Claus Hertling (MPI Bonn)

Frobenius manifolds and tt^* geometry for singularities

M= a complex manifold with hol. coordinates $t_1,...,t_m$.

 $\underline{tt^*}$ geometry on a holomorphic vector bundle over M: a generalization of variation of Hodge structure.

E.g.
$$m = 0$$
, $M = \{pt\}$.

For $m \ge 1$, M a <u>Frobenius manifold</u>: additional <u>hol.</u> structure on TM.

 tt^* geometry on TM & flat connection $\iff M$ Frobenius manifold & real structure.

 tt^* geometry and Frobenius manifolds have a common source (certain meromorphic connections) and arise together.

- S. Cecotti, C. Vafa: Topological-antitopological fusion (1991). On classification of N=2 supersymmetric theories (1993).
- B. Dubrovin (1992).

A weaker version of tt^{*} geometry is in the work of

- C. Simpson (≥ 1988) on
 harmonic bundles,
 his nonabelian Hodge theorem,
 (mixed) twistor structures.
- C. Sabbah (2001): Polarizable + winter D-modules

A distinguished class of examples:

 $f:(\mathbb{C}^{n+1},0)\to(\mathbb{C},0)$ holomorphic, with an isolated singularity at 0,

Milnor number
$$\mu := \dim \frac{\mathcal{O}_{\mathbb{C}^{n+1},0}}{(\frac{\partial f}{\partial x_i})} < \infty$$

Choose $m_1,...,m_{\mu} \in \mathcal{O}_{\mathbb{C}^{n+1},0}$, which represent at basis of the Jacobi algebra.

A semiuniversal unfolding F of f:

$$F = F(x,t) = F(x_0, ..., x_n, t_1, ..., t_\mu)$$
$$= f(x) + \sum_{i=1}^{\mu} t_i m_i,$$

 $F: (\mathsf{nbhd} \ \mathsf{of} \ \mathsf{0} \ \mathsf{in} \ \mathbb{C}^{n+1} \times \mathbb{C}^{\mu}, \mathsf{0}) \to (\mathbb{C}, \mathsf{0});$

M= suitable nbhd of 0 in \mathbb{C}^{μ} , M base space of the unfolding.

ball in \mathbb{C}^{n+1}

ball in \mathbb{C}^{n+1}

 μ -constant stratum $S_{\mu} \subset M$:

$$S_{\mu} = \{t \in M \mid \text{Crit}(F_t) = \{x\} \text{ with } F_t(x) = 0\}.$$

For $t \in S_{\mu}$, there exists a canonical polarized mixed Hodge structure (Steenbrink '76, Varchenko '80, M. Saito, Scherk-Steenbrink, Pham).

Aim:

- (a) tt^* geometry on M, which extends and "explains" this structure on S_{μ} .
- (b) M Frobenius manifold.
- (b): K. Saito ('70ies and '80ies),M. Saito ('83),C. Sabbah ('96,'02), S. Barannikov ('00),
- C. Hertling: tt^* geometry, Frobenius manifolds, their connections, and the construction for singularities. math.AG/0203054, 81 pages.

<u>Definition 1:</u> Given $H' \to \mathbb{C}^*$ a hol. vector bundle with a flat connection ∇ .

(a) An extension of $H' \to \mathbb{C}^*$ to a holvector bundle $H \to \mathbb{C}$ has a <u>pole of</u> Poincaré rank $\leq r$ $(r \in \mathbb{Z}_{>0})$ at 0 if

$$abla_{z\partial_z}:\mathcal{O}(H) o rac{1}{z^r}\mathcal{O}(H).$$

- (b) A <u>logarithmic pole</u> := a pole of Poincaré rank ≤ 0 .
- (c) An extension $H \to \mathbb{C}$ has a regular singular pole at 0 if its sections are of moderate growth, i.e. in a sector $\subset \mathbb{C}^*$

hol section $=\sum_i \operatorname{coeff}_i(z) \cdot (\operatorname{flat section})_i$ $|\operatorname{coeff}_i(z)| \leq b_1 |z|^{b_2}$ for some $b_1 > 0, b_2 \in \mathbb{R}$.

