A generalization of the q-Garnier system and its Lax form

Takao Suzuki

Kindai University

Web-seminar on Painlevé Equations and related topics
Mar. 24, 2021

(1) Introduction

(3) Lax form

4 Examples

Discrete Painlevé equation

In 1990's, Grammaticos and his collaborators proposed a discrete analogue of the Painlevé property called the singularity confinement.

Example

Consider a difference equation

$$
x_{n+1}+x_{n-1}=\frac{a x_{n}}{1-x_{n}^{2}}, \quad x_{0}=p, \quad x_{1}=1+\varepsilon .
$$

Then we obtain

$$
x_{2}=-\frac{a}{2 \varepsilon}-\frac{a+4 p}{4}+O(\varepsilon), \quad x_{3}=-1+\varepsilon+O\left(\varepsilon^{2}\right), \quad x_{4}=-p+O(\varepsilon) .
$$

Taking a limit $\varepsilon \rightarrow 0$, we can find that a singularity appears at x_{2} and disappears at x_{4}.
That became a trigger for the discovery of various discrete Painlevé equations.

Problem

How many 2nd order discrete Painlevé equations exist?
An answer to this problem was given as follows.

Fact ([Sakai 01])

The 2nd order continuous/discrete Painlevé equations are classified by the geometry of rational surfaces called the initial value spaces as follows:

	Symmetry/Surface type					
elliptic	E_{8} / A_{0}					
multiplicative	E_{8} / A_{0}	E_{7} / A_{1}	E_{6} / A_{2}	D_{5} / A_{3}	A_{4} / A_{4}	E_{3} / A_{5}
	E_{2} / A_{6}	A_{1} / A_{7}	A_{1} / A_{7}	A_{0} / A_{8}		
additive	E_{8} / A_{0}	E_{7} / A_{1}	E_{6} / A_{2}	D_{4} / D_{4}	A_{3} / D_{5}	$2 A_{1} / D_{6}$
	A_{2} / E_{6}	$A_{1}\|a\|^{2}=4$	D_{7}	A_{1} / E_{7}	A_{0} / D_{8}	A_{0} / E_{8}

Here the symbols E_{3} and E_{2} stand for $A_{2}+A_{1}$ and $A_{1}+\underset{|a|^{2}=14}{A_{1}}$ respectively. Blue-colored types correspond to the continuous Painlevé equations.

Problem

Can we classify continuous/discrete Painlevé type systems of order ≥ 3 ?
Several higher order generalizations have been proposed from both continuous side;

- Isomonodromy deformation of the Fuchsian equations (Garnier, Sakai, S, etc.)
- Similarity reduction of the infinite dimensional integrable hierarchies (Adler, Noumi-Yamada, Gordoa-Joshi-Pickering, Fuji-S, Tsuda, etc.)
- Okamoto initial value space and affine Weyl group symmetry (Sasano, etc.) and discrete side:
- Discrete analogue of the isomonodromy deformations (Sakai, Nagao-Yamada, etc.)
- Similarity reduction of the discrete integrable hierarchies (Tsuda, S, etc.)
- Birational representation of the extended affine Weyl groups (Kajiwara-Noumi-Yamada, Masuda, Okubo-S, etc.)
However there doesn't exist any theory which governs all of them.

$(q-)$ Painlevé VI equation and its higher order generalizations

The Painlevé VI equation is described as the Hamiltonian system

$$
\begin{aligned}
& t(t-1) \frac{d q}{d t}=\frac{\partial H_{\mathrm{VI}}}{\partial p}, \quad t(t-1) \frac{d p}{d t}=-\frac{\partial H_{\mathrm{VI}}}{\partial q}, \\
& H_{\mathrm{VI}}\left[\kappa_{0}, \kappa_{1}, \kappa_{t}, \kappa ; q, p\right]=q(q-1)(q-t) p\left(p-\frac{\kappa_{0}}{q}-\frac{\kappa_{1}}{q-1}-\frac{\kappa_{t}-1}{q-t}\right)+\kappa q_{i} .
\end{aligned}
$$

In 1996, Jimbo and Sakai proposed a q-analogue of the Painlevé VI equation, which is described as

$$
\frac{f \bar{f}}{a_{3} a_{4}}=\frac{\left(\bar{g}-t b_{1}\right)\left(\bar{g}-t b_{2}\right)}{\left(\bar{g}-b_{3}\right)\left(\bar{g}-b_{4}\right)}, \quad \frac{g \bar{g}}{b_{3} b_{4}}=\frac{\left(f-t a_{1}\right)\left(f-t a_{2}\right)}{\left(f-a_{3}\right)\left(f-a_{4}\right)}
$$

where $a_{1} a_{2} b_{3} b_{4}=q b_{1} b_{2} a_{3} a_{4}$.

