems. (It is possible to reduce the number of the time variables t; applying the
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automorphism of P§ from n to n — 3). Moreover, one can apply a standard argument to show that the

vector fields v;(A) are algebraic vector fields on M2 (A, L).

1.4.2. The case of special .
Next, let us consider the case when A is special. We have the same commutative diagram as (17),

however we encounter the following new phenomena.

(1) Although the moduli space M (t, X, L) is nonsingular, the moduli space R(Ph t,)a has singular-
ities.

(2) The Riemann-Hilbert correspondence RHy : M (X, L) — (R,)a (or RHg  : M (t, A\, L) —
R(Pnt,)a for a fixed t ) is still a bimeromorphic proper surjective map, but it contracts some

families of compact subvarieties to singular locus of R(Pp ¢, )a-

For example, in case when n = 4 (Painlevé VI case) and A is special, MS(t, A, L) contains at least one
(—2)-rational curve. For simplicity, assume that there is a unique (—2)-rational curve on M (to, A, L).
Since R(Pn,t,)a is an irreducible affine scheme, it cannot contain complete subvarieties of positive dimen-
sion, and hence RHg, x has to contract the (—2)-rational curve onto a singular point of type A;. (See
Figure 2). Let us define the subset M (X, L) the complement of the subvarieties contracted by RHx
in M (A, L) and set (R,)% := RHEA(M(A, L)) so that RHy ja s 1ys : ME(A, L) — (Rn)4 is an

analytic isomorphism. For any n > 4, we can pull back the constant sections s, by RHjy for x € (R,,)%
and obtain analytic sections Sx, for (m,)x. Now consider the family (m,)x : M(X,L) — T, x {A}
over T}, x {A} and define M (X, L)* C M&(X, L) as above. Then we can also obtain mutually commu-
tative Pailevé VI or Garnier vector fields v;(A) for 1 <i <n on M®(X, L)%, and {v;(A)}1<i<n defines
an integrable differential system on M2(X, L)*. Varying A, we obtain the set of algebraic vector fields
{viti<i<n on MZ(L)* over T, x A,,. Since the codimension of M (L) \ MZ(L)* in M(L) is greater
than 2, one can extend the algebraic vector field v; to M (L). Hence v;(A) can also be extended to the
total space of the family of the moduli spaces (m,)x : MY (A, L) — T,, x {A}. From the properness of
the Riemann-Hilbert correspondence RHy : M%(X, L) — (R,)a, we can conclude that the differential
system {v;(A)}1<i<n also has the geometric Painlvé property (cf. [IISA]).

The extended vector fields should be tangent to the family of contracted subvarieties (see Figure
2). The restriction of Painlevé VI or Garnier vector fields {v;(A)}1<i<n to the family of the contracted
subvarieties yields integrable differential systems on the subvarieties whose solutions are given by a family
of classical solutions like Riccati solutions for Painlevé VI system. For example, in the Painlevé VI case,

we can observe the following correspondence (cf. [STe], [IISA]). (See [Iw4] or [IISA] for the meaning of
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the nonlinear monodromy group for Painlevé VI).

M2(t,A, L) R(Pat)a

‘ (—2) rational curves in Mg (t, A, L) ‘ 2 ‘ Rational double points on R(P4 ¢)a ‘

(24)
0 £

‘ Riccati solutions for Py ‘ <= ‘ Fixed points of the nonlinear monodromies ‘

In Garnier case (n > 5), when A is reducible (10), one can obtain a special classical solution of the
equation integrated by hypergeometric functions Fp of Lauricella (cf. [Proposition 1.7 [K]]). One can
see that these classical solutions of Garnier systems G, correspond to the subvariety isomorphic to P™"3
which parametrizes reducible stable parabolic connections. Moreover when A is resonant (9), the Garnier
system G, degenerates into a Riccati system over a Garnier system G,,_;. A subvariety which can be
contracted by RHg y is isomorphic to P!-bundle over M ,(t',A’, L') at a generic point of the contracted

subvatiety.

1.4.3. Painlevé VI or Garnier equations parametrized by X € A,,.

In the above formulation, for each fixed local exponent A € A,,, we obtain the Painlevé or Garnier
vector fields v;(A) for i,1 < i < n as in (21) such that {v;(A)}1<i<n forms an integrable differential
system. Moreover the solution manifold for the differential system can be given by the isomonodromic

flows. Varying the data A, we obtain vector fields

(25) v; € HY(MZ(L),Opa(ry/a,), 1 <i<n

for M (L) — T, x Ay, such that vjprex ) = vi(A).

1.5. The Hamiltonian system.

It is well-known that the Painlevé and Garnier equations can be written in the Hamiltonian systems.
Now we can explain this as follows. Since the constant flows on (¢, )a : (Ry)a — T» preserve the natural
symplectic form € on the fiber R(P, ¢)a and the pullback of €; by Riemann-Hilbert correspondence
coincides with the symplectic structure  on M (t, A\, L), Painlevé or Garnier vector fields preserve the
symplectic structure (2. Therefore, we can write the differential equations in the Hamiltonian systems
by using suitable cannonical coordinate systems. Then an argument shows that such vector fields are

actually regular algebraic, hence the Hamiltonians are given by regular algebraic functions.

1.6. The relation of the space of initial conditions of Okamoto or Okamoto-Painlevé pairs
for Py;.

In the case of Py, Okamoto [O1] constructed the spaces of initial conditions by blowing up the
accessible singularities of 4 parameter family of Painlevé V' I equations. They are open algebraic surfaces
which are complements of the anti-canonical divisors of projective rational surfaces obtained by the 8-point

blowing-ups of P& X Pg or Fy . In [Sakai], [STT], the notion of the pairs of projective rational surfaces and
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Isomonodromic flows = Painlevé or Garnier flows constant flows = monodromy is constant
\ \ RH, \
— 7 7 - R0
—— / = > | |
™~ | RPuw)a

Mﬁ‘(to,/\N Me(t, A\, L) \ \

\d A d > —

Y

A d

to T, x {A\} ¢ to T.x{a} t

Isomonodromic Flows and Painlevé or Garnier Flows

FI1GURE 1. Riemann-Hilbert correspondence and isomonodromic flows for generic A

its effective anti-canonical divisors with suitable conditions was introduced and its relation to Painlevé
equation was revealed. In [STT], such a pair is called an Okamoto—Painlevé pair. Okamoto-Painlevé
pairs of type Dfll) correspond to Painlevé VI equations. A semiuniversal family of Okamoto—Painlevé
pairs is a family of projective surfaces 7 : S — T} x A4 with the effective relative anticanonical divisor
Y such that the configuration of the anticanonical divisor )i x is of type DS). Then family of spaces of
the initial conditions of Okamoto can be obtained as an open subset S := S \ ).

In the second part of this paper[I1S2], we will show that the family of Okamoto-Pailevé pairs S —
Ty x Ay can be identified with the family of the moduli spaces W(Op(—l)) — Ty X A4, while

S — Ty x A4 can be identified with M (Op1(—1)) — Ty x A4. (In this case, we will take 51 = 5 =1,

B1
B1+P2

Okamoto’s explicit hard calculations in [O1].

hence ¢ = o'

= a'/2). So our constructions of the moduli spaces give an intrinsic meaning of

1.7. The Backlund transformations—Symmetries of the equations.
In our framework, Bicklund transformations for the Painlevé equations or Garnier equations can be
defined as follows. Consider the Painlevé VI or Garnier system {v; }1<i<n defined in (25) and the family

of moduli spaces 7, : M (L) — T} x A,,.

Definition 1.2. The pair (3,s) of a birational map § : M®(L)--- — M*(L) (or § : MZP(L)--- —

MZP(L) ) and an affine transformation s : A, — A, is said to be a Bicklund transformation of the
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Riccati flows are tangent to family of (—2)-curves A, singularity of R(Puat,)a-

Isomonodromic flows = Painlevé flow constant flows # monodromy is constant

RH,

)/

Y

— > R(Pat)a
contraction | |

\ R(P4,t0)a
>
M (o, A\, L F\\)K Mg(t, A, L)

>
>

/ to Ty x {A} ¢ - to Ty x {a} t

Y

\J

(—2)-rational curve

RH) contracts (—2)-rational curves onto singular points of type A;.

Case of Painlevé VI

FI1GURE 2. Riemann-Hilbert correspondence and isomonodromic flows for special A

differential system {v;}1<i<n OF {vi(A)}1<i<n,aen, if they make the following diagram commutative:
Mg(L) -~ = M(L)

(26) 3 7
T x A, mTr’LxAm

and it satisfies the condition:

(27) ‘ 54 (v;) = vy, or equivalently 5. (v; (X)) = v;(s(A)) ‘

There exists a natural class of Backlund transformations of M ¢ (L) for any n > 4 which are induced by
elementary transformations of stable parabolic connections (cf. §3). Since such transformations induce
the identity on the moduli space of the monodromy representations via Riemann-Hilbert correspondence,
we can conclude that the transformations preserve the vector field as in (27). (This notion is equivalent
to the rational gauge transformation or Schlesinger transformation of connections ). In §3, we will list
up these kinds of Backlund transformations.

As for Painlevé VI equations, the group of the Bicklund transformation in the above sense is iso-
morphic to the affine Weyl group W(Dfll)) of type Dfll), (cf. e.g. [O4], [IIS0]). The affine Weyl group
W(Dil)) is generated by 5 reflections s;, i = 0,1,... ,4 corresponding to the simple roots in the Dynkin
diagram of type Dil) (see Figure 3). A natural faithful affine action of W(Dil)) to Ay =C*23 A =(\)
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can be given by

si(Aj)) = (=1)%5);, i=1,...,4

(28) So()\i) Ai — % (Zt:l )‘k)7 + %

Recalling the identification of the family M>?(Op1(—1)) — T} x A4 with the family of Okamoto-
Painlevé pairs S — T} x A4, one can see that the actions of W(Dfll)) in (28) can be lifted to birational
actions of the total space of the family 7@ : S — T} x A, that is, for each s € W(Dfll)), there exists a

commutative diagram
s .5 3
(29) 17 17

1
TiXA4£)T4XA4.

Moreover it is known [O4] that the actions preserve the Painlevé vector field v; in (25). That is, for each

s € W(Dil)), we have
(30) 5x(0; (X)) = vi(s(N)) for 1<i<4.

In our framework, it is easy to give an intrinsic reason why §; for 1 <1 < 4 preserve the vector field. It
is simply because these come from elementary transformations. However, the origin of the transformation
Sp is still mysterious, and we cannot see any simple reason why 3y preserves the vector field.

As some experts suggested to us, it may be plausible to believe that sp is induced by Laplace transfor-
mations of the stable connection. (The authors were informed by H. Sakai that M. Mazzocco gives some
explanations for this fact on this line). For simplicity, let us call the Laplace transform of the original
connection the dual of the connection. In general, the dual of logarithmic connections of rank 2 becomes
a connection of higher rank which may not be logarithmic, so it is not so easy to identify the dual of the
counection to the original one. Only in the case of n = 4 (Painlevé case), we may miraculously identify
the original connection with its dual or a further transformed object, so we have the extra Backlund
transformation like §p. It may be reasonable to consider the original connection and its dual at once.
Then we may include the Laplace transformation as a part of the Backlund transformations.

After we have finished the first version of this paper, Philip Boalch informed us that he can obtain
using the method of [Boa] as follows. One can embed a rank 2 connection with 4-regular singular points
over P! into a rank 3 reducible connection. Then there is a simple operation for shifting the eigenvalues
of the rank 3 connection. For a special value of shifting, one can obtain a rank 2 subconnection or a rank
1 subconnection in the shifted rank 3 connection, then take the rank 2 connection or the quotient of rank
1 subconnection. This gives a transformation from a rank 2 connection to another rank 2 connection
whose transformation on A gives sg. Note that this transformation only works for the case of n = 4. By
using this result and another result in [Boa], he also gave a different proof of a result in [IIS0].

Besides these stories, we should mention about the relation of the birational geometry and the Biacklund

transformations. As Saito and Umemura pointed out in [SU], Bécklund transformations of Painlevé
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(6751 a2

@

Qg

@,

a3 Q4
(1)
Root system D,

FicURE 3. Dynkin diagram D"

equations which are reflections with respect to roots of an affine root system are nothing but flops
corresponding to (—2)-rational curves in Okamoto spaces of initial conditions.

From the definition of elementary transformations, we can easily see that the locus of indeterminacy of
birational transformations correspond to the subvarieties which are contracted by the Riemann-Hilbert
correspondence. Since the Riemann-Hilbert correspondence gives a simultaneous symplectic resolution of
the singularities of the family ¢,, : R,, — T, X A,,, it is now obvious that those Bicklund transformations

are flops. (For definition and fundamental facts on flops, see [§6,1 [KM]]).

1.7.1. Bdcklund transformations and the Riemann-Hilbert correspondence.

In [IISO], we have proved that all of the Bécklund transformations in W(DS)) on M{(L) — Ty x Ay
induce essentially identity on the moduli space R4 after we take a finite quotient of A,,. (Note that this
is nontrivial only for §p). Therefore in this sense, the group of the Bécklund transformations W(Dfll))

can be considered as the Galois group of the monodromy representations.

1.8. Related works.

It is worthwhile to discuss about some works related to this paper and to clarify what are really new
in this paper.

The notion of (t, X)-parabolic connection on P? is essentially introduced by Arinkin-Lysenko in [AL1] as
a quasiparabolic SLy-bundle. In [AL1], they also discussed about the moduli problem for quasiparabolic
S Lo-bundles and consider the moduli space as an algebraic stack. In the case of n = 4, under the
assumption that A is generic (cf. Definition 1.1), they give an explicit description of the coarse moduli
space. Moreover, in [AL2], by using the explicit descriptions of the moduli spaces, they describe the
group of automorphisms of the family of moduli spaces by using an explicit geometry of surfaces. Later,
in [A], Arinkin introduced a notion of e-bundle, generalizing Deligne-Simpson’s T-connections in [Sim1].

Again under the assumption that A is generic Arinkin gives a compactification of the moduli space of
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quasiparabolic S Ls-bundles. Although the basic notions are introduced in their works, from the viewpoint
of geometric background for Painlevé or Garnier equations, it is really necessary to construct the moduli
spaces even for special A. For example, as we pointed out in 1.7 (cf. [SU]), some Béicklund transformations
of these equations are induced by flops in the terminology of the modern birational geometry and the
center of flops are lying over the special parameter .

In this sense, the advantage of introducing the notion of the stability for (t, A)-parabolic connection
is obvious. In the GIT setting ([Mum]), despite considerable careful computations of stability, we can
construct the fine moduli space of stable objects as smooth irreducible schemes even for special A.
Moreover, we introduce the notion of parabolic ¢-connections which is a generalization of the notion of
e-connections due to Arinkin-Deligne-Simpson and define the stability for them. One can understand the
powers of these notions in Theorem 2.1 and Theorem 2.2.

The construction of the family of moduli spaces in (2) of SLy(C)-monodromy representations are
essentially due to Simpson [Sim2]. However a systematic treatment of nonlinear monodromies of the
braid group is given by Dubrovin and Mazzocco [DM] for a special case of n = 4, and by Iwasaki [Iw3],
[Iw4] for the general case of n = 4, and our construction of the family in this paper is taking care of the
action of nonlinear monodromies of the braid groups to the moduli spaces.

Next, we would like to emphasize that only after we establish the natural setting in 1.2 it becomes
possible to give a precise formulation of Hilbert’s 21th problem for these cases. In our setting, the
affirmative answer to the problem is equivalent to the surjectivity of the Riemann-Hilbert correspondences
RH,, and RHg » in (3) and (5). As one can imagine easily, only reasonable result which one can apply
to proof of the surjectivity is Deligne’s theorem in [Del70].

Moreover the properness of RHg » is also a new result. In the process of the proof, we need some
analysis of the contraction induced by RH; » and a technical lemma due to Professor A. Fujiki. The
symplectic nature of the moduli spaces is discussed by many authors. (See for example [Go], [Iw1] [Iw2]).
Iwasaki gave intrinsic symplectic structures on the moduli spaces of irreducible logarithmic connections
on a nonsingular complete curve and show that they are obtained as the pullback of the symplectic
structures on the moduli space of the irreducible representations.

Again, in this paper, we extended the symplectic structure to the whole moduli space of the stable
parabolic connections and the smooth part of the moduli of the representations. Then one can show
that these symplectic structures are identified via RH¢ x. Our proof here is based on some complexes of
sheaves whose hypercohomologies describe the tangent spaces to the moduli spaces. Together with the
surjectivity and the properness of RH x these results can be understood as RHg  gives an analytic
symplectic resolution of singularities in the sense of [Bea]. These kinds of viewpoints seem to be new,
and this gives a clear explanation that a simple reflection in the group of Backlund transformations is
nothing but a flop with respect to this resolution.

The derivation of Painlevé equations from the isomonodromic deformation of the linear connections is

well-known. (See for example [JMU], [JM] and [O3]). However in most cases, one first takes a normalized
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linear connection written in certain coordinate systems and then writes up the Painlevé equations as the
compatibility conditions for the extended linear connections. For a normalization, one has to assume that
the vector bundle E of rank 2 and degree 0 is isomorphic to Op: & Op1, which is not true in general. In

fact, the natural subscheme
(31) Zt:{(E7v7<pal) EMS(ta)‘aL);E;éOPI ®OP1}'

of M&(t, A, L) is a non-empty divisor. We note that the isomonodromic flow starting from some point
p € MZ(to, A, L) \ Zg, does not stay inside the open subset |J, (M (t, X, L)\ Z¢), that is, the flow
intersects with Z; for some t. Therefore, in order to prove the Painlevé property of Painlevé VI or
Garnier equations completely, we have to consider the whole space M&(t, A, L) and the properness of
the Riemann-Hilbert correspondence is essential for our proof of Painlevé property. (For a discussion
of various definitions of Painlevé property, see [IISA]. Moreover, for some proofs of analytic Painlevé
property of isomonodromic deformations, see [Mal] and [Miw]). Moreover most former approaches avoid
dealing with the case when A is special, because one has to introduce the notion of the stability of the
parabolic connections to obtain a good moduli space which is smooth and Hausdorff.

In our framework, we can also discuss the Painlevé or Garnier equations for special A in a natural
framework. Interestingly enough, the classical solutions for these equations can be derived from the
family of subvarieties contracted by RH x. Now, the geometric meaning of these facts becomes very
clear. (For more detailed treatment in Painlevé VI case, see [W], [STe] and [SU]).

We should mention that Nakajima [N] obtained a smooth moduli space of stable parabolic connections
as the moduli space of filtered regular D-modules by the technique of the hyper-Kéhler quotients of
moment maps. Then he showed that the moduli space is diffeomorphic to the moduli space of parabolic
Higgs bundles. Nitsure [Ni] also constructed the moduli space of the stable logarithmic connection without

parabolic structures in GIT setting.
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2.1. Parabolic connections on P!, Let n > 3 and set

(32) To={lts,...,ta) € P | ti#t;,(i#4)},

(33) Apn={A=(\,..., \) €C"}.

