Concluding remarks

Reduction to discrete Painlevé equations from CACO lattice equations: δ - $E_6^{(1)}$ type

中園 信孝 (東京農工大学)

Joint work with

Nalini Joshi (The University of Sydney)

Supported by JSPS KAKENHI: JP19K14559 and JP17J00092 Australian Research Council: FL120100094 and DP160101728

> 研究集会「q, q and q」 神戸大学, 2020年2月20日

Aim

Adelr-Bobenko-Suris 達による consistency around a cube (CAC) property を用いた quad-equations の分類が知られている [ABS2003&2009,Boll2011].

Main result

Concluding remarks

Aim

Adelr-Bobenko-Suris 達による consistency around a cube (CAC) property を用いた guad-equations の分類が知られている[ABS2003&2009,Boll2011]. 分類により得られた quad-equations から,可積分 な2次元偏差分方程式(ABS方程式)とそのベック ルンド変換が導出できる.また,ABS方程式から 離散パンルヴェ方程式,パンルヴェ方程式,およ び、その高階化が周期簡約によって得られること が知られている.

本講演では, CAC property ではなく, consistency around a cuboctahedron (CACO) property と 呼ばれるコンシステンシーを持つ格子方程式か ら,周期簡約によって $E_6^{(1)}$ 型 (初期値空間は $A_2^{(1)}$ 型)の加法型離散パンルヴェ方程式 δ - $P(E_6^{(1)})$ が得 られることを示す.

Title	Aim and Contents	Review	Main result	Concluding remarks
Content	S			

- Review of previous works about CAC property
 - Consistency around a cube (CAC) property
 - ABS equations

Title	Aim and Contents	Review	Main result	Concluding remarks
Content	S			

- Review of previous works about CAC property
 - Consistency around a cube (CAC) property
 - ABS equations
- Main result
 - Consistency around a cuboctahedron (CACO) property
 - CACO property for lattice equations
 - Reduction to $\delta\text{-}P(E_6^{(1)})$

Review of previous works about CAC property

Aim and Contents

Review

Main result

Concluding remarks

Consistency around a cube (CAC) property

Let us assign the eight variables: x_0, \ldots, x_{123} on the vertices and the quad-equations on the faces. Here, equation Q(x, y, z, w) = 0 is said a quad-equation, if Q(x, y, z, w) is an irreducible multi-affine polynomial.

$$\begin{split} Q_1(x_0, x_1, x_2, x_{12}) &= 0\\ Q_2(x_0, x_2, x_3, x_{23}) &= 0\\ Q_3(x_0, x_3, x_1, x_{13}) &= 0\\ Q_4(x_1, x_{12}, x_{13}, x_{123}) &= 0\\ Q_5(x_3, x_{13}, x_{23}, x_{123}) &= 0\\ Q_6(x_2, x_{23}, x_{12}, x_{123}) &= 0 \end{split}$$

Aim and Contents

Review

Main result

Concluding remarks

Consistency around a cube (CAC) property

Let us assign the eight variables: x_0, \ldots, x_{123} on the vertices and the quad-equations on the faces. Here, equation Q(x, y, z, w) = 0 is said a quad-equation, if Q(x, y, z, w) is an irreducible multi-affine polynomial.

 $\begin{aligned} Q_1(x_0, x_1, x_2, x_{12}) &= 0\\ Q_2(x_0, x_2, x_3, x_{23}) &= 0\\ Q_3(x_0, x_3, x_1, x_{13}) &= 0\\ Q_4(x_1, x_{12}, x_{13}, x_{123}) &= 0\\ Q_5(x_3, x_{13}, x_{23}, x_{123}) &= 0\\ Q_6(x_2, x_{23}, x_{12}, x_{123}) &= 0 \end{aligned}$

Definition (Nijhoff-Walker 1999)

Consistency around a cube (CAC) property

Let us assign the eight variables: x_0, \ldots, x_{123} on the vertices and the quad-equations on the faces. Here, equation Q(x, y, z, w) = 0 is said a quad-equation, if Q(x, y, z, w) is an irreducible multi-affine polynomial.

