‘Claus Hertling (MPI Bonn)

Frobenius manifolds and tt* geometry
for singularities |

M = a complex manifold with hol. coor-
dinates tq,...,tm.

tt* geometry on a holomorphic vector
bundle over M: a generalization of va-
riation of Hodge structure.

E.g. m =0, M = {pt}.

For m > 1, M a Frobenius manifold:
additional hol. structure on T M.

tt* geometry on TM
& flat connection
<= M Frobenius manifold
& real structure.



tt* geometry and Frobenius manifolds
have a common source (certain mero-
morphic connections) and arise together.

~
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S. Cecotti, C. Vafa:
Topological-antitopological fusion (1991).
On classification of N = 2 supersymme-
tric theories (1993).

B. Dubrovin (1992).

A weaker version of tt* geometry is in
the work of
C. Simpson (> 1988) on
harmonic bundles,
his nonabelian Hodge theorem,
(mixed) twistor structures.
C. Sabbah (2001): Polaviasblde Awiator ) -wodida



A distingUished- class of examples:

f: (C**+1 0) = (C,0) holomorphic,
with an isolated singularity at 0,

O(Cn—l— 1 .0

(FL)

Milnor number p = dim < 00

Choose ml,'...,mp € Ocn+1 g, Which re-
present at basis of the Jacobi algebra.
A semiuniversal unfolding F' of f:

F = F(z,t) = F(x0,.--sTn,t1, -, tu)

m
f(x) + Z tym;,

=1

F: (nbhd of 0 in C**1 x C*,0) — (C, 0);

M = suitable nbhd of O in CH,
M base space of the unfolding.
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p-constant stratum S, C M:

Sy =A{t € M| Crit(F) = {z} with Fi(z) = 0}.

For t € S, there exists a canonical po-
larized mixed Hodge structure
(Steenbrink '76, Varchenko '80, M. Sai-
to, Scherk-Steenbrink, Pham).



Aim:

(a) tt* geometry on M, which extends
and “explains” this structure on Sy.
(b) M Frobenius manifold.

(b): K. Saito ('TOies and '80ies),
M. Saito ('83), |
C. Sabbah ('96,'02), S. Barannikov ('00),

C. Hertling: tt* geometry, Frobenius ma-
nifolds, their connections, and the con-
struction for singularities.
math.AG/0203054, 81 pages.



Definition 1: Given H' — C* a hol. vec-
tor bundle with a flat connection V.

(a) An extension of H' — C* to a hol.
vector bundle H — C has a pole of
Poincaré rank <r (r € Z>g) at 0 if

1
Vo, : O(H) — —O(H).

(b) A logarithmic pole
;= a pole of Poincaré rank < 0.

(c) An extension H — C has a

regular singular pole at O if its sections
are of moderate growth,

i.e. in a sector C C*

hol section = Zcoeff (z) - (flat section);
|coeff; (z)l < b1|z|b2 for some by > 0,bs € R.
(b)

7 A\
(A)w‘ﬂ; y-.‘,c/f i [c)



Given (H' — C*,V) a flat vector bundle.

r 1 C—oC (2™ =,
pr : w*H — H',
H® := {global flat manyvalued sections
of H — C*}

= {proo | o:C— n*H' flat section},

monodrony Mpmon - Hﬁ,« — HJ,

Mmon HOO —_ HOO, Mmon — Ms . Mu,

N = log My,

HS® :=ker(Ms—X), HPy = Oxze1 HY,
H® =@®\HY =H* & H;_Ol.

Proposition 2: There is a natural 1-1
correspondence between the sets

{extensions H — C of H' — C* with
logarithmic pole} ~and

{ Mmon-invariant (exhaustive) decreasing
filtrations F* of H°}.



