Asymptotic analysis of non-abelian Hodge theory in rank 2

Szilárd Szabó

Budapest University of Technology and Rényi Institute of Mathematics

March 10th 2021
Web-seminar on Painlevé Equations and related topics

Basic notation

Fix the data

- $\mathbb{C} P^{1}$: complex projective line,
- $r=2$ rank (i.e., $G=\mathrm{SI}_{2}(\mathbb{C})$),
- $p_{1}, \ldots, p_{n} \in \mathbb{C} P^{1}$ logarithmic singularities (with local charts $\left.z_{j}\right)$,
- $D=p_{1}+\cdots+p_{n}$ parabolic divisor,
- $L=K(D)$ twisted cotangent bundle,
- $\alpha_{j}^{-}=\frac{1}{4}<\alpha_{j}^{+}=\frac{3}{4}$ Dolbeault parabolic weights

Hitchin's equations, tame harmonic bundles
We consider Hitchin's equations

$$
\begin{aligned}
D^{0,1} \theta & =0 \\
F_{D}+\left[\theta, \theta^{\dagger} n\right. & =0
\end{aligned}
$$

for a unitary connection D on a rank 2 smooth Hermitian vector bundle (V, h) and a field $\theta: V \rightarrow V \otimes \Omega_{C}^{1,0}$.
Simpson tame harmonic bundles '90: at the parabolic divisor we require

- θ has first order poles at p_{j},
- the eigenvalues of $\operatorname{res}_{p_{j}}(\theta)$ are equal to 0 (strongly parabolic),
- and with respect to a compatible trivialization,

$$
h \approx \operatorname{diag}\left(\left|z_{j}\right|^{2 \alpha_{j}^{-}},\left|z_{j}\right|^{2 \alpha_{j}^{+}}\right)=\operatorname{diag}\left(\left|z_{j}\right|^{\frac{1}{2}},\left|z_{j}\right|^{\frac{3}{2}}\right)
$$

\rightsquigarrow solutions up to gauge equivalence: $\mathcal{M}_{\text {Hod }}$ non-abelian Hodge moduli space, a hyper-Kähler manifold.

de Rham and Dolbeault structures

Two Kähler structures on $\mathcal{M}_{\text {Hod }}$ have a geometric meaning:

- de Rham: $\mathcal{M}_{\mathrm{dr}}$ parameterising certain poly-stable parabolic connections (E, ∇) with regular singularities
- Dolbeault: $\mathcal{M}_{\text {Doı }}$ parameterising certain poly-stable parabolic Higgs bundles (\mathcal{E}, θ) with first-order poles.
By non-abelian Hodge theory, $\mathcal{M}_{\mathrm{dR}}$ and $\mathcal{M}_{\text {Dol }}$ are diffeomorphic to each other (via $\mathcal{M}_{\text {Hod }}$):

NAHT: $\mathcal{M}_{\text {Dol }} \xrightarrow{\sim} \mathcal{M}_{\mathrm{dR}}$.

Character variety, Riemann-Hilbert correspondence

Character variety \mathcal{M}_{B} : moduli space parameterising (filtered) local systems ρ on $\mathbb{C} P^{1} \backslash D$, with eigenvalues on a simple positive loop around p_{j} given by

$$
c_{j}^{ \pm}=\exp \left(-2 \pi \sqrt{-1} \alpha_{j}^{ \pm}\right)= \pm \sqrt{-1}
$$

Regular-singular Riemann-Hilbert correspondence: bi-analytic map

$$
\mathrm{RH}: \mathcal{M}_{\mathrm{dR}} \rightarrow \mathcal{M}_{\mathrm{B}} .
$$

Conclusion: $\mathcal{M}_{\mathrm{dR}}, \mathcal{M}_{\text {Dol }}$ and \mathcal{M}_{B} are all diffeomorphic to each other (and to $\mathcal{M}_{\text {Hod }}$), in particular

$$
(\mathrm{RH} \circ \mathrm{NAHT})^{*}: H^{\bullet}\left(\mathcal{M}_{\mathrm{B}}, \mathbb{Q}\right) \xrightarrow{\cong} H^{\bullet}\left(\mathcal{M}_{\mathrm{Dol}}, \mathbb{Q}\right) .
$$

Perverse filtration on Dolbeault spaces

Hitchin '87: for $\mathcal{M}_{\text {Dol }}$ a Dolbeault moduli space there exists a surjective proper algebraic map of quasi-projective varieties

$$
H: \mathcal{M}_{\text {Dol }} \rightarrow Y=\mathbb{C}^{N}
$$

This endows $H^{\bullet}\left(\mathcal{M}_{\text {Dol }}, \mathbb{Q}\right)$ with a perverse filtration P defined by $P^{p} \mathrm{H}^{*}\left(Y, \mathrm{R} H_{*} \underline{\mathbb{Q}}_{\mathcal{M}}\right)=\operatorname{Im}\left(\mathrm{H}^{*}\left(Y,^{\mathfrak{p}} \tau_{\leq-p} \mathrm{R} H_{*} \underline{\mathbb{Q}}_{\mathcal{M}}\right) \rightarrow \mathrm{H}^{*}\left(Y, \mathrm{RH}_{*} \underline{\mathbb{Q}}_{\mathcal{M}}\right)\right)$, where

$$
{ }^{\mathfrak{p}} \tau_{\leq i}: D_{\text {constr }}^{b}(Y, \mathbb{Q}) \rightarrow^{\mathfrak{p}} D_{\text {constr }}^{\leq i}(Y, \mathbb{Q})
$$

are the Beilinson-Bernstein-Deligne truncation functors.