Given $(H' \to \mathbb{C}^*, \nabla)$ a flat vector bundle.

$$\pi$$
: $\mathbb{C} \to \mathbb{C}^*$, $\zeta \mapsto e^{2\pi i \zeta} = z$,

$$pr : \pi^*H' \to H',$$

 $H^{\infty} := \{\text{global flat manyvalued sections}\}$

of
$$H' \to \mathbb{C}^*$$

$$= \{pr \circ \sigma \mid \sigma : \mathbb{C} \to \pi^*H' \text{ flat section}\},\$$

monodrony $M_{mon}: H'_z \to H'_z$,

 $M_{mon}: H^{\infty} \to H^{\infty}, \ M_{mon} = M_s \cdot M_u,$

 $N := \log M_u$

 $H_{\lambda}^{\infty} := \ker(M_s - \lambda), \quad H_{\neq 1}^{\infty} := \bigoplus_{\lambda \neq 1} H_{\lambda}^{\infty},$

$$H^{\infty} = \bigoplus_{\lambda} H_{\lambda}^{\infty} = H_{1}^{\infty} \oplus H_{\neq 1}^{\infty}.$$

Proposition 2: There is a natural 1–1 correspondence between the sets

{extensions $H \to \mathbb{C}$ of $H' \to \mathbb{C}^*$ with logarithmic pole} and

 $\{M_{mon}\text{-invariant (exhaustive) decreasing filtrations } F^{\bullet} \text{ of } H^{\infty}\}.$

Construct an elementary section $es(A, \alpha)$, a global hol. section of $H' \to \mathbb{C}^*$:

Choose $\alpha\in\mathbb{C}$, $A\in H^\infty_{e^{-2\pi i\alpha}}$, then for $\zeta\in\mathbb{C}$

$$A(\zeta+1)=M_{mon}A(\zeta)\in H'_{e^{2\pi i\zeta}}.$$

$$es(A, \alpha) = [z \mapsto e^{\zeta \alpha} \exp(\zeta(-N))A(\zeta)]$$

for ζ with $e^{2\pi i \zeta} = z$
 $= [z \mapsto "z^{\alpha} \exp(\log z \frac{-N}{2\pi i})A"].$

 M_{mon} -invariant filtration $F^{\bullet} \mapsto$ extension $H \to \mathbb{C}$ with logarithmic pole:

 $\mathcal{O}(H)$ is generated by

$$es(A, \alpha)$$
 with $A \in F^{[-\alpha]}H^{\infty}_{e^{-2\pi i\alpha}}$.

Given $(H' \to \mathbb{C}^{\aleph}, \nabla)$ a flat vector bundle.

Convention:

decreasing M_{mon} -invariant filtration F^{\bullet} \leftrightarrow extension with log. pole at 0, increasing M_{mon} -invariant filtration U_{\bullet} \leftrightarrow extension with log. pole at ∞ .

A decreasing filtration F^{\bullet} and an increasing filtration U_{\bullet} are opposite if

$$H^{\infty} = \bigoplus_{p} F^{p} \cap U_{p}.$$

<u>Proposition 3:</u> An extension $\widehat{H} \to \mathbb{P}^1$ of $H' \to \mathbb{C}^*$ with logarithmic poles at 0 and ∞ is the <u>trivial bundle</u> iff the corresponding filtrations satisfy:

 $F^{\bullet}H^{\infty}_{\neq 1}$ and $U_{\bullet+1}H^{\infty}_{\neq 1}$ are opposite, $F^{\bullet}H^{\infty}_{1}$ and $U_{\bullet}H^{\infty}_{1}$ are opposite.

Definition 4: A polarized Hodge structure (PHS) of weight $w \in \mathbb{Z}$ is a tuple $(H^{\infty}, F^{\bullet}, H^{\infty}_{\mathbb{R}}, S)$ with

 H^{∞} a finite dim. \mathbb{C} -vector space; F^{ullet} a decreasing filtration on H^{∞} ; $H^{\infty}_{\mathbb{R}} \subset H^{\infty}$ an \mathbb{R} -vector space with $H^{\infty} = H^{\infty}_{\mathbb{R}} \oplus iH^{\infty}_{\mathbb{R}}$; S a \mathbb{C} -bilinear $(-1)^w$ -symmetric nondegenerate pairing on H^{∞} with $S: H^{\infty}_{\mathbb{R}} \times H^{\infty}_{\mathbb{R}} \to \mathbb{R}$;

such that

$$F^{ullet}$$
 and $\overline{F^{w-ullet}}$ are opposite, i.e. $H^{\infty}=\oplus_{p}H^{p,w-p}$ with $H^{p,w-p}=F^{p}\cap\overline{F^{w-p}};$

S gives a polarization, i.e.