Fixing a data (£, A) = (t1,... ,tn,A1,..- ,An) € Ty, X A,,, we define a reduced divisor on P! as
(34) D(t) =ti+---+tn.

Moreover we fix a line bundle L on P* with a logarithmic connection V, : L — L @ Qp, (D(t)).

work and his hospitality in Utrecht. Last but not least, it is pleasure of three authors to dedicate this

paper to Kyoichi Takano on his 60th birthday with the great respect to his leadership on the studies of

2. MODULI SPACES OF STABLE PARABOLIC CONNECTIONS ON P! AND THEIR COMPACTIFICATIONS.

Definition 2.1. A (rank 2) (t, A)-parabolic connection on P! with the determinant (L, V) is a quadru-

plet (E,V,p,{li}1<i<n) which consists of

(1) arank 2 vector bundle E on P?,
(2) alogarithmic connection V : E — E ® Qb1 (D(t))
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(3) a bundle isomorphism ¢ : A2E —» L
(4) one dimensional subspace l; of the fiber E;, of E at t;, {; C E;,, i =1,... ,n, such that

(a) for any local sections si,s2 of E,
P ®id(Vsy As2+ 51 AVsy) =Vi(p(s1 A sa)),
(b) I; C Ker(res, (V) — A;), that is, A; is aneigenvalue of the residue res;, (V) of V at t; and I; is

a one-dimensional eigensubspace of res;, (V).

Definition 2.2. Two (t,A)-parabolic connections (E1, V1, ¢y, {li}15i5n) (E27v2;§0’;{l;}1§i§n) on P!
with the determinant (L, V) are isomorphic to each other if there is an isomorphism o : E; — E, and

¢ € C* such that the diagrams

B —2 By ® 0L, (D(t)) NE —— L
(35) ol% Ela@id /\2al% clg

By —2 By © Qb (D(t)) N E 2
commute and (o), (l;) =1l fori=1,... ,n.

2.2. The set of local exponents A € A,,. Note that a data A = (A1,...,A,) € A, = C™ specifies the
set of eigenvalues of the residue matrix of a connection V at t = (¢1,... ,t,), which will be called a set

of local exponents of V.

Definition 2.3. A set of local exponents A = (A1,... ,\,) € A, is called special if

(1) A is resonant, that is, for some 1 < i < n,

(36) 2\ € Z,
(2) or A is reducible, that is, for some (e1,... ,€,) € {£1}"
(37) > e €Z.
i=1

If X € A, is not special, A is said to be generic.

Lemma 2.1. Let (E,V,¢,l = {l;}) be a (t,\)-parabolic connection on P* with the determinant (L, V).
Assume that eigenvalues of resy; (V) are integers for 1 < i < n. Suppose that there exists a subline

bundle F C E such that VF C F ® Qp,(D(t)). Then X is reducible, that is, X satisfies the condition
(37).

Proof. (Cf. [Proposition 1.1, [AL1]]). Since we have a horizontal bundle isomorphism ¢ : A2E ~ L
with respect to the connections, the eigenvalues of the residue matrix res;, V at t; are given by A; and
resy, (V) — ;. Since VF C FRQp, (D(t)), the subspace Fy, C Ey, is an eigenspace of res, (V). Therefore
the eigenvalue of restl(V| r) is congruent to €;A; modulo Z for ¢; = 1 or —1. The residue theorem says
that .

Z res;,(Vip) = —deg F=0 mod Z

i=1

hence we have the lemma. A
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Remark 2.1. For n =4, the data A € Ay is special if and only if X € Ay lies on a reflection hyperplane
of a reflection s € W(Dfll)).

2.3. Parabolic degrees. Let us fix a series of positive rational numbers a = (a1, as,... ,as,), which
is called a weight, such that

(38) 0<a << - <a; < <z, <agpgr =L

For a (t, A)-parabolic connection on P! with the determinant (L, V1), we can define the parabolic degree

of (E,V,p,l) with respect to the weight a by

(39) pardeg, F = pardeg,(E,V,p,l) = degE + Z (agi—q dim Ey, /1; + a; diml;)
i=1
= degL + Z(agi,l + aw;).
i=1

Let F C E be a rank 1 subbundle of E such that VF C F @ Qp, (D(t)). We define the parabolic degree
of (F7 v|F') by
(40) pardeg, F' = deg F + Y (azi1 dim Fy, /1; N Fy, + oz dim[; N Fy,)
i=1

Definition 2.4. Fix a weight a. A (t, \)-parabolic connection (E,V,p,[) on P! with the determinant
(L, V) is said to be a-stable (resp. oa-semistable ) if for every rank-1 subbundle F with V(F) C
F & Qp, (D(t))
pardeg,, E

2 )

(For simplicity, “a-stable” will be abbreviated to “stable”).

pardeg, E

(41) pardeg,, F' < 5

).

(resp. pardeg,, F' <

We define the coarse moduli space by

(42) ME(6,\, L) = {(E, V.0, 0); an a-stable (t, A)-parabolic connection }/isom.

with the determinant (L, Vp)
2.4. Stable parabolic ¢-connections. If n > 4, the moduli space M&(t, A, L) never becomes projective
nor complete. In order to obtain a compactification of the moduli space M (t, A, L), we will introduce

the notion of a stable parabolic ¢-connection, or equivalently, a stable parabolic A-triple. Again, let us

fix (t,A) € T\, x A,, and a line bundle L on P! with a connection Vp, : L — L ® Qg (D(t)).

Definition 2.5. The data (E1, E2, ¢, V,, {l;}1,) is said to be a (t, A)-parabolic ¢-connection of rank 2
with the determinant (L, V1) if E1, Es are rank 2 vector bundles on P! with deg By = deg L, ¢ : E; — E»,
V : E; — By ® QL. (D(t)) are morphisms of sheaves, ¢ : A* Bz — L is an isomorphism and I; C (E; ),

are one dimensional subspaces for i = 1,... ,n such that

(1) ¢(fa) = fo(a) and V(fa) = ¢(a) © df + fV(a) for f € Op1, a € Ey,
(2) (p@id)(V(s1) A d(s2) + d(s1) A V(s2)) = VL(p(¢(s1) A §(s2))) for 51,52 € Ey and
(3) (res, (V) — Aigr,)

;,=0fore=1,... n.
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Definition 2.6.
Two (t,A) parabolic ¢-connections (Ey, Es, ¢, V,@,{l;}), (B, E5, ¢, V', ¢',{li}) are said to be isomor-
phic to each other if there are isomorphisms oy : By — E}, 02 : By — Eb and ¢ € C\ {0} such that

the diagrams

2 ®
B —" B, By —Y— B, ® 0L, (D(t)) NE —— L
allg %l@ Ull% %l02®id /\%zl% Cl%
B Y m B —Y s By 0b,(D(t)) NE, ——— L
commute and (o1),(l;) =l fori=1,... n.

Remark 2.2. Assume that two vector bundles Fi, Fs and morphisms ¢ : By — FEy, V: By = E2 ®
Q. (D(t)) satisfying ¢(fa) = fé(a), V(fa) = ¢(a) ® df + fV(a) for f € Op1, a € Ey are given. If ¢ is

an isomorphism, then (¢ ®id) "t oV : By — E; ® Qp, (D(t)) becomes a connection on Ej.

Fix rational numbers o, ab, ... ,ah,, o, satisfying
’ ! ’ ’ _
0<a) <ay < - <ap, <ag,,; =1

and positive integers (1, 2. Setting o’ = (af,...,a},),8 = (B1,02), we obtain a weight (a',3) for

parabolic ¢-connections.

Definition 2.7. Fix a sufficiently large integer . A parabolic ¢-connection (E1, E2, ¢, V, @, {l;},) is
said to be (o', 3)-stable (resp. (a',3)-semistable) if for any subbundles F; C E;, F» C E, satistying
P(F1) C Fp, V(F1) C F> @ Q. (D(t)) and (Fy, F) # (E1, E»), (0,0), the inequality
Bi(deg F1(=D(t))) + B2(deg F> — yrank(F»)) + 3711, Bi(ab;_ydoi—1(F1) + abdei(F1))
B1 rank(Fy) + B2 rank(F»)
< Pu(deg Ey(=D(t))) + B2(deg Bz — yrank(E)) + 301, Bu(ah;_ydoi1(E1) + aydoi(Er))
(resp. <) Prrank(Ey) + B2 rank(E;)

holds, where do;—1 (F) = dim((F1)s, /1N (F1),), doi(F1) = dim((Fy)e, NL;), dai—1 (Er) = dim((Ey)e, /1) (=
1) and dy;(E;) = diml;(= 1).

Define the coarse moduli space by

oAy i - .
(43) MZ ﬁ(t,}\,L) — {(El,E2,¢>,V,<p, {)); a (a', B)-stable (t, A)-parabolic ¢-connection

with the determinant (L, V) } /isom.

For a given weight (o', 3) and 1 < i < 2n, define a rational number «; by

. ﬁl ’
(44) a; = R a;.

Then a = («;) satisfies the condition

A

45 0<op <ar < <ag, < ——><<1,
(45) =0 ? ? (61 + B2)

hence o defines a weight for parabolic connections. It is easy to see that if we take v sufficiently large
(E,V,p,{l;}) is a-stable if and only if the associated parabolic ¢-connection (E, E,idg,V,p,{l;}) is

stable with respect to (', 3). Therefore we see that the natural map

(46) (E,V,(P, {ll}) = (EaEaidEava(p: {ll})
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induces an injection

a/
(47) M(t, A\, L) — MYP(t, A\ L).

Conversely, assuming that 8 = (51, 32) are given, for a weight a = («;) satisfying the condition (45), we

can define o} = ai’glglm for 1<i<2n.Since0<af <a}<---<a, = a2n’(31;'—162 <1, (e, ) give a
weight for parabolic ¢-connections.

Moreover, considering the relative setting over T, X A,,, we can define two families of the moduli spaces
(48) T MEP(L) — Ty x Ap, 7 ME(L) — T,y X Ap

such that the following diagram commutes;

Me(L) < MXP(L)

(49) | |=

T, x A, —— T, X Ap.
Here the fibers of 7, and 7, over (t,A) € T,, x A,, are

(50) (b, A) = M (t, A, L), 7, (t,A) = Me'B(t, A\, L).

2.5. The existence of moduli spaces and their properties.
The following theorem is one of our fundamental results in this article which shows that the moduli
spaces W(t, A, L) and M2(t, A, L) exist and they have good properties.
Theorem 2.1. (1) Fiz a weight B = ($1,02). For a generic weight o', 7, : W(L) — T, X A,
18 a projective morphism. In particular, the moduli space W(t, A, L) is a projective algebraic
scheme for all (t,\) € T), X A,,.
(2) For a generic weight o, mp, : M (L) — T, X A,, is a smooth morphism of relative dimension 2n—
6 with irreducible closed fibers. Therefore, the moduli space M2 (t, X, L) is a smooth, irreducible

algebraic variety of dimension 2n — 6 for all (t,\) € T,, x A,,.

The proof of Theorem 2.1 can be separated into 3 parts. The construction of the coarse moduli space of
the parabolic ¢-connections over a projective smooth curve will be treated in Section 5. We deal with the
relative settings and prove the projectivity of the morphism 7, : W(L) — T, x A,,. (Cf. Theorem
5.2). Since we have a naturel embedding M (L) — W(L), the existence of the moduli space M (L)
easily follows from the first assertion. The smoothness of the morphism 7, : M%(L) — T,, x A,, follows
from Proposition 6.2. Finally, the irreducibility of the moduli space M (t, A, L) is proved in Section 9,
(cf. Proposition 9.1), based on the irreducibility of the moduli space R(Pp.t)a proved in Proposition 8.1.

Remark 2.3. (1) As we mentioned in Introduction, we sometimes extend the base by an étale
covering T/, — T, in Theorem 2.1, which causes no change in the proof.
(2) The structure of moduli spaces M%(L) and W(L) may depend on the weight a and deg L.
(3) The moduli space M(L) is a fine moduli space. In fact, we have the universal family over the

moduli space MS(L). See §5.
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(4) When we describe the explicit algebraic or geometric structure of the moduli spaces M2 (L) and

MXP (L), it is convenient to fix a determinant line bundle (L, V). As a typical example of the

determinant bundle is

(51) (L,Vr) = (Op1(=tn),d)
where the connection is given by
d
(52) Vile—tn) =d(z—ta) = (= = t.) © - _zt .

Here 2 is an inhomogeneous coordinate of P! = Spec C[z]u{oo}. For this (L, V) = (Opi(—ty),d),

we set
MZ(6, A, —1) = MZ(t, A, L), (resp. MXP (¢, X, 1) = M¥P(¢, A, L) ).

2.6. The case of n =4 (Painlevé VI case).
We will deal with the case of n = 4 which corresponds to Painlevé VI equation. Let us fix a sufficiently
large intger v and take a weight (a',3) for parabolic ¢-connections where o' = (af,...,af), B8 =

(ﬂl,ﬁz),’y and fix (t,A) = (tl,... ,t4,)\1,... ,)\4) S T4 X A4.

Then the corresponding weight a = (ay, ... ,asg) for parabolic connections can be given by
! /61 .
o = q; 1< <8
B1 + B2
Later, for simplicity, we will assume that 3; = [, hence @ = a'/2. We also assume (L,V,) =

(Op1(—t,),d) and in this case, we set
Mfl(taAa_l):Mf’ﬁ(ta)‘aL)a Mfl(_l):Mr’ﬁ(L)'

By Theorem 2.1, we can obtain the commutative diagram:

Mp(-1) = M(-1)

(53) ml lﬂ

T4 X A4 T4 X A47
such that 7, '((t,\)) ~ M(t,A,—1) and 75 (t,A) ~ M (t,\,—1). (Note that @« = a'/2). From

Theorem 2.1, we see that for a generic weight a', T4 is a projective morphism and 4 is a smooth
morphism of relative dimension 2. In Part II, [IIS2], we will give detailed descriptions of the moduli
spaces Mg (t,A,—1) and W(t,)\, —1). The following theorem shows that our family of the moduli
space W(—l) — Ty x A4 can be identified with the family of Okamoto-Painlevé pairs constructed by
Okamoto [O1]. (See also [Sakai], [STT]). Note also that Arinkin and Lysenko [AL1] give isomorphisms

between their moduli spaces and Okamoto spaces for generic A.
Theorem 2.2. (Cf. [IIS2]).
(1) For a suitable choice of a weight o', the morphism
Ty MO (=1) — Ty x Ay

is projective and smooth . Moreover for any (t,\) € Ty x A4 the fiber T, *(t, A) := M (t, A, —1)

is irreducible, hence a smooth projective surface.
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Let D = M (—1)\ MX(—1) be the complement of MX(—1) in W(—l). (Note that o = a'/2).
Then D is a flat reduced divisor over Ty x Ay4.
For each (t,\), set

Sea =7, (6, A) == M (t, A, —1).
Then gt)‘ is a smooth projective surface which can be obtained by blowing-ups at 8 points of the
Hirzebruch surface Fy = Proj(Op:(—2) ® Op1) of degree 2. The surface has a unique effective

anti-canonical divisor —Ks, 5 = Ve whose support is Dy . Then the pair

(St Ver)

is an Okamoto-Painlevé pair of type Dfll). That is, the anti-canonical divisor V¢ x consists of

5-nodal rational curves whose configuration is same as Kodaira—Néron degenerate elliptic curves

of type Dil) (=Kodaira type I} ). Moreover we have (M&(—1))ea = (M (=1)ea \ V-

3. ELEMENTARY TRANSFORMATION OF PARABOLIC CONNECTIONS

In this section, we will give basic definitions and some calculations of elementary transformations of

stable parabolic connections.

3.1. Definition. Let us fix a line bundle L with a connection Vy : L — L ® Q5,(D(t)) and we set

(55)

wi =res, (Vy) forl1<i<n.

The residue theorem implies that > ", u; = —deg L € Z.
For each i, 1 <i < mn, we set L(t;) = L ® Op:(t;), L(—t;) = L ® Op1(—t;) and so on. We will define

two elementary transformations which induce morphisms of moduli spaces.

(56)
(57)

Elm;t:MT‘f‘(t,)\,L) —  M2(t, N, L(t;))

Elmg, : MY (t,A\, L) — M (t,\", L(—t;))

Let (E,Vg, ¢, {lj}i<j<n) be a (t, A)-parabolic connection on P! with the determinant (L, V). Note

that the eigenvalues of res;, (V) are given by the following table.

(58)

ty ty - tno1 tn | °E
E: I =1F A Ay - An1 A | L
Ey [l ~ =M pe—Ar -0 pner —Anc1 fin — A

3.1.1. Definition of Elmg. Take a subsheaf F; as

(59) E(—ti) C F; C E such that [; = Fi/E(—ti) C Eti and lz(tz) = F(tz)/E
and define
(60) Ef = Fy(t;) = Ker [B(t:) — E(t:)/F(t:) = E(t:)., Jli(t)] -

Since l; is an eigenspace of res;, (Vg), it is easy to see that Vg induces a connection

(61)

Vg Ef — Ef @ Qb (D(t))
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and ¢ : A’E — L induces a horizontal isomorphism ¢’ : A*E;" — L(t;). Moreover, one can see that
the subspace Ij = Ey, /l; C (E;"), defines a new parabolic structure {I}"_, with I} = [; for j # i. Now

we define
(62) Bimy(E) = (Ef, Vs, ¢/, {11),

which is called an upper elementary transformation of E at t;. Since I} ~ Ey, /l;, (E ), I} ~ 1; @ O(t;),

we see that (resy, (V)i = pi— i, (resy, (V))\(Ef)t,/u = —1+ \;. Therefore the eigenvalues of the residues

of V+ on Elmf (E) = E; and the determinant A2E;" are given as follows.

t; | tp e tioee- to | APEf
(63) Blmi (B): | 1= o AN =N e An | L(t:)
- pr— A1 - —=14N o = A

J

3.1.2. Definition of Elm,,. By using (59) subsheaf F; C E we also define a filtration of sheaves
(64) E. =F; D E(—t;) D Fi(—t;)
which defines a parabolic connection (E;, VE[ ,©',1") such that
li = E(—t;)/Fi(—t:) = (B, /i) @ Op1(—t;).
This is called a lower elementary transformation of E at t; and will be denoted by
Elm, (E) := (E{,VE;,QO',Z').