Weight filtration on Betti spaces

\mathcal{M}_{B} is an affine algebraic variety. Deligne's Hodge II. ('71) $\Rightarrow H^{*}\left(\mathcal{M}_{\mathrm{B}}, \mathbb{C}\right)$ carries a Mixed Hodge Structure, in particular a weight filtration W.
Known: there exists a spectral sequence depending on the cohomology groups of a smooth compactification $\widetilde{\mathcal{M}}_{\mathrm{B}}$ of \mathcal{M}_{B} and the combinarorics of a compactifying divisor, abutting to W. Hausel-Rodriguez-Villegas '08: for character varieties one has $W_{2 k}=W_{2 k-1}$.

$P=W$ conjecture

Theorem (de Cataldo-Hausel-Migliorini '12)
If C is a smooth projective curve and $r=2$, then for the Dolbeault and Betti spaces corresponding to each other under non-abelian Hodge theory and the Riemann-Hilbert correspondence, the filtrations P and W get mapped into each other:

$$
(\mathrm{RH} \circ \mathrm{NAHT})^{*} W_{2 i} H^{k}\left(\mathcal{M}_{\mathrm{B}}, \mathbb{Q}\right)=P^{i} H^{k}\left(\mathcal{M}_{\mathrm{Dol}}, \mathbb{Q}\right) .
$$

Conjecture (de Cataldo-Hausel-Migliorini '12)
The same property holds for any rank r.

Progress on $P=W$ conjecture

- M. de Cataldo, D. Maulik and J. Shen '19 established it for curves of genus 2 .
- J. Shen and Z. Zhang '18 proved it for five infinite families of moduli spaces of parabolic Higgs bundles over $\mathbb{C} P^{1}$.
- C. Felisetti and M. Mauri '20 proved it for character varieties admitting a symplectic resolution, i.e. in genus 1 and arbitrary rank and genus 2 and rank 2.
- Sz '19 established it for complex 2-dimensional moduli spaces of rank 2 Higgs bundles with irregular singularities over $\mathbb{C} P^{1}$ corresponding to the Painlevé cases.
- L. Katzarkov, A. Harder and V. Przyjalkowski '19 have formulated a version for log-Calabi-Yau manifolds and their mirror pairs.

Geometric $P=W$ conjecture

- L. Katzarkov, A. Noll, P. Pandit and C. Simpson, 2015: conjectured a certain homotopy commutativity property for RH \circ NAHT (see next Section).
- Trivial consequence of this homotopy commutativity: $\left|\mathbb{D} \partial \mathcal{M}_{\mathrm{B}}(\vec{c}, \vec{\gamma})\right|$ has homotopy type S^{N-1}, where $2 N=\operatorname{dim}_{\mathbb{C}} \mathcal{M}_{B}$.
- A. Komyo, 2015: proved that for $n=5$ with our notations, $\left|\mathbb{D} \partial \mathcal{M}_{\mathrm{B}}(\vec{c}, \vec{\gamma})\right|$ is homotopy equivalent to S^{3}.
- C. Simpson, 2015: generalized the homotopy equivalence assertion to any $n \geq 5$, and named the homotopy commutativity assertion "Geometric $\mathrm{P}=\mathrm{W}$ conjecture".
- M. Mauri, E. Mazzon and M. Stevenson, 2018: showed that $\left|\mathbb{D} \partial \mathcal{M}_{\mathrm{B}}\right|$ for the $\mathrm{GI}(n, \mathbb{C})$ character variety of a 2 -torus is homeomorphic to $S^{2 n-1}$.

Map to Danilov complex

Let $\widetilde{\mathcal{M}}_{\mathrm{B}}$ be a smooth compactification of \mathcal{M}_{B} by a simple normal crossing divisor D and denote by $\mathbb{D} \partial \mathcal{M}_{\mathrm{B}}(\vec{c}, \vec{\gamma})$ the nerve (aka. dual) simplicial complex of D :

- to each irreducible component $D_{i} \subset D \rightsquigarrow$ a 0-cell in $\mathbb{D} \partial \mathcal{M}_{\mathrm{B}}(\vec{c}, \vec{\gamma})_{0}$,
- to each nonempty intersection $D_{i} \cap D_{i^{\prime}} \neq \varnothing \rightsquigarrow$ a 1-cell in $\mathbb{D}^{2} \mathcal{M}_{\mathrm{B}}(\vec{c}, \vec{\gamma})_{1}$,
- etc.

Let $T_{i} \subset \mathcal{M}_{\mathrm{B}}$ be a punctured tubular neighbourhood of D_{i} and

$$
T=\cup_{i} T_{i}
$$

There exists (up to homotopy) a natural map

$$
\Phi: T \rightarrow\left|\mathbb{D} \partial \mathcal{M}_{\mathrm{B}}(\vec{c}, \vec{\gamma})\right|
$$

Geometric $P=W$ conjecture in the Painlevé 6 case

Let $n=4, D=0+1+t+\infty$.
Theorem (Sz '19 (to appear in Adv. Math.), Némethi-Sz '20 (IMRN))
For some sufficiently large compact $K \subset \mathcal{M}_{\mathrm{B}}$ there exists a homotopy commutative square

Here, $D^{\times}=\mathbb{C}-B_{R}(0) \subset Y$ and $\psi=\mathrm{RH} \circ \mathrm{NAHT}$.

