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Web-seminar on Painlevé Equations and related topics
Mar. 24, 2021

Takao Suzuki (Kindai University) Mar. 24, 2021 1 / 29



1 Introduction

2 Cluster mutation

3 Lax form

4 Examples

5 Summary

Takao Suzuki (Kindai University) Mar. 24, 2021 2 / 29



Discrete Painlevé equation

In 1990’s, Grammaticos and his collaborators proposed a discrete analogue of the
Painlevé property called the singularity confinement.

Example

Consider a difference equation

xn+1 + xn−1 =
axn

1− x2n
, x0 = p, x1 = 1 + ε.

Then we obtain

x2 = − a

2ε
− a+ 4p

4
+O(ε), x3 = −1 + ε+O(ε2), x4 = −p+O(ε).

Taking a limit ε→ 0, we can find that a singularity appears at x2 and disappears at x4.

That became a trigger for the discovery of various discrete Painlevé equations.
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Problem

How many 2nd order discrete Painlevé equations exist?

An answer to this problem was given as follows.

Fact ([Sakai 01])

The 2nd order continuous/discrete Painlevé equations are classified by the geometry of
rational surfaces called the initial value spaces as follows:

Symmetry/Surface type

elliptic E8/A0

multiplicative E8/A0 E7/A1 E6/A2 D5/A3 A4/A4 E3/A5

E2/A6
A1

|a|2=8
/A7 A1/A7 A0/A8

additive E8/A0 E7/A1 E6/A2 D4/D4 A3/D5 2A1/D6

A2/E6
A1

|a|2=4
/D7 A1/E7 A0/D8 A0/E8

Here the symbols E3 and E2 stand for A2 +A1 and A1 +
A1

|a|2=14
respectively.

Blue-colored types correspond to the continuous Painlevé equations.
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Problem

Can we classify continuous/discrete Painlevé type systems of order ≥ 3?

Several higher order generalizations have been proposed from both continuous side;

Isomonodromy deformation of the Fuchsian equations (Garnier, Sakai, S, etc.)

Similarity reduction of the infinite dimensional integrable hierarchies (Adler,
Noumi-Yamada, Gordoa-Joshi-Pickering, Fuji-S, Tsuda, etc.)

Okamoto initial value space and affine Weyl group symmetry (Sasano, etc.)

and discrete side:

Discrete analogue of the isomonodromy deformations (Sakai, Nagao-Yamada, etc.)

Similarity reduction of the discrete integrable hierarchies (Tsuda, S, etc.)

Birational representation of the extended affine Weyl groups
(Kajiwara-Noumi-Yamada, Masuda, Okubo-S, etc.)

However there doesn’t exist any theory which governs all of them.
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(q-)Painlevé VI equation and its higher order generalizations

The Painlevé VI equation is described as the Hamiltonian system

t(t− 1)
dq

dt
=
∂HVI

∂p
, t(t− 1)

dp

dt
= −∂HVI

∂q
,

HVI[κ0, κ1, κt, κ; q, p] = q(q − 1)(q − t)p

(
p− κ0

q
− κ1

q − 1
− κt − 1

q − t

)
+ κqi.

In 1996, Jimbo and Sakai proposed a q-analogue of the Painlevé VI equation, which is
described as

ff

a3a4
=

(g − tb1)(g − tb2)

(g − b3)(g − b4)
,

gg

b3b4
=

(f − ta1)(f − ta2)

(f − a3)(f − a4)
,

where a1a2b3b4 = qb1b2a3a4.

Symmetry/Surface type

elliptic E8/A0

multiplicative E8/A0 E7/A1 E6/A2 D5/A3 A4/A4 E3/A5

E2/A6
A1

|a|2=8
/A7 A1/A7 A0/A8

additive E8/A0 E7/A1 E6/A2 D4/D4 A3/D5 2A1/D6

A2/E6
A1

|a|2=4
/D7 A1/E7 A0/D8 A0/E8
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The Painlevé VI equation is obtained as the isomonodromy deformation of the Fuchsian
equation. We propose higher order generalizations from this point of view.

Fact ([Oshima 08])

Irreducible Fuchsian equations with a fixed number of accessory parameters can be
reduced to finite types of systems by the Katz’s two operations (addition and middle
convolution).

Fact ([Haraoka-Filipuk 07])

The isomonodromy deformation equation of the Fuchsian equation is invariant under the
Katz’s two operations.