	Symmetry/Surface type					
elliptic	E_{8} / A_{0}					
multiplicative	E_{8} / A_{0}	E_{7} / A_{1}	E_{6} / A_{2}	D_{5} / A_{3}	A_{4} / A_{4}	E_{3} / A_{5}
	E_{2} / A_{6}	$\underset{\|c\|}{A_{1}{ }^{2}=8} / A_{7}$	A_{1} / A_{7}	A_{0} / A_{8}		
additive	E_{8} / A_{0}	E_{7} / A_{1}	E_{6} / A_{2}	D_{4} / D_{4}	A_{3} / D_{5}	$2 A_{1} / D_{6}$
	A_{2} / E_{6}	$\underset{\|c\|}{A_{1} 2^{2}=4}$ / $/ D_{7}$	A_{1} / E_{7}	A_{0} / D_{8}	A_{0} / E_{8}	

The Painlevé VI equation is obtained as the isomonodromy deformation of the Fuchsian equation. We propose higher order generalizations from this point of view.

Fact ([Oshima 08])

Irreducible Fuchsian equations with a fixed number of accessory parameters can be reduced to finite types of systems by the Katz's two operations (addition and middle convolution).

Fact ([Haraoka-Filipuk 07])

The isomonodromy deformation equation of the Fuchsian equation is invariant under the Katz's two operations.

Thanks to them, we have a good classification theory of isomonodromy deformation equations of Fuchsian equations.

We list 4 types of representative isomonodromy deformation equations below:

- Garnier system
- Isomonodromy deformation [Garnier 1912]
- Sasano system
- Okamoto initial value space and affine Weyl group symmetry [Sasano 07]
- Similarity reduction of the integrable hierarchy [Fuji-S 08]
- Isomonodromy deformation [Sakai 10][Fuji-Inoue-Shinomiya-S 13]
- FST system
- Similarity reduction of the integrable hierarchy [Fuji-S 09][S 13][Tsuda 14]
- Isomonodromy deformation [Sakai 10]
- Matrix Painlevé system
- Isomonodromy deformation [Sakai 10][Kawakami 15]

And their q-analogues are proposed recently (but there is no classification theory):

- q-Garnier system or q-FST system
- q-Analogue of the isomonodromy deformation [Sakai 05][Park 18]
- Similarity reduction of the discrete integrable hierarchy [Tsuda 10][S 15][S 17]
- Pade method [Nagao-Yamada 18]
- Birational representation of the extended affine Weyl group [Okubo-S 20]
- q-Sasano system
- Birational representation of the extended affine Weyl group [Masuda 15]
- q-Matrix Painlevé system
- q-Analogue of the isomonodromy deformation [Kawakami 20]
(2) Cluster mutation

4 Examples

Cluster mutation

Let Q be a quiver without loops and 2-cycles and I a vertex set. We define a mutation μ_{i} at $i \in I$ as follows:
(1) If there are k_{1} arrows from i_{1} to i and k_{2} arrows from i to i_{2}, then we add $k_{1} k_{2}$ arrows from i_{1} to i_{2}.
(2) If 2-cycles appear via the first operation, then we remove all of them.
(3) We reverse the directions of all arrows touching i.

We define a skew-symmetric matrix $\Lambda=\left(\lambda_{i, j}\right)_{i, j \in I}$ corresponding to Q as follows:
(1) If there are k arrows from i to j, then we set $\lambda_{i, j}=k$ and $\lambda_{j, i}=-k$.
(2) If there is no arrow between i and j, then we set $\lambda_{i, j}=\lambda_{j, i}=0$.