Hitchin base and standard spectral curve

Proof of the Theorem based on Sz. 1906.01856. Assumptions $\Rightarrow \operatorname{tr}(\theta) \equiv 0$, Hitchin base:

$$
H^{0}\left(\mathbb{C} P^{1}, K^{2}(0+1+t+\infty)\right) \cong \mathbb{C}
$$

spanned by

$$
\frac{(\mathrm{d} z)^{\otimes 2}}{z(z-1)(z-t)}
$$

Set $L=K(0+1+t+\infty)$, and take the canonical section

$$
\zeta \frac{\mathrm{d} z}{z(z-1)(z-t)}
$$

of $p_{L}^{*} L$ over $\operatorname{Tot}(L)$. In $\operatorname{Tot}(L)$ we consider the curve

$$
\tilde{X}_{1,0}=\left\{(z, \zeta): \quad \zeta^{2}+z(z-1)(z-t)=0\right\}
$$

Rescaling of spectral curve

For $R \gg 0, \varphi \in \mathbb{R} / 2 \pi \mathbb{Z}$ let $\left(\mathcal{E}_{R, \varphi}, \theta_{R, \varphi}\right)$ be a rank 2 logarithmic Higgs bundle over $\mathbb{C} P^{1}$ with

$$
\operatorname{det}\left(\theta_{R, \varphi}\right)=-R e^{\sqrt{-1} \varphi} \in H^{0}\left(\mathbb{C} P^{1}, K^{2}(0+1+t+\infty)\right)
$$

Its spectral curve is
$\tilde{X}_{R, \varphi}=\left\{(z, \zeta): \quad \operatorname{det}\left(\theta_{R, \varphi}-\zeta \frac{\mathrm{d} z}{z(z-1)(z-t)}\right)=0\right\} \subset \operatorname{Tot}(L)$,
with natural projection given by

$$
\begin{aligned}
p: \tilde{X}_{R, \varphi} & \rightarrow \mathbb{C} P^{1} \\
(z, \zeta) & \mapsto z .
\end{aligned}
$$

We have

$$
(z, \zeta) \in \tilde{X}_{R, \varphi} \Leftrightarrow\left(z, \sqrt{-1} R^{-\frac{1}{2}} e^{-\sqrt{-1} \varphi / 2} \zeta\right) \in \tilde{X}_{1,0}
$$

Abelianization

Set

$$
\omega=\frac{\mathrm{d} z}{\sqrt{z(z-1)(z-t)}} .
$$

T. Mochizuki (2016): on simply connected open sets $U \subset \mathbb{C} \backslash\{0,1, t\}$ there is a gauge $e_{1}(z), e_{2}(z)$ of \mathcal{E} with respect to which

$$
\theta_{R, \varphi}(z)-\left(\begin{array}{cc}
\sqrt{R} e^{\sqrt{-1} \varphi / 2} & 0 \\
0 & -\sqrt{R} e^{\sqrt{-1} \varphi / 2}
\end{array}\right) \omega \rightarrow 0
$$

as $R \rightarrow \infty$, and the Hermitian-Einstein metric h is close to an abelian model $h_{\text {ab }}$.
Crucial observation
Since ω has ramification at $0,1, t, \infty$, along a simple loop γ around these points, the local sections $e_{1}(z), e_{2}(z)$ get interchanged.

Non-abelian Hodge theory at large R

The connection matrix associated to $\left(\mathcal{E}_{R, \varphi}, \theta_{R, \varphi}\right)$ is

$$
\begin{aligned}
a_{R, \varphi}(z, \bar{z}) & =\theta_{R, \varphi}(z)+\overline{\theta_{R, \varphi}(z)}+b_{R, \varphi} \\
& \approx \sqrt{R}\left(\begin{array}{cc}
e^{\sqrt{-1} \varphi / 2} \omega+e^{-\sqrt{-1} \varphi / 2} \bar{\omega} & 0 \\
0 & -e^{\sqrt{-1} \varphi / 2} \omega-e^{-\sqrt{-1} \varphi / 2} \bar{\omega}
\end{array}\right) \\
& +b_{R, \varphi}
\end{aligned}
$$

where $d+b_{R, \varphi}$ is the Chern connection associated to the holomorphic structure of \mathcal{E} and h_{ab}. So $b_{R, \varphi}$ takes values in $\mathfrak{s}(\mathfrak{u}(1) \oplus \mathfrak{u}(1))$.

Monodromy matrices at large R

The monodromy matrices of the connection $\mathrm{d}+a_{R, \varphi}$ along a simple loop γ_{j} around $j \in\{0,1, t\}$ are
$B_{j}(R, \varphi)=T \exp \oint_{\gamma_{j}}-a_{R, \varphi}(z, \bar{z})=T A_{j}(R, \varphi)$.
$\exp \sqrt{R}\left(\begin{array}{cc}-e^{\sqrt{-1} \varphi / 2} \pi_{j}-e^{-\sqrt{-1} \varphi / 2} \overline{\pi_{j}} & 0 \\ 0 & e^{\sqrt{-1} \varphi / 2} \pi_{j}+e^{-\sqrt{-1} \varphi / 2} \overline{\pi_{j}}\end{array}\right)$
where we have set

$$
\pi_{j}=\oint_{\gamma_{j}} \omega, \quad T=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

and $A_{j}(R, \varphi) \in \mathrm{S}(\mathrm{U}(1) \times \mathrm{U}(1))$ is the monodromy of the Chern connection.