Thanks to them, we have a good classification theory of isomonodromy deformation
equations of Fuchsian equations.
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We list 4 types of representative isomonodromy deformation equations below:

Garnier system
Isomonodromy deformation [Garnier 1912]

Sasano system
Okamoto initial value space and affine Weyl group symmetry [Sasano 07]
Similarity reduction of the integrable hierarchy [Fuji-S 08]
Isomonodromy deformation [Sakai 10][Fuji-Inoue-Shinomiya-S 13]

FST system
Similarity reduction of the integrable hierarchy [Fuji-S 09][S 13][Tsuda 14]
Isomonodromy deformation [Sakai 10]

Matrix Painlevé system
Isomonodromy deformation [Sakai 10][Kawakami 15]

And their q-analogues are proposed recently (but there is no classification theory):

q-Garnier system or q-FST system
q-Analogue of the isomonodromy deformation [Sakai 05][Park 18]
Similarity reduction of the discrete integrable hierarchy [Tsuda 10][S 15][S 17]
Pade method [Nagao-Yamada 18]
Birational representation of the extended affine Weyl group [Okubo-S 20]

q-Sasano system
Birational representation of the extended affine Weyl group [Masuda 15]

q-Matrix Painlevé system
q-Analogue of the isomonodromy deformation [Kawakami 20]
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Cluster mutation

Let Q be a quiver without loops and 2-cycles and I a vertex set. We define a mutation
µi at i ∈ I as follows:

1 If there are k1 arrows from i1 to i and k2 arrows from i to i2, then we add k1k2
arrows from i1 to i2.

2 If 2-cycles appear via the first operation, then we remove all of them.

3 We reverse the directions of all arrows touching i.

Example

Q =

３ ２

１

⇒

３ ２

１

⇒

３ ２

１

⇒

３ ２

１

= µ1(Q)
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We define a skew-symmetric matrix Λ = (λi,j)i,j∈I corresponding to Q as follows:
1 If there are k arrows from i to j, then we set λi,j = k and λj,i = −k.
2 If there is no arrow between i and j, then we set λi,j = λj,i = 0.

Example

Q =

３ ２

１

⇔ Λ =

 0 1 −1
−1 0 1
1 −1 0



Let y = (yi)i∈I be a tuples of coefficients. We define an action of µi on y by

µi(yj) =


y−1
i (j = i)

yj
(
1 + y−1

i

)λij (λij > 0)

yj(1 + yi)
−λij (λij < 0)

yj (j ̸= i, λij = 0)

.

Example

Q and Λ are the same as those in the previous examples.

(y1, y2, y3)
µ1−→
(

1

y1
,
y1y2
1 + y1

, y3(1 + y1)

)
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Extended affine Weyl group of type (Amn−1 ×Am−1 ×Am−1)
(1)

...
...

...

@I ? @I ? @I ?
· · · - [0, 0] - [0, 1] - [0, 2] - · · ·

@I ? @I ? @I ? @I
· · · - [1, 0] - [1, 1] - [1, 2] - · · ·

@I ? @I ? @I ? @I
· · · - [2, 0] - [2, 1] - [2, 2] - · · ·

? @I ? @I ? @I
...

...
...

Consider the above quiver. We always assume that

[j, i] = [j +mn, i] = [j, i+m] (m,n ∈ N,m > 1,mn > 2).

Let y[j,i] (j ∈ Zmn, i ∈ Zm) be coefficients. We define multiplicative simple roots by

aj =

m−1∏
i=0

y[j,i] (j ∈ Zmn), bi =

mn−1∏
j=0

y[j,i], b′i =

mn−1∏
j=0

y[j,i+j] (i ∈ Zm),

q =

mn−1∏
j=0

aj =

m−1∏
i=0

bi =

m−1∏
i=0

b′i =

mn−1∏
j=0

m−1∏
i=0

y[j,i].
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We first define simple reflections rj (j ∈ Zmn) by

rj = µ[j,0] µ[j,1] . . . µ[j,m−2] ([j,m− 2] [j,m− 1])µ[j,m−2] . . . µ[j,1] µ[j,0].

Their actions on the coefficients and the simple roots are described as

rj(y[j−1,i]) = y[j−1,i] y[j,i+1]

P[j,i+2]

P[j,i+1]

, rj(y[j,i]) =
1

y[j,i+1]

P[j,i]

P[j,i+2]

,

rj(y[j+1,i]) = y[j,i] y[j+1,i]

P[j,i+1]

P[j,i]

,

rj(aj−1) = aj−1 aj , rj(aj) =
1

aj
, rj(aj+1) = aj aj+1,

where

Pj,i =

m−1∑
k=0

k−1∏
l=0

y[j,i+l] = 1 + y[j,i] + y[j,i] y[j,i+1] + . . .+ y[j,i] y[j,i+1] . . . y[j,i+m−2].
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We next define simple reflections si, s
′
i (i ∈ Zm) by

si = µ[0,i] µ[1,i] . . . µ[mn−2,i] ([mn− 2, i] [mn− 1, i])µ[mn−2,i] . . . µ[1,i] µ[0,i],

s′i = µ[0,i] µ[1,i+1] . . . µ[−2,i−2] ([−2, i− 2] [−1, i− 1])µ[−2,i−2] . . . µ[1,i+1] µ[0,i].