Example

$$
Q=\int_{3}^{1} \Leftrightarrow \quad \Lambda=\left[\begin{array}{ccc}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0
\end{array}\right]
$$

Let $y=\left(y_{i}\right)_{i \in I}$ be a tuples of coefficients. We define an action of μ_{i} on y by

$$
\mu_{i}\left(y_{j}\right)=\left\{\begin{array}{cc}
y_{i}^{-1} & (j=i) \\
y_{j}\left(1+y_{i}^{-1}\right)^{\lambda_{i j}} & \left(\lambda_{i j}>0\right) \\
y_{j}\left(1+y_{i}\right)^{-\lambda_{i j}} & \left(\lambda_{i j}<0\right) \\
y_{j} & \left(j \neq i, \lambda_{i j}=0\right)
\end{array}\right.
$$

Example

Q and Λ are the same as those in the previous examples.

$$
\left(y_{1}, y_{2}, y_{3}\right) \xrightarrow{\mu_{1}}\left(\frac{1}{y_{1}}, \frac{y_{1} y_{2}}{1+y_{1}}, y_{3}\left(1+y_{1}\right)\right)
$$

Extended affine Weyl group of type $\left(A_{m n-1} \times A_{m-1} \times A_{m-1}\right)^{(1)}$

Consider the above quiver. We always assume that

$$
[j, i]=[j+m n, i]=[j, i+m] \quad(m, n \in \mathbb{N}, m>1, m n>2)
$$

Let $y_{[j, i]}\left(j \in \mathbb{Z}_{m n}, i \in \mathbb{Z}_{m}\right)$ be coefficients. We define multiplicative simple roots by

$$
\begin{aligned}
& a_{j}=\prod_{i=0}^{m-1} y_{[j, i]} \quad\left(j \in \mathbb{Z}_{m n}\right), \quad b_{i}=\prod_{j=0}^{m n-1} y_{[j, i]}, \quad b_{i}^{\prime}=\prod_{j=0}^{m n-1} y_{[j, i+j]} \quad\left(i \in \mathbb{Z}_{m}\right) \\
& q=\prod_{j=0}^{m n-1} a_{j}=\prod_{i=0}^{m-1} b_{i}=\prod_{i=0}^{m-1} b_{i}^{\prime}=\prod_{j=0}^{m n-1} \prod_{i=0}^{m-1} y_{[j, i]} .
\end{aligned}
$$

We first define simple reflections $r_{j}\left(j \in \mathbb{Z}_{m n}\right)$ by

$$
r_{j}=\mu_{[j, 0]} \mu_{[j, 1]} \ldots \mu_{[j, m-2]}([j, m-2][j, m-1]) \mu_{[j, m-2]} \ldots \mu_{[j, 1]} \mu_{[j, 0]}
$$

Their actions on the coefficients and the simple roots are described as

$$
\begin{aligned}
& r_{j}\left(y_{[j-1, i]}\right)=y_{[j-1, i]} y_{[j, i+1]} \frac{P_{[j, i+2]}}{P_{[j, i+1]}}, \quad r_{j}\left(y_{[j, i]}\right)=\frac{1}{y_{[j, i+1]}} \frac{P_{[j, i]}}{P_{[j, i+2]}}, \\
& r_{j}\left(y_{[j+1, i]}\right)=y_{[j, i]} y_{[j+1, i]} \frac{P_{[j, i+1]}}{P_{[j, i]}}, \\
& r_{j}\left(a_{j-1}\right)=a_{j-1} a_{j}, \quad r_{j}\left(a_{j}\right)=\frac{1}{a_{j}}, \quad r_{j}\left(a_{j+1}\right)=a_{j} a_{j+1}
\end{aligned}
$$

where

$$
P_{j, i}=\sum_{k=0}^{m-1} \prod_{l=0}^{k-1} y_{[j, i+l]}=1+y_{[j, i]}+y_{[j, i]} y_{[j, i+1]}+\ldots+y_{[j, i]} y_{[j, i+1]} \ldots y_{[j, i+m-2]}
$$