Note that one has a horizontal isomorphism ¢’ : A2E;” —» L(—t;) and the eigenvalues of the residues of

V- on Elm; (E) = E; are given as follows.

| ty - t; - tn| NE;
(65) Elmy () : | 1= o Ao Ldpi—X - An | L(=t;)
1, p— A - Ni o = A

3.1.3. Tensoring a line bundle L. Let L1 be a line bundle with a logarithmic connection Vp, and set

vj =resy; (V) for 1 < j <mn. We can define a transformation ®(L1,Vg,) by
(66) (B, Ve, ¢,{l;}) = (E® L1,VeeL,, ¢, {l; ® L1})
which induces a morphism of moduli spaces
(67) ®(L1,Vp,) s M (6, A, L) — MZ(t, X', L® (L1)®?).
The set of eigenvalues of new connection can be given as follows.
| ti - ti - tn | A2(E® Ly)

(68) E®L: l;':l;'+ vitA e vitAio e Vn+ A | L® (L)%?

I vitpr—A Vit pi— A Unt e — A
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3.14. R;: Interchanging the eigenspaces.

Under the assumption
(69) Ai # i — i,

we see that there are unique eigenspaces lf =l; and [] of res;, (Vg) with the eigenvalues A\; and p; —
\; respectively. Interchanging the eigenspaces [ and I and keeping the other eigenspaces [; j # i

unchanged, we obtain a new parabolic connection
(70) Ri(E) = (B, Vi, ¢, {li}).

If A; = pi — Ag, let us define R;(E) = (E, Vg, ¢, {l;}), that is, R; = Id.

The set of eigenvalues of new connection can be given as follows.

tp - t; - tn|/\2E
(71) Ri(E) : =10 YT Ve A | L
Ep U=l | m=A - Y

Now assume that res;, (V) € Z for all 1 <i < n.

Lemma 3.1. Assume that X is not reducible (c¢f. Definition 2.3). Then R; induces an isomorphism

(72) Ri: M2(t,\, L) = M2(t,\,L).

Proof. Since X is not reducible, any (E,Vg,p,{l;}) € MZ(t, A, L) are irreducible (Lemma 2.1), so is
R;(E). In particular R;(E) is a-stable. Therefore it induces a morphism of moduli spaces. Moreover it

is obvious that R? = Id, so it must be an isomorphism. A

Later we will extend R; a birational map of the moduli spaces.

3.2. Birational transformations arising from elementary transformations.

Definition 3.1. Assume that « is generic. An affine birational transformation of the family of moduli
spaces T, : M®(L) — T), x A,, is a pair of maps (8, s) consisting of a birational map §: M®(L)--- —

M2(L) and an affine transformation s : A,, — A,, such that the following diagram commutes:

M&(L) - "= M2(L)
(73) 3™ 7

1
T x Ap =3 T' x A,.

3.2.1. The group BL,.

Now we fix a determinant line bundle (L,Vy) = (Opi(—t,),d) as in Remark 2.3 and counsider the
family of the moduli spaces m,, : M*(Opi(—t,)) — T} x A,,. Let e; € A, be the i-th standard base
of A, ¥ C™ and set A = (\1,...,A\,) € A,,. We define a group BL,, generated by the following affine
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automorphisms of A,,.

tj_(A) = A+EZZ(A1,,AZ+1,,>\TL)
t:—J(A) = A—i—%(el—i—ej):()\l,...,)\i—}l—%, .,)\j-f-%, ,)\n)
y = .. Lo, =X +1L < i <n—
(74) tﬁ] (A) ()‘17 )\2 %7 )‘] + 29 7)‘712 (]— <1<y n 1)
tinA) = Ao, Ait g A )
’I‘z(A) = (/\1,... /\ ,/\n) (1§z<n—1)
(A = (A, A, 1= Ap).
We can easily see the following relations.
+ (= )2 + =
(75) ti - (tz ]TZ) ’ ti7j - ti’jrlrj-
Therefore we can define the group BL,, as
(76) BL, = (t;;,(1<i<j<n), r, (L<k<n))

In [IIS2], we will show the following

Proposition 3.1. Every element s of the group BL, of affine transformations of A,, can be lifted to a

birational transformation

(77) §: MZH(Op1(=tn)) -+ — M (Op1(=tn))

such that the pair (8,s) becomes an affine birational transformation of the family of moduli spaces.
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70\

71 Y2 Tn—-1

FiGURE 4. Canonical generators of w1 (P! \ D(t), *).

4. MODULI OF REPRESENTATIONS OF FUNDAMENTAL GROUPS

4.1. The family of punctured projective lines and their fundamental groups. For n > 3, let us

consider the space T,, = {(t1,...,tn) € (P | t; # t;,(i # j)} and its open subset
(78) W, ={(1,...,t,) €C™ | t; #t;,(@#J)}

Setting D(t) =t1 + --- + t,, for each t = (t1,... ,t,) € T}, we denote by

(79) L= m(P\ D(t),*),

the fundamental group of P!\ D(t) with the base point * which we take very near to t,. It is easy to
see that I', ¢ is generated by v1,...,9n—1,V» in Figure 4 with one relation y;y2 -+ -7y, = 1. This set of
generators i, ... ,7, is called canonical generators of I', ¢ with respect to the ordered n-points t.

For each 4,1 < i < n, we define a divisor ¥, ; of P! x T}, as
(80) En,i = {(Z, (tl,. .. ,tn)) € Pl X Tn | z=1; }

Setting P,, := (P1 X Tn) \ (Ul X,;) ~ T4, we obtain a natural projection map which induces a smooth

morphism
(81) Tn i Pn— T,

whose fiber P, ¢ over t = (t1,...,t,) is P!\ D(t). The family 7, : P, — T, in (81) is called the
universal family of n-punctured lines.

By the universal covering map T,, — T},, we can extend the family

Pr —  Pn
Tn 4

— T,

(82) Tn

éﬂx(—

where we set P, = P, X Th.
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Fix a base point tg € T}, and consider the fundamental group 7 (T}, to). The natural n-th projection
hn : Ty — P ((t1,...,t,) — t,) gives a structure of fiber bundle over P! whose fiber at t, = oo is
isomorphic to W,,_;. By using the exact sequence of fundamental groups for fiber bundles, one can see

that there exists an isomorphism
(83) 7T1(Tn,t0) =~ 7T1(Wn_1,t0).

Ou the other hand, it is well known that the fundamental group 71 (W,,—1, to) is isomorphic to the pure
braid group PB,,_1 of n—1 strings. Therefore the pure braid group PB,,_; acts on the universal covering
T,, and also the typical fiber Pnt, of T in (82).

Moreover the fiber bundle 7, : 75n — Tn becomes trivial, that is, there exists a diffeomorphism

75n = P o < Tn such that the following diagram commutes:

~

75n — Pn,to X Tn

(84) Tn N\ vd

By using the isomorphism, for every t € T,,, we can obtain the isomorphism of fundamental groups

(85) (P %) = 71 (Prgyr %) = Ty

as well as the identification of canonical generators 7y, ... , 7, in Figure 4 . The action of the pure braid
group PB,_; on the fiber bundle 7, : 75n — fn induces an action on canonical generators of 'y ¢,

which can be written in a very explicit way. (For example for the case of n = 4, see [Iw3], [Iw4]).
4.2. The moduli space of SL,(C)-representations.

Definition 4.1. An SL,(C)-representation of the fundamental group 'y = 71 (Ppt,*) of Ppg =
P!\ D(t) is a group homomorphism
(86) p:Llnt =m(Pug,*) — SLy(C).

We denote by Hom(I',, ¢, SL2(C)) the set of all SLo(C)-representations of I'y, ¢. If we fix a set of canonical

generators yi,...,7v, of I'; ¢ as in Figure 4, we have the identification
Hom (I, ¢, SLy(C)) = SLy(C)" !

given by p — (p(y;)) fori=1,... ,n— 1.

Definition 4.2. (1) Two SLy(C)-representations py, p2 are isomorphic to each other, if and only if
there exists a matrix P € SLy(C) such that

p2(7) =P~ - pa(y) - P for ally € m (P, %) .

(2) A semisimplification of a representation p is an associated graded of the composition series of p.
(3) Two SLy(C)-representation is said to be Jordan equivalent if their semisimplifications are iso-

morphic.
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Fixing to € T}, and canonical generators vi,...,7n of I'y ¢, and using the isomorphism in (85), for

any t € Tn, we fix an identification
(87) Hom([p ¢, SLy(C)) — SLy(C)"*

by p = (p(11)5 -+ 5 p(Yn-1))-

Let R,_; denote the affine coordinate ring of SLy(C)"~! and consider the simultaneous action of

SL3(C) on SLy(C)"~! as

(My,-++ ,Mu_1) — (P"*M,P,--- ,P7'M,,_, P).

Ad(SL2(C))

Hilbert shows that the ring of invariants, denoted by (R,,_1) , is finitely generated. The following

lemma is due to Simpson [Sim2],

Lemma 4.1. ([Mum], [Proposition 6.1, [Sim2]]). For any t € T,, under the identification (87), there

exists the universal categorical quotient map

®,, : Hom([p 4, SLy(C)) ~ SLy(C)" + — R(Pnt) = SLy(C)" */Ad(SLy(C))
where
(88) R(Poe) = Spec|(Rn_1) 4S5O,

The closed points of R(Pn) represent the Jordan equivalence classes of SLa(C)-representations of I'y, ¢.

)

We say that RP,, = R(Pnt) is the moduli space of SLa(C)-representation of mi (P! \ X(t)).

)

Remark 4.1. Lemma 4.1 says that the set R(Pp ) of Jordan equivalence classes of S Ly (C)-representations
admits a natural structure of an affine scheme. Moreover, it is easy to see that the moduli stack of iso-

morphism classes of SLy(C)-representations has no natural scheme structure.

Remark 4.2. It is obvious that the algebraic structure or complex structure of the moduli space R(P,,.+)
does not depend on t € T,,. However in order to define the isomorphism Hom(I',, ¢, SLs(C)) ~ SLs(C)"!
we have to fix canonical generators of I, = (P \ D(t)). Since the pure braid group PB, 1 :=
71 (Th, *) acts on the sets of generators of I'y ¢ and hence acts on R(P,¢). This action is called the
topological nonlinear monodromy action of the pure braid group PB,,_1 := w1 (T}, *). (Cf. [DM], [Iw3],
[Tw4]).

)Ad(SLz(C

In our case, we can describe the categorical quotient Spec[(R,—1 ))] more explicitly. Denote

the coordinate ring R,,_; of SL»(C)"~* by
(89) Rn—l = C[ai, bi,Ci, dz]/(azdz — bici — ].) 1= ]., e, = 1

where M; = ( @i b >
C; di

The following Proposition follows from the fundamental theorem for matrix invariants. (See [Theorem

2, Theorem 7, [For]] or [Theorem 1.3, [P]]).
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Proposition 4.1.
(90) (R )5 = ClIe (M, Miy -+ M3 ), 1 S ik S 0= 1],

Moreover, the elements Tr(M;, M;, --- M;,) of degree k < 3 generate the invariant ring, that is,

(91) (Rp_1)4512(C) = O[Tr(M;), Te(M; M;), Te(M;M;My) | 1< i,j, k <n—1].
Let us set
(92) a; =Tr(M;) for 1<i<n,
which are elements of (Rn_l)Ad(SLZ(C)) and consider the subring A,, = Clay, ... ,a,] of (Rn_l)Ad(SLZ(C).

We have a natural morphism
(93) Pn t R(Pnt) = Spec [(Rnfl)Ad(Sh(C)) — A, = Spec[4,].

4.3. Counstruction of the family of moduli spaces ¢, : R,, — T} x A,.

Fix to € T), as the base point of fundamental group m (T, to) and fix canonical generators v1,... ,vn
of I'y, ¢,- Again taking the universal covering map Tn — T, we can obtain a trivialization (84) and
isomorphisms of the fundamental groups (85). By using the isomorphisms, for each t € T},, we obtain a
canonical isomorphism

R(Pn,t) ~ R(Pn7t0 ) .

Moreover the group m1(T),,t9) ~ PB,_1 acts on the variety R(P,+,) as the group of nonlinear mon-
odromies and hence defines the action on the product R(Pp.t,) X T,. Define the subgroup I';,_; of
71 (T, to) as a kernel of the natural homomorphism 7 (T, t0) — Aut(Claq, ... ,ay]). It is easy to see
that I',,—1 is a subgroup of 71 (T}, to) of finite index, so defining as T}, = Nn/l“n_l we obtain the finite

étale covering
(94) T :=T,/Tn 1 — Th.

Consider the natural action of I',,_; on the product T, x R(Prt,). The natural map 1 x p, : T, x
R(Pnt,) — T, x A, is clearly equivariant with respect to the action of I';, 1, where I';, ;1 acts on A,

as the identity map. Setting
(95) R =Tn X R(Prto)/Tn-1,

we obtain a morphism

(96) | 6 R.— Thx A, |

which is said to be the family of the moduli spaces of S Ly-representations of the fundamental group. The

fiber of ¢,, at (t,a) is given by the affine subscheme of R,
(97) ¢rt(t,2) = R(Pu)a = {[p] € R(Puy) | Tr[p(7:)] = ai, 1 < i <}

Since a; determines the eigenvalues of monodromy matrix p(7y;), a may be considered as the set of

spectral of local monodromies. Hence the space R(Pp.t)a is said to be the moduli space of isospectral
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S Lo-representations. Note that though the moduli space M (t, A, L) is smooth for all (t, A) if a is special
in the sense of Definition 1.1 the affine scheme R(P,, +)a has singularities.

In §8, we will prove the following
Proposition 4.2. For any a € A,,, the scheme R(Pnt)a tn (97) is irreducible.

4.4. The case of n = 4. Now we recall the explicit description of the invariant ring for n = 4 due to

Iwasaki ([Iw3], [Iw4]). We denote by (i,7,k) a cyclic permutation of (1,2,3). Then the invariant ring

(RS)Ad(SLz(C)) is generated by

r; = TI“[MJMk] fori = ]., 2, 3
(98) a; = Tr[M;] fori=1,2,3
g = TI‘[MlMQMg,]

The following proposition is proved in [Iw4].

Ad(SL2(C))

Proposition 4.3. The invariant ring (R3) 1s generated by seven elements x1,x2, T3, a1,a2,03, a4

and there exists a relation
(99) f(x,a) = xymows + a7 + x5 + 23 — 01 (a)xy — Oa(a)ze — O3(a)zs + b4(a),
where we set
(100) 0;(a) = aaq +ajar, (i,],k) = a cyclic permutation of (1,2,3),
(101) 0s(a) = aiasazas +ai + a3+ a3 +aj — 4.
Therefore we have an isomorphism
(102) (Bs) D o Cly, v, 25,01, 02,05, 04]/ (/ (2, )).
Recall that fixing canonical generators of the fundamental group, for any t € Ty, the categorical

quotient R4 ¢ is given by R(Pay) := Spec[(Rg)Ad(SL2(C))] ~ Spec[C[x,a]/(f(x,a))]. Setting A4 = C* =

Spec[Clay, . .. ,a4]], as in (93) we have a surjective morphism
Pa: R(Py¢) = Spec[Clx, al/(f(x,a))] — A
whose fiber at a € A is an affine cubic hypersurface in C?
R(Pat)a = {(x1,22,25) € C* | f(x,a) =0} C C.

Therefore, the family in (96) ¢4 : R4 — T X A4 is a family of affine cubic hypersurfaces in C3.
The subgroup I's of 7 (T4, to) acts both on the space R(Ps+) and the space R(Pat)a as nonlinear

monodromies. Iwasaki [Iw3] showed the following

Proposition 4.4. There exists a one-to-one correspondence between the set of fived points of the action

of Ts on R(Pat)a and the set of singular points on the affine cubic hypersurface R(Pat)a.
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5. CONSTRUCTION OF THE MODULI SPACE M2 P (t, A, L) AND PROOF OF THEOREM 2.1, (1)

5.1. Translation of the definition of parabolic ¢-connection. In this section, we will translate
the definition of parabolic ¢-connection, since it is rather convenient to generalize the definition for the
construction of the moduli space.

Let X be a smooth projective curve over C and D be an effective divisor on X.

We define an Ox-bimodule structure on A}, = Ox & (Q% (D)) by
(103) (a,v)f = (fa+ (v, df), fv)
fla,v) == (fa, fv)
for a, f € Ox and v € (2% (D))Y, where (, ) : (% (D))Y x Q% (D) — Ox is the canonical pairing.
Definition 5.1. A parabolic A} -triple (Ey, Es, ®, F.(E;)) on X consists of two vector bundles Ej, E»

on X, a left Ox-homomorphism ® : A}:, ®ox E1 — E» and a filtration of coherent subsheaves: E; =

Fi(E1) D F5(Ey) D ++- D Fi(Ey) D Fiy1(Ey) = By (-D).

Remark 5.1. Assume that two vector bundles Ey, E» on X are given. Then giving morphisms ¢ : By —
By, V: By — By © Q% (D) satisfying ¢(fa) = f(a), V(fa) = ¢(a) @ df + fV(a) for f € Ox, a € By is

equivalent to giving a left O x-homomorphism ® : A}y @ E1 — E».

Definition 5.2. A parabolic AL-triple (B, E}, ®', F\.(E})) is said to be a parabolic A}-subtriple of
(El,Ez,(I),F*(El)) if E{ C El, Eé - Ez, ¢|A}D®Ei = @' and Fl(E{) - Fz(El) for any i.

Fix rational numbers 0 < o) < a) < --- < a; < a7, = 1 and positive integers 3;,3,. We write
a = (of,...,a;) and B = (f1,32). We also fix an ample line bundle Ox(1) and a rational number v
with v > 0.

Definition 5.3. For a parabolic A}, -triple (Ey, E2, ®, F.(E1)), we put

1 deg E1(—D)+pB2 deg Ez—Bay deg Ox (1) rank Ea+3'_| B1a} length(F;(E1)/F41(E
M(E17E27(I>7F*(El)) = LB DLt L ;?railgé‘fj-%zr:nszz L0 e BB e 1))

Definition 5.4. Assume that v is sufficiently large. A parabolic AL -triple (E1, E», ®, F\.(E)) is (@', B)-
stable (resp. (o, 3)-semistable) if for any non-zero proper parabolic AL -subtriple (Ef, E5, ®', F.(E})) of
(E1, Es,®, F(Ey)), the inequality
H(ELEg:(I)’:F*(EZ,L)) < M(E17E27(I>7F*(E1))
(resp. <)
holds. (If we fix a weight (a',8), “(a’,3)-stable (resp. (a',3)-semistable) ” may be abbreviated to

“stable (resp. semistable)” for simplicity.)

Let S be a connected noetherian scheme and 7g : X — S be a smooth projective morphism whose

geometric fibers are curves of genus g. Let D C & be an effective Cartier divisor which is flat over S. A

similar formula to (103) enables us to consider the Ox-bimodule structure on A%)/S =0x® (QQ/S(D))V.
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Fix rational numbers 0 < o) < o)y < --- < ay < a7, = 1, positive integers 7, d, {d; }1<i<i, B, B2, ¥

with v > 0.