 $\begin{aligned} Q_1(x_0, x_1, x_2, x_{12}) &= 0\\ Q_2(x_0, x_2, x_3, x_{23}) &= 0\\ Q_3(x_0, x_3, x_1, x_{13}) &= 0\\ Q_4(x_1, x_{12}, x_{13}, x_{123}) &= 0\\ Q_5(x_3, x_{13}, x_{23}, x_{123}) &= 0\\ Q_6(x_2, x_{23}, x_{12}, x_{123}) &= 0 \end{aligned}$

Definition (Nijhoff-Walker 1999)

Aim and Contents

Review

Main result

Concluding remarks

Consistency around a cube (CAC) property

Let us assign the eight variables: x_0, \ldots, x_{123} on the vertices and the quad-equations on the faces. Here, equation Q(x, y, z, w) = 0 is said a quad-equation, if Q(x, y, z, w) is an irreducible multi-affine polynomial.

 $\begin{aligned} Q_1(x_0, x_1, x_2, x_{12}) &= 0\\ Q_2(x_0, x_2, x_3, x_{23}) &= 0\\ Q_3(x_0, x_3, x_1, x_{13}) &= 0\\ Q_4(x_1, x_{12}, x_{13}, x_{123}) &= 0\\ Q_5(x_3, x_{13}, x_{23}, x_{123}) &= 0\\ Q_6(x_2, x_{23}, x_{12}, x_{123}) &= 0 \end{aligned}$

Definition (Nijhoff-Walker 1999)

Aim and Contents

Review

Main result

Concluding remarks

Consistency around a cube (CAC) property

Let us assign the eight variables: x_0, \ldots, x_{123} on the vertices and the quad-equations on the faces. Here, equation Q(x, y, z, w) = 0 is said a quad-equation, if Q(x, y, z, w) is an irreducible multi-affine polynomial.

 $\begin{aligned} Q_1(x_0, x_1, x_2, x_{12}) &= 0\\ Q_2(x_0, x_2, x_3, x_{23}) &= 0\\ Q_3(x_0, x_3, x_1, x_{13}) &= 0\\ Q_4(x_1, x_{12}, x_{13}, x_{123}) &= 0\\ Q_5(x_3, x_{13}, x_{23}, x_{123}) &= 0\\ Q_6(x_2, x_{23}, x_{12}, x_{123}) &= 0 \end{aligned}$

Definition (Nijhoff-Walker 1999)

Aim and Contents

Review

Main result

Concluding remarks

Consistency around a cube (CAC) property

Let us assign the eight variables: x_0, \ldots, x_{123} on the vertices and the quad-equations on the faces. Here, equation Q(x, y, z, w) = 0 is said a quad-equation, if Q(x, y, z, w) is an irreducible multi-affine polynomial.

 $\begin{aligned} Q_1(x_0, x_1, x_2, x_{12}) &= 0\\ Q_2(x_0, x_2, x_3, x_{23}) &= 0\\ Q_3(x_0, x_3, x_1, x_{13}) &= 0\\ Q_4(x_1, x_{12}, x_{13}, x_{123}) &= 0\\ Q_5(x_3, x_{13}, x_{23}, x_{123}) &= 0\\ Q_6(x_2, x_{23}, x_{12}, x_{123}) &= 0 \end{aligned}$

Definition (Nijhoff-Walker 1999)

Aim and Contents

Review

Main result

Concluding remarks

Consistency around a cube (CAC) property

Let us assign the eight variables: x_0, \ldots, x_{123} on the vertices and the quad-equations on the faces. Here, equation Q(x, y, z, w) = 0 is said a quad-equation, if Q(x, y, z, w) is an irreducible multi-affine polynomial.

 $\begin{aligned} Q_1(x_0, x_1, x_2, x_{12}) &= 0\\ Q_2(x_0, x_2, x_3, x_{23}) &= 0\\ Q_3(x_0, x_3, x_1, x_{13}) &= 0\\ Q_4(x_1, x_{12}, x_{13}, x_{123}) &= 0\\ Q_5(x_3, x_{13}, x_{23}, x_{123}) &= 0\\ Q_6(x_2, x_{23}, x_{12}, x_{123}) &= 0 \end{aligned}$

Definition (Nijhoff-Walker 1999)

Aim and Contents

Review

Main result

Concluding remarks

Consistency around a cube (CAC) property

Let us assign the eight variables: x_0, \ldots, x_{123} on the vertices and the quad-equations on the faces. Here, equation Q(x, y, z, w) = 0 is said a quad-equation, if Q(x, y, z, w) is an irreducible multi-affine polynomial.