Construct an elementary section es(A, a),
a global hol. section of H' — C*:

Choose a € C, A € HZ5,,
then for ¢ € C

A(C+1) = MmonA(C) € H/oric-

es(A,a) = [z e exp(((—N))A(Q]
for ¢ with 2™% =

—N
[z — "2%exp(log z——)A"].
271

Mmon-invariant filtration F® —
extension H — C with logarithmic pole:

O(H}— is generated by

es(A,a) with A € F[—O‘]Hgf%m.



Given (H' — CX, V) a flat vector bundle.

Convention:

decreasing Mmon-invariant filtration F®
+> extension with log. pole at O,

increasing Mpmon-invariant filtration U,
<+ extension with log. pole at oo.

A decreasing filtration F'®* and an increa-
- sing filtration U, are opposite if

p

Proposition 3: An extension H — P! of __
H' — C* with logarithmic poles at 0 and ‘
- o0 is the trivial bundle iff the correspon-
ding filtrations satisfy:

o F'H;jg’1 and U._|_1H7E,>§1 are opposite,
F*H?° and UsH{® are opposite.




Definition 4: A polarized Hodge structure

(PHS) of weight w € Z is a tuple
(H*, F*, HR, S) with |

H>® a finite dim. C-vector space:
F*® a decreasing filtration on H®®;
Hp®> C H* an R-vector space with
H®° = H]I%O &y iHH%’;
S a C-bilinear (—1)%W-symmetric
nondegenerate pairing on H®
with S : Hp® X Hp® — R;
such that

F®* and FY—*® are opposite,
i.e. H® = @,HPW~P
with HPW—P = FP N FW—P:

S gives a polarization, i.e.
S(FP,Fwtl-Py =0  and
the form hgoqge - H X H® — C with

hHodge(aab) = ip—(w—p)S(a,B)
for a € HPY™P b € H*, is hermitian and
positive definite.

A0
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- Definition 5: (a) A (TERP)-structure
(Twistor Extension Real Pairing)

of weight w € Z is.a tuple

(H — C,V, Hg, P) with

H— C a hol. vector bundle;
\Y a flat connection on H|¢« with
a pole of Poincaré rank <1 at O;
Hp — C* a V-flat subbundle of H|p« of
real vector spaces with
H, = (Hp), ® i(Hy), for z € C*;
P a C-bilinear (—1)%-symmetric
nondegenerate V-flat pairing

P:H,xH_,—-C forzeC*
such that
P: (Hgp), x (Hp)_, = i*R
and |
P:O(H)g x O(H)g — 2"O¢

IS nondegenerate.



1

Given a(TERP}structure (H — C, V, Hg, P)
of weight w.

N

v:Pl 5Pl 2

Define
T ¢ Hy— H,,) a C-antilinear isom.

a — V-flat shift to H,(,y of z"“fa.

2 =id.

Glue H — C and ~*H — P! — {0} with
to a bundle

H — Pl

It has a pole of Poincaré rank < 1 at

Q.
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Define K := Hg (fiber at 0) and

define the C-bilinear symmetric nonde-
generate pairing

g . KxK-—=C
(a,0) +{(="P@h))| g 20
forabEC’)(H) with a(O)—a b(O)'—'b

If # — Pl is the trivial bundle then
K = (P, 0(@)),
and |
- TP, O()) - F(PY, O(H))
induces a C-antilinear involution

k. K — K.



Then define a hermitian nondegenerate

pairing
h : KxK—C
(a,b) — g(a, k(b)).

Definition 5: (b) A (TERP)-structure is
a (trTERP)-structure if H — Pl is the
trivial bundle.

(c) It is a (pos.def.trTERP)-structure if
additionally h is positilve definite.

(This is a generalization of a PHS
(with an automorphism).) -

ANk



- Definition 6: A variation of PHS of weight

w over a manifold M is a tuple
(H*® — M,V,F* Hg, S) with

H® - M a hol. vector bUndle with
flat connection V;
(H*,F* Hg’,S)|t a PHS of weight w

fort € M;
HH%O and S V-flat;
FP C H®® hol. subbundles with

Griffiths transversality

V : O(FP) - Q}, @ O(FP~ 1),

A5
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Definition 7: (a) A variation of (TERP)-
structures (a (VTERP)-structure)

over a manifold M is a tuple

(H— Cx M,V, Hg, P) with

H—-CxM a hol. vector bundle;

\V/ a flat connection on H|cxx s
with a pole of Poincaré rank < 1
along {0} x M, i.e.