Their actions on the coefficients and the simple roots are described as

si(y[j,i]) =
1

y[j+1,i]

Q[j,i]

Q[j+2,i]

, si(y[j,i+1]) = y[j,i] y[j,i+1] y[j+1,i]

Q[j+2,i]

Q[j,i]

,

si(bi) =
1

bi
, si(bi+1) = b2i bi+1,

for m = 2 and

si(y[j,i−1]) = y[j,i−1] y[j+1,i]

Q[j+2,i]

Q[j+1,i]

, si(y[j,i]) =
1

y[j+1,i]

Q[j,i]

Q[j+2,i]

,

si(y[j,i+1]) = y[j,i] y[j,i+1]

Q[j+1,i]

Q[j,i]

,

si(bi−1) = bi−1 bi, si(bi) =
1

bi
, si(bi+1) = bi bi+1,

for m ≥ 3, where

Q[j,i] =

mn−1∑
k=0

k−1∏
l=0

y[j+l,i], y′[j,i] = y[−j,i−j].
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In the last we define Dynkin diagram automorphisms π1, π2 by

π1 = ([0, 0] [1, 1] . . . [m− 1,m− 1] [m, 0] . . . [mn− 1,m− 1])

× ([0, 1] [1, 2] . . . , [m− 1, 0] [m, 1] . . . [mn− 1, 0])

× . . .

× ([0,m− 1] [1, 0] . . . [m− 1,m− 2] [m,m− 1] . . . [mn− 1,m− 2]),

π2 = ([0, 0] [0, 1] . . . [0,m− 1])

× ([1, 0] [1, 1] . . . [1,m− 1])

× . . .

× ([mn− 1, 0] [mn− 1, 1] . . . [mn− 1,m− 1]).

They act on the coefficients and the simple roots as

π1(y[j,i]) = y[j+1,i+1], π1(aj) = aj+1, π1(bi) = bi+1,

π2(y[j,i]) = y[j+1,i], π2(bi) = bi+1, π2(b
′
i) = b′i+1.
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Fact ([Masuda-Okubo-Tsuda 18])

Let
G = ⟨r0, . . . , rmn−1⟩, H = ⟨s0, . . . , sm−1⟩, H ′ = ⟨s′0, . . . , s′m−1⟩,

Then G, H and H ′ are isomorphic to the affine Weyl groups of type A
(1)
mn−1, A

(1)
m−1 and

A
(1)
m−1 respectively. Furthemore, any two groups are mutually commutative, namely

GH = HG, GH ′ = H ′G, HH ′ = H ′H.

Proposition ([Okubo-S 20])

The Dynkin diagram automorphisms π1, π2 satisfy fundamental relations

πmn
1 = 1, πm

2 = 1, π1 π2 = π2 π1,

rj π1 = π1 rj+1, si π1 = π1 si+1, s′i π1 = π1 s
′
i,

rj π2 = π2 rj , si π2 = π2 si+1, s′i π2 = π2 s
′
i+1.

Hence we can regard a group ⟨G,H,H ′⟩⋊ ⟨π1, π2⟩ as an extended affine Weyl group of
type (Amn−1 +Am−1 +Am−1)

(1).
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Let us introduce an independent variable z satisfying

rj(z) = z, si(z) = z, s′i(z) = z, π1(z) = z, π2(z) = q1/mz.

We also set

ζ = z

mn−1∏
j=1

m−2∏
i=0

a
(mn−j)/m
j b

(i+1)/m
i .

Let Ej1,j2 be a mn×mn matrix with 1 in (j1, j2)-th entry and 0 elsewhere. Consider
matrices

Π1 = ζ
logq

1
a1

(
mn−1∑
j=1

j−1∏
k=0

1

y[1,k]
Ej,j+1 +

bm−1

an1 q
ζ Emn,1

)
,

and

Π2 =
mn∑
j=1

j−1∏
k=1

y[k,j−1]Ej,j +

mn−1∑
j=1

Ej,j+1 +
bm−1

q
ζ Emn,1.