Products of monodromy matrices at large R

Setting

$$
A_{j}(R, \varphi)=\left(\begin{array}{cc}
e^{\sqrt{-1} \mu_{j}} & 0 \\
0 & e^{-\sqrt{-1} \mu_{j}}
\end{array}\right)
$$

and

$$
d_{01}(R, \varphi)=\exp \left(\sqrt{-1}\left(\mu_{1}-\mu_{0}\right)+2 \sqrt{R} \Re\left(e^{\sqrt{-1} \varphi / 2}\left(\pi_{0}-\pi_{1}\right)\right)\right)
$$

it follows that

$$
B_{0}(R, \varphi) B_{1}(R, \varphi) \approx\left(\begin{array}{cc}
d_{01}(R, \varphi) & 0 \\
0 & d_{01}(R, \varphi)^{-1}
\end{array}\right)
$$

Affine coordinates on the Betti space

Let us set

$$
\begin{aligned}
& x_{1}(R, \varphi)=\operatorname{tr}\left(B_{0}(R, \varphi) B_{1}(R, \varphi)\right) \\
& x_{2}(R, \varphi)=\operatorname{tr}\left(B_{t}(R, \varphi) B_{0}(R, \varphi)\right) \\
& x_{3}(R, \varphi)=\operatorname{tr}\left(B_{1}(R, \varphi) B_{t}(R, \varphi)\right) .
\end{aligned}
$$

These co-ordinates satisfy Fricke-Klein cubic relation:

$$
x_{1} x_{2} x_{3}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-s_{1} x_{1}-s_{2} x_{2}-s_{3} x_{3}+s_{4}=0
$$

for some $s_{1}, s_{2}, s_{3}, s_{4} \in \mathbb{C}$. Compactifying divisor of $\widetilde{\mathcal{M}}_{\mathrm{B}}^{P X}$:

$$
\begin{aligned}
D & =\left(x_{1} x_{2} x_{3}\right) \subset \mathbb{C} P_{\infty}^{2} \\
& =L_{1} \cup L_{2} \cup L_{3}
\end{aligned}
$$

where L_{i} are lines pairwise intersecting each other in points P_{1}, P_{2}, P_{3}.

Dual boundary complex

The nerve complex $\mathbb{D} \partial \mathcal{M}_{\mathrm{B}}(\vec{c}, \vec{\gamma})$ of D has vertices v_{1}, v_{2}, v_{3} corresponding to line components
$L_{1}=\left[0: 0: x_{2}: x_{3}\right], \quad L_{2}=\left[0: x_{1}: 0: x_{3}\right], \quad L_{3}=\left[0: x_{1}: x_{2}: 0\right]$
of D and edges

$$
\left[v_{1} v_{2}\right], \quad\left[v_{2} v_{3}\right], \quad\left[v_{3} v_{1}\right]
$$

corresponding to intersection points of the components:

$$
[0: 0: 0: 1], \quad[0: 1: 0: 0], \quad[0: 0: 1: 0]
$$

Simpson's map

Let T_{i} be an open tubular neighbourhood of L_{i} in $\widetilde{\mathcal{M}}_{\mathrm{B}}$ and set

$$
T=T_{1} \cup T_{2} \cup T_{3} .
$$

Let $\left\{\phi_{i}\right\}$ be a partition of unity subordinate to the cover of T by $\left\{T_{i}\right\}$. Define the map

$$
\begin{aligned}
\Phi: T & \rightarrow \mathbb{R}^{3} \\
x & \mapsto\left(\begin{array}{l}
\phi_{1}(x) \\
\phi_{2}(x) \\
\phi_{3}(x)
\end{array}\right) .
\end{aligned}
$$

Then,

$$
\operatorname{Im}(\Phi)=\left[v_{1} v_{2}\right] \cup\left[v_{2} v_{3}\right] \cup\left[v_{3} v_{1}\right] \cong S^{1}
$$

Asymptotic of Riemann-Hilbert correspondence at large R
Fix $R \gg 0$ and let $\varphi \in[0,2 \pi)$ vary. Need to show: the loop

$$
\Phi \circ \mathrm{RH}\left(\mathcal{E}_{R, \varphi}, \theta_{R, \varphi}\right)
$$

generates $\pi_{1}(\operatorname{Im}(\Phi)) \cong \mathbb{Z}$.
Key fact: for $d \in \mathbb{C}$ with $|\Re(d)| \gg 0$ we have

$$
|2 \cosh (d)| \approx e^{|d|}
$$

This implies

$$
\begin{aligned}
& \left|x_{1}(R, \varphi)\right| \approx \exp \left(2 \sqrt{R}\left|\Re\left(e^{\sqrt{-1} \varphi / 2}\left(\pi_{0}-\pi_{1}\right)\right)\right|\right), \\
& \left|x_{2}(R, \varphi)\right| \approx \exp \left(2 \sqrt{R}\left|\Re\left(e^{\sqrt{-1} \varphi / 2}\left(\pi_{t}-\pi_{0}\right)\right)\right|\right), \\
& \left|x_{3}(R, \varphi)\right| \approx \exp \left(2 \sqrt{R}\left|\Re\left(e^{\sqrt{-1} \varphi / 2}\left(\pi_{1}-\pi_{t}\right)\right)\right|\right) .
\end{aligned}
$$

Rotating triangle

Let $\Delta \subset \mathbb{C}$ be the triangle with vertices $\pi_{0}, \pi_{1}, \pi_{t}$, assume Δ is non-degenerate. Denote its sides by

$$
a=\pi_{0}-\pi_{1}, \quad b=\pi_{t}-\pi_{0}, \quad c=\pi_{1}-\pi_{t}
$$

Let us denote by $e^{\sqrt{-1} \varphi / 2} \Delta$ the triangle obtained by rotating Δ by angle $\varphi / 2$ in the positive direction, with sides $e^{\sqrt{-1} \varphi / 2} a, e^{\sqrt{-1} \varphi / 2} b, e^{\sqrt{-1} \varphi / 2} c$.