V : O(H) —>-i--§2(1cx 17 (109{0}x M)QO(H).

[ D Griffiths transversality];

(H — C x M, V, HR? P)|(C><{t}
a (TERP)-structure of weight w;

Hp and P V-flat.
(b) A (VtrTERP)-structure ...

(c) A (Vpos.def.trT ERP)-structure ...



Given a (VT ERP)-structure, define

K = Hl|ovxm vector bundle on M.

Define for X € T, (hol. vector field)

Cx : O(K) — O(K),
U . O(K)— 0O(K)

by
Cx = lim2zVx|iyxm
U = limzV.a,[i3xm-

C is a Higgs field,
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Given a (VirTERP)-structure.

On K define g, k and h as above,
define

D := Chern connection on K w.r.to h.

Lift C,u,D to H — P! x M, using
N

Ky 2 Cpoi(BY x {t}, Hlprygy): & Hpm T2eF
Then

A

vV = D+1.c+z.r.;cr.-,+
> |
1 d
(—-U—Q—z-&un)—z
Z T z

+%

LAY

for some
Q. K — K;

C-linear, real analytic in t.

Cecotti-Fendley-Intriligator-Vafa (1992):
Q is " A new supersymmetric index" .

VP"U : dhew &'Hr,w»p = (p"".:)“'?
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" Theorem 8:" A (VI'ERP)-structure is
equivalent to a structure on a hol. vec-
tor bundle K — M with data

(D,C,k,g,h,U, Q) and many conditions,

e.g. the tt* equations:

for X,Y € Ty
[DXa D—Y—] — _[CX) (K'CK')?L
Dx(Cy) - Dy(Cx) =Cixy)

(H,V) has at {co} x M in —a%; no pole,

in }96? and z0, a pole of order 1

{oo} x M

~» p1.0 kCk, KUK
|

o,n
kD K

P'xit}

{0} x M

> pOl ¢y

at {0} x M a pole of Poincaré rank 1.



From (VT ERP)-structures to
Frobenius manifolds:

Given a (VT ERP)-structure
(H—Cx M,V, Hp, P).

Instead of constructing H — P1x M with
the real structure, one can try to choose

an extension H - P! x M

e with a logarithmic pole along

e and such that H — P! x M is the
trivial bundle. ~

[Birkhoff problem]

20



log. pole {oo} X M

/vl{oo}xM
res. endom. V’

Phit)

pole of {0} x M

AN~ C,u

Prk <1

K = Hlioyxm = Hl{oo}xM |
together with C,U, g, V|cyxar V-

- "Frobenius type structure’.



Theorem 9: (K. Saitog '82,
C. Sabbah '96, S. Barannikov '00)
(Situation as above.) Suppose that

rk K = dim M and suppose that a sec- |

tion ¢ € T(P! x M,O(H)) exists with:

) C.qo:anM —- O(K), X — C‘quxm
IS an isomorphism,

ﬁ) Cl{oo}xM IS Vl{w}xM—flat,

7) Cl{oo}xp iS an eigenvector of V..

~ Then

—CoC & Tay = O(K)

and C,U, V|1 m,V induce on TM the
structure of a Frobenius manifold.

¢ ~ K. Saito’s primitive form.



f:(C**1 0) = (C,0) holomorphic,
with an isolated singularity at 0,
Milnor number p, and a semiuniversal
unfolding F' with base space M C CH.

Theorem 10: There exists a canonical
(VT ERP)-structure (H — Cx M, V, Hg, P)
of weight n 4+ 1, with rk H = pu.

It can be used to give M the structure
of a Frobenius manifold.