 $\begin{aligned} Q_1(x_0, x_1, x_2, x_{12}) &= 0\\ Q_2(x_0, x_2, x_3, x_{23}) &= 0\\ Q_3(x_0, x_3, x_1, x_{13}) &= 0\\ Q_4(x_1, x_{12}, x_{13}, x_{123}) &= 0\\ Q_5(x_3, x_{13}, x_{23}, x_{123}) &= 0\\ Q_6(x_2, x_{23}, x_{12}, x_{123}) &= 0 \end{aligned}$

Definition (Nijhoff-Walker 1999)

Main result

Tetrahedron property

Let us assign the eight variables: x_0, \ldots, x_{123} on the vertices and the quad-equations on the faces. Here, equation Q(x, y, z, w) = 0 is said a quad-equation, if Q(x, y, z, w) is an irreducible multi-affine polynomial.

$$\begin{split} Q_1(x_0, x_1, x_2, x_{12}) &= 0\\ Q_2(x_0, x_2, x_3, x_{23}) &= 0\\ Q_3(x_0, x_3, x_1, x_{13}) &= 0\\ Q_4(x_1, x_{12}, x_{13}, x_{123}) &= 0\\ Q_5(x_3, x_{13}, x_{23}, x_{123}) &= 0\\ Q_6(x_2, x_{23}, x_{12}, x_{123}) &= 0 \end{split}$$

Definition

When the result for x_{123} turns out to depend only on $\{x_1, x_2, x_3\}$, and x_0 depends only on $\{x_{12}, x_{23}, x_{31}\}$, the CAC cube is said to have the tetrahedron property.

Main result

Tetrahedron property

Let us assign the eight variables: x_0, \ldots, x_{123} on the vertices and the quad-equations on the faces. Here, equation Q(x, y, z, w) = 0 is said a quad-equation, if Q(x, y, z, w) is an irreducible multi-affine polynomial.

$$\begin{split} Q_1(x_0, x_1, x_2, x_{12}) &= 0\\ Q_2(x_0, x_2, x_3, x_{23}) &= 0\\ Q_3(x_0, x_3, x_1, x_{13}) &= 0\\ Q_4(x_1, x_{12}, x_{13}, x_{123}) &= 0\\ Q_5(x_3, x_{13}, x_{23}, x_{123}) &= 0\\ Q_6(x_2, x_{23}, x_{12}, x_{123}) &= 0 \end{split}$$

Definition

When the result for x_{123} turns out to depend only on $\{x_1, x_2, x_3\}$, and x_0 depends only on $\{x_{12}, x_{23}, x_{31}\}$, the CAC cube is said to have the tetrahedron property.

By using the CAC and tetrahedron properties, Adler-Bobenko-Suris et al. classified quad-equations on a cube [ABS2003&2009,Boll2011]. Tessellating such CAC cubes to \mathbb{Z}^3 , we can obtain various integrable P Δ Es (ABS equations), e.g.

Discrete Schwarzian KdV equation [Nijhoff-Capel-Wiersma-Quispel 1984]

$$\frac{(u_{l,m} - u_{l+1,m})(u_{l,m+1} - u_{l+1,m+1})}{(u_{l,m} - u_{l,m+1})(u_{l+1,m} - u_{l+1,m+1})} = \frac{\alpha_l}{\beta_m}$$

Lattice modified KdV equation [Nijhoff-Quispel-Capel 1983]

$$\frac{u_{l+1,m+1}}{u_{l,m}} = \frac{\alpha_l u_{l+1,m} - \beta_m u_{l,m+1}}{\alpha_l u_{l,m+1} - \beta_m u_{l+1,m}}$$

Lattice potential KdV equation [Hirota 1977]

$$(u_{l,m} - u_{l+1,m+1})(u_{l+1,m} - u_{l,m+1}) = \alpha_l - \beta_m$$

Main result

Consistency around an octahedron (CAO) property

Let us consider an octahedron on whose vertices the six variables: u_1 ,

 \ldots , u_6 are assigned.