 $S(F^p,F^{w+1-p})=0 \qquad \text{ and }$ the form $h_{Hodge}:H^\infty\times H^\infty\to\mathbb{C}$ with

$$h_{Hodge}(a,b) := i^{p-(w-p)}S(a,\overline{b})$$

for $a \in H^{p,w-p}, b \in H^{\infty}$, is hermitian and positive definite.

Definition 5: (a) A (TERP)-structure (Twistor Extension Real Pairing) of weight $w \in \mathbb{Z}$ is a tuple $(H \to \mathbb{C}, \nabla, H_{\mathbb{R}}, P)$ with

 $H o \mathbb{C}$ a hol. vector bundle; ∇ a flat connection on $H|_{\mathbb{C}^*}$ with a pole of Poincaré rank ≤ 1 at 0; $H_{\mathbb{R}} o \mathbb{C}^*$ a ∇ -flat subbundle of $H|_{\mathbb{C}^*}$ of real vector spaces with $H_z = (H_{\mathbb{R}})_z \oplus i(H_{\mathbb{R}})_z$ for $z \in \mathbb{C}^*$; P a \mathbb{C} -bilinear $(-1)^w$ -symmetric nondegenerate ∇ -flat pairing

 $P: H_z \times H_{-z} \to \mathbb{C} \quad \text{ for } z \in \mathbb{C}^*$ such that

$$P: (H_{\mathbb{R}})_z \times (H_{\mathbb{R}})_{-z} \to i^w \mathbb{R}$$

and

$$P: \mathcal{O}(H)_0 \times \mathcal{O}(H)_0 \to z^w \mathcal{O}_{\mathbb{C},0}$$

is nondegenerate.

Given a (TERP)-structure $(H \to \mathbb{C}, \nabla, H_{\mathbb{R}}, P)$ of weight w.

$$\gamma: \mathbb{P}^1 \to \mathbb{P}^1, z \mapsto \frac{1}{\overline{z}}.$$

Define

au: $H_z o H_{\gamma(z)}$ a $\mathbb C$ -antilinear isom. $a \mapsto \nabla \text{-flat shift to } H_{\gamma(z)} \text{ of } \overline{z^{-w}a}.$ $au^2 = \text{id}$.

Glue $H \to \mathbb{C}$ and $\overline{\gamma^* H} \to \mathbb{P}^1 - \{0\}$ with τ to a bundle

$$\widehat{H} \to \mathbb{P}^1$$
.

It has a pole of Poincaré rank ≤ 1 at ∞ .

Define $K := H_0$ (fiber at 0) and

define the \mathbb{C} -bilinear symmetric nondegenerate pairing

$$g : K \times K \to \mathbb{C}$$

$$(a,b) \mapsto \left(z^{-w}P(\widetilde{a},\widetilde{b})\right) \big|_{\mathfrak{F}=0}$$
 for $\widetilde{a},\widetilde{b} \in \mathcal{O}(\mathbb{H})_{\mathfrak{g}}$ with $\widetilde{a}(0)=a,\widetilde{b}(0)=b$.

If $\widehat{H} o \mathbb{P}^1$ is the trivial bundle then

$$K \cong \Gamma(\mathbb{P}^1, \mathcal{O}(\widehat{H})),$$

and

$$au: \Gamma(\mathbb{P}^1, \mathcal{O}(\widehat{H})) o \Gamma(\mathbb{P}^1, \mathcal{O}(\widehat{H}))$$

induces a C-antilinear involution

$$\kappa: K \to K$$
.

Then define a hermitian nondegenerate pairing

$$h: K \times K \to \mathbb{C}$$
 $(a,b) \mapsto g(a,\kappa(b)).$

<u>Definition 5:</u> (b) A (TERP)-structure is a (trTERP)-structure if $\widehat{H} \to \mathbb{P}^1$ is the trivial bundle.

(c) It is a (pos.def.trTERP)-structure if additionally h is positive definite.

(This is a generalization of a PHS (with an automorphism).)