We next define simple reflections $s_{i}, s_{i}^{\prime}\left(i \in \mathbb{Z}_{m}\right)$ by

$$
\begin{aligned}
s_{i} & =\mu_{[0, i]} \mu_{[1, i]} \ldots \mu_{[m n-2, i]}([m n-2, i][m n-1, i]) \mu_{[m n-2, i]} \ldots \mu_{[1, i]} \mu_{[0, i]}, \\
s_{i}^{\prime} & =\mu_{[0, i]} \mu_{[1, i+1]} \ldots \mu_{[-2, i-2]}([-2, i-2][-1, i-1]) \mu_{[-2, i-2]} \ldots \mu_{[1, i+1]} \mu_{[0, i]} .
\end{aligned}
$$

Their actions on the coefficients and the simple roots are described as

$$
\begin{aligned}
& s_{i}\left(y_{[j, i]}\right)=\frac{1}{y_{[j+1, i]}} \frac{Q_{[j, i]}}{Q_{[j+2, i]}}, \quad s_{i}\left(y_{[j, i+1]}\right)=y_{[j, i]} y_{[j, i+1]} y_{[j+1, i]} \frac{Q_{[j+2, i]}}{Q_{[j, i]}}, \\
& s_{i}\left(b_{i}\right)=\frac{1}{b_{i}}, \quad s_{i}\left(b_{i+1}\right)=b_{i}^{2} b_{i+1}
\end{aligned}
$$

for $m=2$ and

$$
\begin{aligned}
& s_{i}\left(y_{[j, i-1]}\right)=y_{[j, i-1]} y_{[j+1, i]} \frac{Q_{[j+2, i]}}{Q_{[j+1, i]}}, \quad s_{i}\left(y_{[j, i]}\right)=\frac{1}{y_{[j+1, i]}} \frac{Q_{[j, i]}}{Q_{[j+2, i]}}, \\
& s_{i}\left(y_{[j, i+1]}\right)=y_{[j, i]} y_{[j, i+1]} \frac{Q_{[j+1, i]}}{Q_{[j, i]}}, \\
& s_{i}\left(b_{i-1}\right)=b_{i-1} b_{i}, \quad s_{i}\left(b_{i}\right)=\frac{1}{b_{i}}, \quad s_{i}\left(b_{i+1}\right)=b_{i} b_{i+1}
\end{aligned}
$$

for $m \geq 3$, where

$$
Q_{[j, i]}=\sum_{k=0}^{m n-1} \prod_{l=0}^{k-1} y_{[j+l, i]}, \quad y_{[j, i]}^{\prime}=y_{[-j, i-j]}
$$

In the last we define Dynkin diagram automorphisms π_{1}, π_{2} by

$$
\begin{aligned}
\pi_{1}= & ([0,0][1,1] \ldots[m-1, m-1][m, 0] \ldots[m n-1, m-1]) \\
& \times([0,1][1,2] \ldots,[m-1,0][m, 1] \ldots[m n-1,0]) \\
& \times \ldots \\
& \times([0, m-1][1,0] \ldots[m-1, m-2][m, m-1] \ldots[m n-1, m-2]), \\
\pi_{2}= & ([0,0][0,1] \ldots[0, m-1]) \\
& \times([1,0][1,1] \ldots[1, m-1]) \\
& \times \ldots \\
& \times([m n-1,0][m n-1,1] \ldots[m n-1, m-1]) .
\end{aligned}
$$

They act on the coefficients and the simple roots as

$$
\begin{aligned}
& \pi_{1}\left(y_{[j, i]}\right)=y_{[j+1, i+1]}, \quad \pi_{1}\left(a_{j}\right)=a_{j+1}, \quad \pi_{1}\left(b_{i}\right)=b_{i+1} \\
& \pi_{2}\left(y_{[j, i]}\right)=y_{[j+1, i]}, \quad \pi_{2}\left(b_{i}\right)=b_{i+1}, \quad \pi_{2}\left(b_{i}^{\prime}\right)=b_{i+1}^{\prime}
\end{aligned}
$$

Fact ([Masuda-Okubo-Tsuda 18])

Let

$$
G=\left\langle r_{0}, \ldots, r_{m n-1}\right\rangle, \quad H=\left\langle s_{0}, \ldots, s_{m-1}\right\rangle, \quad H^{\prime}=\left\langle s_{0}^{\prime}, \ldots, s_{m-1}^{\prime}\right\rangle,
$$