We impose the relations to the variables by the following quad-equations:

 $Q_1\left(u_4, u_2, u_1, u_5\right) = 0, \quad Q_2\left(u_2, u_6, u_5, u_3\right) = 0, \quad Q_3\left(u_6, u_4, u_3, u_1\right) = 0.$

Definition (Joshi-Nakazono)

The octahedron with quad-equations $\{Q_1, Q_2, Q_3\}$ is said to have a consistency around an octahedron (CAO) property, if each quad-equation can be obtained from the other two equations.

Consistency around a cuboctahedron property

Let us consider a cuboctahedron on whose vertices the twelve variables: $u_1, \ldots, u_6, v_1, \ldots, v_6$ are assigned.

We impose the relations to the variables by the following quad-equations:

 $\begin{aligned} &Q_1\left(u_5, u_1, v_5, v_4\right) = 0, \quad Q_2\left(v_2, v_1, u_2, u_4\right) = 0, \quad Q_3\left(u_3, u_5, v_3, v_2\right) = 0, \\ &Q_4\left(v_6, v_5, u_6, u_2\right) = 0, \quad Q_5\left(u_1, u_3, v_1, v_6\right) = 0, \quad Q_6\left(v_4, v_3, u_4, u_6\right) = 0, \end{aligned}$

Consistency around a cuboctahedron property

Let us consider a cuboctahedron on whose vertices the twelve variables: $u_1, \ldots, u_6, v_1, \ldots, v_6$ are assigned.

We impose the relations to the variables by the following quad-equations:

 $\begin{aligned} &Q_1\left(u_5, u_1, v_5, v_4\right) = 0, \quad Q_2\left(v_2, v_1, u_2, u_4\right) = 0, \quad Q_3\left(u_3, u_5, v_3, v_2\right) = 0, \\ &Q_4\left(v_6, v_5, u_6, u_2\right) = 0, \quad Q_5\left(u_1, u_3, v_1, v_6\right) = 0, \quad Q_6\left(v_4, v_3, u_4, u_6\right) = 0, \\ &Q_7\left(u_4, u_2, u_1, u_5\right) = 0, \quad Q_8\left(u_2, u_6, u_5, u_3\right) = 0, \quad Q_9\left(u_6, u_4, u_3, u_1\right) = 0. \end{aligned}$

Main result

Definition (Joshi-Nakazono)

The cuboctahedron with quad-equations $\{Q_1, \ldots, Q_9\}$ is said to have a consistency around a cuboctahedron (CACO) property, if the following properties hold.

- (i) The octahedron with quad-equations $\{Q_7, Q_8, Q_9\}$ has the CAO property.
- (ii) Assume that the variables u₁,..., u₆, are given so as to satisfy Q_i = 0, i = 7, 8, 9, and the variable v₁ is given. Then, by using quad-equations Q_i, i = 1..., 6, the variable v₄ is uniquely determined.

Orthogonal projection of the cuboctahedron centered on the triangular face.

Main result

Definition (Joshi-Nakazono)

The CACO cuboctahedron with $\{Q_1, \ldots, Q_9\}$ is said to have a square property, if there exist polynomials $K_i = K_i(x, y, z, w), i = 1, 2, 3$, where

$$\deg_x K_i = \deg_w K_i = 1, \quad 1 \le \deg_y K_i, \deg_z K_i,$$

satisfying

 $K_1(v_1, u_1, u_4, v_4) = 0, \quad K_2(v_2, u_2, u_5, v_5) = 0, \quad K_3(v_3, u_3, u_6, v_6) = 0.$

Orthogonal projection of the cuboctahedron centered on the triangular face.