<u>Definition 6:</u> A <u>variation of PHS</u> of weight w over a manifold M is a tuple $(H^{\infty} \to M, \nabla, F^{\bullet}, H^{\infty}_{\mathbb{R}}, S)$ with

 $H^{\infty} o M$ a hol. vector bundle with flat connection ∇ ; $(H^{\infty}, F^{\bullet}, H^{\infty}_{\mathbb{R}}, S)|_{t}$ a PHS of weight w for $t \in M$; $H^{\infty}_{\mathbb{R}}$ and S ∇ -flat; $F^{p} \subset H^{\infty}$ hol. subbundles with

Griffiths transversality

 $\nabla: \mathcal{O}(F^p) \to \Omega^1_M \otimes \mathcal{O}(F^{p-1}).$

Definition 7: (a) A variation of (TERP)structures (a (VTERP)-structure)
over a manifold M is a tuple $(H \to \mathbb{C} \times M, \nabla, H_{\mathbb{R}}, P)$ with

 $H \to \mathbb{C} \times M$ a hol. vector bundle;

- abla a flat connection on $H|_{\mathbb{C}^* \times M}$ with a pole of Poincaré rank ≤ 1 along $\{0\} \times M$, i.e.
- $\nabla: \mathcal{O}(H) \to \frac{1}{z} \cdot \Omega^1_{\mathbb{C} \times M}(\log\{0\} \times M) \otimes \mathcal{O}(H).$ $[\supset \text{Griffiths transversality}];$
- $(H \to \mathbb{C} \times M, \nabla, H_{\mathbb{R}}, P)|_{\mathbb{C} \times \{t\}}$ a (TERP)-structure of weight w;

 $H_{\mathbb{R}}$ and P ∇ -flat.

- (b) A (VtrTERP)-structure ...
- (c) A (Vpos.def.trTERP)-structure ...

Given a (VTERP)-structure, define $K := H|_{\{0\} \times M} \qquad \text{vector bundle on } M.$

Define for $X \in \mathcal{T}_M$ (hol. vector field)

 $\mathcal{C}_X : \mathcal{O}(K) \to \mathcal{O}(K),$

 $\mathcal{U} : \mathcal{O}(K) \to \mathcal{O}(K)$

by

$$\begin{array}{rcl} \mathcal{C}_X & = & \lim_{z \to 0} z \nabla_X |_{\{z\} \times M}, \\ \mathcal{U} & = & \lim_{z \to 0} z \nabla_{z \partial_z} |_{\{z\} \times M}. \end{array}$$

 \mathcal{C} is a Higgs field, $[\mathcal{C}_X, \mathcal{C}_Y] = 0$, $[\mathcal{C}_X, \mathcal{U}] = 0$.

Given a (VtrTERP)-structure.

On K define g, κ and h as above, define

D := Chern connection on K w.r.to h.

Lift $\mathcal{C}, \mathcal{U}, D$ to $\widehat{H} \to \mathbb{P}^1 \times M$, using

$$K_t \cong \Gamma_{hol}(\mathbb{P}^1 \times \{t\}, \widehat{H}|_{\mathbb{P}^1 \times \{t\}}) \qquad \cong \stackrel{\wedge}{\mathbb{H}}_{(\mathbf{z}, \mathbf{t})} \quad \forall_{\mathbf{z}} \in \mathbb{P}^*$$

Then

$$\nabla = D + \frac{1}{z} \cdot C + z \cdot \kappa C \kappa + \frac{1}{z} \cdot \mathcal{U} - \mathcal{Q} - z \cdot \kappa \mathcal{U} \kappa) \frac{dz}{z}$$

for some

$$Q: K_t \to K_t$$

 \mathbb{C} -linear, real analytic in t.

Cecotti-Fendley-Intriligator-Vafa (1992): \mathcal{Q} is "A new supersymmetric index".

VPHS: then
$$Q|_{H^{p,w-p}} = (p-\frac{w}{2})id$$

#

"Theorem 8:" A (VTERP)-structure is equivalent to a structure on a hol. vector bundle $K \to M$ with data $(D, \mathcal{C}, \kappa, g, h, \mathcal{U}, \mathcal{Q})$ and many conditions, e.g. the tt^* equations: for $X, Y \in \mathcal{T}_M$

$$[D_X, D_{\overline{Y}}] = -[C_X, (\kappa C \kappa)_{\overline{Y}}],$$

$$D_X(C_Y) - D_Y(C_X) = C_{[X,Y]}.$$

 $(\widehat{H},
abla)$ has at $\{\infty\} imes M$ in $rac{\partial}{\partial t_i}$ no pole, in $rac{\partial}{\partial \overline{t_i}}$ and $z\partial_z$ a pole of order 1

