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Review

Consistency around a cube (CAC) property

Let us assign the eight variables: zq, ..., 2123 on the vertices and the
quad-equations on the faces. Here, equation Q(z,y, z,w) = 0 is said a
quad-equation, if Q(z,y, z,w) is an irreducible multi-affine polynomial.

Q1(zo,21,22,212) =0
2(Zo I27I3,I’23) =
3(xo, 3,21, %13) =

(
(
(
a(z1, 12, 213, 2123) = 0
(
(

o O

5(x3, 13, 23, T123) = 0

6(x2, T23, 12, T123) = 0

OO O0OO0OD
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Definition (Nijhoff-Walker 1999)

There are three ways to determine the value of x153 by the initial values
{zo, 21, x2, 23} If 2193 can be uniquely expressed in terms of the initial
values, then the cube is said to have the CAC property.
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Review

Tetrahedron property

Let us assign the eight variables: zq, ..., 2123 on the vertices and the
quad-equations on the faces. Here, equation Q(z,y, z,w) = 0 is said a
quad-equation, if Q(z,y, z,w) is an irreducible multi-affine polynomial.

(
Q(I
3(%o
a(71
(
(

5(T3

OO O0OO0OD

Definition

Q1(zo,21,22,212) =0

o

I27I3,IE23) =
,T3,%1,Z13) =
, %12, %13, C123) = 0

, 13,23, 2123) = 0

o

6(x2, T23, 12, T123) = 0

When the result for 2155 turns out to depend only on {z1, 22,25}, and
xo depends only on {z12, 223,231}, the CAC cube is said to have the

tetrahedron property.
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Definition

When the result for z125 turns out to depend only on {z1, 2,25}, and
xo depends only on {212, z23, 231}, the CAC cube is said to have the
tetrahedron property.
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Review

ABS equations

By using the CAC and tetrahedron properties, Adler-Bobenko-Suris
et al. classified quad-equations on a cube
[ABS20038:2009,Bol12011]. Tessellating such CAC cubes to Z3, we
can obtain various integrable PAEs (ABS equations), e.g.

Discrete Schwarzian KdV equation [Nijhoff-Capel-Wiersma-Quispel 1984]

(Ulm — Wit 1,m) (U mg1 — Wit1,mt1)

(ul,m - ul,m+1)(ul+l,m - ul+17m+1) N ﬁim
Lattice modified KdV equation [Nijhoff-Quispel-Capel 1983]

Ut1,mt1 QUL T,m — BmUim+1

Ulm UL m+1 — B ti1,m
Lattice potential KdV equation [Hirota 1977]
(Wm = Wt 1,m+1) (Wt 1,m — UWmt1) = u — B
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Main result
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Main result

Consistency around an octahedron (CAQ) property

Let us consider an octahedron on whose vertices the six variables: uq,

..., ug are assigned. e

u3
We impose the relations to the variables by the following quad-equations:

Q1 (ug,ug,ur,us) =0, Q2 (uz2,us, us,uz) =0, Qs (ug,us,us, ur) =0.

Definition (Joshi-Nakazono)

The octahedron with quad-equations {Q1, @2, @3} is said to have a
consistency around an octahedron (CAQO) property, if each
quad-equation can be obtained from the other two equations.
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Main result

Consistency around a cuboctahedron property

Let us consider a cuboctahedron on whose vertices the twelve variables:
uy, ..., Ug, U1, ..., Vg are assigned.
Uy

SN

We impose the relations to the variables by the following quad-equations:

Q1 (us,u1,vs,v4) =0, Q2 (v2,v1,uz,us) =0, Q3 (u3,us,v3,v2) =0,

Q4 (v, v5,ug, u2) =0, Qs (u1,u3,v1,v6) =0, Q¢ (v4,v3,us,u) =0,
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The cuboctahedron with quad-equations {Q1,...,Qg} is said to have a consistency
around a cuboctahedron (CACO) property, if the following properties hold.
(i) The octahedron with quad-equations {Q7, Qs, Q9 } has the CAO
property.
(ii) Assume that the variables u1,...,us, are given so as to satisfy
Q; =0,7=17,8,9, and the variable v; is given. Then, by using
quad-equations Q;, ¢ = 1...,6, the variable v is uniquely
determined.