Then G, H and H^{\prime} are isomorphic to the affine Weyl groups of type $A_{m n-1}^{(1)}, A_{m-1}^{(1)}$ and $A_{m-1}^{(1)}$ respectively. Furthemore, any two groups are mutually commutative, namely

$$
G H=H G, \quad G H^{\prime}=H^{\prime} G, \quad H H^{\prime}=H^{\prime} H
$$

Proposition ([Okubo-S 20])

The Dynkin diagram automorphisms π_{1}, π_{2} satisfy fundamental relations

$$
\begin{aligned}
& \pi_{1}^{m n}=1, \quad \pi_{2}^{m}=1, \quad \pi_{1} \pi_{2}=\pi_{2} \pi_{1} \\
& r_{j} \pi_{1}=\pi_{1} r_{j+1}, \quad s_{i} \pi_{1}=\pi_{1} s_{i+1}, \quad s_{i}^{\prime} \pi_{1}=\pi_{1} s_{i}^{\prime} \\
& r_{j} \pi_{2}=\pi_{2} r_{j}, \quad s_{i} \pi_{2}=\pi_{2} s_{i+1}, \quad s_{i}^{\prime} \pi_{2}=\pi_{2} s_{i+1}^{\prime}
\end{aligned}
$$

Hence we can regard a group $\left\langle G, H, H^{\prime}\right\rangle \rtimes\left\langle\pi_{1}, \pi_{2}\right\rangle$ as an extended affine Weyl group of type $\left(A_{m n-1}+A_{m-1}+A_{m-1}\right)^{(1)}$.

(1) Introduction

(3) Lax form

4 Examples

Takao Suzuki (Kindai University)

Let us introduce an independent variable z satisfying

$$
r_{j}(z)=z, \quad s_{i}(z)=z, \quad s_{i}^{\prime}(z)=z, \quad \pi_{1}(z)=z, \quad \pi_{2}(z)=q^{1 / m} z
$$

We also set

$$
\zeta=z \prod_{j=1}^{m n-1} \prod_{i=0}^{m-2} a_{j}^{(m n-j) / m} b_{i}^{(i+1) / m}
$$

Let $E_{j_{1}, j_{2}}$ be a $m n \times m n$ matrix with 1 in $\left(j_{1}, j_{2}\right)$-th entry and 0 elsewhere. Consider matrices

$$
\Pi_{1}=\zeta^{\log _{q} \frac{1}{a_{1}}}\left(\sum_{j=1}^{m n-1} \prod_{k=0}^{j-1} \frac{1}{y_{[1, k]}} E_{j, j+1}+\frac{b_{m-1}}{a_{1}^{n} q} \zeta E_{m n, 1}\right)
$$

and

$$
\Pi_{2}=\sum_{j=1}^{m n} \prod_{k=1}^{j-1} y_{[k, j-1]} E_{j, j}+\sum_{j=1}^{m n-1} E_{j, j+1}+\frac{b_{m-1}}{q} \zeta E_{m n, 1}
$$

We also set

$$
M=\pi_{2}^{m-1}\left(\Pi_{2}\right) \pi_{2}^{m-2}\left(\Pi_{2}\right) \ldots \pi_{2}\left(\Pi_{2}\right) \Pi_{2}
$$

Example $(m n=6)$

$$
\begin{aligned}
& \frac{\Pi_{1}}{\zeta^{\log _{q} \frac{1}{a_{1}}}}=\left(\begin{array}{cccccc}
0 & \frac{1}{y_{[1,0]}} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{y_{[1,0]}^{y_{[1,1]}}} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{y_{[1,0]} \cdots y_{[1,2]}} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{y_{[1,0]} \cdots y_{[1,3]}} & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
y_{[1,0]} \cdots y_{[1,4]} \\
\frac{b_{m-1} \zeta}{a_{1}^{n} q} & 0 & 0 & 0 & 0 & 0
\end{array}\right), \\
& \Pi_{2}=\left(\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & y_{[1,1]} & 1 & 0 & 0 & 0 \\
0 & 0 & y_{[1,2]} y_{[2,2]} & 1 & 0 & 0 \\
0 & 0 & 0 & y_{[1,3]} \ldots y_{[3,3]} & 1 & 0 \\
0 & 0 & 0 & 0 & y_{[1,4]} \cdots y_{[4,4]} & 1 \\
\frac{b_{m-1} \zeta}{q} & 0 & 0 & 0 & 0 & y_{[1,5]} \cdots y_{[5,5]}
\end{array}\right)
\end{aligned}
$$