For t € M Z4ixed , the top. part.
(H|C*x{t},V,HR, P) is given as follows:

Fr: Xy > Ap={2€C| |z| <n}

§
Cn-'—l
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n
C

*
X(z) = Ft“l(nbhd in A of n ~|—|) !N zel

A(zt) = Hpp1(Xz, X, z) = 7

IS generated by u Lefschetz thimbles.



258

' e
Hi,py = Hom(A;,C) =CF, v 2eC
(HIR)(z,t) = Hom (A(z,t)2R) = RH,

The intersection form for Lefschetz thim-
bles, |
< e > A(z,t) X A(—z,t) — 7

induces a dual form

<.,. % H(z,i) X H(-—z,t) - C.
Define

~ (=1)n(n+1)/2

(2@t

<..>*%.

The extension of H|pxyps to {0} x M:

from " oscillating integrals’ resp.

from a partial Fourier-Laplace transfor-
mation of the Gauss-Manin connection
of F.

FL ‘)*j -

P < K- Saite's biglev
[fF. PLMDW) M"I/'IC fhlt"’ .'hﬁ Ie
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The Euler field E on M satisfies:

foranyte M

the unfolding F|(the E-orbit through t)
= the 1-par. unfolding |
(e’F; | p€ nbhd of 0 in C)

a2

where E
and

0
Op'’

(H,V, Hg, P)| (the E-orbit through t)
= the 1-par. (VT ERP)-structure

U 7, ((H,V, Hg, P)lexqe)
pe(nbhd of O in C) |

with mp:C—=C, z=>ef-2.
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Example:
J a quasihomogeneous singularity,

.

| deformations
of weight > 1

deformations
of weight < 1

E ~ physicists’ renormalization group
flow. |



Theorem 11: (a) M can be extended
uniquely to a manifold M€%t

with all E-orbits in M¢®* jsomorphic to
C or C* or {pt}.

(b) The canonucal (VTERP) structure
extends to MeExt,

(c) There exists a real analytic subva-
riety R C M”%uch that the restricti-
ons of the (VT ERP)-structure to the
components of M — R are (VirTERP)-
structures.

For any t € M the set Crit (F) is finite
with

Y u(F,z) =

x€Crit (F})




Associated to z € Crit(F;) is a tuple

("exponents”) Exp (Fi,z): p(Fiz) ra-
tional numbers, symmetric around _”-2H

| Con_jecture 12: If one starts at any
t € M®t and goes sufficiently far along
the flow of Re E,

e then one does not meet R any'more,

e the (VT ERP)-structure is a
(Vpos.def.trTERP)-structure,

e and the eigenvalues of Q tend to
| 1
Uzecrit (r) EXP (Ft, ) — %_



Theorem 13:. The conjecture is true in
the two cases:

(a) F; has p A;-singularities with p diffe-
rent critical values (eq.: U, is semisimple
with p different eigenvalues).

(b) t € Sy, i.e. F; has only 1 singularity
z, and Fy(x) = 0 (eq.: U, is nilpotent).

Proof of (a): a result of Dubrovin ('92);
(a) is the semisim:ple case; (H,V, Hp, P)|;

can be described by Stokes data:

~using this, Dubrovin'sproof is fairly short.

Proof of (b):

Theorem 14 |
(<= Schmid’'s SLy-orbit theorem '73,
= Cattani-Kaplan-Schmid '86)




Given (H*, Hg’, S),
a Classifying space D = {F* C H® | ...}
for PHS, and its compact dual D > D.

A pair (F*,N) with F* € D and

N : Hgp — Hp nilpotent and an infi-
nitesimal isometry of S is part of a
polarized mixed Hodge structure

— {e*NF* |z € C }is a nilpotent orbit,
i.e. e#NF® € D for Im z large.

Proof of (b):

Associated to F; is a PMHS.

Along the E-orbits of ¢t one obtains a
nilpotent orbit.

Some additional estimations and com-
parisons give Theorem 13 (b).