Title Aim and Contents Review Main result Concluding remarks

CACO and square properties for lattice equations

Consider the following system of $\mathsf{P}\Delta\mathsf{Es}:$

$$\begin{split} P_1\left(u_{\overline{13}}, u_{\overline{23}}, u_{\underline{13}}, u_{\underline{23}}\right) &= 0, \qquad P_2\left(u_{\overline{12}}, u_{\overline{13}}, u_{\overline{12}}, u_{\overline{13}}\right) = 0, \\ P_3\left(u_{\overline{23}}, u_{\overline{12}}, u_{\overline{23}}, u_{\underline{12}}\right) &= 0, \qquad P_4\left(u_{\underline{23}}, u_{\underline{13}}, u_{\overline{23}}, u_{\overline{13}}\right) = 0, \\ P_5\left(u_{\underline{13}}, u_{\underline{12}}, u_{\overline{13}}, u_{\overline{12}}\right) &= 0, \qquad P_6\left(u_{\underline{12}}, u_{\underline{23}}, u_{\overline{12}}, u_{\overline{23}}\right) = 0, \end{split}$$

where u = u(l) and $l \in \Omega$, where

$$\Omega = \left\{ \sum_{i=1}^{3} l_i \epsilon_i \ \middle| \ l_i \in \mathbb{Z}, \ l_1 + l_2 + l_3 \in 2\mathbb{Z} \right\}.$$

Here, P_i , i = 1, ..., 6, are quad-equations, and subscripts \overline{i} and \underline{j} mean $\boldsymbol{l} \rightarrow \boldsymbol{l} + \epsilon_i$ and $\boldsymbol{l} \rightarrow \boldsymbol{l} - \epsilon_j$, respectively.

Then, given $l \in \Omega$, we obtain the cuboctahedron centered around l. We refer to its quad-equations as before by $Q_1(l) = P_1\left(u_{\overline{13}}, u_{\overline{23}}, u_{\underline{13}}, u_{\underline{23}}\right) = 0, \quad Q_2(l) = P_1\left(u_{\overline{13}}, u_{\overline{23}}, u_{\underline{13}}, u_{\underline{23}}\right) = 0,$ $Q_3(l) = P_2\left(u_{\overline{12}}, u_{\overline{13}}, u_{\overline{12}}, u_{\overline{13}}\right) = 0, \quad Q_4(l) = P_2\left(u_{\underline{12}}, u_{\underline{13}}, u_{\underline{12}}, u_{\underline{13}}\right) = 0,$ $Q_5(l) = P_3\left(u_{\overline{23}}, u_{\overline{12}}, u_{\overline{23}}, u_{\underline{12}}\right) = 0, \quad Q_6(l) = P_3\left(u_{\underline{23}}, u_{\overline{12}}, u_{\underline{23}}, u_{\underline{12}}\right) = 0,$ $Q_7(l) = P_4\left(u_{\underline{23}}, u_{\underline{13}}, u_{\overline{23}}, u_{\overline{13}}\right) = 0, \quad Q_8(l) = P_5\left(u_{\underline{13}}, u_{\underline{12}}, u_{\overline{13}}, u_{\overline{12}}\right) = 0,$ $Q_9(l) = P_6\left(u_{\underline{12}}, u_{\underline{23}}, u_{\overline{12}}, u_{\overline{23}}\right) = 0.$ Then, given $l \in \Omega$, we obtain the cuboctahedron centered around l. We refer to its quad-equations as before by $Q_1(l) = P_1\left(u_{\overline{13}}, u_{\overline{23}}, u_{\underline{13}}, u_{\underline{23}}\right) = 0, \quad Q_2(l) = P_1\left(u_{\overline{13}}, u_{\overline{23}}, u_{\underline{13}}, u_{\underline{23}}\right) = 0,$ $Q_3(l) = P_2\left(u_{\overline{12}}, u_{\overline{13}}, u_{\overline{12}}, u_{\overline{13}}\right) = 0, \quad Q_4(l) = P_2\left(u_{\underline{12}}, u_{\underline{13}}, u_{\underline{12}}, u_{\underline{13}}\right) = 0,$ $Q_5(l) = P_3\left(u_{\overline{23}}, u_{\overline{12}}, u_{\overline{23}}, u_{\underline{12}}\right) = 0, \quad Q_6(l) = P_3\left(u_{\underline{23}}, u_{\overline{12}}, u_{\underline{23}}, u_{\underline{12}}\right) = 0,$ $Q_7(l) = P_4\left(u_{\underline{23}}, u_{\underline{13}}, u_{\overline{23}}, u_{\overline{13}}\right) = 0, \quad Q_8(l) = P_5\left(u_{\underline{13}}, u_{\underline{12}}, u_{\overline{13}}, u_{\overline{12}}\right) = 0,$ $Q_9(l) = P_6\left(u_{\underline{12}}, u_{\underline{23}}, u_{\overline{12}}, u_{\overline{23}}\right) = 0.$