Let I be the identity matrix. Consider matrices

$$
\begin{aligned}
& R_{0}=\zeta^{\log _{q} a_{0}}\left(\sum_{j=1}^{m n} \frac{P_{[0, j-1]} \prod_{k=0}^{j-2} y_{[0, k]}}{P_{[0,0]}} E_{j, j}+\frac{q\left(1-a_{0}\right)}{y_{[0, m-1]} P_{[0,0]}} \frac{1}{\zeta} E_{1, m n}\right), \\
& R_{j}=r_{j}\left(\Pi_{1}^{-1}\right) \pi_{1}\left(R_{j-1}\right) \Pi_{1} \quad(j=1, \ldots, m n-1) .
\end{aligned}
$$

Example ($m n=6$)

$$
\begin{aligned}
& \frac{R_{1}}{\zeta^{\log _{q} \frac{1}{a_{1}}}}=\left(\begin{array}{cccccc}
\frac{y_{[1,1]} P_{[1,2]}}{P_{[1,1]}} & 0 & 0 & 0 & 0 & 0 \\
\frac{1-a_{1}}{P_{[1,1]}} & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{y_{[1,1]} P_{[1,2]}}{y_{[1,2]} P_{[1,3]}} & 0 & y_{[1,1]} P_{[1,2]} & 0 \\
0 & 0 & 0 & \frac{y_{[1,2]} y_{[1,3]} P_{[1,4]}}{} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{y_{[1,1]} P_{[1,2]}}{y_{[1,2]} \cdots y_{[1,4]} P_{[1,5]}} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{y_{[1,1]} P_{[1,2]}}{y_{[1,2]} \cdots y_{[1,5]} P_{[1,0]}}
\end{array}\right) \\
& R_{2}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & \frac{\left(1-a_{2}\right) y_{[1,1]}}{P_{[2,2]}} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

We also consider matrices

$$
\begin{aligned}
S_{0}= & I+\sum_{k=0}^{n-1}\left(\frac{Q_{[m k+2,0]} \prod_{l=2}^{m k+1} y_{[l, 0]}}{Q_{[2,0]}}-1\right) E_{m k+1, m k+1} \\
& +\sum_{k=0}^{n-1}\left(\frac{Q_{[1,0]}}{Q_{[m k+2,0]} \prod_{l=1}^{m k+1} y_{[l, 0]}}-1\right) E_{m k+2, m k+2} \\
& +\sum_{k=0}^{n-1} \frac{b_{0}-1}{y_{[1,0]} Q_{[2,0]}} E_{m k+1, m k+2}, \\
S_{i}= & s_{i}\left(\Pi_{2}^{-1}\right) \pi_{2}\left(S_{i-1}\right) \Pi_{2} \quad(i=1, \ldots, m-1),
\end{aligned}
$$

and

$$
\begin{aligned}
& S_{0}^{\prime}=I+\sum_{k=0}^{n-1}\left(\frac{y_{[0,0]}^{\prime} Q_{[1,0]}^{\prime}}{Q_{[0,0]}^{\prime}}-1\right) E_{m k+2, m k+2} \\
& S_{i}^{\prime}=s_{i}^{\prime}\left(\Pi_{2}^{-1}\right) \pi_{2}\left(S_{i-1}^{\prime}\right) \Pi_{2} \quad(i=1, \ldots, m-1)
\end{aligned}
$$