Definition 5.5. We define the moduli functor W(r, d,{d;}) of the category of locally noetherian
schemes over S to the category of sets by

(104) MEFEP (r, dAd))(T) = {(Br, Ba, @, Fu(E))}/ ~,

where T is a locally noetherian scheme over S and

(1) Ei, Es are vector bundles on X xg T such that for any geometric point s of T', rank(E;), =
rank(Es), = r, deg(E),s = deg(Fs), = d,

(2) @: A%)/S ®o0. E1 — Ey is a homomorphism of left Oy« .r-modules,

(3) By = Fi(Ey) D F3(Ey) D --- D Fi(Ey) D Fiy1(E1) = E1(—Dy) is a filtration of E; by coher-
ent subsheaves such that each Ey/F;11(F;) is flat over T' and for any geometric point s of T,
length((Ey/Fit1(EL))s) = di,

(4) for any geometric point s of S, the parabolic AL, -triple ((E1)s, (Ez)s, ®s, Fx(E1)s) is stable (that
is, (o', B)-stable) .

(Er,Ey,®,F.(Ey)) ~ (B, By, ®, F.(E)) if there exist a line bundle £ on T and isomorphisms o; :
E; = E; ® L for j = 1,2 such that o1 (F;11(E1)) = Fi1(E]) ® £ for any 4 and the diagram

AL s®oy B —— B

id®o’1l% 0’2l%

A%)/S Koy E{ ®s L (b—@i) Eé Qs L

commutes.

We call (Ey, E2, ®, F.(Ey)) a flat family of parabolic A%)T/T—triples on X7 x T over T if it satisfies the
above conditions (1), (2) and (3).

5.2. Boundedness and Openness of stability.
Proposition 5.1. The family of geometric points of Mg’/‘;”ﬁ”(r, d,{d;}) is bounded.

Proof. Take any geometric point (Ei, E2, ®, F.(E;)) € Mg’/cg’ﬁ”(r, d,{d;})(K). By Serre duality, we
have

H'(Xk, E1(m — 1)) = Hom(E1,wa, (1 —m))".

Take any nonzero homomorphism f : By — wx, (1—m). Then (ker f, Es, ®|xer £, Fi (E1) Nker f) becomes
a parabolic A%K—subtriple of (Ey, E2,®,F.(Ey)). Thus we must have the inequality

,u(kerf, E27 <I>|kel‘f7F*(E1) N kerf) < H(E17E27(I)>F*(E1))'

Since deg(ker f) > deg By +m — 2g + 1, we can find an integer m which depends only on r,d,d;, 3, a7,
A and D such that Hom(E;,wx, (1 —m)) = 0. Then all E; become m-regular.
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Similarly we can find an integer m' such that Es are all m'-regular. Then the family of (E;, E») is

bounded and the boundedness of the family of (E;, Es, ®, F\.(E;)) can be deduced from it. A
We put €; ;= aj,, —aj for i =1,... ,[. Take an S-ample line bundle Ox (1) on X

Proposition 5.2. There exists an integer mo such that for any geometric point (Ey, Es, ®,F.(Ey)) €
Mg’/‘g’ﬁ"y(r, d,{d;})(K), the inequality
Braih®(B{(m)) + B2h (B (m — 7)) + 31y Breih®(Figa (B])(m))
B1rank(E]) + B2 rank(EY)

< Biaf hO(Er (m)) + B2h® (B (m — 7)) + iy Breih®(Fiy (Br)(m))
B rank(E1) + fo rank(Es)

holds for any proper non-zero parabolic A, _-subtriple (Ej, Ey, ®', F.(EY)) of (E1, Ey, ®, F.(E1)) and any

integer m > my.

Proof. By Proposition 5.1, there exists an integer N7 such that for any geometric point (Ey, Es, @, F,(E1))
of ME 57 (r,d,{di}), W (Fj(Er)(m)) = hi(Es(m—7)) =0fori >0,1<j <l+1andm > Ni. There

also exists an integer e such that for any geometric point (Ej, E2, ®, F,(Ey)) of g/o;' B (r. d, {d;}) and

for any coherent subsheaf E' of E?ﬁ e ESBB 2(—7), the inequality
deg B' < rank E'(u(EY™ @ Ea(—7)%%) + )

holds. Note that we write u(E) := rank(E)~! deg(E) for a vector bundle E. Applying [MY], Lemma 2.6

to the case
_ Brofx(By(m)) + Box(Ba(m = 7)) + 3y freax(Fina (Br)(m)
(31 rank Ey + (32 rank Ey ’
r=rank(BP” @ BY™), a = p(EP? © Ba(—7)®%) +e,

P(m)

we can take integers L, M such that M < a and for any integer m > L, the inequality
hP(E'(m)) < rank(E")P(m)

holds for any vector bundle E' on a fiber of X over S satisfying 0 < rank(E') < f; rank(E; )+ G2 rank(Es),
w(E') < M and deg E' < arank(E") for any proper nonzero coherent subsheaf E’ of E'.

Now we put
G .= {E' there exists a geometric point (E1, Es, ®, F.(E1)) of Mg’/"g’ﬁ”(r, d,{d;}) } ‘
such that E' is a subbundle of E* @ Ey(—v)®%2 and u(E') > M
Then G is bounded. Thus there exists an integer L' > L such that for any E' € G and any m > L',
E'(m — ) is generated by its global sections, h*(E'(m —v)) = h*((F;(E1) N E')(m)) = 0 for i > 0 and
1<j<l+1. If we put

6= {2

then the set of polynomials

E{ C Ey (resp. B C Es) is a subbundle such that
@(AL s ® B}) C By and p(By®% & Ey(—1)®%) > M [

l
{ﬂla’lx(E{ (m)) + Bax(Ey(m — 7)) + D Breax((Fia (B1) N Ei)(m))}
(E

i=1

1.B5)€g
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is finite, because B! " @ Bj(—7)®P2 € G for any (B!, E}) € G. Thus there exists an integer mo > L'

such that for any m > mg and for any (Ej, Ef) € G, the inequality

B X (B (m)) + Bax(E5(m — 7)) + Yimy Sreax((Fir (1) N EY) (m))
B1rank(E]) 4+ B2 rank(EY)

holds. We can easily see that this mg satisfies the desired condition. A

< P(m)+1

Proposition 5.3. Let T be a noetherian scheme over S and (Ei,Es,®,F.(E1)) be a flat family of

parabolic AlpT/T—tm'ples on X xgT over T. Then there is an open subscheme T of T such that
T°(k) ={t € T(k) |(E1, E2,®, F.(E1)) ® k(t) is stable}
for any algebraically closed field k.
Proof. We may assume that T is connected. Put Pi(m) := x((E1 ® k(s))(m)), Po(m) = x((E2 ®

k(s))(m — 7)) and Pl(i) (m) := x((Fi(Ey) ® k(s))(m)) for a geometric point s of T'. Since the family

Gg=lg E' is a subbundle of (B @ Ey(—v)®%2) © k(s) for some geometric
N point s of T and u(E') > u((Ey, B, ®, F.(E1)) ® k(s))
is bounded, the family

(E{,E;, @, F,.(EY)) is a parabolic A}, -subtriple of

5 Lo , (E1, Es,®,F.(E1)) ® k(s) for some geometric point s of T

G =4 (B, By, @, F(E)) such that B C By ® k(s) (resp. By C F> ® k(s)) is a subbundle
and p(E1, By, @', F(EY)) > p((By, B, @, F (E1)) ® k(s))

is also bounded. So the set of sequences of polynomials
P = { (B (m) x(Bh (m = 7)), ((Fo (B )i | (B, Bs, @', FL(BY) € G
is finite. For each P’ := (P}, P}, ((P})(*1)) € P, put

Q = Quoty /XT . x7 Quot /jj; .

Let (E1)g I @, and (E2)q 3 @5 be the universal quotient sheaves. We put

(P)® (Pt
Q = Quotker /X0 /Q XQ " XQ QU-Otker 771/XQ/Q

O
Let (kerm;)g JEN ng) (I <4 < 1) be the universal quotient sheaves. We consider the composite

homomorphisms
‘P ’ (71') ’
WAL g ® (kerm)g = Ap g @ (Bl)gr — (Ba)gr — (Ga)gy
) ONE
¥ kermi o (kerm) g = GV (2<i<)
{1+ y

Prar ¢ (kerm)gr ® Ox(=D) — (kerm)g > G
Let Q’P, be the maximal closed subscheme of @' satisfying \I”Q, =0 and (d}i)@, =0for2<i<I+1.
~ P/ P/
Since fp' : Qp, — T is a proper morphism,

=7\ {J fe(Qp)

PeP

is an open subscheme which satisfies the desired condition. A
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5.3. Construction of the moduli space. Now we construct the moduli scheme of Mg/og B (r,d, {d;}).
We define a polynomial P(m) in m by P(m) := rdym + d + r(1 — g) where dy = deg O, (1) for s € S
and g is the genus of A;. We take an integer mg in Proposition 5.2. By Proposition 5.1, we may
assume, by replacing mg, that for any m > mg, b/ (F;(Ey)(m)) = hi(Ey(m —v)) = 0 for j > 0,
i=1,...,0+ 1 and Ex(m — ), F;(E1)(m) (i =1,...,l 4+ 1) are generated by their global sections for
any geometric point (E;, F2, ®, F,(E;)) of Mg’/"g’ﬁ”(r, d,{d;}). Put ny = P(mg) and ny = P(mo — 7).
Take two free Og-modules Vi, V5 such that rankV; = nq, rankV, = ny. Let @)1 be the Quot-scheme
QUOtCI(g()DX(me)/X/S and V1 ® OXQI (—myg) — &1 be the universal quotient sheaf. Similarly let @) be the
Quot-scheme Quotg(géx(_mo+7)/x/s and Vo ® Ox,, (—mo +7v) — & be the universal quotient sheaf.
We put Qgi) = Quotg’l/)(Q o Let Fi11(&1) C (gl)QY) be the universal subsheaf. We define ) as the
maximal closed subscheme of Qg ) XQ, "t XQ, le) X ()2 such that there are factorizations

(105) (£1)Q ® Oxy(=Dq) — Fiy1(&1)q = Fi(&1)g C (E1)q

fori =1,...,1, where F1(&1) = &. Since (£2)¢ is flat over @), there is a coherent sheaf H on @ such

that there is a functorial isomorphism
(106) Homy, (Ap/s ®ox (E1)1, (E2)r © £) = Homyp(H @ O, L)

for any noetherian scheme T over () and any quasi-coherent sheaf £ on T'.

We denote Spec S(H) by V*(H), where S(H) is the symmetric algebra of H over Og. Let
¢ AlD/S ®ox (E1)ve (1) — (E2)ve(n)

be the universal homomorphism. We define the open subscheme R® of V*(H) by

( 1)s = H((E1)s(mo)), (Va)s = HY((E2)s(mo — 7)) are bijective,

s . F;(&1)s(mo), (E2)s(mo — 7y) are generated by their global sections,
B =02 € VIOD | (1), o)) = b ((€2)s(mo — 7)) = 0 for j >0, 1< i <1 +1
and ((€1)s, (E2)s, s, Fi(E1)s) is stable

For y € R’ and vector subspaces V| C (V1),, V5 C (Va)y, let E(V{,V3,y)1 be the image of V] ®
Ox(—mgo) = (E1)y and E(V{,V],y)2 be that of V] ® A%y(—mo) &V, ® Ox(—mg +v) = (E2)y- Since
the family

'7: = {(E(‘/llv‘/‘Zlay)laE(Vlla‘/Zlay)2)|y € Rsavll C (‘/1)117‘/2, - (‘/2)11}
is bounded, there exists an integer m1 (> myp) such that for all m > my,

Vi @ H°(Ox, (m)) — H*(E(V{, V3, y)1(m)),

Vi@ H®(Ox,(mo +m —7) © Ap, ® Ox,(—mo)) ® Vs @ H*(Ox, (m)) = H*(E(V{,V3,y)2(m — 7))
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are surjective and H*(Ox, (mo +m — ) ® A%)y ® Ox,(—myg)) = 0, H(Ox,(m)) = 0 for i > 0 for all
members (E(V{, V4, y)1, E(V/,V],y)2) € F and the inequality

(B1rank E] + B2 rank E})dx (ﬂlho((gl)y(mo)) + B2h®((E2)y (mo — 2516 id; >
= (B + Bo)rdx (Bral RO(BL (mo)) + Boh°(Ef(mo — 7)) + Zﬂlez Fi1(E])(mo)))

l
m—l (51 dim Vll + 52 dim VQI — ﬂlX(Ei( )) ﬂ2X( (mo — ))) (ﬂl dim V; + 52 dim V5 — Z ﬂlfidi)

i=1
holds for (0,0) ( (V{,VZ) (((V1)y, (V2)y), where Ef := E(V{, V5, y)1, B3 := E(V{,V3,y)2 and Fip1 (E7) :=
E{NFi11(&1)y fori=1,...,1. From now on, we fix such a large integer my.

The composite
i ® A%)/S ® Ox(—mo)rs — A%)/S ® (&1) Re i> (&2)Rs
induces a homomorphism
Vi@ W1 ® Ops = (mRs )« (Ea(mo +m1 — ) rs),

where W1 := (75)«(Ox(mo +m1 —7) ® A%)/s ® Ox(—myp)) and the quotient Vo ® Ox(—mgo +7) — &

induces a homomorphism
Vo @ Wy ® Ops = (mRs )« (Ea(mo + m1 — ) rs),
where Wy := (1)« (Ox(m1)). These homomorphisms induce a quotient bundle
V1eW, e Ve W) ® Ors — (rs )«(E2(mo + my — ¥)Rs).
This quotient and the canonical quotient bundles

Vi@ Wy ®Ops = V1 @ (15)«(Ox(m1)) ® Ors — (TRs )«(E1(mo +m1)Rs),

V1®ORs —>(WRS)*(El/Fi+1(€1)(m0)Rs) (7::].,... ,l)

determine a morphism

!
t: R® — Grass,, (V1 @ Wi & Vo @ Wa) x Grass,, (V1 ® Wa) X H Grassq, (V1),

i=1

where 71 = h%(Ey(mo + my)s), mo := h%(E(mo + my — 7)) for any point s € R® and Grass,(V) is
the Grassmannian parametrizing r-dimensional quotient vector spaces of V. We can check that ¢ is an
immersion.

We set G := (GL(V1) x GL(V2)) /(G % S), where G, x S is contained in GL(V;) x GL(V3) as scalar
matrices. Then G acts canonically on R® and on Grass,, (V3 ® Wi & Vo @ Wa) x Grass,, (V1 @ Ws) x
Hi:l Grassg, (V7). We can see that ¢ is a G-equivariant immersion. There is an S-ample line bundle
OGrass,, (View oVaaW,) (1) on Grass,, (Vi @ Wi © V> ® W») induced by Pliicker embedding. Similarly there

are canonical S-ample line bundles Ograss,, (viewa) (1), OGrassq, (v1) (1), on Grass,, (Vi @ W), Grassq, (V1),
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respectively. We define positive rational numbers vy, vs, Vfi) (1<i<l) by
= Bu(BrP(mg) + B2 P(mo — Zﬂl@ i)

= B2(B1P(mg) + B2P(mo — Zﬂlt‘z
( ) = = (B1 + B2)Brrdxmye;.

Let us consider the Q-line bundle

L:=. (OGrasS12(Vl®W1@V2®W2)(Vl) ® OGraSS71(Vl®W2) V2 ® OGrassd Vl ( ))>

on R*. Then for some positive integer N, L®Y becomes a G-linearized S-ample line bundle on R*.

Proposition 5.4. All points of R® are properly stable with respect to the action of G and the G-linearized

S-ample line bundle L®N .

Proof. Take any geometric point x of R®. Let y be the induced geometric point of S. We must show that
x is a properly stable point of the fiber R; with respect to the action of G, and the polarization LZ;@N .

So we may assume that S = Spec K with K an algebraically closed field. We put
(B, B2, ®,Fu(Ey)) = ((E1)es (€2)a, o, Ful(€1)a)-
Let
T VieW @Ve@W, = Ny, m:VieaW, =Ny, w0V - ND (i=1,...,1)

be the quotient vector spaces corresponding to t(z). We will show that ¢(x) is a properly stable point

with respect to the action of G and the linearization of L®V. Consider the character
X : GL(V1) X GL(Va) — Gpm;  (g1,92) — det(g1)™ det(go)™

Then there is an isogeny ker y — G and we may prove the stability with respect to the action of ker x
(1 ) (1)

instead of G. Take any one parameter subgroup A of kery. For a suitable basis e}’,... ,en, (resp.

652), e 622)) of V1 (resp. V2), the action of A on V) (resp. V2) is represented by

et o 47 e (resp. ef? o 17 652)) (t € Gm),

where ugl) <0 < u£}3 (resp. uf) <. < u%)) and Y it A + 30 = 0. Take a basis
AR of Wy for k =1,2.

We define functions a1 (p) and a2 (p) inp € {0,1, ..., Bin1+B2nz} as follows. First we put (a;1(0), a2(0)) :=
(0,0). We put

(1,0) if frul?) < Boul”

(@ (1), ax(1)) = { 01 it sl > gl
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Inductively we define

(ar(p +1),a2(p + 1)) := (ar(p), a2(p)) if p < Brai(p) + Baaz(p)
(a1(p+1),a2(p+1)) = (@1(p) + Lax(p)) i p = Brar(p) + Boaa(p), Brugy,y oy < Boull) 1
and a1 (p) < my
(a1(p+1),05(p +1)) = (a1(p), a2(p) + 1) if p = Brar(p) + Boaa(p), Brug,y oy > Poulll 1
and as(p) < ne.
(ar(p+1),a2(p+ 1)) := (ar(p) + 1,a2(p)) if p = Prar(p) + Praz(p) and az(p) =
) = ),a2(p) +1) if p = Brai(p) + B2a2(p) and a1 (p) =

Then a;(p) and a2(p) are integers with 0 < ai(p) < n1, 0 < az(p) < n2, a1(p) < ai1(p + 1) and

as(p) < az(p+1). We define v1, ..., U8, ni482n, and €}, ... 762317114-52”2 by
P R ¢ o (p— 1
Up = Bty () € = €410 ifar(p—1) < ai(p)
vp = ﬂ2u222)(p), e, 1= €as(p) if az(p—1) < az(p)
Vp 1= Up o1, €, =€) g ifa;(p—1) =ai(p) and azx(p — 1) = az(p).