Moreover, the overlapped region gives an octahedron centred around $\boldsymbol{l} + \epsilon_3$, and we label its quad-equations by $\hat{Q}_1(\boldsymbol{l}) = P_1\left(u_{\overline{13}}, u_{\overline{23}}, u_{\underline{13}}, u_{\underline{23}}\right) = 0, \quad \hat{Q}_2(\boldsymbol{l}) = P_2\left(u_{\overline{23}}, u_{\overline{33}}, u_{\underline{23}}, u\right) = 0,$ $\hat{Q}_3(\boldsymbol{l}) = P_3\left(u_{\overline{33}}, u_{\overline{13}}, u, u_{\underline{13}}\right) = 0.$

We are now in a position to define the CACO property for $P\Delta Es$.

Main result

Definition (Joshi-Nakazono)

We transfer the definitions of CACO and square properties to the system of P Δ Es as follows.

- (i) The cuboctahedra with quad-equations {Q₁(l),...,Q₉(l)} have the CACO and square properties, and the square equations K_i = 0, i = 1, 2, 3, are consistent with the PΔEs P_i = 0, i = 1, 2, 3.
- (ii) The octahedra with quad-equations $\{\hat{Q}_1(\boldsymbol{l}), \hat{Q}_2(\boldsymbol{l}), \hat{Q}_3(\boldsymbol{l})\}$ have the CAO property.

The following system of $P\Delta Es$ has the CACO and square properties:

$$\begin{split} P_1 &= \mathrm{N3} \left(u_{\overline{13}}, u_{\overline{23}}, u_{\underline{13}}, u_{\underline{23}}; a_2, a_1, a_3, a_4 \right) = 0, \\ P_2 &= \mathrm{N3} \left(u_{\overline{12}}, u_{\overline{13}}, u_{\overline{12}}, u_{\overline{13}}; a_6, a_5, a_7, a_8 \right) = 0, \\ P_3 &= \mathrm{N3} \left(u_{\overline{23}}, u_{\overline{12}}, u_{\overline{23}}, u_{\underline{12}}; a_{10}, a_9, a_{11}, a_{12} \right) = 0, \\ P_4 &= \mathrm{N3} \left(u_{\underline{23}}, u_{\underline{13}}, u_{\overline{23}}, u_{\overline{13}}; a_1, a_2, a_3, a_4 \right) = 0, \\ P_5 &= \mathrm{N3} \left(u_{\underline{12}}, u_{\underline{23}}, u_{\overline{12}}; a_{\overline{23}}, a_{\overline{6}}, a_7, a_8 \right) = 0, \\ P_6 &= \mathrm{N3} \left(u_{\underline{12}}, u_{\underline{23}}, u_{\overline{12}}, u_{\overline{23}}; a_9, a_{10}, a_{11}, a_{12} \right) = 0, \\ \end{split}$$
 where $u = u(l), \ l = \sum_{i=1}^{3} l_i \epsilon_i \in \Omega$ and $\mathrm{N3}(X, Y, Z, W; A_1, A_2, A_3, A_4) = A_1 XY + A_2 ZW + A_3 XW + A_4 YZ, \\ a_1 &= \alpha_{12} + (-1)^{l_2 + l_3} \delta_2 - (-1)^{l_1 + l_3} \delta_3, \quad a_2 = \alpha_{12} - (-1)^{l_2 + l_3} \delta_2 + (-1)^{l_1 + l_3} \delta_3, \\ a_3 &= \alpha_{21} - c + (-1)^{l_1 + l_2} \delta_1, \qquad a_4 = \alpha_{21} + c - (-1)^{l_1 + l_2} \delta_1, \\ a_5 &= \alpha_{23} + (-1)^{l_1 + l_3} \delta_3 - (-1)^{l_1 + l_2} \delta_1, \qquad a_6 = \alpha_{23} - (-1)^{l_1 + l_3} \delta_3 + (-1)^{l_1 + l_2} \delta_1, \\ a_7 &= \alpha_{32} - c + (-1)^{l_2 + l_3} \delta_2, \qquad a_{8} = \alpha_{32} + c - (-1)^{l_2 + l_3} \delta_2, \\ a_9 &= \alpha_{31} + (-1)^{l_1 + l_2} \delta_1 - (-1)^{l_2 + l_3} \delta_2, \qquad a_{10} = \alpha_{31} - (-1)^{l_1 + l_3} \delta_3, \\ a_{11} &= \alpha_{13} - c + (-1)^{l_1 + l_3} \delta_3, \qquad a_{12} = \alpha_{13} + c - (-1)^{l_1 + l_3} \delta_3, \\ a_{13} &= \alpha_{21} (l_i) - \alpha_j (l_j), \quad i, j \in \{1, 2, 3\}, \qquad \alpha_i(k) = \alpha_i(0) + k, \quad i \in \{1, 2, 3\}, \quad k \in \mathbb{Z}.$