Critical angles

Lemma

For each side a, b, c there exists exactly one value
$\varphi_{a}, \varphi_{b}, \varphi_{c} \in[0,2 \pi)$ such that $e^{\sqrt{-1} \varphi_{a} / 2} a$ (respectively
$e^{\sqrt{-1} \varphi_{b} / 2} b, e^{\sqrt{-1} \varphi_{c} / 2} c$) is purely imaginary. The function

$$
\Re\left(e^{\sqrt{-1} \varphi / 2} b\right)-\Re\left(e^{\sqrt{-1} \varphi / 2} c\right)
$$

changes sign at $\varphi=\varphi_{a}$. Similar statements hold with a, b, c permuted.

Definition

$\varphi_{a}, \varphi_{b}, \varphi_{c}$ are the critical angles associated to the sides a, b, c respectively.

Arc decomposition of the circle

The critical angles decompose S^{1} into three closed arcs

$$
S^{1}=I_{1} \cup I_{2} \cup I_{3}
$$

satisfying:
$\max \left(\left|\Re\left(e^{\sqrt{-1} \varphi / 2}\left(\pi_{0}-\pi_{1}\right)\right)\right|,\left|\Re\left(e^{\sqrt{-1} \varphi / 2}\left(\pi_{t}-\pi_{0}\right)\right)\right|,\left|\Re\left(e^{\sqrt{-1} \varphi / 2}\left(\pi_{1}-\pi_{t}\right)\right)\right|\right)$
is attained

- by $\left|\Re\left(e^{\sqrt{-1} \varphi / 2}\left(\pi_{0}-\pi_{1}\right)\right)\right|$ for $\varphi \in I_{1}$,
- by $\left|\Re\left(e^{\sqrt{-1} \varphi / 2}\left(\pi_{t}-\pi_{0}\right)\right)\right|$ for $\varphi \in I_{2}$,
- and by $\left|\Re\left(e^{\sqrt{-1} \varphi / 2}\left(\pi_{1}-\pi_{t}\right)\right)\right|$ for $\varphi \in I_{3}$.

Arc decomposition of the circle

Limiting Riemann-Hilbert map

We deduce

- for $\varphi \in \operatorname{Int}\left(I_{1}\right)$, we have

$$
\left[x_{0}: x_{1}: x_{2}: x_{3}\right] \rightarrow[0: 1: 0: 0]
$$

- for $\varphi \in \operatorname{Int}\left(I_{2}\right)$, we have

$$
\left[x_{0}: x_{1}: x_{2}: x_{3}\right] \rightarrow[0: 0: 1: 0]
$$

- for $\varphi \in \operatorname{Int}\left(I_{3}\right)$, we have

$$
\left[x_{0}: x_{1}: x_{2}: x_{3}\right] \rightarrow[0: 0: 0: 1]
$$

Limiting Simpson's map

Applying Simpson's map Φ to the previous limits we get that

- for $\varphi \in \operatorname{Int}\left(I_{1}\right)$, we have

$$
\Phi\left(\mathcal{E}_{R, \varphi}, \theta_{R, \varphi}\right) \in\left[v_{2} v_{3}\right]
$$

- for $\varphi \in \operatorname{Int}\left(I_{2}\right)$, we have

$$
\Phi\left(\mathcal{E}_{R, \varphi}, \theta_{R, \varphi}\right) \in\left[v_{3} v_{1}\right],
$$

- for $\varphi \in \operatorname{Int}\left(I_{3}\right)$, we have

$$
\Phi\left(\mathcal{E}_{R, \varphi}, \theta_{R, \varphi}\right) \in\left[v_{1} v_{2}\right] .
$$

Thus, Φ sends a generator of $\pi_{1}\left(S_{\varphi}^{1}\right)$ into a generator of $\pi_{1}(\operatorname{lm}(\Phi))$.

Limiting composed map

$\mathcal{M}_{\text {Dol }}$

Result in Garnier case with 5 logarithmic points

From now on we let $n=5$, based on arXiv:2103.00932.
Theorem
There exists a value of the map

$$
\Phi \circ \mathrm{RH} \circ \psi \circ \sigma: S^{3} \rightarrow S^{3}
$$

whose preimages lie in a tubular neighbourhood of a curve $C \subset S^{3}$, and the derivative of the map at one of the preimages is invertible.

Remark

For the Geometric $P=W$ conjecture, we would also need that the given value is only attained at one point of S^{3}. We strongly believe this is true, however have no rigorous proof as of now.