We put 8, := (vp41 — vp)(Biny + Bang) "t for p = 1,...,B1n1 + B2nz — 1. Then §, are non-negative

rational numbers and for each 1 <1i <mny

(1 _
Pru; ' = E pop + E (p — Biny — B2nz2)d,
1<p<Bini+Banz—1 1<p<Bin1+B2na—1
ay(p)<i ay(p)>i

and for each 1 <17 < ngy

(2) _
Bau;” = E pd, + E (p = Biny — Banz)d,.
1<p<PBini+Panz—1 1<p<Bini+Banz—1
az(p)<i az(p)2i

For p=1,...,01n1b1 + Banabe, we can find unique integers po,p1 € {0,1,...,B1n1 + P2na} such that

(a1(p1), az(p1)) = (a1 (po + 1), a2(po + 1)) = (a1(po) + 1, az(po)), or

(a1(p1), az2(p1)) = (a1(po + 1), a2(po + 1) = (a1 (po), az(po) + 1)

and
. forsomel1<j<b
a1(po)B1 + (p1 — po — 1))b1 + az(po)Babs + 5 . -
| Jleaolfit = = D)+ xpo)be if (a1(p1), a2(p1)) = (a1 (po) + 1, az(po))
) st + (@t + D)oy 4§ orsometsisbe
a1 (p az(po)B2 + (pr — po — i .
PR T T A ’ if (ax(p1), a2(p1)) = (a1 (po), az(po) + 1)
For such u, we put s,(f) 1= vp, and

M:{%®ﬁ”ﬁwmm@m»<m%um@%»
“ e @07 (@), ax(pn) = (a1 (po), ax(po) + 1).

Let U,52) be the vector subspace of V1 @ W1 & Vo ® W, generated by hi, ..., h,. We put U0(2) = 0. For
qg=1,...,ry, we can find an integer ,u,SQ) € {1,...,01n1by + Banabe} such that dimﬂg(U(%g)) = q and
Hq
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dimﬁg(U’iQLl) =¢q—1. Then

28(2()2) Zs @ (dlmﬂ'g (2)) d1m7r2(U(2) 1)>

Bin1b1+L2anabs

= Z s’(f) (dim WQ(U£2)) — dim WQ(U’Szjl))
=1
@ Binibi+B2anzbz—1 @ (2) ' )
= T258 0161 +Bamaby Z ( Spt1 )dlm WZ(U“ )
p=1
Bini+pP2nz—1
= oVt = 9L (Wt = ) AT (UL o ()

p=1
Pini+pP2nz—1 )
= Z (7”210 — (Bin1 + Banz) dim 7T2(Uélll(p)bﬁ@@(p)bz)) Op-

p=1

For p = (i — 1)bs + j, put hftl) = egl) ® f]@) fori =1,...,n1, 5 = 1,...,bs. We define integers
sgl),... ,sgi)m by putting s,(}) = ﬂlugl) for p = (i — 1)be + j with 1 < j < be. Let U,(Ll) be the vector

subspace of V; ® Wy generated by hgl), . ,hf}) forp=1,... ban;. We put Uél) =0.Forg=1,...,r,
let ,ug ) be the integer such that dim Wl(U(%E)) = ¢ and dim 71'1(U(H) l) =¢q—1. Then
Hq Hq " —

bany

S s (dimmy (UY) — dimm (UY)))
p=1

1
(1)

E :Su(l)

g=1 "

bznlfl
= rlsg?m - Z (sf}_?_l —S&l))dimﬂ'l(Ulﬁl))
p=1

nlfl

= T151U£}1) - Z (“(21 - (l))ﬂ dimWI(Ui(blz))

= 7"1,31um + Z (Vp1 — Vp) dlmwl(Uiizp)bz)

a1(p)<mni
= n E pop + E (p — Biny — B2nz)d,
1<p<Bini+Banz—1 1<p<Bin1+B2na—1
a1 (p)<ni ai(p)2n1

_ Z (Bin1 + Bang ), dimmy (ngp)’w)

1<p<PBini+Panz—1
a1 (p)<mny

Bini+P2nz2—1
Z (Tlp — (,61711 + ﬂgnz) dim ™1 (UCE?(P)M)) 6p

p=1

Let Vp(l) be the vector subspace of V; generated by egl), . ,el(,l). We put VO(I) =0. For:=1,...,1
and for ¢ = 1,... ,d;, let ,ufl be the integer such that dim 7r§i) (Vu(zl)) = ¢ and dim 7r§i) (V;}ll) =q-—1.
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Then
Z,@ u(l) Zﬂ u( ) (dlmw(z)(V( )) - dimwii)(Vlfgll))

_ Zﬂlu(” (dlmﬁ D) - dim " (V,,(Pl))
=

ny;—1

= d;pul)) - Z Br(u p+1 )d1m7r§2) (V)

=dipull) = D" (vpr1 —vp) dimaV (V) )

a1(p)<ni
=d; E pdy + E (p — Brny — Banz)d,
1<p<PBini+Panz—1 1<p<Piny1+Panz—1
a1(p)<ny ay(p)2ny

— Z (Bina + B2n2)d, dim ﬂi) (V(l) )

a1(p)
1<p<Bini+Phanz—1
ay(p)<ni

Bini+pPanz—1
= Z (dip — (Bring + Bane) dim 7T§ )(V(l) )) dp-

a1(p)
p=1

Thus we have

" (@, ) <Z'/’“ZS ) "‘ZVZ)ZﬂW(l))
q
Pini+pP2nz—1
= Z N5P{< ZV;L d; + (Bin1 + Banz) Zyl dlmﬂ)(va(ll()p))>

p=1 i=1

— (vrr + varo)p+ (Buma + Bon) (v dimmy (ULL,),) + v dimma (U, s orns) }

See [Mum], Definition 2.2 for the definition of ,uL®N (z,A). By [Mum], Theorem 2.1, z is a properly stable
point if

= p(niry + vers) + (b + B2nz) (1 dim Wl(Uiizp)bz) + v2 dim Wz(U[(;?il(p)bﬁgzaz(p)@))
!
—le/ )d + ,61711 +ﬂ2nz Zl/ (4) dlmﬁgz)(v(l) ) >0

a1(p)
i=1
forallp=1,...,06n1 + Bony — 1.
For each p (1 <p < fing + fang — 1), let Vk’ be the vector subspace of Vj generated by egk), e ,e((zlz)(p)
(1) _
for k = 1,2. Then U, L (p)ba =V ® Wy and U ﬁlal(p)b1+,62a2(p)b2 =V/eW, eV, W,. Put

E{ = Im(‘/ll ® OX(_mU) - E1)7 FZ+1(E1) = i+1(E1) ﬂE{, (Z =1,... 71)7

By :=Im(V{ ® Ap/5(=mo) ® Vi @ Ox(=mo +7) — E»), = Q| L s®F; -

Then (Ei, Ey,®', F.(E])) is a parabolic Aj, -subtriple of (Ei, Ea, ®, F.(E;)). By the choice of my,

= H°(E}(mo + m1 — 7)) and my (U H(E!(mo +my)). Put

we have wz(U(2) a1(P)b2) =

,31a1(p)b1+,62a2(p)b2)



MODULI OF STABLE PARABOLIC CONNECTIONS 43

. ONE
ri :=rank B, r} ;= rank E}. Let V’gz) be the kernel of the composite V} < V; — Nl(z). Then we have

—p(viry + vara) + (Bing + Banz)(v1 dim 71'1(U(1

al

. 2
)( )bz) + vz dim 7T2(U/é1311(17)51+52a2(17)b2))

l
—PZVl di + (Bin1 + Ban2) Zyl dlmﬁ)(va(ll()p))

i=1 i=1

!
> (,61 dim V; + ﬂg dim V, — Z ﬂleidi) X

i=1

{ = (B i V) + B dim V) (B (B (o + 1)) + B2l (B (mo + mn =)

+ (By dim Vi + B dim V2) (81 A (E{ (mo + 1)) + B2 (B (mo +my — 7)) }
l l
— (B dim V{ + o dim V3) 3" A7d; + (B dim Vi + B> dim V) 3 14” (dim V{ — dim V'{")
=1 =1
1
= (ﬂl dim V1 + ﬂz dim V2 — Z ﬂ1€idi) X

i=1

{ — (B dim Vy + B dim V) (rdx (81 + B2)my + B1 dim Vi + 3 dim V2)

+ (61 dim Vy + B2 dim Vz) ((B17] + Bary)dama + Six(Ef(mo)) + Pox(Es(mo — 7)) }

l l
— (BrdimV{ + B dimV3) Y {7 d; + (B dim Vi + B2 dim V2) 3 v” (dim V — dim V'{")
=1 =1
!
= (,61 dim V; + ﬂg dim V, — Z ﬂleidi) X

=1
{ —rdx (B + B2)ma (B dim VY + B> dim Vi) + (Bir) + Bory)dama (61 dim Vi + B2 dim V2)}

!
+ (frdimVy + Bo dim Vs — Z,@lel i) (01 dim Vi + (B2 dim V) %

i=1

{ = (Bidim V{ + By dim Vi) + (81 x(E] (mo)) + Bax(E}(mo — 7)) }
l
— (Brdim V{ + B dim V) Y (81 + ) Brrdamaeid;

i=1
l

+ (Br dim Vi + B2 dim V2) Y (B + Bo) rrdamae;(dim VY — dim V')

=1

l .
= —(Bydim Vi + B dim V2) (31 + Bo)rdaem (By dim Vi + By dim Vi — 3~ e (dim V{ — dim v'}7))
l

+ (B dim Vi + By dim V) (Br7] + Bary)damy (51 dim V4 + B2 dim Vo — Z ﬂ1€idi)

i=1

l
+ ([31 dim Vi + o dim Vs — Zﬂleidi) (By dim V; + B2 dim Va) x

i=1

(= (81 dim V] + 2 dim Vi) + (B1x(EL (mo)) + Bax(E}(mo — 7))
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> (f1 dim V; + Bo dim ‘/2){(51T'1 + Borh)dxma (ﬂﬂlo(El (mo)) + B2h® (Ea(mg — Zﬂlfz z)
— (B + Bo)rdem (B 1 (2] (mo)) + Bh® (B (mo — Zﬂlez ma)) = h°(Fip (E}) (mo)) ) |

l
+ (51 dim Vi + B dim V5 — Z ﬂleidi) (ﬂl dim Vi + (B2 dim Vg) X

i=1
(= (Brdim VY + B, dim V) + (Bux(BL (mo) + Bax (B3 (mo — 7))

> 0.
Note that the last inequality holds by the choice of m;. Hence x is a properly stable point. A

By Proposition 5.4, there exists a geometric quotient R®/G. The following proposition follows from a

standard argument.
Theorem 5.1. M/,e}';”ﬁ"y(r, d,{d;}) := R*/G is a coarse moduli scheme of Mg’/‘g’ﬁ”(r, d,{d;}).

Remark 5.2. The quotient map R® — MD/O‘ ’ﬁ’7(r, d,{d;}) is a principal G-bundle, which we can see

by the following lemma and the same argument as [M], Proposition 6.4.

Lemma 5.1. Take any geometric point (Ei, Es, ®, F.(E)) € MD}ar’ﬁ’V(r, d,{d;})(K). Then for any
endomorphisms f1 : By — Ey, fo : Eo — Es satisfying ®o (1® f1) = fo0® and f1(Fir1(E1)) C Fipa(Ey)
for 1 <i <, there exists ¢ € K such that (f1, fo) = (¢-idg,,c-idg,).

Proof. Take such (f1, f2). Let ¢ € K be an eigenvalue of f; ® k(z) for some © € Xk (K). Then
f1 — ¢+ idg, becomes an endomorphism of E; which is not an isomorphism. Put E] := Im(f; —¢-idg,),
El :=Im(fs — c-idg,), ' = (I)|AIDK®E£ and Fi1q(E)) == (fi — c-idg,)(Fig1(Ey)) for i = 1,... 1L
Then (Ej, E5, @', F.(E})) becomes a parabolic A}, -subtriple of (Ei, Ey, ®, F,(Ey)). If we put Gy :=
ker(Ey — E1), Gy := ker(Ey — E)), &g := <I)|A%>K®G1 and Fiy1(Gy) == Fipa(BEy) NGy for i =1,... 1,
then (G1, G2, ®¢, Fi(G1)) becomes a parabolic A%K—subtriple of (Ey, Ey, ®,F.(Ey)). If (Ef, E}) # (0,0),
then, by the stability of (Ey, Es, ®, Fi(E1)), we must have the inequalities

Bradx(Br(m) + Bax(Ba(m — 7)) + 3isy freax(Fir (Br)(m))
B rank(Ey) 4 By rank(E»)
5, Proax(Bi(m)) + Bax(Ey(m —v)) + Y1 Breix(Fup1 (BY) (m)
B1rank(E]) + B2 rank(EY)
5, Proax(Bi(m)) + Bax(Ez(m — 7)) + Yimy Brex(Fira (Br)(m))
B1rank(E;) + B rank(E»)
for m > 0, which is a contradiction. Therefore we have (Ei, E}) = (0,0), which means that (f1, f2) =

(C'idEl,C-idE2). A

5.4. Projectivity of the moduli space.

Proposition 5.5. Let R be a discrete valuation ring over S with residue field k = R/m and quo-

tient field K. Let (Ey, E2, ®,F.(Ey)) be a semistable parabolic A%)K -triple on Xy . Then there exists a
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flat family (Ey, E,, ®, F,(E,)) of parabolic A%R-triples on Xr over R such that (Ey,E2,®,F.(Ey)) =
(Ey, By, ®,F,(E1)) ®r K and that (Ey, Es, ®, F.(E))) ®g k is semistable.

Proof. Two surjections

Vi ® Ox, (—mo) =2 HY(E1(mo)) ® Ox,c (—mq) — Ex,

Vo ® OXK(_mU + F)/) = HO(E2(m0 - 7)) ® OXK(_mO + 7) — Es

and the quotients £y — Ey/Fi41(Ey) (i = 1,...,1) give a morphism f : Spec K — @, where @ is
defined by the property (105) in subsection 5.3. Since @ is proper over S, f extends to a morphism
f : Spec R — (). Thus there are coherent sheaves E{O), Eéo) on Xg flat over R and a flat family of
filtrations F,(E\") of B such that E\” @ K = Ey, B\ ® K = B, and F,(E\”) @ K = F,(E\).
The pullback of H by the morphism f : Spec R — Q is denoted by Hp. Recall that #H is defined by
(106) in subsection 5.3. The homomorphism @ : Al /s ® £y — B, corresponds to a homomorphism
¥ : Hr®pr K — K. There is a non-zero element ¢ € K \ {0} and a homomorphism ) : Hr — R such that
t) = @Z; @r K. Let ) : A%)/s ® Efo) — Ego) be the homomorphism corresponding to 1/~1 Then we have
(Ey, E»,®, F,(Ey)) = (B\”, B, 0 F (E\”)) g K, since (Ey, B, ®, F.(E))) = (Ey, s, t®, F,(E})).
Our proposition follows from the following claim:

Claim There is a flat family (Ey, E,, ®, F.(E))) of parabolic A%R—triples on Xg over R such that
E; c B for j = 1,2, Fi1(By) C Fyy(BY) for i = 1,...,1, & = 205, 0n1 (Ey, By, @, F.(E))) ®p
K = (Ey,E>,®,F.(E,)) and (Ey, Ey, ®, F.(E1)) Qg k is semistable.

Assume that E£0) ® k or Eéo) ® k have torsions. In this case let B§0) and Béo) be the torsion parts of

Efo) ® k and Eéo) ® k, respectively. Then there are exact sequences
0-B" - EY9k—c” -0
0— Béo) — Eéo) ®k— Géo) — 0,
where G§°) and Géo) are vector bundles on X}. Put E{l) = ker(EfO) - ((E}O) ® k)/BiO))), Eél) =
ker(E” — (E” @k)/BL"Y), 1) = O], g and Fin(BEMY = F (BEOYnEW fori=1,... 1.
R
Then there are exact sequences
06" —EY ok — B =0
0— Géo) — Eél) ®k — Béo) — 0.

Again let Bil) and Bél) be the torsion parts of Eil) ® k and Eél) ® k, respectively. Repeating these oper-

ations, we obtain sequences (E\™ E{™ &™) F, (Ef")))nzg, (BYL),Bé"))nZO and (ng),Gén))nzo. Then
the injections BY"H) — Bin), Bénﬂ) — Bé") are induced by the homomorphisms E£n+1) ®k — Efn) ®k,
Eénﬂ) Rk — Eé”) ® k. Since (length B%") ,length Bé"))nzo is stationary, we may assume that it is con-
stant. Then we have isomorphisms B\"™) 5 (" p{nth 5 gl g 5 i) g = qint) g,

all n. Assume that (B{™, B{™) # (0,0). There is an exact sequence

(n) ; ng(0) u, 7:(0) ;  npa(0) (0)  77(n)
E; /m B — E; /m B — E; /Ej =0
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forn > 1 and j = 1,2. We can see that (E](-")/m"EJ(-O)) ®k = B](."fl) and that
wok: (B /m"E) o k= B 5 B ok

is injective. Thus E](-O)/E](-") is flat over R/m™ and the quotient EJ(-O)/m”E](-O) — E](-O)/E](-n) determines

a morphism f, : Spec R/m™ — Quot for n > 1. So we obtain a morphism f : Spec R —

B /Xr/R
QuOtE](.O)/XR/R’ where R is the completion of R. f corresponds to a quotient sheaf EJ(,O) ® RS @. Since
(kerm) ® R/m = BJ(-O), kerm ® K is a torsion submodule of EJ(.O), which is nonzero either for j = 1 or
Jj = 2, where K is the quotient field of R. However, it is a contradiction, because Eio) ®K , Eéo) ® K are
vector bundles. Hence we must have (B§"),B§")) = (0,0) for some n. So we may assume without loss of
generality that E£0) ® k and Ego) ® k are locally free.

Now assume that the claim does not hold. Then we can define a descending sequence of flat families

of parabolic Ap, -triples
(B EY 6O F(E)) > (EM,EL, oW F.(EM) > (BD, EP 2 F.(EY)) S -

as follows: Suppose (Efn) , Eé"),tb("),F*(Efn))) has already been defined. There exists a maximal desta-
bilizer (BYL) , Bé"), by, F (BYL))) of (Ef"), Eé"), d(), F*(Efn))) ®k as in the usual case of semistability
of coherent sheaves. We can see that B](-") is a subbundle of E](-n) ®k for j = 1,2 and F4, (B") =
B N (Fiyr (BM) @ k) for i =1,...,1. We put G\ = (B @ k)/B\" for j = 1,2. Then G\ has an
induced quotient parabolic structure F, (G{™). A homomorphism ® ) : Ap/s® G\ G4V is induced
by ®(™ and (Gg"),Gg"), D, F (ng))) becomes a parabolic A}, -triple. Put

EtD = ker(EJ(.") — Gg-")), et .= <I>(")|A1

n+1
j /S®E§ )

Fip1(BMY) = ker(Fir (BYY) = Fipa (GIY))

Then (E\"™), B 9(n+1) |, (E"™))) becomes a flat family of parabolic A} -triples on Xg over R.

There are exact sequences

(107) 08" 5 EM ek -G 50 and 0 G - B ok - B -0

J
for 7 = 1,2. Then we can see that (G’Y”,G’gn)7 @G(n),F*(GY”))) becomes a parabolic A}, -subtriple of
(B B gt F(EMT)) @ k. We can check that Fi1 (G\™) = G\ 1 (Fiy (B"™) @ k) for
1=1,...,0. Put

CJ(.") = G;") N B§~n+l), Qo) = (<I>("+1) ® k)|A}Dk BC™>

Firr(C) i= Fin (G N Fea (BUY) (i =1,...,0).