wh

Main result

Reduction to δ - $P(E_6^{(1)})$

Lemma (Joshi-Nakazono)

By imposing the (1, 1, 1)-periodic condition:

$$u(\boldsymbol{l}+\epsilon_1+\epsilon_2+\epsilon_3)=u(\boldsymbol{l}),$$

for $\boldsymbol{l} \in \Omega$, the system of $P\Delta Es$ can be reduced to

$$\begin{split} \frac{u_{\overline{1}}}{u_{\underline{1}}} &= \frac{\left(\alpha_{12} - c + (-1)^{l_1 + l_2} \delta_1\right) u_{\overline{2}} - \left(\alpha_{12} - (-1)^{l_2 + l_3} \delta_2 + (-1)^{l_1 + l_3} \delta_3\right) u_{\underline{2}}}{\left(\alpha_{12} + (-1)^{l_2 + l_3} \delta_2 - (-1)^{l_1 + l_3} \delta_3\right) u_{\overline{2}} - \left(\alpha_{12} + c - (-1)^{l_1 + l_2} \delta_1\right) u_{\underline{2}}},\\ \frac{u_{\overline{2}}}{u_{\underline{2}}} &= \frac{\left(\alpha_{23} - c + (-1)^{l_2 + l_3} \delta_2\right) u_{\overline{3}} - \left(\alpha_{23} - (-1)^{l_1 + l_3} \delta_3 + (-1)^{l_1 + l_2} \delta_1\right) u_{\underline{3}}}{\left(\alpha_{23} + (-1)^{l_1 + l_3} \delta_3 - (-1)^{l_1 + l_2} \delta_1\right) u_{\overline{3}} - \left(\alpha_{23} + c - (-1)^{l_2 + l_3} \delta_2\right) u_{\underline{3}}},\\ \frac{u_{\overline{3}}}{u_{\underline{3}}} &= \frac{\left(\alpha_{31} - c + (-1)^{l_1 + l_3} \delta_3\right) u_{\overline{1}} - \left(\alpha_{31} - (-1)^{l_1 + l_2} \delta_1 + (-1)^{l_2 + l_3} \delta_2\right) u_{\underline{1}}}{\left(\alpha_{31} + (-1)^{l_1 + l_2} \delta_1 - (-1)^{l_2 + l_3} \delta_2\right) u_{\overline{1}} - \left(\alpha_{31} + c - (-1)^{l_1 + l_3} \delta_3\right) u_{\underline{1}}},\\ \text{here } u = u(l) \text{ and } l = \sum_{i=1}^3 l_i \epsilon_i \in \mathbb{Z}^3 / (\epsilon_1 + \epsilon_2 + \epsilon_3). \end{split}$$