We also set
M = πm−1

2 (Π2)π
m−2
2 (Π2) . . . π2(Π2)Π2.
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Example (mn = 6)

Π1

ζ
logq

1
a1

=



0 1
y[1,0]

0 0 0 0

0 0 1
y[1,0]y[1,1]

0 0 0

0 0 0 1
y[1,0]...y[1,2]

0 0

0 0 0 0 1
y[1,0]...y[1,3]

0

0 0 0 0 0 1
y[1,0]...y[1,4]

bm−1ζ

an
1 q

0 0 0 0 0


,

Π2 =



1 1 0 0 0 0
0 y[1,1] 1 0 0 0
0 0 y[1,2]y[2,2] 1 0 0
0 0 0 y[1,3] . . . y[3,3] 1 0
0 0 0 0 y[1,4] . . . y[4,4] 1

bm−1ζ

q
0 0 0 0 y[1,5] . . . y[5,5]

 .
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Let I be the identity matrix. Consider matrices

R0 = ζ logq a0

(
mn∑
j=1

P[0,j−1]

∏j−2
k=0 y[0,k]

P[0,0]

Ej,j +
q (1− a0)

y[0,m−1] P[0,0]

1

ζ
E1,mn

)
,

Rj = rj(Π
−1
1 )π1(Rj−1)Π1 (j = 1, . . . ,mn− 1).

Example (mn = 6)

R1

ζ
logq

1
a1

=



y[1,1]P[1,2]

P[1,1]
0 0 0 0 0

1−a1
P[1,1]

1 0 0 0 0

0 0
y[1,1]P[1,2]

y[1,2]P[1,3]
0 0 0

0 0 0
y[1,1]P[1,2]

y[1,2]y[1,3]P[1,4]
0 0

0 0 0 0
y[1,1]P[1,2]

y[1,2]...y[1,4]P[1,5]
0

0 0 0 0 0
y[1,1]P[1,2]

y[1,2]...y[1,5]P[1,0]


,

R2 =



1 0 0 0 0 0
0 1 0 0 0 0

0
(1−a2)y[1,1]

P[2,2]
1 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .
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We also consider matrices

S0 = I +

n−1∑
k=0

(
Q[mk+2,0]

∏mk+1
l=2 y[l,0]

Q[2,0]

− 1

)
Emk+1,mk+1

+

n−1∑
k=0

(
Q[1,0]

Q[mk+2,0]

∏mk+1
l=1 y[l,0]

− 1

)
Emk+2,mk+2

+

n−1∑
k=0

b0 − 1

y[1,0]Q[2,0]

Emk+1,mk+2,

Si = si(Π
−1
2 )π2(Si−1)Π2 (i = 1, . . . ,m− 1),

and

S′
0 = I +

n−1∑
k=0

(
y′[0,0]Q

′
[1,0]

Q′
[0,0]

− 1

)
Emk+2,mk+2,

S′
i = s′i(Π

−1
2 )π2(S

′
i−1)Π2 (i = 1, . . . ,m− 1).
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Example (m = 3, n = 2)

S1 =



1 0 0 0 0 0

0
y[2,1]Q[3,1]

Q[2,1]

b1−1
y[1,1]Q[2,1]

0 0 0

0 0
Q[1,1]

y[1,1]y[2,1]Q[3,1]
0 0 0

0 0 0 1 0 0

0 0 0 0
y[2,1]...y[5,1]Q[0,1]

Q[2,1]

b1−1
y[1,1]Q[2,1]

0 0 0 0 0
Q[1,1]

y[1,1]...y[5,1]Q[0,1]


,

S′
1 =



1 0 0 0 0 0
0 1 0 0 0 0

0 0
y′
[0,1] Q

′
[1,1]

Q′
[0,1]

0 0 0

0 0 0 1 0 0
0 0 0 0 1 0

0 0 0 0 0
y′
[0,1] Q

′
[1,1]

Q′
[0,1]


.

Remark

The matrix S′
m−1 is rational in ζ, is not diagonal and hence is much more complicated

than the others. The cause has not been clarified yet.
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Denoting by Tq,z = πm
2 , we arrive at the following results.

Theorem ([S 21])

The compatibility condition of a system of linear q-difference equations

Tq,z(ψ) =M ψ,

π1(ψ) = Π1 ψ, π2(ψ) = Π2 ψ,

rj(ψ) = Rj ψ (j ∈ Zmn), si(ψ) = Si ψ, s′i(ψ) = S′
i ψ (i ∈ Zm),

is equivalent to the action of the Dynkin diagram automorphisms and the simple
reflections given in the previous section.