Then (C™, C{™, ® ), F.(C!™)) becomes a parabolic A}, -triple and Fj "y = c"n(Fi (BT e
k) for i = 1,...,1. A quotient parabolic structure F,(B\"™ /C{™) is induced on B\"*Y/C{™ and a
homomorphism @ gn+1) /o) : Ap, © B{"™ i - B /¢ is induced by &+, Then

(B 10, B 105V, @ gy s Fu (BT jOI™))
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becomes a parabolic A}, -triple. If (™, ci™y # (0,0), then we have
(1", 05" B, F(CF) € imax (G, G5V, @, Fu(GA))
< o (B}, B3V, @), BL(EM)) @ k) = n((BY™, BY™, @ i, Fu(BY™)),
where pnm.x means the value of p at the maximal destabilizer. Thus, in any case, we have the inequality
(B B @i, E(B")))
<p(B" /€1, BV [0V, B i o, B (B [CF))
<u((B1", By, @iy, Fu(B])))
with equality if and only if (Cf"),Cén)) =(0,0).
The descending sequence
{u(B", By, F.(B)) }nen
must become stationary since it is bounded below. We may assume without loss of generality that
u(BY", By, @ g, Fu(B)"))
is constant for all . In this case we must have (C\"), C{™) = (0,0) and
B, B, @ g, F(B™Y))
becomes a parabolic A%)k -subtriple of
(B, By, @ g, Fu(B]"))

for all n. Since the descending sequence {rank B§”) +rank Bé") }nen must be stationary, we may assume

without loss of generality that rank Bfn) + rank Bén) is constant for all n. Then we must have

(B, By, @ o, Fu(B")) = (B, By, @ vy, Fu(B™Y))
for all n. Thus the sequences (107) split and
(", By, ™, F(B) @ k = (B, BYY, @00, Fu(B) & (G, G5, @G, Fu(G1).
(n+1)
j
image of E](-n) ®k — EJ(-O) ® k is B](-O) for j = 1,2. So we have an isomorphism (E](-O)/E](-n)) ®k = G;O)

Then all the maps ng) — Gg-"'H) are isomorphisms. Since B — B](-") are all isomorphic, every
for any n. On the other hand, every image of m"/m"*! ® E](.O) - E](-") ®k is G;”fl). So we have an
isomorphism (E](-n)/m”EJ(.O)) ® k= BJ(.n_l). Consider the exact sequence

0— BN /m"E” % BO immE” — B /B — 0.

Then u®k : (BY" /m"E\") ok = B{" " — B\ @ k is injective. Thus u is injective and £{” /E{" is flat
over R/m™R. Then quotients EJ(-O) ® R/m™ — EJ(-O)/EJ(.") define a system of morphisms Spec R/m"™ —
. XG5 ()
Q= Quo‘cEJ(_O)/XR/R
If G; is the quotient sheaf of EJ(.O) ® R corresponding to f;, then we have G; ® R/m"R = EJ(.O)/EJ(.").

which induces a morphism f; : SpecR — Q;, where R is the completion of R.

Similarly we can lift the parabolic structure F*(Ggo)) to a flat family F,(G)) of parabolic structure on

G, over R. We can also lift Qqo to @g A%)/S ® G — Gy and (Gl,ég,QG,F*(él)) becomes a
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flat family of parabolic AL, -triples which is a quotient of (E\*, E”,®©) F.(E(”)) @ R. Tf K is the
quotient field of R, then (G, G, D5, F(G1))® K becomes a destabilizing quotient parabolic Alvf( -triple
of (Ey, By, ®,F,(E,)) ® K, which contradicts the semistability of (Ey, Es, ®, F,(E1)). A

As a corollary of Proposition 5.5, we obtain the following proposition:

Proposition 5.6. Assume that of,... ,q; are sufficiently general so that all the semistable parabolic

Alv/s—trz'ples are stable. Then the moduli scheme M)?f,;”ﬁ’v(r, d,{d;}) is projective over S.

There is another corollary of Proposition 5.5 which is used in the proof of the surjectivity of the
Riemann-Hilbert morphism in Lemma 7.1. For a parabolic connection (E,V,¢,{l;}), let (0,0) =
(Fo,Vo) C (F1,Vy) C --- C (F,Vi) = (E,V) be a Jordan-Holder filtration of (E,V), that is, each
(Fi/Fi+1,V;) is irreducible, where V; : F;/Fiy1 — F;/Fi11 ® Q% (D(t)) is the connection induced by V;.

Then we put
l

gr(E,V) = @(Fi/Fi-ﬁ—l;vi)'

i=1
Corollary 5.1. Let R be a discrete valuation ring with quotient field K and residue field k. Let
(E,V,0,{l;}) be a flat family of connections with parabolic structures on X x Spec R over R such that
the generic fiber (E,V,p,{l;}) ®r K is a-semistable. Then there exists a flat family (E,V,,{l;}) of a-
semistable parabolic connections such that (E,V,$,{l;}) ® K = (E,V,¢,{l;}) ® K and gr((E,V)® k) =
gr((E,V)®k).

5.5. Proof of Theorem 2.1 (1). Now we prove the assertion (1) of Theorem 2.1.
We take S for T, x A,, and & for P! x T,, x A,,.
Let D; C P! x T, x A, be the effective divisor determined by the section

T x Ap = P X Ty x Ay () 1<i<ns (M) 1<k<n) = (Eis () 1<j<ns (Ak)1<k<n)

fori =1,...,n and put D := > | D;. Then D becomes an effective Cartier divisor on P! x T}, x A,
which is flat over T, x A,,.

We fix a line bundle L on P! x 7}, x A,, with a relative connection
Vp:L—=L® Qi’lenxAn/TnxAn (D)

over T,, x A,,. Let o' = (af,... ,ah,), B =(B1,02), and v > 0 be as in Theorem 2.1.
We define a moduli functor M%P (L) of the category of locally noetherian schemes over T;, x A,, to
the category of sets by
M P(L)(S) == {(By, B2, 6, V, 0, {l:}}-1)}/ ~,
where S is a locally noetherian scheme over T, x A,, corresponding to (t,A\) = (t1,.-. ,tn,A1,--- ,An) €
T,(S) x A, (S) and

(1) Ei, E; are rank 2 vector bundles on P! x S,
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(2) ¢ : Ey — E, is an Op1yg-homomorphism, V : E; — Ey ® Qp,(D(t)) is a morphism such that
V(fa) = ¢(a) @ df + fV(a) for f € Opiys, a € Ey,

(3) l; C E1];, are rank 1 subbundles such that (res;, (V) — \id|s,)

4) ¢ : N°Bs =5 L ® L, is an isomorphism such that (¢ ® 1)(V(s1) A (s2) + é(s1) A V(s2)) =
(Vr @idg,)(p(d(s1) A ¢(s2))) for 51,82 € Ey where L, is a line bundle on S,

(5) for any geometric point s of S, the fiber ((E1)s, (E2)s, ¢s, Vi, s, {lilt;0r(s) Hie1) is (@, B)-stable
and deg(Ey)s = deg L.

;;,=0fori=1,... n,

Here (Ey, Es, ¢, V,0,{li}) ~ (E{,E}, ¢', V', ¢, {l}}) if there exist a line bundle £ on S and isomor-
phisms o : E; & E; ® L for j = 1,2 such that o1, xs(l;) = I} for any 4, the diagrams

Ey —¢—) Ey E, L) Ey, ® Q%;,l (D(t))
ollg %lﬁz and Ull% %l@@id
ElolL —2 5 B oL EloL —— Eye0L,(D(t)®L

commute and there is an isomorphism o : £, = L, ® £®? such that the diagram

NE —— Lol

~

No2 l% %lid@o’

NE oL 229 L oL, o8

cominutes.
We can define another weight a = (@1,... ,ao,) with 0 < ay < -+ < ag, < /61[3:/62 <1 by
a = al ﬂl
B+ B

Theorem 2.1, (1) follows from the following theorem:

Theorem 5.2. There exists a coarse moduli scheme M P(L) of MSP(L), which is projective over

T, x A, if &' is generic. If we put

n

MS(L) := {(El,E2,¢,V,<p, {l;}) e MZP(L)| ¢ : By — Es is an isomorphism} ,

then M(L) is a Zariski open subset of Mr‘f"ﬁ(L), which is a fine moduli scheme of a-stable parabolic

connections.

Proof. We put r = 2, d = degL, for s € T, x A,,, | =2n and d; = i for i = 1,...,2n and consider

the moduli scheme Mgy57%7 7 1 (2,d,{d;}). For each (Ey, Bz, ¢,V,p,{li}) € MZP(L)(S), let

D A%S ® E1 — E» be the left Op1yg-homomorphism corresponding to (¢, V) and put Fhiiq(E;) =
Ey(—Y 5 i t;) for i = 0,...,1 and Fy;(E) = ker(Foi_1(E1) — (Euly,/l;) for i = 1,...,1, where
(t1,- - stn, ALy, An) € Th(S) X A (S) corresponds to the structure morphism S — T, X A,,. Then the

correspondence (E1, Bz, ¢,V,,{l;}) = (E1, E2, ®, F.(E1)) determines a morphism of functors

v MEP(L) = MBI m e, (20 o {di}).
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We can easily see that ¢ is represented by a closed immersion. Recall that R® — Ml?l";‘;:ﬁgA T XA (2,d,{d;})

is a principal G-bundle. Then there exists a closed subscheme Z C R® such that

hz = hps X—5 MXP(L).
ST SRR T Rt
Z descends to a closed subscheme of M5 %P (2,d,{d;}) which is just the coarse moduli scheme

SoseR PLXTy XAy /Ty XAy
of MYP(L).

If we take v sufficiently large, we can check that a parabolic connection (E, Vg, ¢, {l;}) is a-stable if
and only if the associated parabolic ¢-connection (E, E,idg, Vg, ¢, {l;}) is (&', 3)-stable. Thus the open

subscheme

Me(L) = {(El,E2, (6, V), F.(Ey)) € MEP(L)| ¢ : By — By is an isomorphism}

n

of Mﬁ"ﬁ(L) is just the moduli space of a-stable parabolic connections with the determinant L.
If deg L is odd, we can see by the same argument as [[M], Theorem 6.11] or [[HL], Theorem 4.6.5] that
M(L) is in fact a fine moduli scheme. If deg L is even, then we can obtain, by an elementary transform,

an isomorphism
o: My(L) = M, (L")

of moduli stacks of parabolic connections without stability condition, where deg L' is odd. Then we can

see by the same argument that o(M (L)) becomes a fine moduli scheme, and so M (L) is also fine. A

6. TANGENT SPACES OF THE MODULI SPACES AND CANONICAL SYMPLECTIC STRUCTURE.

In this section, we will work over the finite étale covering T}, — T}, defined in (94). Fix (t,\) € T} xA,,
and set a; = 2cos2w)\; and a = (ay,... ,a,). Moreover fix a determinant line bundle L = (L, V) on P!
such that res;, (Vi) € Z. We have defined two moduli spaces M (t, X, L), R(Py. ¢)a where M2 (t, X, L)
is the moduli space of stable (t, A)-parabolic connections with the determinant L and R(P, ¢)a is the
moduli of Jordan equivalence classes of the SLy(C)-representations of w1 (P! \ D(t), x) with fixed local
exponents a = (a1,...,a,). As we show in Theorem 2.1, for a suitable (or generic) weight «, the moduli
space M&(t, A, L) is a non-singular complex scheme. In this section, we will describe the tangent space
to M2 (t, A, L) and a non-degenerate holomorphic 2-form on the moduli space M (t, A, L).

Although the moduli space R(P,, ¢)a may be singular, we can define a Zariski dense open set R(P,, ¢)%
of R(Pnt)a such that R(P, )% is a non-singular variety. (Note that for generic a € A,, R(Pnt)h =

a
R(Pnt)a). Moreover on R(Py,¢)% we can also define a canonical symplectic structure ;. In §7 we

define the Riemann-Hilbert correspondence RHg x : M (t, X, L) — R(Pnt)a. We show that RHg x is
bimeromorphic proper surjective morphism and gives an analytic isomorphism between M (t, A, L) :=
RH;;(R(Pnt)g) and R(Pn.t)h. (Again, for a generic A, M&(t, A, L)¥ = M(t, A, L)). Note that RHgx

is not an algebraic morphism, and hence the algebraic structures of M (t, A, L)* and R(P, )% are
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completely different). The canonical symplectic structures on both moduli spaces can be identified via
RH; x|pre(t,a,L), that is, (RHt7A|M;'(t,)\7L)ﬁ)* (1) = Q.

6.1. Tangent space to M (t, A\, L). Consider the base extension of the family of moduli spaces in (48)
by the étale covering T, — T,:

(108) T ML) — T x Ay,

such that for every (t,A) € T/ x A,,, we have 7 *((t,\)) =~ M>(t,A, L). For simplicity, we will omit L
from now on, so we write as M = MS(L) , M2 (t,\) = M2(t,\,L). We assume that « is generic so
that 7, is a smooth morphism (cf. Theorem 2.1).

Let us consider natural projection maps

M
+
T x A,
1! A,

and set ¢; = p; o m,. Since p; : M — T is smooth, we have the following exact sequence of tangent

sheaves on M~
(109) 0 — Ome 1 xa, — Ome/ry, — T (O1; %, /1) — 0.

We will describe this exact sequence in terms of the infinitesimal deformation of the stable parabolic
connections. Let us consider the natural projection map ¢» : P! x T, — T and defines a divisor
D C P! x T! such that ¢; ' (t)ND = D(t) =t; +---+t, C PL.

Let (E,V,$,{l;}) be a universal family on P! x M. Consider the following commutative diagram:

P! x M2
P1
17t
Pl xT! x A,
(110) v
P! xT!

g 1
T,

For a coherent sheaf G on P! x M and a closed point x € M, we set Gy := GIp1xx-

We define coherent sheaves on P! x M as follows.

(111) FO .= {s € End(E)| Tr(s) = 0,; (sl xma)(li) C z}
(112) Fhi={s € End(E) © §1( V1 cry 1y (D)) | Te(s) = 0, (slesaaz) () = 0}
(113) Fht .= {s € End(E) @ G (b1 qr 7 (D)) Tr(s) =0, resie, xaray (8)() € z}

For a local section s of F°, define V (s) := Vs—sV. Then it is easy to see that V;(s) is a local section of
F1. Since we have a natural inclusion of sheaves ¢ : F* < F'F we can define two complexes of sheaves

on P! x M2:

(114) F=[Vi: ' — F,
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(115) Fot . [vt . F0 Ly FLA
1

Let x € M2 be a closed point and set m(x) = (t,A). Setting 73 = FL+/F!, we have the following

exact sequences of the complexes on P! x M and P! x {x}.

0 0
) )
Foo Xy 73 pl
] 4 | !
(116) 70 vi, 71+ onPlx M2, 0 E) FL+ on P! x {x}
\J \ \ \
0 — T 0 — Tix
\J \J
0 0

Note that at each point ¢;, 1 < i < n, the stalk (71 x), is isomorphic to C((¢;,x)), hence H(T; x) =~
© L C((t, %) ~ ™.

Lemma 6.1. At each closed point x € M (t,\) C M the tangent spaces can be given as follows.

v,
(117) (Onra /1 )< = HY (P [F2 23 FLTY),
(118) (Onrs /71 wn, )x ~ HY(PL [0 23 7)),
(119) (O71 xA, /T )rm(x) = H(Tix) = C".

Under these isomorphisms, we have the following identification of the natural exact sequences of the

tangent spaces with the exact sequences of the hypercohomologies:

0—  (Opa/rixa,)x  — (Opre /17 )x — (O xa, /1 )rx) —0
(120) I I I
Vix er
0— HYF 37 — HYF I3 FLT]) — H(T1 x) — 0.

Proof. The smoothness of the natural map m, : M® — T, x A,, follows from Theorem 2.1. (Actually,
one can show that H?([FY S FL]) = {0} (cf. Lemma 6.3)). The space of the infinitesimal deformations
of logarithmic parabolic connection with fixing the eigenvalues of the residue matrix of @X,ti at t; is given
by the hypercohomology
H'(PY,[70 T3 7).

(Cf. Arinkin [A]). Moreover it is easy to see that H!(P!, [F2 V;>+'x FL+]) is the set of infinitesimal
deformations of logarithmic parabolic connections without fixing the eigenvalues of the residues of V.

Since 71 x is a skyscraper sheaf supported on D(t) C P! x {x}, we see that H’(0 — 71 x) = {0},
H'(0 —» Tix) = H*(T1 x)
in (116) show that the natural map

~ C". Local calculations of the maps V;, V;  in the commutative diagram

dmp x : Hl([Vfx cFY — FUY)) — HO(TY)

gives the differential of the map m, : M* — A,, at x. Since H?([F2 S FL]) = {0} or equivalently m,

is smooth at x, the map dmy is surjective. A
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6.2. The relative symplectic form Q for =, : M — T} x A,. Let us consider the smooth family

of moduli spaces of stable parabolic connections:
(121) T s MY — T x A,,.

Now we will show that each closed fiber 7,1 (t,A) = M*(t,\, L) admits a canonical symplectic structure

2, which induces a non-degenerate skew symmetric bilinear form on its tangent sheaf:

(122) Qe Omaear) @ Oneawar) — Ome(taL)-

First, a local calculation shows the following

Lemma 6.2. For each point x € M(t,\,L) = 7,1 (t,\) C M*

n’

set Fi = fliplxx for i =0,1. Then

we have isomorphisms
(123) Fa FU @ Op1, Fo~ Fil @ Qb

where FL = Hom(FL, Op:1).

The following lemma is a key of proof of the smoothness of the moduli space M (t, A, L). The stability

assumption on the objects in M2 (t, A, L) is essential in this lemma.

Lemma 6.3. Under the notation as above, we have

(124) H?*(P', F2) = {0}.