The (1, 1, 1)-reduction causes the reduction from the C_3 root lattice:

$$\Omega = \left\{ \sum_{i=1}^{3} l_i \epsilon_i \ \middle| \ l_i \in \mathbb{Z}, \ l_1 + l_2 + l_3 \in 2\mathbb{Z} \right\},\$$

to the A_2 root lattice (triangle lattice):

$$\mathbb{Z}^3/(\epsilon_1+\epsilon_2+\epsilon_3) = \left\{ \sum_{i=1}^3 l_i \epsilon_i \ \middle| \ l_i \in \mathbb{Z}, \ l_1+l_2+l_3=0 \right\}.$$

Title	Aim and Contents	Review	Main result	Concluding remarks

Lemma (Joshi-Nakazono)

 $\widetilde{W}(E_6^{(1)}) = \langle s_0, \dots, s_6 \rangle \rtimes \langle \iota_1, \iota_2, \iota_3 \rangle,$

The symmetry group $\widetilde{W}(A_2^{(1)})$ is a subgroup of the symmetry group for δ - $P(E_6^{(1)})$. Indeed, the birational action of $\widetilde{W}(A_2^{(1)})$ can be reconstructed from

as the following:

 $w_0 = s_2 s_1 s_3 s_2, \quad w_1 = s_4 s_5 s_3 s_4, \quad w_2 = s_6 s_0 s_3 s_6, \quad \pi = \iota_3 \iota_1.$

Moreover, the u-variables are given by the ratios of the τ -functions of δ - $P(E_6^{(1)})$.

Main result

Theorem (Joshi-Nakazono)

The birational action of the square of shortest translation on the triangle lattice gives $\delta - P(E_{\kappa}^{(1)})$:

$$\begin{split} (\underline{g}+f)(f+g) &= \frac{\left(f - \frac{\alpha_{23} + c - \delta_1 + \delta_2 - \delta_3}{4}\right) \left(f + \frac{\alpha_{23} + c + \delta_1 + \delta_2 + \delta_3}{4}\right)}{f + \frac{\alpha_{23} + c + \delta_1 - \delta_2 - \delta_3 - 2}{4} + \frac{\alpha_{12}}{2}} \\ &= \frac{\left(f - \frac{\alpha_{23} - c + \delta_1 - \delta_2 + \delta_3}{4}\right) \left(f + \frac{\alpha_{23} - c - \delta_1 - \delta_2 - \delta_3}{4}\right)}{f + \frac{\alpha_{23} - c - \delta_1 + \delta_2 + \delta_3 - 2}{4} + \frac{\alpha_{12}}{2}}, \\ (\overline{f} + g)(f + g) &= \frac{\left(g - \frac{\alpha_{23} + c + \delta_1 + \delta_2 + \delta_3}{4}\right) \left(g + \frac{\alpha_{23} + c - \delta_1 + \delta_2 - \delta_3}{4}\right)}{g + \frac{\alpha_{23} + c - \delta_1 - \delta_2 + \delta_3}{4} + \frac{\alpha_{12}}{2}} \\ &= \frac{\left(g - \frac{\alpha_{23} - c - \delta_1 - \delta_2 - \delta_3}{4}\right) \left(g + \frac{\alpha_{23} - c - \delta_1 - \delta_2 - \delta_3}{4}\right)}{g + \frac{\alpha_{23} - c - \delta_1 - \delta_2 - \delta_3}{4}\right) \left(g + \frac{\alpha_{23} - c - \delta_1 - \delta_2 - \delta_3}{4}\right)}{g + \frac{\alpha_{23} - c - \delta_1 - \delta_2 - \delta_3}{4}, \end{split}$$

where

 $\overline{\alpha_{12}} = \alpha_{12} + 2.$

The *f*, *g*-variables are given by the rational functions of the *u*-variables. Note that $\overline{u} = u_{\overline{11}}, \ \underline{u} = u_{\underline{11}}$.

22 / 24

Summary

We gave definitions of CACO and square properties and presented a system of P Δ Es which has such properties. Moreover, we showed the reduction from the system of P Δ Es to δ - $P(E_6^{(1)})$.

Future works

- Construction of a Lax pair of $P\Delta Es$ which have the CACO property.
- Extend the idea of consistency around a cuboctahedron to polytopes in higher dimensions.