$$\begin{array}{c|c} \{\infty\} \times M \\ & \searrow D^{1,0}, \kappa \mathcal{C}\kappa, \kappa \mathcal{U}\kappa \\ & \kappa D^{0,n}\kappa \end{array}$$

$$\begin{array}{c|c} \{0\} \times M \\ & \longrightarrow D^{0,1}, \mathcal{C}, \mathcal{U} \end{array}$$

at $\{0\} \times M$ a pole of Poincaré rank 1.

From (VTERP)-structures to Frobenius manifolds:

Given a
$$(VTERP)$$
-structure $(H \to \mathbb{C} \times M, \nabla, H_{\mathbb{R}}, P)$.

Instead of constructing $\widehat{H} \to \mathbb{P}^1 \times M$ with the real structure, one can try to choose an extension $\widetilde{H} \to \mathbb{P}^1 \times M$

- ullet with a logarithmic pole along $\{\infty\} imes M$,
- ullet and such that $\widetilde{H} o \mathbb{P}^1 imes M$ is the trivial bundle.

[Birkhoff problem]

$$K := H|_{\{0\} \times M} \cong H|_{\{\infty\} \times M}$$

together with $\mathcal{C}, \mathcal{U}, g, \nabla|_{\{\infty\} \times M}, \mathcal{V}$:

"Frobenius type structure".

Theorem 9: (K. Saito \leq '82, C. Sabbah '96, S. Barannikov '00) (Situation as above.) Suppose that $\operatorname{rk} K = \dim M$ and suppose that a section $\zeta \in \Gamma(\mathbb{P}^1 \times M, \mathcal{O}(\widetilde{H}))$ exists with:

- $\alpha) \ \mathcal{C}_{\bullet}\zeta|: \mathcal{T}_{M} \to \mathcal{O}(K), \ X \mapsto \mathcal{C}_{X}\zeta|_{\mathfrak{O}\times \mathcal{M}}$ is an isomorphism,
- β) $\zeta|_{\{\infty\} \times M}$ is $\nabla|_{\{\infty\} \times M}$ -flat,
- γ) $\zeta|_{\{\infty\}\times M}$ is an eigenvector of \mathcal{V} .

Then

$$-\mathcal{C}_{\bullet}\zeta:\mathcal{T}_M\to\mathcal{O}(K)$$

and $C, U, \nabla|_{\{\infty\} \times M}, V$ induce on TM the structure of a Frobenius manifold.

 $\zeta \sim$ K. Saito's primitive form.

 $f:(\mathbb{C}^{n+1},0) \to (\mathbb{C},0)$ holomorphic, with an isolated singularity at 0, Milnor number μ , and a semiuniversal unfolding F with base space $M \subset \mathbb{C}^{\mu}$.

Theorem 10: There exists a canonical (VTERP)-structure $(H \to \mathbb{C} \times M, \nabla, H_{\mathbb{R}}, P)$ of weight n+1, with $\mathrm{rk}\, H = \mu$. It can be used to give M the structure of a Frobenius manifold.

For $t\in M$ fixed , the top. part $(H|_{\mathbb{C}^* imes\{t\}}, \nabla, H_{\mathbb{R}}, P)$ is given as follows:

$$F_t: X_t o \Delta_\eta = \{z \in \mathbb{C} \mid |z| < \eta\}$$

$$\bigcap_{\mathbb{C}^{n+1}}$$

is generated by μ Lefschetz thimbles.

$$H_{(z,t)} := \operatorname{Hom}(\Lambda_{(z,t)}, \mathbb{C}) \cong \mathbb{C}^{\mu}, \qquad
otag e \, \mathbb{C}^{*} \ (H_{\mathbb{R}})_{(z,t)} := \operatorname{Hom}(\Lambda_{(z,t)}, \mathbb{R}) \cong \mathbb{R}^{\mu}.$$

The intersection form for Lefschetz thimbles,

$$<.,.>: \Lambda_{(z,t)} \times \Lambda_{(-z,t)} \to \mathbb{Z}$$

induces a dual form

$$<.,.>^*: H_{(z,t)} \times H_{(-z,t)} \to \mathbb{C}.$$

Define

$$P := \frac{(-1)^{n(n+1)/2}}{(2\pi i)^{n+1}} < .,.>^*.$$

The extension of $H|_{\mathbb{C}^* \times M}$ to $\{0\} \times M$:

from "oscillating integrals" resp. from a partial Fourier-Laplace transformation of the Gauss-Manin connection of F.

