Invariants of Affine Weyl Groups

Kenji IOHARA (ICJ)

30 October 2014

Table of Contents

1	Finite Weyl Groups		
	1.1	Set Up	1
	1.2	Group algebra $\mathbb{C}[P_f]$ and their W_f -invariants	2
2	Affine Weyl groups		3
	2.1	Set Up	3
	2.2	W_{af} -invariants	3
	2.3	History : Algebraic structure of $\mathcal{A}^{W_{af}}$	5
	2.4	Application	6

1 Finite Weyl Groups

1.1 Set Up

Let \mathfrak{g}_f be a simple finite dimensional Lie algebra over \mathbb{C} of rank $l, \mathfrak{h}_f \subset \mathfrak{g}_f$ a Cartan subalgebra, and $R_f \subset \mathfrak{h}_f^*$ be the root system of \mathfrak{g}_f with respect to \mathfrak{h}_f . Fix a root basis $\Pi_f = \{\alpha_i \ (1 \leq i \leq l)\} \subset \mathfrak{h}_f^*$ and the corresponding coroot basis $\Pi^{\vee} = \{\alpha_i^{\vee} \ (1 \leq i \leq l)\} \subset \mathfrak{h}_f$. Let

$$P_f = \{ \lambda \in \mathfrak{h}_f^* | \lambda(\alpha_i^{\vee}) \in \mathbb{Z} \, \forall \alpha_i^{\vee} \in \Pi^{\vee} \}, \\ P_f^+ = \{ \lambda \in P_f | \lambda(\alpha_i^{\vee}) \in \mathbb{N} \, \forall \alpha_i^{\vee} \in \Pi^{\vee} \}$$

be the weight lattice and the monoid of dominant integral weights. We note the *i*th fundamental weight by Λ_i , i.e., $\Lambda_i \in P_f$ such that $\Lambda_i(\alpha_j^{\vee}) = \delta_{i,j}$. We set $\rho = \sum_{i=1}^l \Lambda_i$.

1.2 Group algebra $\mathbb{C}[P_f]$ and their W_f -invariants

We recall some basic facts about the W_f -invariants of the group algebra

$$\mathbb{C}[P_f] = \{\sum_{\lambda} c_{\lambda} e^{\lambda} | c_{\lambda} = 0 \text{ for all but finite } \lambda\},\$$

where the action of W_f is given by $w.e^{\lambda} := e^{w(\lambda)}$.

To describe a \mathbb{C} -basis of $\mathbb{C}[P_f]^{W_f}$, we introduce W_f skew-invariants as follows: for $\lambda \in P_f$, set

$$A_{\lambda} := \sum_{w \in W_f} \det(w) e^{w(\lambda)}.$$

Fact 1.1. 1. $W_f(\lambda) \cap P_f^+ \neq \emptyset$.

2. (Skew-symmetry) $A_{w(\lambda)} = \det(w)A_{\lambda}$.

Hence, we may work with $\lambda \in P_f^+$. Moreover, if $r_{\alpha_i}(\lambda) = 0$ for some $1 \leq i \leq l$, it is clear from the skew-symmetry that $A_{\lambda} = 0$. Hence, we may restrict ourselves to $\lambda \in P_f^{++} := P_f^+ + \rho$ without loss of generality.

For $\lambda \in P_f^+$, set

$$\chi_{\lambda} = \frac{A_{\lambda+\rho}}{A_{\rho}}.$$

It turns out that $\chi_{\lambda} \in \mathbb{C}[P_f]$ by Weyl's character formula. In particular, we see that

$$\chi_{\lambda}$$
 has the form $\sum_{\alpha \in Q_f^+} c_{\lambda-\alpha} e^{\lambda-\alpha}$,
where $Q_f^+ = \mathbb{N}\Pi$ is the monoid generated by Π .

Hence, we have

Lemma 1.1. $\mathbb{C}[P_f]^{W_f} = \bigoplus_{P_f^+} \mathbb{C}\chi_{\lambda}$ as a vector space.

The ring structure of $\mathbb{C}[P_f]^{W_f}$ can be described as follows. By the fact cited above, it follows that

Theorem 1.2. 1. χ_{Λ_i} $(1 \leq i \leq l)$ are algebraically independent and

2.
$$\mathbb{C}[P_f^+]^{W_f} = \mathbb{C}[\chi_{\Lambda_1}, \cdots, \chi_{\Lambda_l}].$$