Hitchin base and map

Let (\mathcal{E}, θ) be a strongly parabolic Higgs bundle of rank 2 with 5 logarithmic points.
Again, we have $\operatorname{tr}(\theta) \equiv 0$. Hitchin base:

$$
\mathcal{B}=\left\{q: \quad q\left(t_{j}\right)=0 \text { for all } 0 \leq j \leq 4\right\} \subset H^{0}\left(\mathbb{C} P^{1}, L^{\otimes 2}\right) \cong \mathbb{C}^{7},
$$

so $\operatorname{dim}_{\mathbb{C}}(\mathcal{B})=2$. Hitchin map:

$$
\begin{aligned}
H: \mathcal{M}_{\text {Do। }}(\overrightarrow{0}, \vec{\alpha}) & \rightarrow \mathcal{B} \\
(\mathcal{E}, \theta) & \mapsto-\operatorname{det}(\theta)
\end{aligned}
$$

Spectral curve

For $q \in S_{1}^{3} \subset \mathcal{B}$ we write $\zeta_{ \pm}(R q, z)$ for the roots of

$$
\zeta^{2}-R q=0,
$$

specifically

$$
\zeta_{ \pm}(R q, z)= \pm \sqrt{R q(z, 1)} .
$$

Denote the corresponding meromorphic 1 -forms by

$$
Z_{ \pm}(R q, z)= \pm \sqrt{R q(z, 1)} \frac{\mathrm{d} z}{\prod_{j=0}^{4}\left(z-t_{j}\right)} .
$$

We denote by

$$
X_{R q}=\{([z: w], \pm \sqrt{R q(z, w)})\} \rightarrow \mathbb{C} P^{1}
$$

the Riemann surface of the bivalued function $\zeta_{ \pm}(R q, z)$.

Ramification divisor and Hopf fibration

We set

$$
\Delta_{q}=\{z \in \mathbb{C}: \quad q(z)=0\}
$$

for the ramification divisor of $X_{R q}$. We then have

$$
\Delta_{q}=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t(q)\right\}
$$

for some $t(q) \in \mathbb{C} P^{1}$. Namely,

$$
q(z)=\frac{(a z-b) \mathrm{d} z^{\otimes 2}}{\prod_{j=0}^{4}\left(z-t_{j}\right)}
$$

for some $(a, b) \in \mathbb{C}^{2}$. The map

$$
\begin{aligned}
t: S_{1}^{3} & \rightarrow \mathbb{C} P^{1} \\
q & \mapsto t(q)
\end{aligned}
$$

is the Hopf fibration.

Idea of proof

We fix a generic element $q \in S_{1}^{3}$ and consider $(\mathcal{E}, \theta) \in \mathcal{M}_{\text {Dol }}(\overrightarrow{0}, \vec{\alpha})$ such that

$$
H(\mathcal{E}, \theta)=q .
$$

For $R>0$ we have

$$
H(\mathcal{E}, \sqrt{R} \theta)=R q .
$$

It is then possible to express the $R \rightarrow \infty$ asymptotic behaviour of $\Phi \circ \psi$ in function of $\int_{\gamma} Z_{ \pm}(q, z)$ over various paths γ in $\mathbb{C} P^{1}$, up to factors belonging to $U(1)$.
We choose a smooth section

$$
\sigma: S_{1}^{3} \rightarrow \mathcal{M}_{\mathrm{Dol}}(\overrightarrow{0}, \vec{\alpha})
$$

to get rid of the $U(1)$ factors.

Asymptotic abelianization

Let $h_{\sqrt{R}}$ and $\nabla_{\sqrt{R}}$ denote the Hermite-Einstein metric and integrable connection associated to $(\mathcal{E}, \sqrt{R} \theta)$. Introduce

$$
\nabla_{\sqrt{R}}^{\text {model }}=\nabla_{h_{q, \infty}}+\left(\begin{array}{cc}
2 \Re Z_{+}(R q, z) & 0 \\
0 & 2 \Re Z_{-}(R q, z)
\end{array}\right) .
$$

where $h_{q, \infty}$ is some explicit abelian solution of Hitchin's equation (i.e., with values in $S(U(1) \times U(1))$) and $\nabla_{h_{q, \infty}}$ the corresponding unitary connection.
Theorem (T. Mochizuki '16)
Over any simply connected compact set $K \subset \mathbb{C} \backslash \Delta_{q}$ there exists a gauge transformation $g_{\sqrt{R}}$ such that

$$
g_{\sqrt{R}} \cdot \nabla_{\sqrt{R}}-\nabla_{\sqrt{R}}^{\text {model }} \rightarrow 0
$$

(measured with respect to $h_{\sqrt{R}}$) as $R \rightarrow \infty$, uniformly over K.

Fiducial solution, Painlevé 3

R. Mazzeo, J. Swoboda, H. Weiss, F. Witt '16 (near ramification points $t(q)$), L. Fredrickson, R. Mazzeo, J. Swoboda, H. Weiss '20 (near parabolic points D): local models for the $R \gg 0$ behaviour of $h_{\sqrt{R}}$ and $\nabla_{\sqrt{R}}$, called fiducial solutions.
Near $t(q)$: let $\ell_{\sqrt{R}}$ be the solution of the Painlevé 3-type equation

$$
\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} \tilde{r}^{2}}+\frac{1}{\tilde{r}} \frac{\mathrm{~d}}{\mathrm{~d} \tilde{r}}\right) \ell_{\sqrt{R}}=8 R \tilde{r} \sinh \left(2 \ell_{\sqrt{R}}\right)
$$

satisfying the boundary behaviours

$$
\begin{aligned}
& \ell_{\sqrt{R}}(\tilde{r}) \approx-\frac{1}{2} \log (\tilde{r}), \quad \tilde{r} \rightarrow 0+ \\
& \ell_{\sqrt{R}}(\tilde{r}) \approx \frac{1}{\pi} K_{0}\left(\frac{8}{3} \sqrt{R \tilde{r}^{3}}\right) \approx \frac{\sqrt{3}}{2 \pi \sqrt{2} \sqrt[4]{R \tilde{r}^{3}}} e^{-\frac{8}{3} \sqrt{R \tilde{r}^{3}}}, \quad \tilde{r} \rightarrow \infty,
\end{aligned}
$$

with K_{0} the modified Bessel function of order 0.