The Euler field E on M satisfies: for any $t \in M$

the unfolding F| (the E-orbit through t) \cong the 1-par. unfolding $(e^{
ho}F_t \mid
ho \in \ ext{nbhd of 0 in } \mathbb{C})$

where $E \cong \frac{\partial}{\partial \rho}$, and

 $(H, \nabla, H_{\mathbb{R}}, P)$ (the *E*-orbit through t)

 \cong the 1-par. (VTERP)-structure

$$\bigcup_{\rho\in (\mathrm{nbhd\ of\ 0\ in\ }\mathbb{C})} \pi_\rho^*((H,\nabla,H_{\mathbb{R}},P)|_{\mathbb{C}\times\{t\}})$$

with $\pi_{\rho}: \mathbb{C} \to \mathbb{C}, \ z \mapsto e^{\rho} \cdot z$.

Example:

f a quasihomogeneous singularity,

 $E \sim {\rm physicists'} \ {\rm renormalization} \ {\rm group} \ {\rm flow}.$

Theorem 11: (a) M can be extended uniquely to a manifold M^{ext} with all E-orbits in M^{ext} isomorphic to \mathbb{C} or \mathbb{C}^* or $\{pt\}$.

- (b) The canonical (VTERP)-structure extends to M^{ext} .
- (c) There exists a real analytic subvariety $R \subset M^{ext}$ such that the restrictions of the (VTERP)-structure to the components of M-R are (VtrTERP)-structures.

For any $t \in M$ the set $Crit(F_t)$ is finite with

$$\sum_{x \in \operatorname{Crit}(F_t)} \mu(F_t, x) = \mu.$$

Associated to $x \in \text{Crit}(F_t)$ is a tuple ("exponents") $\text{Exp}(F_t,x)$: $\mu(F_t,x)$ rational numbers, symmetric around $\frac{n+1}{2}$.

Conjecture 12: If one starts at any $t \in M^{ext}$ and goes sufficiently far along the flow of Re E,

- then one does not meet R anymore,
- the (VTERP)-structure is a (Vpos.def.trTERP)-structure,
- and the eigenvalues of \mathcal{Q} tend to $\bigcup_{x \in \operatorname{Crit}(F_t)} \operatorname{Exp}(F_t, x) \frac{n+1}{2}$.

<u>Theorem 13:</u> The conjecture is true in the two cases:

- (a) F_t has μ A_1 -singularities with μ different critical values (eq.: \mathcal{U}_t is semisimple with μ different eigenvalues).
- (b) $t \in S_{\mu}$, i.e. F_t has only 1 singularity x, and $F_t(x) = 0$ (eq.: \mathcal{U}_t is nilpotent).

Proof of (a): a result of Dubrovin ('92); (a) is the semisimple case; $(H, \nabla, H_{\mathbb{R}}, P)|_t$ can be described by Stokes data; using this, Dubrovin's proof is fairly short.

Proof of (b):

Theorem 14

(\Leftarrow Schmid's SL_2 -orbit theorem '73,

⇒ Cattani-Kaplan-Schmid '86)

Given $(H^{\infty}, H^{\infty}_{\mathbb{R}}, S)$, a classifying space $D = \{F^{\bullet} \subset H^{\infty} \mid ...\}$ for PHS, and its compact dual $\check{D} \supset D$.

A pair (F^{\bullet},N) with $F^{\bullet}\in \check{D}$ and $N:H_{\mathbb{R}}\to H_{\mathbb{R}}$ nilpotent and an infinitesimal isometry of S is part of a polarized mixed Hodge structure

 $\iff \{e^{zN}F^{\bullet} \mid z \in \mathbb{C} \ \} \text{ is a } \underline{\text{nilpotent orbit}},$ i.e. $e^{zN}F^{\bullet} \in D \text{ for } \mathrm{Im}\,z \text{ large}.$

Proof of (b):

Associated to F_t is a PMHS.

Along the E-orbits of t one obtains a nilpotent orbit.

Some additional estimations and comparisons give Theorem 13 (b).