Q4]Q:)Q3

Orthogonal projection of the cubocta-
hedron centered on the triangular face.
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Definition (Joshi-Nakazono)

The CACO cuboctahedron with {Q1,...,Qg} is said to have a square property, if
there exist polynomials K; = K;(z,y, z,w), ©« = 1,2, 3, where

deg, K; =deg,, K; =1, 1<deg, Kj;, deg, K,
satisfying

K (v1,u1,uq4,v4) =0, Ka(va,uz,us5,v5) =0, Kz(vs,us,ue,ve)=0.

Q4] Qs]Q3

Orthogonal projection of the cubocta-
hedron centered on the triangular face.
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Main result

CACO and square properties for lattice equations

Consider the following system of PAEs:

P1 (Uﬁ, Uﬁ, Ulg, 'LL2§> = O, P2 (Uﬁ, ’U,ﬁ, uT27 UT§) = 0,

Ps (uﬁ, Uy, Ug3, ul§> =0, Py (uﬁ, U13, Ug3, uﬁ) =0,
Ps (uﬁ, U12, U3, uﬁ) =0, P (ug, u23, Ufs, uﬁ) =0,
where u = u(l) and 1 € Q, where
3
Q= {sz LeZ, li+la+1s €2Z}.
i=1
Here, P;, i =1,...,6, are quad-equations, and subscripts 7 and J

mean I — I +¢; and I — | — ¢;, respectively.

14/24



Then, given [ € (), we obtain the cuboctahedron centered around
l. We refer to its quad-equations as before by

=P (ulg,u23,u13,u23) =0, Q)=P (ufi,u@,um,uz;) =0,
Q3(l) = P, (u12, U137U127U13) Qa(l) = P (uj’uf’ug’ UL) =0,
Qs(l) = Ps (u23,u12,u23, 5) =0, Qs(l) = Ps (“jauig,uﬁv uiz ) =0,
Q7(1) = Py (ugs, u1s, ugg, ugg) =0, Qs(l) = Ps (u13, uga, ugg, ugz) =0,
Qo(l) = Ps (u12, 13 Uzz) = 0.
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Then, given [ € (), we obtain the cuboctahedron centered around

l. We refer to its quad-equations as before by

=P (ulg,u23,u13,u23) =0, Q)=P (ufi,ugg,um,uz;> =0,

3(l) = P, (ulz,uw,uu,um) Qal) = P, (uj,ur,uQ, UL) =0,
Qs(1) = Ps (u23,u12,u23, 5) =0, Qsl)=DP5 (uj,uig,uﬁ, UL) =0,
Q1) =P, , Qs(l) = P (ug3, ug2, ugg, ugz) =0,

(u 13, Uz, U ?) =
7)) =

Moreover, the overlapped region gives an octahedron centred
around I + €3, and we label its quad-equations by

Q1) = P (Uﬁ7 Ugg, Ulg,ugg) =0, Q1) =P, (Uﬁ, ugg, uzg,u) =0,
Qg(l) = Pg (’LL@, uﬁ,u,ul§> =0.

We are now in a position to define the CACO property for PAEs.
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Definition (Joshi-Nakazono)

We transfer the definitions of CACO and square properties to
the system of PAEs as follows.
(i) The cuboctahedra with quad-equations
{Q1(l),...,Q9(1)} have the CACO and square
properties, and the square equations K; = 0,
i =1,2,3, are consistent with the PAEs P; = 0,
i=1,2,3.
(ii) The octahedra with quad-equations
{Q1(1), Qa(1), Q3(1)} have the CAO property.

16 /24



The following system of PAEs has the CACO and square properties:

Py =N3 (Uﬁ7 Uzz, U3, Uo3) a27alya3,0«4> =0,

( 13> ’u137a67a‘ (17,(18) = 07
N3 (“237u127“237“127‘1107‘197“117@12) =0,
3(u 23,u13,a1,a2,a3,a4) =0,
3(“ “137“127“57‘167117,@8) =0,
15 = ) (“127u237u127u237097a10,a11,a12) =0,

where u = u(l), 1= Zliei € Q and
i=1
N3(X,Y,Z,W;A1,A2,A3,A4) = A1 XY + A ZW + AsXW + A4Y Z,

a1 = a1a + (=126 — (=) HBs;,  ay = a1 — (—1)2 188, 4 (—1)11 1363,

az = ag1 —c+ (—1)1 126, as = ag +c— (—1)1t24,
as = azs + (-1)"111383 — (-1)"1+1261,  ag = azs — (—1)"1 1865 + (—1)1 124y,
a7 = ags —c+ (=1)"27134,, ag = azz + ¢ — (—1)12H186,,
ag = ag + (—1)"17T128) — (—1)'2H185,, a1 = as1 — (1)1 24y 4 (—1)2 a4,
a11 = a1z —c+ (—1)"1 135, a12 = a1z +c — (—1)1 1343,