Fiducial solution, approximate solution

Then, for a co-ordinate \tilde{z} on the disc $|\tilde{z}|<1$ introduce a unitary connection and Higgs field:

$$
\begin{aligned}
& A_{\sqrt{R}}^{\mathrm{fid}}=\left(\begin{array}{c}
\left.\frac{1}{8}+\frac{1}{4} \tilde{r} \partial_{\tilde{r}} \ell_{\sqrt{R}}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) 2 \sqrt{-1} \mathrm{~d} \tilde{\varphi} \\
\theta_{\sqrt{R}}^{\mathrm{fid}}=\left(\begin{array}{cc}
0 & \tilde{r}^{1 / 2} e^{\ell} \sqrt{R}(\tilde{r}) \\
\tilde{z} \tilde{r}^{-1 / 2} e^{-\ell_{\sqrt{R}}(\tilde{r})} & 0
\end{array}\right) \mathrm{d} \tilde{z} .
\end{array} .\right.
\end{aligned}
$$

Gluing construction of the fiducial solution and Mochizuki's abelian form \rightsquigarrow approximate solution $h_{\sqrt{R}}^{\text {appr }}$.
Theorem (MSWW '16, FMSW '20)
Assume that all the zeroes of q are simple. Then, there exists a small perturbation (for an appropriate Hölder norm) of the Hermitian metric $h_{\sqrt{R}}^{\text {appr }}$ that satisfies Hitchin's equation for $(\mathcal{E}, \sqrt{R} \theta)$.

Pair-of-pants decomposition

Simpson's Fenchel-Nielsen co-ordinates

Simpson '16: \mathcal{M}_{B} carries complex length co-ordinates

$$
t_{i}=\operatorname{tr} \operatorname{RH}(\nabla)\left[\rho_{i}\right] \in \mathbb{C} \quad(i \in\{2,3\})
$$

and complex twist co-ordinates

$$
\left[p_{i}: q_{i}\right] \in \mathbb{C} P^{1} \quad(i \in\{2,3\})
$$

subject to the condition

$$
p_{i}^{2}+t_{i} p_{i} q_{i}+q_{i}^{2} \neq 0
$$

Boundary divisor of character variety

Introduce

$$
\mathrm{Q}=\left\{(t,[p: q]) \in(\mathbb{C} \backslash\{ \pm 2\}) \times \mathbb{C} P^{1} \text { satisfying } p^{2}+t p q+q^{2} \neq 0\right\}
$$

Simpson: homotopy type of the dual boundary complex of $\mathcal{M}_{\mathrm{B}}(\vec{c}, \vec{\gamma})$ agrees with the one of Q^{2}

$$
\mathbb{D} \partial \mathcal{M}_{\mathrm{B}}(\vec{c}, \vec{\gamma}) \sim \mathbb{D} \partial \mathrm{Q}^{2} \sim \mathbb{D} \partial \mathrm{Q} * \mathbb{D} \partial \mathrm{Q} \sim S^{1} * S^{1} \sim S^{3}
$$

Boundary divisor of Q

Set

$$
C_{i}=\left(p_{i}^{2}+t_{i} p_{i} q_{i}+q_{i}^{2}\right), \quad F_{i, \pm}=\{t= \pm 2\} \subset \mathbb{C} P^{1} \times \mathbb{C} P^{1}
$$

This is not simple normal crossing \Rightarrow one needs to apply blow-ups.

First blow-up

Still not SNC.

Second blow-up

This is SNC.

Dual complex of $\partial \mathrm{Q}$

Parallel transport map

For any loop γ in $\mathbb{C} P^{1} \backslash \Delta_{q}$ let us write

$$
\mathrm{RH}\left(\nabla_{\sqrt{R}}\right)[\gamma]=\left(\begin{array}{ll}
a(\gamma, q, R) & b(\gamma, q, R) \\
c(\gamma, q, R) & d(\gamma, q, R)
\end{array}\right) .
$$

For $0 \leq j \leq 2$ introduce

$$
\begin{aligned}
\pi_{j}(q) & =\int_{x_{2}}^{t_{j}} Z_{+}(q, z) \in \mathbb{C} \\
\tau_{j}(q) & =\frac{a t_{j}-b}{\prod_{0 \leq k \leq 4, k \neq j}\left(t_{j}-t_{k}\right)} \in \mathbb{C} .
\end{aligned}
$$

Asymptotics of complex length co-ordinates t_{2}

Proposition

Fix $q \in S_{1}^{3}$ and consider the loop $\gamma=\rho_{2}$. In case $\Re\left(\pi_{1}-\pi_{2}\right) \neq 0$ there exists a complex 1-parameter family of sections σ of the Hitchin map H such that as $R \rightarrow \infty$ we have the limit

$$
t_{2}(q, R)=\exp \left(4 \sqrt{R}\left|\Re\left(\pi_{1}-\pi_{2}\right)\right|\right)+o(1)
$$

In case $\Re\left(\pi_{1}-\pi_{2}\right)=0$ the limit of $t_{2}(q, R)$ as $R \rightarrow \infty$ exists and is finite.