Remark

Our Lax form gives a similarity reduction of a q-Drinfeld-Sokolov hierarchy of type
A

(1)
mn−1 corresponding to the partition (n, . . . , n) of mn ∈ N.

Remark

Our Lax form (with mn×mn matrices) is transformed to that with m×m matrices via
a q-Laplace transformation. The reduced system has been already proposed by Nagao,
Park and Yamada.
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Case m = 2

This case has been already investigated well.

Theorem ([Okubo-S 20][S 21])

We set

τ1 = s0 s
′
0 π2,

τ2 = r0 . . . r2n−2 π1 rn . . . r2n−1 r0 . . . rn−2 π1,

τ3 = (r0 r2 . . . r2n−2 π1)
2,

τ4 = s0 r0 . . . r2n−2 π1.

Then they provide higher order q-Painlevé systems as follows.

τ1: q-FST system

τ2: (a direction of) Sakai’s q-Garnier system

τ3: Tsuda’s q-Painlevé system arising from the q-LUC hierarchy

τ4: Nagao-Yamada’s ”variation” of the q-Garnier system

Moreover we have clarified a relationship between those q-Painlevé systems and the
q-hypergeometric functions nϕn−1 or ϕD.
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Case (m,n) = (3, 2)

The matrix M is described as

M =



1 P[1,1] P ∗
[1,2]

1 0 0

0 a1
a1P[2,2]

y[1,1]
y[1,0]P

∗
[2,0]

1 0

0 0 a1a2
a1a2P[3,0]

y[1,2]y[2,2]
y[1,1]y[2,1]P

∗
[3,1]

1

ζ
b0b1

0 0 a1 . . . a3
a1...a3P[4,1]

y[1,0]...y[3,0]
y[1,2] . . . y[3,2]P

∗
[4,2]

P∗
[5,0]ζ

b1y[5,0]y[0,0]

ζ
b1

0 0 a1 . . . a4
a1...a4P[5,2]

y[1,1]...y[4,1]
P[0,0]ζ

y[0,0]y[0,1]

P∗
[0,1]ζ

y[0,1]
ζ 0 0 a1 . . . a5


,

where
P[i,j] = 1 + y[i,j] + y[i,j] y[i,j+1], P ∗

[i,j] = 1 + y[i,j] + y[i,j] y[i+1,j].

We consider a translation
τ1 = s0 s1 s

′
0 s

′
1 π2.

Then the compatibility condition of a Lax pair

Tq,z(B)M = τ1(M)B, B = s1s
′
0s

′
1π2(S0) s

′
0s

′
1π2(S1) s

′
1π2(S

′
0)π2(S

′
1)Π2,

implies a 8th order q-Painlevé system with parameters a1, . . . , a5, b1, b2, b
′
1, b

′
2 and q.
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Assume that
P[1,1] = P ∗

[1,2] = P[4,1] = P ∗
[4,2] = 0,

which contains a specialization between parameters

b′1(b
′
2)

2 = a21 a2 a
2
4 a5 b1 b

2
2.

Then we have 2 invariants

τ1(y[0,0] y[0,2] y[1,0]) = y[0,0] y[0,2] y[1,0], τ1(y[1,2] y[2,0] y[2,2]) = y[1,2] y[2,0] y[2,2],

and hence obtain 3rd order q-Riccati like system. Introduce variables x0, . . . , x3 such that

x1
x0

= (1 + y[0,0]) y[0,2],
x2
x0

=
y[2,0]
y[3,2]

,
x3
x0

= (1 + y[3,0]) y[2,0],

and assume that
a21 a2 a

2
4 a5 b1 b

2
2 = q.

Proposition ([S 2021])

A vector of variables (x0, . . . , x3) satisfies a system of linear q-difference equation, which
reduces a rigid system of type 22, 211, 1111 (EO4) in a continuous limit q → 1.

Remark

Another hypergeometric-type particular solution has been proposed by Park.
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We have proposed an extended affine Weyl group of type (Amn−1 +Am−1 +Am−1)
(1)

in two ways.

Cluster mutation for a quiver on a torus with m2n vertices

Lax form with mn×mn matrices

We have also investigated for (m,n) = (3, 2) as an experiment and derived a ”q-rigid”
system as a particular solution.

There are some future problems.

Particular solutions in terms of q-hypergeometric functions

A classification theory of higher order q-Painlevé systems

Formulations of higher order elliptic Painlevé systems

Thank you for your attention.
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