Main result

Reduction to 5-P(Eé1))

Lemma (Joshi-Nakazono)

By imposing the (1,1, 1)-periodic condition:
u(l + €1 + €2 + €3) = u(l),

for l € 2, the system of PAEs can be reduced to

ug (oqg —c+ (—1)ll+l251)u§ - (0412 — (=1)l2tiag§y + (—1)atisgy ug

Ui a1z + (—1)l2t+lsdy — (—l)ll“'l363)u2 a1z +c— (—1)at2§; Jug ’

Uz Q23 — C + )l2+l3 62>u§ — <a23 = ( 1)ll+l3§3 Al ( )ll+l251

)
( )
( Jua
ug (a23 4 (~1)lHsgs — (— 1)h+lzal)u3 a3+ c— 1)l2+l352)u ’
( )
( )

azy —c+ ( )ll+l353)uT = <a31 (—Dhtlzg) + (—1)l2Fl3g,

Uz ul
-3 — i
u3 as; + (—1)latl2g — (— 1)l2+l362>u1 <a31 +c— (—1)hatlsds Jug
3
where u = u(l) and 1 = Zliei € Z3/(e1 + €2 + €3).
i=1
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i3 u3 U i3
= _ 8
(1,1, I)-reduction +6
e e R
Uy =U w4 \
- i3 Q=—=-+€ =123
/ \ 2 \ / \
U3 i) i3 12
%

The (1,1, 1)-reduction causes the reduction from the C3 root lattice:

3

i=1

liGZ, l1+l2+l3€2Z},

to the Az root lattice (triangle lattice):
3

ZS/(el +ex+e3)= {Zliei

i=1

l; €7, l1+l2+l30}.
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Lemma (Joshi-Nakazono)

The reduced system has the extended affine Weyl group symmetry of type Agl) :

W(Aél)) = (wo, w1, w2) x (7).

AN VA V4

u0,1,0

uQ,1,1

20/24



Lemma (Joshi-Nakazono)

The symmetry group W(Agl)) is a subgroup of the symmetry group for 5-P(Eé1)).

Indeed, the birational action of W(A(Ql)) can be reconstructed from

W(E) = (s0,- .., 56) X (t1, 02, t3),

as the following:

Wwo = 52818382, W1 = 54555384, W2 = $6505356, T = L3!L1.

Moreover, the u-variables are given by the ratios of the T-functions of 6—P(Eé1)).

21/24



heorem (Joshi-Nakazono)

The birational action of the square of shortest translation on the triangle lattice gives

(1)y .
d-P(Eg"’) :
a3 +c— 01 + 62 — 43 . a3+ c+ 81 + 62 +33
@+ D +9) = . !
< a3 +c+d1 —62 —d3 —2 a1z
f+ —
4 2
ag3 —c+ 81 — 62 + 63 ag3 —c—081 —62 — 9
<f7 ><f+ 23 1 2 3)
4 4
—c—031 +62+63—2 !
fpom e hi+datis 4212
4 2
( a23+c+51+52+53>< a23+6761+52*53>
g9 — g9+
F+a+9) = : =
: agg +c—061 —d2+683 a2
9+ i +T

o3 —c— 01 — 6 — 63 Qg3 —c+ 81 — 8y + 33
9= 1 g+ 7

a23*c+51+52*53+0¢12
4 2

)

@ aF
where

aiz = aj2 + 2.
The f, g-variables are given by the rational functions of the u-variables.

Note that & = ugy, u = ui1.
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Concluding remarks
Concluding remarks

Summary

We gave definitions of CACO and square properties and
presented a system of PAEs which has such properties.

Moreover, we showed the reduction from the system of PAEs
to 5-P(E).

Future works

e Construction of a Lax pair of PAEs which have the CACO
property.

e Extend the idea of consistency around a cuboctahedron to
polytopes in higher dimensions.
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