Proof. Consider the dual complex (V') : (F})Y ® Qp, — (F°)Y ® O, which can be identified with

the original complex V! by Killing form (cf. Lemma 6.2). Therefore

1

H2(F*) coker [Hl(f;g) i Hl(}",{)}

1

1\Vv N
ker {Hl(f,{)v ) Hl(f,‘g)v]

12

ker [HO(JT,‘Z) v, HO(]-‘;)} "

Since F? is in the trace free part of the endomorphisms, it suffices to show that any s € H(F2) such
that sV = Vs is a scalar. For any A € C, let us set EY = ker(s — \) and E} = Im(s — ). Then both EY
and E} are subsheaves of E stable under V. If EY is locally free of rank 1, one can see that either EY or

E; violates the stability of E. Hence EY is zero or coincides with E. Therefore s is scalar. A

Proposition 6.1. There exists a global relative 2-form
(125) Qe HO(MS, Ve /rr xa,)-

which induces a symplectic structure on each fiber of .
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Proof. Let us consider the following commutative diagram:

P x Mx B M2
(126) + i

P' xT! x A, 2 T'xA,
Let F* := [V, : FO — F'] be the complex of sheaves defined in (114). From Lemma 6.1, we have a

natural isomorphism of sheaves:

(127) R'p2 . (F*) = Opgaj7v A, -

By this isomorphism, it suffices to define a non-degenerate skew-symmetric form
(128) Q:R'pyu(F*) @ RUpaa(F®) — R7py o (W1 prsjaae) = Otz

Let us fix a point x € M&(t, A\, L) = m, }(t,A) C M2 and define the restriction as F§ = Flp1x(x}- From
the following definition of (2(x) at the stalk level of (128), it is obvious the definition of the global relative
2-form ) in (128), and the non-degeneracy of Q! will be checked at the stalk of each closed point x.
Take an affine open covering {U,} of P! and consider the following pairing
(129)
Qx): HY(PLFHeoHY(PLF) — H?*(Qp,) ~ C(x)

({vas} {uald], Hvash{ua}l) = [{Tr(vap o up) — Tr(ua o vi5) ] = [{Tr(vas © vj,)}]
where we consider in Cech cohomology and {v.s} € CY(F2), {ua} € CO(FL), {ViVas — VasVx} =
{ug — uo} and so on. We can check that Q(x) is a skew symmetric pairing. Let us show that Q(x) is
non-degenerate for any point x € M(t, A, L). From Lemma 6.3, one can show that H?(F2) = 0 for any
x € M&(t, A, L). Q(x) induces a homomorphism

H' () = H' (7).
From the spectral sequence H? (H?(F2) — HY(FL)) = HFF(FY), we obtain the following exact se-
quence

(130) 0 — H(FY) — H°FL) — HYF?) — HY(FY) — HY(FL) — 0.

Then we obtain the exact commutative diagram
) —— H(F) —— B —— HE) —— H'(F)
J T N
HY(FR)Y —— HY(FQ)Y —— HY(FR)Y —— HY(FR)Y —— HO(FR)Y,
where by, ... , by are isomorphisms induced by the isomorphisms Fg = (F!)Y @ Qp,, Fi =2 (FU)Y @ Qb

and Serre-duality. Thus £ becomes an isomorphism by five lemma. A

6.3. Smoothness of M2 (t, A, L) and its dimension. In this subsection, we prove that the morphism

Tt MS(L) — T, X A,, is smooth of equidimension 2n — 6, which is stated in Theorem 2.1, (2).

Proposition 6.2. (1) The morphism m, : M(L) — T;, x A,, is smooth.
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(2) For any closed point x € M (t, X, L), we have
(131) dimc H*(F2) = 2n — 6.
In particular, the moduli space M (t, A\, L) is smooth of equidimension 2n — 6.
Proof. (1): By a standard argument as in [Lemma 4, [A]], the smoothness of 7, at x follows from

Lemma 6.3. (2): First, by (123), we have 7' ~ (F°)V ® Qf,, and hence Serre duality implies that
X(PY Fr) = X((F2)Y @ Qp1) = —x (P, FY). Together with the exact sequence (130), we obtain

(132) dim H' (F2) = —x(P', ) + x(P', Fy) = =2x(P', ).

Setting End®(Ex) = {s € End(Ey) | Tr(s) = 0}, by definition of F2 (111), we obtain the following exact

sequence
(133) 0 — FO — End’(Eyx) — @7, C((t;,x)) — 0.

Since End’ (Ex) is a self-dual locally free sheaf of rank 3 on P!, Riemann-Roch theorem implies that

x(P', End’(Ex)) = 3+ degEnd’(Ex) = 3. Then the exact sequence (133) together with (132) shows that
Y(PY, 7Y = x(End® (Ex)) —n =3 —n,

which implies the assertion (131) . A

Remark 6.1. One can also show that
(134) H?(P', 7)) = {0},

which implies that the morphism M5 — T, is smooth.

6.4. Tangent space to R(P,¢)a- Let (E,V,p,{l;}) be a stable parabolic connection on P* correspond-
ing to a point x in M (t, A, L). Let us consider the inclusion j : P!\ D(t) < P! and define

(135) E=ker [V*": E— (B p1)]pr\pyy) -

Then E becomes a locally constant sheaf on P* \ D(t). The correspondence (E,V, ¢, {l;}) — E induces
an analytic morphism

(136) RHt,)\ : Mr?(ta )‘7 L) — R(pn,t)a

which is called the Riemann-Hilbert correspondence. (Here we set a = (a;),a; = 2cos2w); ). For the
precise definition, see Definition 7.1 in §7.
The morphism RHg » will be studied in detail in the next section.

Define another locally constant sheaf on P!\ D(t) by
(137) V = {s € Hom(E, E)| Tr(s) = 0}.

Note that for each point u € P!\ D(t) the fiber of V,, is isomorphic to the Lie algebra slz(C). Therefore

V admits the natural non-degenerate pairing ¢ : V@V — Cp1\ p(¢) induced by the Killing form on each



56 MICHI-AKI INABA, KATSUNORI IWASAKI, AND MASA-HIKO SAITO

fiber V,,u € P!\ D(t). Now consider the constructible sheaf j.(V) and the following exact sequence

induced by the Leray spectral sequence for the inclusion j : P1\ D(t) < P!:

(138)
0— H'(P',j.V) = H'(P'\ D(t),V) = H°(P*, R'j.(V)) = H*(P',j.(V)) = H*(P*\ D(t),V).

Recall that in §4 we have obtained the morphism

(139) On :Rn — T x A,

such that ¢! ((t,a)) = R(Pnt)a. Fixing t € T}, we can also define

(140) Ont R(Pnt) — t x A,

Lemma 6.4. Let (E,V,p,{l;}) € M(t,\, L) be a stable parabolic connection, and E := ker V p1_p(y)
the corresponding local system. Moreover let V be the trace free part of End(E). Let us fix a monodromy

representation pg : m (P*\D(t),*x) — SLy(C) associated to the local system E. Fix canonical generators

Yi,1 <i < n of m (P! \ D(t),*) and set M; = pg(vi) € SL2(C) for 1 < i < n. Consider the following

conditions.
(141) The representation pg is irreducible.
(142) For each i,1 < i <n, the local monodromy matriz M; around t; is not equal to £1,.

(1) Under the condition (141), we have
(143) H*(P*\ D(t),V) = {0}.
(2) Under the conditions (141) and (142), we have a sheaf isomorphism
(144) RYL(V) = &7, C(t:),
and the exact sequence of cohomology groups.

(145) 0 — H'(P',j.V) — HYP*\ D(t),V) — H°(P', R'j.(V)) — 0.

Proof. Since we have a canonical non-degenerate pairing
3+(V) @ . (V) =3 o,
we have a self-duality (j, V)Y ~ 4,V and hence a duality isomorphism
H*(P',j.(V)) ~ H (P, 5. V)Y ~ H°(P'\ D(t),V)".
Since by (141) the monodromy representation pg is irreducible, H°(P! \ D(t),End(E)) ~ C - Idg by
Schur’s lemma and hence its trace free part H°(P!\ D(t), V) is {0}, thus
(146) H2(P1,j.(V)) = {0}.

Moreover H* (P!, R4, V) = {0}, for the sheaf R'j,V is supported only on D(t) = t; + -+- + t,,. Then
the assertion (143) now easily follows from the Leray spectral sequence for j : P1\ D(t) — P*.

From (138), we obtain the exact sequence (145) because of (146).
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For the assertion (144), we first remark that the sheaf R'j,V is supported on D(t) = t; + -+« + t5.
We will determine the stalk R! Jj« Vi, at each t;. Let us take a small neighborhood U; of t; and u; €
U; — {t;}. Then one can identify the fiber V,, with the symmetric tensor Sym?(E,,). Consider the

V., =~ Sym?(E,,) as the vector space with the action of M;. Then define the invariant part as
VjiMi> = Sym?(BE,,)<M:> := ker(Sym?(M;) — Id : Sym?*(E,,) — Sym?(E.,,)).
Then it is easy to see that
RYj.V,, ~ (VEM>)Y

Choose a suitable basis of E,, and write M; as M; = ( 3 ) with ad — bc = 1. Then the action of

o

M; on Sym?*(E,,) has the following matrix representation.

a® ab b?
(147) Sym?(M;) .= | 2ac ad+bc 2bd
2 cd d?

Then it is easy to check that the eigenvalues of Sym?(M;) are given by the roots of
(z—1)(2* — ((a+d)? =2)x+1) =0.

If neither of the roots of 22 — ((a + d)? — 2)z + 1 = 0 is 1, then dim ker(Sym?(M;) — Id) = 1. If one of
the roots of 22 — ((a + d)?> — 2)z + 1 = 0 is one, then we have (a + d)? = 4, which implies that a +d = £2.
For those cases, the eigenvalues of M; are 1 or —1 respectively. We may assume that M; # +I,. Then

we can assume that M; = < 10 > or M; = < -1 _bl ) with b # 0. For these cases, we can write

0 1 0
1 b b 1 —-b b
Sym*(M;)=| 0 1 2b or 0 1 -2b
0 0 1 0 0 1
Now it is easy to check that dim ker(Sym?(M;) — Id) = 1. A

Lemma 6.5. Let us fit t € T),. The notation being as in Lemma 6.4, let us take a point y := [E] €
R(?n,t)a - R(?n,t)

(1) Assume that the condition (141) holds for E. Then the total space R(P,,+) is smooth at y = [E]

and we have the isomorphism
OR(P, )y = H'(PH\ D(t),V).

(2) Assume that the conditions (141) and (142) hold for E. Then, the map ¢, + : R(Pnt) — t x A,
is also smooth at'y = [E|. Hence the fiber ¢;71t (a) = R(Pnt)a is smooth at'y where a = ¢, +(y).

Moreover we have the following linear isomorphisms:
(OR(P. )y = H' (P, j.V)
(Or(P,.o)y = H'(P'\ D(t),V)

(Ot )6, o(y) = H (P, R (V)



58 MICHI-AKI INABA, KATSUNORI IWASAKI, AND MASA-HIKO SAITO

Under the isomorphisms above, we have the following identification of the natural ezact sequences

of the tangent spaces with the sequence (145)

d¢n,t*
0— OrEE.)y — (OrP,.0)y = (Otxa)éney) — 0.

(148) [ | I

0— HYPYj5.V) — HYP'\Dt),V) — HP,R'Y.(V) —0.
Proof. 1. Since E is irreducible, it is easy to see that the Zariski tangent space O (p, ).y of R(Pnt) at
y = [E] is given by H!(P!\ D(t), V) and the obstructions to deformations lie in H*(P \ D(t), V). Since
we assume that pg is irreducible, we have H?(P \ D(t),V) = {0} (cf. (143)) , from which the assertion

follows.

ddn b«
2. From Lemma 6.4, under the assumptions, we can see that the differential (O (p, .))y 4)—;

(OtxA, )¢, .(y) can be identified with the linear map
H'(P'\ D(t),V) — H°(P',R'j.(V)) ~ C",

which is surjective because of H*(P1,5,V) = {0}. Therefore the map ¢, ¢ is smooth at y = [E] and

the fiber ¢;k (a) = R(Pn,t)a is smooth at y. Other assertions now easily follow from the exact sequence

(145). A

Lemma 6.6. Under the conditions (141) and (142) for E, we have an isomorphism of locally constant

sheaves
(149) jsV = kerVy ~ [V : FO — F'],
which induces a canonical isomorphism
(150) H'(P',j.V) = HY([V:: F°* — F).
Moreover we have the canonical non-degenerate pairing
(151) HY(P',j,V)® H (P!, j,V) — H?*(P!,Cp1) ~ C,
which induces the non-degenerate pairing Q1 (y) aty = E
(152) N(y) : (OrP, 0.y @ (ORP. )y = (OR(P, )y
This pairing can be identified with (129) via the isomorphism (150).
Proof. The assertion (149) is trivial at the point v € P!\ D(t). At each point ¢; i = 1,... ,n, we will
describe the connection V and V; locally around ¢;. Let us set n = n; = res;, (V) € Z. We separate the
proof into two cases.
i) Let A\,n — X\ be the eigenvalues of res;, (V). First assume that 2A ¢ Z. Then A\ # n — A. By

a standard reduction theory of connection near a regular singularity, we can choose a suitable local

coordinate z around ¢t = ¢; and write down the connection matrix of V by

dz A 0
v_z—t<0 n—/\>'
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Then for a local section s = <Zl S; ) € End(E), the connection Vis = Vgs — sV is given by
3 —S1
s1os2) dsy dsy + (2X —n)sz(z —t) tdz
S3  —S§1 ds3 + (n —2)\)s3(z —t) tdz —ds; )

Solving V; = 0 locally near z = t, we obtain the local solutions for z # ¢ as follows.

O R e B A |

Here, ¢1,co,c3 € C are constants. These solutions have to be single-valued well-defined section around
1 0
0 -1
hand, the stalk (j.V); is the space of monodromy invariant trace-free endomorphisms of E,, which is

also generated by (1)

z = t, hence ker V; is generated by < > . (Note that this local section lies in F°. ) On the other

_01 . Hence we have an isomorphism (5. V), ~ ker(V1);.
ii) Again, let \,n — X be the eigenvalues of res;, (V) and assume that 2\ € Z. Since we assume that
the local monodromy M; is not £15, by a reduction theory of a connection near a regular singularity, we

can choose a suitable local coordinate z around t = t; and write down the connection matrix of V by

Vo dz <m1 (z—t)mr’"l);

Tzt \0 mo

where 2my,2my € Z, my — my; € Z and m; < my. For local section (Zl Sz ) € End(E) , the
3 —S81

connection Vs can be given by

s1os) dsy + s3(z — t)ym2—mi=1qy dsy — 2s1(z — t)™2~"™ 7 dz + s (my — me)(z — t)"1dz
s3  —S81 dss + s3(my —my)(z — t) " tdz —ds) — s3(z —t)ym2—m™11qy )

Solving Vs = 0 locally for z # t, we obtain the solutions

_ 0 (z—t)m2—™ 1 2(z—t)™ ™ log(z —t)
s=a0 (0 0 > +c2 <0 1

log(z — t) (z —t)m™2~™1(log(z — t))2
o )

z —t)mTme —log(z — t)

where ¢, co,c3 € C are the constants. Then we can see that all single valued solutions for ker V; are

0 (z—t)me—m
cl(o ¢ )0 >

which are also sections of (j.V);. Therefore we have an isomorphism (ker V1), ~ (j.V);. Hence we have
proved the assertion (149) which shows also (150).

It is easy to see that the pairing of sheaves j,V ® j,V — j.Cpi\p(t) = Cp1 is non-degenerate at
each point of P!. Therefore, the pairing (151) is also non-degenerate.

A

Summarizing all results in this section, we have the following

Proposition 6.3. Let ¢, : R, — T x A, be a family of moduli spaces of representations of the
fundamental group 7 (P \ D(t),*) as in (139). Let R? be the subset of R, whose closed points satisfy
the conditions (141) and (142).

Then RY, is a non-singular variety and the restricted morphism

(153) bn:RE — T x A,
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is smooth, so that all fibers Ri’(ha) = R(Pns)t are non-singular varieties. On RY,, there eists a relative

symplectic form

(154) Q€ D(RL, O g 4

induced by (152).

Remark 6.2. (1) Since p2 0 ¢, : RE, — T! x A, — T is locally trivial, one can lift Q; €
[(RE, Q%i T ><An) to a relative regular 2-form
(155) Q€ F(RQL,Q;;H/AH).

In §7, we can define the Riemann-Hilbert correspondence RH,, : M — R,, which is a surjective
holomorphic map. Set (M2)* = RH_ ' (R!). From Lemma 6.6, one can see that RHZm“ ()
coincides with the two form Q(ye): € D((M)F, O 1rayt /77 xa,,) defined in (129). Pulling back
Q via RHn\Ri? we obtain

(156) Qe D((Mg)F, Q%Mg)ﬁ/An)

which is a lift of Q|(jsa )¢ via the canonical morphism ((MS)?, Q%M::)”/An) — D((M2)%, Q%M::)”/T,’L )
(Note that a lift € can be induced from the splitting homomorphism (20) and the splitting homo-
morphism can be defined algebraically). Since the codimension of M\ (M&)* in M2 is at least
two, the two form Q can be extended to a regular relative two form on M2 which will be denoted
also by Q. This extended two form Q € T(M2, Q?W#/An) is a lift of Q € I'(M2, Qﬁ\/l,?/T,’,xAn) in
(129) on the whole total space M.
(2) The closedness of €, (dare/a, (Q) = 0), can be proved as follows. It is easy to see that the two
form Q here coincides with the symplectic two form introduced in [Iwl] and [Iw2] on a Zariski

dense open subset (M) of M. As proved in [Iwl], [Iw2], there exists a suitable affine open

covering {U;}; of (M2)" with local coordinates (for U; )

(q{,... ,qf,,pi,... ,pf,,tl,... Jlny ALy et A)

such that Q|U,- can be written as

(157) Yo, =Y _dg, Adpy, = diy AdH[(p,q,t, \).
k=1 =1

where 7 = n—3 (= the half of the relative dimension of 7,,) and H{(p, q, t, A) are regular algebraic

functions on U;. The closedness dy;«/x, (Q) = 0 on U; easily follows from the expression (157),

hence by analytic continuation we see that dpse /4, (€2) = 0 on the total space M.
(3) The regular functions H;(p, q,t,A) on U; in (157) are called Hamiltonians for Painlevé or Garnier
systems with respect to the time variable ¢;. Actually on an affine open set U; one can obtain
the Hamiltonian systems (Cf. [Iw1], [Iw2]).
dqi, OH; 0Opj,  OH]

1 = . =
(158) oty ap}c B 7] 8(]2
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Although these Hamiltonian systems are defined on a Zariski open subset (M) of M, these
Hamitonian systems can be extended to Hamitonian systems on the total space M. This is
because global vector fields on M induced from the isomonodromic flows coincide with these
Hamitonian systems on the Zariski open set (M) and the global vector fields on M also

preserves the symplectic form Q.

7. THE RIEMANN-HILBERT CORRESPONDENCE

In this section, we also work over 17, (cf. (94)). Fix (t,A) € T, x A,, and set D(t) = t; +---+t, C P,
a; = 2cos2m); and a = (ay,...,a,) € A,. Moreover fix a determinant line bundle L = (L,V ) on P!
such that resy, (V) € Z for every 1 < i < n. We have defined two moduli spaces M2 (t, A, L) in (42) and
R(Pyt)ain (97). In this section, we define the Riemann-Hilbert correspondence RHg » : M*(t, A, L) —

R(Pn.t)a, and show our main results for the Riemann-Hilbert correspondence (Theorem 7.1).