Example ($m=3, n=2$)

$$
\begin{aligned}
& S_{1}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{y_{[2,1]} Q_{[3,1]}}{Q_{[2,1]}} & \frac{b_{1}-1}{y_{[1,1]} Q_{[2,1]}} & 0 & 0 & 0 \\
0 & 0 & \frac{Q_{[1,1]}}{y_{[1,1]} y_{[2,1]} Q_{[3,1]}} & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{y_{[2,1]} \cdots y_{[5,1]} Q_{[0,1]}}{Q_{[2,1]}} & \frac{b_{1}-1}{y_{[1,1]} Q_{[2,1]}} \\
0 & 0 & 0 & 0 & 0 & \frac{Q_{[1,1]}}{y_{[1,1]} \ldots y_{[5,1]} Q_{[0,1]}}
\end{array}\right) \\
& S_{1}^{\prime} \\
& =\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{y_{[0,1]}^{\prime} Q_{[1,1]}^{\prime}}{Q_{[0,1]}^{\prime}} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{y_{[0,1]}^{\prime} Q_{[1,1]}^{\prime}}{Q_{[0,1]}^{\prime}}
\end{array}\right)
\end{aligned}
$$

Remark

The matrix S_{m-1}^{\prime} is rational in ζ, is not diagonal and hence is much more complicated than the others. The cause has not been clarified yet.

Denoting by $T_{q, z}=\pi_{2}^{m}$, we arrive at the following results.

Theorem ([S 21])

The compatibility condition of a system of linear q-difference equations

$$
\begin{aligned}
& T_{q, z}(\psi)=M \psi \\
& \pi_{1}(\psi)=\Pi_{1} \psi, \quad \pi_{2}(\psi)=\Pi_{2} \psi \\
& r_{j}(\psi)=R_{j} \psi \quad\left(j \in \mathbb{Z}_{m n}\right), \quad s_{i}(\psi)=S_{i} \psi, \quad s_{i}^{\prime}(\psi)=S_{i}^{\prime} \psi \quad\left(i \in \mathbb{Z}_{m}\right),
\end{aligned}
$$

is equivalent to the action of the Dynkin diagram automorphisms and the simple reflections given in the previous section.

Remark

Our Lax form gives a similarity reduction of a q-Drinfeld-Sokolov hierarchy of type $A_{m n-1}^{(1)}$ corresponding to the partition (n, \ldots, n) of $m n \in \mathbb{N}$.

Remark

Our Lax form (with $m n \times m n$ matrices) is transformed to that with $m \times m$ matrices via a q-Laplace transformation. The reduced system has been already proposed by Nagao, Park and Yamada.

(1) Introduction

(4) Examples

Case $m=2$

This case has been already investigated well.

Theorem ([Okubo-S 20][S 21])

We set

$$
\begin{aligned}
\tau_{1} & =s_{0} s_{0}^{\prime} \pi_{2} \\
\tau_{2} & =r_{0} \ldots r_{2 n-2} \pi_{1} r_{n} \ldots r_{2 n-1} r_{0} \ldots r_{n-2} \pi_{1} \\
\tau_{3} & =\left(r_{0} r_{2} \ldots r_{2 n-2} \pi_{1}\right)^{2} \\
\tau_{4} & =s_{0} r_{0} \ldots r_{2 n-2} \pi_{1}
\end{aligned}
$$

Then they provide higher order q-Painlevé systems as follows.

- $\tau_{1}: q-F S T$ system
- τ_{2} : (a direction of) Sakai's q-Garnier system
- τ_{3} : Tsuda's q-Painlevé system arising from the q-LUC hierarchy
- τ_{4} : Nagao-Yamada's "variation" of the q-Garnier system

Moreover we have clarified a relationship between those q-Painlevé systems and the q-hypergeometric functions ${ }_{n} \phi_{n-1}$ or ϕ_{D}.

Case $(m, n)=(3,2)$

The matrix M is described as

$$
M=\left(\begin{array}{cccccc}
1 & P_{[1,1]} & P_{[1,2]}^{*} & 1 & 0 & 0 \\
0 & a_{1} & \frac{a_{1} P_{[2,2]}}{y_{[1,1]}} & y_{[1,0]} P_{[2,0]}^{*} & 1 & 0 \\
0 & 0 & a_{1} a_{2} & \frac{a_{1} a_{2} P_{[3,0]}}{y_{[1,2]} y_{[2,2]}} & y_{[1,1]} y_{[2,1]} P_{[3,1]}^{*} & 1 \\
\frac{\zeta}{b_{0} b_{1}} & 0 & 0 & a_{1} \ldots a_{3} & \frac{a_{1} \ldots a_{3} P_{[4,1]}}{y_{[1,0]} \ldots y_{[3,0]}} & y_{[1,2]} \ldots y_{[3,2]} P_{[4,2]}^{*} \\
\frac{P_{[5,0]} \zeta}{b_{1} y_{[5,0]} y_{[0,0]}} & \frac{\zeta}{b_{1}} & 0 & 0 & a_{1} \ldots a_{4} & \frac{a_{1} \ldots a_{4} P_{[5,2]}}{y_{[1,1]} \ldots y_{[4,1]}} \\
\frac{P_{[0,0]} \zeta}{y_{[0,0]}^{y_{[0,1]}}} & \frac{P_{[0,1]}^{*} \zeta}{y_{[0,1]}} & \zeta & 0 & 0 & a_{1} \ldots a_{5}
\end{array}\right),
$$