2 Affine Weyl groups

2.1 Set Up

Let (\cdot, \cdot) be the scalar multiple of the bilinear on \mathfrak{h}_f^* induced from the restriction of the Killing form on \mathfrak{g}_f normalized as $(\alpha, \alpha) = 2$ for any long root α . Hence, for any $\alpha \in R_f$, the associated coroot α^{\vee} is given by

$$\alpha^{\vee} = \frac{2}{(\alpha, \alpha)} \alpha \in \mathfrak{h}_f^*.$$

Let $\operatorname{Aff}(\mathfrak{h}_f)$ the space of affine linear functions on \mathfrak{h}_f and $L = L(\mathfrak{h}_f) \subset \operatorname{Aff}(\mathfrak{h}_f)$ the subgroup of translations. The actions of L on \mathfrak{h}_f and on $\operatorname{Aff}(\mathfrak{h}_f)$ are given by

$$t(x) := x + t,$$
 $(t.\varphi)(x) := \varphi(x - t)$ $x \in \mathfrak{h}, \ \varphi \in \mathrm{Aff}(\mathfrak{h}).$

For $\varphi \in \operatorname{Aff}(\mathfrak{h}_f)$, we denote by $\widetilde{\varphi}$ the linear part of φ , i.e., $\widetilde{\varphi} \in \mathfrak{h}_f^*$. For a non-constant $\alpha \in \operatorname{Aff}(\mathfrak{h}_f)$, let

$$\pi_{\alpha} = \{ x \in \mathfrak{h}_f | \alpha(x) = 0 \}$$

be the hyperplane with respect to α and r_{α} the reflection with respect to the hyperplane π_{α} . Denoting $h_{\alpha} \in \mathfrak{h}_{f}$ by the normal vector to the hyperplane π_{α} with the condition $\tilde{\alpha}(h_{\alpha}) = 2$, the reflection r_{α} is defined by

$$r_{\alpha}(x) = x - \alpha(x)h_{\alpha}, \qquad r_{\alpha}(\varphi) = \varphi - \widetilde{\varphi}(h_{\alpha})\alpha, \qquad x \in \mathfrak{h}_{f}, \varphi \in \operatorname{Aff}(\mathfrak{h}_{f}).$$

Let R_f be an irreducible and reducible finite reduced root system. We define the **affine root system** R_{af} by

$$R_{af} := \{ \alpha + l | \alpha \in R_f, \ l \in \mathbb{Z} \}.$$

The group W_{af} generated by r_{α} ($\alpha \in R_{af}$) is the **affine Weyl group**. It is known that W_{af} isomorphic to the group $W_f \ltimes Q_f^{\vee}$, where $Q_f^{\vee} := \mathbb{Z}\Pi^{\vee}$ is the coroot lattice.

2.2 W_{af} -invariants

We shall identify \mathfrak{h}_f with its dual \mathfrak{h}_f^* via the normalize invariant form as in the preceding subsection.

For $\lambda \in P_f$ and $k \in \mathbb{N}^*$, let $f_{\lambda,k}$ be the function on $\mathbb{H} \times \mathfrak{h}_f \times \mathbb{C}$ defined by

$$f_{\lambda,k}(\tau,z,t) := e^{2\pi\sqrt{-1}(kt+\lambda(z)+\frac{1}{2k}(\lambda,\lambda)\tau)}.$$

We define the action of Q_f^{\vee} on $\mathbb{H} \times \mathfrak{h}_f \times \mathbb{C}$ by

$$t_{\gamma}(\tau, z, t) = (\tau, z - \tau\gamma, t - (z, \gamma) + \frac{1}{2}\tau(\gamma, \gamma)).$$

It can be checked that

- 1. $f_{\lambda,k}(t_{\gamma}.(\tau, z, t)) = f_{\lambda-k\gamma,k}(\tau, z, t)$, and that
- 2. a natural action of W_f on \mathfrak{h}_f induces a W_f -action on $\mathbb{H} \times \mathfrak{h}_f \times \mathbb{C}$ with respect to which one has $f_{w(\lambda),k}(\tau, z, t) = f_{\lambda,k}(\tau, w^{-1}(z), t)$.
- 3. The above two actions define an action of W_{af} on

$$\mathcal{A}_{k} = \{ F \in \operatorname{Hol}(\mathbb{H} \times \mathfrak{h}_{f} \times \mathbb{C}) | F = \sum_{\lambda \in P_{f}} c_{\lambda} f_{\lambda,k} \text{ for some } \{c_{\lambda}\}_{\lambda \in P_{f}} \}.$$

Now, for $\lambda \in P_f$ and $k \in \mathbb{N}^*$, we set

$$\theta_{\lambda,k}(\tau,z,t) := \sum_{\gamma \in Q_f^{\vee}} f_{\lambda+k\gamma,k}(\tau,z,t),$$

which is a (classical) theta function, and

$$A_{\lambda,k}(\tau,z,t) := \sum_{w \in W_f} \det(w) \theta_{w(\lambda),k}(\tau,z,t).$$

Remark 2.1. Set

$$C_{af}^{k} := \left\{ \lambda \in P_{f} \left| \begin{array}{c} \lambda(\alpha_{i}^{\vee}) \geq 0 \ (1 \leq i \leq l) \\ \lambda(\theta^{\vee}) \leq k \end{array} \right\},\right.$$

where θ^{\vee} signifies the highest coroot. It can be checked that for any $\lambda \in P_f$, there exists $\varepsilon \in \{\pm 1\}$ and $\mu \in C_{af}^k$ such that $A_{\lambda,k}(\tau, z, t) = \varepsilon A_{\mu,k}(\tau, z, t)$.