7.1. Definition of RH¢ x. As in (136), take E = (E,V,p,l) € MX(t, X, L) and define the local system
on P\ D(t) as E = ker (V|p1\p(t))" - (Here we denote by (V|p1\p(t))” the analytic connection
associated to (Vp1\p(¢)).) Choosing a suitable flat basis for the fiber E, at the base point * € P*\ D(t),
one can define a monodromy representation pg : 7! (P! \ D(t),*) — SLy(C). The difference of choices

of flat basis can be given by the adjoint action of SL2(C), and hence one has a correspondence
(159) E=(E,V,p,l) — [pe]

Here[pg] denotes the Jordan equivalence class of pg.

Fix canonical generators v;,1 < i < n of 7' (P! \ D(t),*). For a monodromy representation pg of
(E,V,p,1), set M; = pr(v:) as in §4. Since eigenvalues of res;, (V) can be given by \;,res;, (V) — A\ and
res;; (V1) € Z, we see that the eigenvalues of M; are given by exp(F2my/—1);). Therefore, we have local

exponents for pg
(160) a; := Tr[M;] = exp(—27vV—1X;) + exp(2nvV —1);) = 2 cos(2mA;),

which are invariant under the adjoint action.

Definition 7.1. Under the relation (160), the correspondence (159) gives an analytic morphism

(161) RH » : M (t, A, L) — R(Pnt)a;

which is called the Riemann-Hilbert correspondence.

7.2. Fundamental properties of Riemann-Hilbert correspondence. Let us assume that n > 4.

In §4, (96), we have defined the family of moduli spaces of representations of fundamental group ¢, :

Rn. — T} x A, and we also have a smooth family =, : M&(L) — T x A, whose geometric fibers are
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Me(t,A, L) (cf. Theorem 2.1). From Definition 7.1 we obtain the following commutative diagram:
Mz (L) Rn
(162) ml “’"l

id X pin
T x A, =% T! % A,.

RH,,

Here pu, : A,, — A, is given by

(163) Un(A1, oo An) = (a1,...,a,) = (2c08(2mA1), ... ,2co8(2mAy)).

Of course, for each (t,A) € T}, x Ay, the morphism RH,,|ase(¢,x,1) 18 equal to RHg » in (161).
Theorem 7.1. Under the notation and the assumption as above, we have the following assertions.

(1) For all (t,A) € T}, x A,,, the Riemann-Hilbert correspondence RHg x : M (t, X\, L) — R(Prt)a

in (161) is a bimeromorphic proper surjective morphism.

(2) For any (t,\), let R(Pn.t)f be the Zariski open subset of R(Ppt)a whose closed points satisfy the
conditions (141) and (142) in §6, and set M (t, X\, L)* = RH;;(R(Pnt)g) Then the Riemann-

Hilbert correspondence gives an analytic isomorphism

(164) RH x peean)t 2 M (t A, L)F =5 R(Pns)k-
(Note that if X is generic (cf. Definition 2.3, (36), (37)), R(Pnt): = R(Put)a, hence RHg x
gives an analytic isomorphism between M (t, X, L) and R(P,.t)a.)

(3) Let us set R(Pnt)5™ = R(Pnt)a \ R(Pnt)h. Then the codimension of R(Ppt)5™ in R(Pnt)a
15 at least 2.

(4) The symplectic structures Q@ on M (t,X, L) and Q1 on R(P,.+)% can be identified with each other
via RHg x, that ¢s,

(165) 0= (RHt)‘"R(P“’t)E) () on MS(t, A, L) .

Remark 7.1. (1) The moduli spaces M (t, A, L) and R(Pnt)a are irreducible. (See §8 and §9).
(2) The statement (165) is originally shown by Iwasaki in [Iw1], [Iw2].

Let us denote RHg » in (161) simply by RH. We first show the following

Lemma 7.1. Assume thatn > 4 and that a; (i = 1,...,n) are so general that all the semistable parabolic
connections are stable. Then the morphism RH : M2 (t,\,L) — R(Pn ¢)a is a bimeromorphic surjective

morphism.

Proof. Let Ri”(Pn,t)a be the open subscheme of R(Pp¢)a whose points correspond to the irreducible
representations. First we will show that Ri”(Pn,t)a is contained in the image of RH.

Let MI™(t, X, L) be the open subscheme of M2 (t,\, L) consisting of the points corresponding to the
irreducible connections. Note that if (E, Vg, ¢, {l;}) is a parabolic connection such that (E,Vg) is an
irreducible connection, we have (E,Vg,¢,{l;}) € M&(t,\,L). We consider the isomorphism of the

moduli spaces

Elmy, : My*(t, X, L) = Mp*(6, X', L(=t:)); (B, Vg, ¢, {li}) = (E', Ve, ¢ {li}),
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where E' = ker(E — Ey, /l;), Vg is a connection on E' induced by Vg, l; = ker(Ej, — Ey,), l; = [; for
J# i, A =1+res;, (V) — Ai, \j = Aj for j #i and o' : /\2 E' 5 L(—t;) is the horizontal isomorphism
induced by ¢. We also consider the isomorphisms of the moduli spaces

®O(t;) : ME (¢, X, L) — M (t, X', L ® O(2t;));

(E, Vi, p,{li}) = (E® O(t:), Vegow) ¢ @ 1,{l; ® O(t:)

t:3))
where A} = \; — 1 and )\;- = \; for j # i and we consider for A; # res;, (VL) — A;, an isomorphism
Si: Miarr(fﬂ A, L) — Miarr(fﬂ AI; L); (E7 Vg, 2 {ll}) = (E7 Vg, 2 {l;})a

where A} = res;, (VL) — Xi, \j = Aj for j # 4, I} = ker(res;, (V) — ;) and I; = [; for j # i. Note that
these isomorphisms all commute with the Riemann-Hilbert morphism RH.

Now we fix (A1,...,A,) € C™ and put A\ := X\;, A; :=res;, (V) — \; for i = 1,...,n. Applying a
certain composition of Elm, , ®Op1(t;) and s; for i = 1,... ,n, we obtain an isomorphism

71 M (6, L) == My (6, X, L),

where X, := X\; + m] and res;, (V) = resy, (VL) + m; +m] for some integers m},m; € Z such that
0 <Re(A\f +m) <1,0<Re(\; +m; ) <1lforl<i<n.

Let N (t,\’, L") be the moduli space of rank 2 irreducible connections (F,Vg) with a horizontal
isomorphism A”> E = L' such that det(res;, (V) —A}) =0fori =1,...,n. By [[Del70], Proposition 5.4],

we obtain an isomorphism

(166) rh: NI (¢, N L)) =5 RE(Prt)a.
There is a canonical surjective morphism

(167) M, N L) — NE (¢, X', L))

which is obtained by forgetting parabolic structures. Composing 7, (167) and rh, we obtain a surjective

morphism
(168) RH : M (t,A, L) — R™(Pp.t)a-

Note that the morphism (167) is isomorphic except on the locus where the parabolic structures are

not uniquely determined by (E, V), namely,
M2PP(t, N L) = {(E,VE,go, {;}) € M (t, X', L) |Res;, (Vg) = O or %idEti for some z}
whose image in R(Pp¢)a is
R¥PP(Pyt)a = {p € R (Pny)al p(7i) = £id for some i} .
Thus the restriction of RH
ME(6,A, L) = MEF(6, A, L)\ 7 (M2 (¢, X, L) 25 R (P, )0 \ R¥P(Py4)a = R(Pro)i

is an isomorphism. Since dim R?*PP(P,, ¢)a < dim Ri”(Pmt)a for n > 4, RH is a bimeromorphic mor-

phism.
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Next we will show that MZed(t, X, L) = R*™4(P, ¢)a is surjective. Take any point [p] € R*(Pp¢)a.
Then the representation p is Jordan equivalent to the representation p; @ p» for some one dimensional

representations pi, pa of 1 (P \ D(t), *). Put
Upa = {(My,... ,Mn_1) € SLy(C)" " |Tr(M;) =a; (1 <i<n—1), Te(MiMz-- Mn1)"")=an}.

Then U, 5 is irreducible by Proposition 8.2. Let ®,, : U, a = R(Py. t)a be the quotient map. Then there
exists a point pg € Up,a such that ®,(pg) = [p]. Since U, , is irreducible, there exists a smooth irre-
ducible curve C, a point p of C' and a morphism f : C — U, 5 such that f(p) = py and that ®,(f(C))N
R (P, ¢)a # 0. From [[Del70], Proposition 5.4], there exists an analytic flat family (E,V i @) of connec-
tions such that ker V z|(p1\ p(¢))xc is equivalent to the flat family of local systems on (PY\ D(t)) x C over
C induced by the morphism f. Applying certain elementary transformations and tensoring line bundles
to (E,V ,$), we may assume that the eigenvalues of res, (E) are \; and res;, (V) — \; fori =1,... ,n.
We can construct a flat family of parabolic structures {/;} and (E,V i P {I;}) becomes a flat family
of parabolic connections. Taking the completion at p, we obtain a flat family of parabolic connections
(E,Vg,p,{li}) on PE[M] over C[[z]]. By Corollary 5.1, there exists a flat family (E', Vg, ¢',{l'}) of
a-semistable parabolic connections such that (E,Vg,p,{li}) ® C((z)) = (E',VEe,¢',{l'}) ® C((x))
and gr((E',Vg) ® C[[z]]/(z)) = gr((E,VE) ® C[[z]]/(z)). Then (E',Vg,¢',{l'}) determines a mor-
phism Spec C[[z]] = M&(t, A, L). If ¢ is the image of the closed point by this morphism, then we have
RH(g) = /). A

7.2.1. Proof of Theorem 7.1 except for the properness of RHy x.

Proof. Here we prove the assertions in Theorem 7.1 except for the properness of RH¢ x which will be
proved in Proposition 10.1. The first assertion except for the properness follows from Lemma 7.1 and the
second assertion is proved in the proof of Lemma 7.1. The last assertion follows from these assertions
and Lemma 6.6. For the third assertion recall the definition of R¥"(P,, ¢)a and R*P (P, ¢)a in the proof
of Lemma 7.1. Let us set R"*(P,, t)a = R(Pnt)a \ R""(Pnt)a. Then we see that

R(Pmt):ing = Rred(pn,t)a U RePP (Pmt)a-

If [p] € R"¥(Ppt)a, then p is a reducible representation. Then the semisimplification of p is a direct sum
of one dimensional representation pi, p2. Since A%p is trivial, ps ~ p; *. Moreover since Tr[p(7;)] = a; are
fixed for all 1 <14 < n, we see that Jordan equivalence class of p, which is equal to the Jordan equivalence
class of p; @ pfl, has finitely many possiblity. Hence R"¢(P, ¢)a is a zero dimensional subscheme.
Moreover for a closed point [p] € R*P (P, t)a, p is irreducible and p(y;) = %id for some i by definition.
This means that p is determined by p(y;) for j # i and so dim R*?(P,, ¢)a = dim R(Pr—1,¢)ar. Noting
that dim R(Pn.t)a = 2n — 6 for n > 3, we have dim R*P (P, t)a = 2n — 8 for n > 4. In both cases, if

n > 4, the codimensions of the subschemes are at least 2. A

7.3. The case of n = 4. In the case of n = 4, let us recall the isomorphism

T,/PGL, ~ B=P'-{0,1,c},
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where B is one-dimensional space of time variables as usual. Here the group PGL2 acts on the base
space P! by linear fractional transformations. Therefore the family and the morphism can be descended

and omne obtains the following commutative diagram:

S ~ e BoR,
(169) | ] o |
BXA4—BXA4MBXA4.

Here the family 7 : § — B x A4 is the family of Okamoto space of initial conditions. The isomorphism

u will be constructed in [IIS2].

8. IRREDUCIBILITY OF R(Py.t)a

As in Lemma 4.1, we have the natural quotient morphism

®, : SLy(C)" L — R(Png) ~ Spec[(Rn_l)Ad(SLZ(c))]

(My, My,... ,My—1) +—  [My,Ms,... , My ]
where R, ; denotes the affine coordinate ring of SLy(C)"!. Under this quotient morphism, for a =

(a1,...,an) € Ay = C", the subscheme R(Pp.t)a in (97) is isomorphic to

R(Pnt)a={[Mi,... ,Mn_1] € R(Png) | Te(M;) =a;,(1<i<n—1),Te(MiMy---My_1)"" =an}.
Proposition 8.1. Assume that n > 4. The affine scheme R(Pn t)a s irreducible.

Set Upa := @, (R(Pnt)a) so that we have a surjective morphism U, o —> R(Ppnt)a of schemes.
Because Tr(My My -+~ M, 1)t = Tr(My My --- M,,_) for M; € SLy(C), we have
(170) Upa={(My,... , M, 1) € SLy(C)" ' | Te(M;) = a;,1 <i<n—1,Te(MiMs---M, 1) = an}.

Then it suffices to show the following
Proposition 8.2. The scheme U, 5 s irreducible.

Let us prove some easy lemma which we will use later. The proof of the following lemma is easy and

we omit it.

Lemma 8.1. Fiz a € C and define

s t
Va_{A_<u !

(1) Then Vi, is an irreducible affine subscheme of C3.

) € SLy(C) | Tr(A) = a}.

2) Let us define a quadratic hypersurface in P2, as:
( q yp &

(171) Ver={lz:y:2:w] € P& | 2° — azw + w* +yz = 0}.

Then we have an isomorphism V, ~ V, \ {w = 0}, that is, V, is a compactification of V. If
a# +2,V, is a smooth quadric hypersurface, and if a = +£2, V, is a cone over a conic and have

a unique singular point at p, =[x :y:z:w]=[a/2:0:0:1].
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Fix a=(ay,...,a,) € A, and set a’ = (ay,... ,a,_1). Using the notation in Lemma 8.1, we set

(172) Var = Vo, X Vo X oo X Vo | CVar i=Va X Vi x Vg, |

It is obvious that Uy, a is a Cartier divisor of the scheme

Va ={(My,... ,Mp_1) € SLy(C) | Tr(M;) =a;,1 <i<n-—1}
defined by the equation
(173) Te(MyMs -+ M,—1) = ap.-

Again from Lemma 8.1, we can introduce a homogeneous coordinates [z; : y; : z; : w;] € P& such that

Vi ={lzi 1 yi: 2 s wi] € PL | Fu, = 27 — agww; + w} + y;2; = 0}

Let us denote by Uma the closure of U, o C Vu in Va C (P?(’;)”’l. It is easy to see that Un,a is also a
Cartier divisor in V.
For1<i<n-—1,set T—2; =V, X"'X‘Zz\i XeooX Voo yand Tyn; =V X+ X Vg, Xooo XV,

(omitting i-th factors) and consider the i-th projections

Upa < Vo X Vi X oo x Vo | Upa < Vo XV X x Vi |
(174) ™ d mid ™) mid
Th—2; = Thoo; T2 = I

Lemma 8.2. For each 1 < i < n —1, the family ; : Upa — T2, can be considered as a family of
hyperplane sections ofval C P% parametrized by Tn_gﬂ'. Therefore Un,a CVaisa hypersurface defined

by a multi-homogeneous polynomial
(175) Ha = Ha(l‘ly yl; Zl) w17 L | l‘n—l ) yn—l; Zn—l; wn—l)

in the homogeneous coordinate ring of (P&)" ™! of multi-degree (1,...,1).

Proof. First we prove the assertion for ¢ = 1. For simplicity, we set 7= T,,_21 and T = T,,_» 1 and we

write as m : Upa — T, 71 : Uma — T. Take an element (My, Ms,... ,M,_1) € T and set
fi fe )
MyMs -+ M, 1 =
2 3 1 < f3 f4
and M; = < Z a t s ) € Vg, with s(a; —s) —tu = 1. Then we can write as
-

(s t fi f _ sfi +tf: sfa+tf.
Ml(M2---Mn—1)_<u a1—8)<f; fi>_<f3(a11—5):uf1 (al—zs)lefufz)'

Hence the Cartier divisor U, o C Va is defined by the polynomial

Te(MiMsy - My—1) —an, = sfi+tfs+ (a1 —$)fs+ufs—an
= (f1 — fa)s+ fst + fou + (a1 f1 — an)-

First, we will show that any irreducible component of U, , is not a pullback divisor via m;. Consider the

(176)

subscheme Z of T' defined by the ideal generated by the following elements:

fi—fa, f3, f2, a1fs —an.

Then, it suffices to show that the codimension of Z in T is at least 2. Recall that T" is a product of V,,’s

fori=2,...,n—1.
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If n > 4, let us consider the natural projection ¢ : Z — Vg, x --- x V,, _,. We will show that every
closed fiber of ¢ consists of a finite number of points or becomes empty, which means that codimension

of Z in T is at least 2. For this purpose, let us set

g1 g2
My M,_ =
2 2 <g3 94 )

S t
M"_1_<u b—s)'

(Note that g1g4 — gogs = 1,8(b—5s) —tu=1, s = sp—1,t =tn—1,u =t,_1,b = an_1). Since

<f1 f2):.7\42-..MTL_2MTL_1:<g1 g2><8 t ):<g18+g2u glt+g2(b_8)>,

and

I3 fa gs Ga u b—s 938+ gau gzt + ga(b—s)
the ideal of Z contains the following element
fi=fs = (g91+94)s+ g2u— gst — gab
f2 = git+g2(b—s)
I3 = g35 + gau.

Using the relations g1 g4 — g295 = 1,s(b — s) — tu = 1, from these elements we can obtain the following

elements of the ideal of Z

2 2 2 2 2 2
5" =g, tT—g3, u —gs.

This means that every closed fiber of the projection ¢ : Z — V4, x --- x V,, _, consists of finitely
many points or becomes the empty set as desired. Let us recall the natural projection m : Up o — T
The assertion implies that the Cartier divisor U, a defined by the polynomial (176) has no irreducible
component which is a pullback Cartier divisor by 7;. Then, from the expression in (176), we conclude
that the polynomial (176) is of degree 1 with respect to s, ¢, u and hence the fibers of the compactifications
Tt Uma — T of morphism m; are hyperplane sections of the quadric hypersurface V,, C P3C. This

proves the assertion for ¢ = 1. Since
(177) Te(M;Miyy - My My - M;—1) = Te(My My --- My 1),

the same is true for the i-th factor. Now we can conclude that Uma is defined by the multi-homogeneous

polynomial of H, of multi-degree (1,...,1). A

Now we prove

Lemma 8.3. For anya = (a1,... ,a,) € A, andi,1 <i < n—1, the general fiber of w; : Upa — Tp 2

is irreducible and reduced.

Proof. By (177), we only have to prove the assertion for ¢ = 1. From now on, we set T, _o =

Tn_271,Tn_2 = Tn_271 and ™ = 1, etc.

For (My, M2, Ms,... ,Mp_1) € Uy a, write
= (o ) et = (1R,

Uy aip —si1 f3 .f4
Then for a fixed (Ma, Ms,...,M,_1) € T, s, the fiber of my, . : Upa — T2 is defined by the

equations

sifittifs+ (e —s1)fstuifo—a,=0, si—ais;+1+tu =0.
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