where

$$
P_{[i, j]}=1+y_{[i, j]}+y_{[i, j]} y_{[i, j+1]}, \quad P_{[i, j]}^{*}=1+y_{[i, j]}+y_{[i, j]} y_{[i+1, j]} .
$$

We consider a translation

$$
\tau_{1}=s_{0} s_{1} s_{0}^{\prime} s_{1}^{\prime} \pi_{2}
$$

Then the compatibility condition of a Lax pair

$$
T_{q, z}(B) M=\tau_{1}(M) B, \quad B=s_{1} s_{0}^{\prime} s_{1}^{\prime} \pi_{2}\left(S_{0}\right) s_{0}^{\prime} s_{1}^{\prime} \pi_{2}\left(S_{1}\right) s_{1}^{\prime} \pi_{2}\left(S_{0}^{\prime}\right) \pi_{2}\left(S_{1}^{\prime}\right) \Pi_{2},
$$

implies a 8th order q-Painlevé system with parameters $a_{1}, \ldots, a_{5}, b_{1}, b_{2}, b_{1}^{\prime}, b_{2}^{\prime}$ and q.

Assume that

$$
P_{[1,1]}=P_{[1,2]}^{*}=P_{[4,1]}=P_{[4,2]}^{*}=0
$$

which contains a specialization between parameters

$$
b_{1}^{\prime}\left(b_{2}^{\prime}\right)^{2}=a_{1}^{2} a_{2} a_{4}^{2} a_{5} b_{1} b_{2}^{2}
$$

Then we have 2 invariants

$$
\tau_{1}\left(y_{[0,0]} y_{[0,2]} y_{[1,0]}\right)=y_{[0,0]} y_{[0,2]} y_{[1,0]}, \quad \tau_{1}\left(y_{[1,2]} y_{[2,0]} y_{[2,2]}\right)=y_{[1,2]} y_{[2,0]} y_{[2,2]}
$$

and hence obtain 3rd order q-Riccati like system. Introduce variables x_{0}, \ldots, x_{3} such that

$$
\frac{x_{1}}{x_{0}}=\left(1+y_{[0,0]}\right) y_{[0,2]}, \quad \frac{x_{2}}{x_{0}}=\frac{y_{[2,0]}}{y_{[3,2]}}, \quad \frac{x_{3}}{x_{0}}=\left(1+y_{[3,0]}\right) y_{[2,0]}
$$

and assume that

$$
a_{1}^{2} a_{2} a_{4}^{2} a_{5} b_{1} b_{2}^{2}=q
$$

Proposition ([S 2021])

A vector of variables $\left(x_{0}, \ldots, x_{3}\right)$ satisfies a system of linear q-difference equation, which reduces a rigid system of type $22,211,1111\left(E O_{4}\right)$ in a continuous limit $q \rightarrow 1$.

Remark

Another hypergeometric-type particular solution has been proposed by Park.
(4) Examples

(5) Summary

We have proposed an extended affine Weyl group of type $\left(A_{m n-1}+A_{m-1}+A_{m-1}\right)^{(1)}$ in two ways.

- Cluster mutation for a quiver on a torus with $m^{2} n$ vertices
- Lax form with $m n \times m n$ matrices

We have also investigated for $(m, n)=(3,2)$ as an experiment and derived a " q-rigid" system as a particular solution.

There are some future problems.

- Particular solutions in terms of q-hypergeometric functions
- A classification theory of higher order q-Painlevé systems
- Formulations of higher order elliptic Painlevé systems

Thank you for your attention.