Under these preparations, consider the next problem: $\mathcal{A} := \mathbb{C} \bigoplus_{k \in \mathbb{N}^*} \mathcal{A}_k$.

Study the structure of the algebra of invariants $\mathcal{A}^{W_{af}}$.

Well, the easy part is as follows. Let $h^{\vee} := 1 + \sum_{i=1}^{l} a_i^{\vee}$, where $\sum_{i=1}^{l} a_i^{\vee} \alpha_i^{\vee} = \theta^{\vee}$, be the dual Coxeter number. For $k \in \mathbb{N}^*$ and $\lambda \in C_{af}^k$ we set

$$\chi_{\lambda,k}(\tau,z,t) := \frac{A_{\lambda+\rho,k+h^{\vee}}(\tau,z,t)}{A_{\rho,h^{\vee}}(\tau,z,t)}$$

Then, a simple calculation shows

Lemma 2.1. $\mathcal{A}^{W_{af}} = \mathbb{C} \oplus \bigoplus_{k \in \mathbb{N}^*} \bigoplus_{\lambda \in C_{af}^k} \mathbb{C} \chi_{\lambda,k}.$

We remark that

- 1. this ring $\mathcal{A}^{W_{af}}$ has a structure of graded ring graded by $k \in \mathbb{N}^*$, and
- 2. as a graded vector space, $\mathcal{A}^{W_{af}}$ is isomorphic to $\mathbb{C}[X_0, \cdots, X_l]$ where the degree of each variable X_i is defined by a_i^{\vee} .

Here, $a_0^{\vee} := 1$ by definition. So, a natural question is

Can an isomorphism $\mathcal{A}^{W_{af}} \cong \mathbb{C}[X_0, \cdots, X_l]$ above as graded vector spaces be indeed an isomorphism as graded \mathbb{C} -algebras?

2.3 History : Algebraic structure of $\mathcal{A}^{W_{af}}$

In 1976, E. Looijenga [L] 'showed' that

for any $\tau \in \mathbb{H}$, the response to the above question is "YES"

with erreur !

In 1978, I. N. Bernstein and O. Schwarzman [BS] pointed out the erreur and announced the result in full generality with their 'sketch of proof' only in 2 pages.

By computing explicitly the Jacobian of the fundamental characters $\{\chi_{0,1}, \chi_{\Lambda_i, a_i^{\vee}} (1 \leq i \leq l)\}$, D. H. Peterson 'showed' that the response to the above question is "YES" for any $\tau \in \mathbb{H}$ in the case when R_f is of type A_l, B_l, C_l, D_l and of type G_2 . This result was announced in the paper with V. Kac [KP] in Appendix 4 (Section 4.10) saying that a detail will appear elsewhere, which in fact never appears.

Nearly 20 years after their publication of the announcement [BS], J. Bernstein and O. Schwarzman in [BS2] published a detailed version of [BS] excluding type $D_l^{(1)}$ with the excuse saying that this case is covered by a result of D. H. Peterson !

Hence, even now, there is no published proof for this case......

Remark 2.2. J. Bernstein and O. Schwarzian [BS2] treated also twisted cases, except for type $A_{2l}^{(2)}$ which had been covered by the computation dur to D. H. Peterson.

2.4 Application

This result is used when one discuss about the moduli space of semi-stable G-bundles over a torus $E_{\tau} := \mathbb{C}/\mathbb{Z} \oplus \tau\mathbb{Z}$, where G is a connected and simplyconnected simple algebraic group over \mathbb{C} . Indeed, one can show that such space can be expressed as the quotient

$$E_{\tau} \otimes_{\mathbb{Z}} Q_f^{\vee} / W_f$$

where the group W_f acts on the right component, i.e., Q_f^{\vee} . By the (T)HOEREM, one sees that this space is isomorphic to the weighted projective space

$$\mathbb{P}(a_0^{\vee}, a_1^{\vee}, \cdots, a_l^{\vee}).$$

References

- [BS] Bernstein I. N. and Schwarzman O., Chevalley's theorem for Complex Crystallographic Coxeter Groups, Funct. Anal. Appl. 12, 1978, 308– 310
- [BS1] Bernstein J. and Schwarzman O., Complex cristallographic Coxeter groups and affine root system, Jour. Nonlin. Math. Phys. 13 (2), 2006, 163–182.
- [BS2] Bernstein J. and Schwarzman O., Chevalley's theorem for the complex crystallographic groups, Jour. Nonlin. Math. Phys. 13 (3), 2006, 323– 351.
- [KP] Kac V. G. and Peterson D. H., Infinite dimensional Lie algebras, theta functions and modular forms, Adv. Math. 53, 1984, 125–264.
- [L] Looijenga E., Root systems and Elliptic curves, Invent Math., 38, 1976, 17–32.