Proposition

Fix $q \in S_{1}^{3}$ and assume $\pi_{1}(q) \neq \pi_{2}(q)$. Then there exists a unique $\varphi_{2} \in[0,2 \pi)$ such that $t_{2}\left(e^{\sqrt{-1} \varphi_{2}} q, R\right)$ is bounded as $R \rightarrow \infty$.

Asymptotics of complex length co-ordinates

Proposition
Let $q \in S_{1}^{3}$ satisfy

$$
\Re\left(\pi_{4}(q)-\pi_{0}(q)\right) \neq 0 \neq \Re\left(\pi_{1}(q)-\pi_{2}(q)\right) .
$$

Then there exists a section σ of H such that we have limits

$$
\lim _{R \rightarrow \infty} t_{2}(q, R) \exp \left(-4 \sqrt{R} \Re\left(\pi_{1}(q)-\pi_{2}(q)\right) \mid\right)=1
$$

and

$$
\lim _{R \rightarrow \infty} t_{3}(q, R) \exp \left(-4 \sqrt{R}\left|\Re\left(\pi_{4}(q)-\pi_{0}(q)\right)\right|\right)=1 .
$$

Limit of complex twist co-ordinate $\left[p_{2}: q_{2}\right]$

Proposition

Fix $q \in S_{1}^{3}$ such that $\Re\left(\pi_{2}-\pi_{1}\right) \neq 0$. Then, the complex twist co-ordinate $\left[p_{2}: q_{2}\right.$] associated to $R q$ converges to $[0: 1]$ as $R \rightarrow \infty$ if the conditions

$$
\begin{aligned}
\int_{\psi_{2}} \Re Z_{+} & <2 \Re\left(2 \sqrt{s_{2} \tau_{2}}-\sqrt{s_{2} \tau_{1}}-\sqrt{s_{3} \tau_{3}}\right) \\
\left|\Re\left(\pi_{1}-\pi_{2}\right)\right| & =2 \sqrt{s_{2}} \Re\left(\sqrt{\tau_{1}}-\sqrt{\tau_{2}}\right)
\end{aligned}
$$

hold for one choice of a square root Z_{+}of Q.
On the other hand, under the condition

$$
\left|\Re\left(\pi_{1}-\pi_{2}\right)\right| \neq 2 \sqrt{s_{2}} \Re\left(\sqrt{\tau_{1}}-\sqrt{\tau_{2}}\right)
$$

[$p_{2}: q_{2}$] converges to $[1: 0]$.

Asymptotics of complex twist co-ordinate $\left[p_{2}: q_{2}\right.$]

Specifically, in the first situation we have
$\frac{p_{2}}{q_{2}} \approx \exp 4 \sqrt{R} \Re\left(\int_{\psi_{2}} Z_{+}(q)-2\left(2 \sqrt{s_{2} \tau_{2}}(q)-\sqrt{s_{2} \tau_{1}}(q)-\sqrt{s_{3} \tau_{3}}(q)\right)\right)$.
This behaviour follows from some miraculous cancellations.
Conclusion:

- the behaviour $\frac{p_{2}}{q_{2}} \rightarrow \infty$ is generic,
- the challenge is to find $q \in S_{1}^{3}$ such that $\frac{p_{2}}{q_{2}} \rightarrow 0$.

Geometry of period integrals

Define the open subset

$$
U_{2}\left(s_{2}\right) \subset S_{1}^{3}
$$

by the conditions

$$
0 \neq \pi_{1}(q)-\pi_{2}(q) \neq \pm 2 \sqrt{s_{2}}\left(\sqrt{\tau_{1}}(q)-\sqrt{\tau_{2}}(q)\right)
$$

For every $q \in U_{2}$ there exists a unique $\varphi^{*} \in[0,2 \pi)$ such that
$\Re\left(\pi_{1}\left(e^{\sqrt{-1} \varphi^{*}} q\right)-\pi_{2}\left(e^{\sqrt{-1} \varphi^{*}} q\right)\right)=2 \sqrt{s_{2}} \Re\left(\sqrt{\tau_{1}}\left(e^{\sqrt{-1} \varphi^{*}} q\right)-\sqrt{\tau_{2}}\left(e^{\sqrt{-1} \varphi^{*}} q\right)\right.$
This provides a smooth section of the Hopf fibration

$$
\begin{aligned}
& S_{2}: t\left(U_{2}\right) \rightarrow S_{1}^{3} \\
& \quad[a: b] \mapsto e^{\sqrt{-1} \varphi^{*}(q)} q
\end{aligned}
$$

Finding small $\left[p_{2}: q_{2}\right]$

We make the choices

$$
t_{0}=-\frac{1}{k}, \quad t_{1}=0, \quad t_{2}=1, \quad t_{3}=-1, \quad t_{4}=\frac{1}{k}
$$

for some $0<k<1$.

Proposition

Let $q=S_{2}\left(t_{1}\right)$. Then q belongs to $U_{2}\left(s_{2}\right)$ for every $s_{2}>0$, and we have $\Re\left(\pi_{1}(q)-\pi_{2}(q)\right) \neq 0$. Moreover, there exist distinct points $x_{2}, x_{3} \in \mathbb{C} P^{1} \backslash D$ and

$$
\rho=\rho\left(q, t_{0}, \ldots, t_{4}, x_{2}, x_{3}\right)>0
$$

such that for every $0<s_{2}, s_{3}<\rho$ we have $\left[p_{2}: q_{2}\right] \rightarrow[0: 1]$ as $R \rightarrow \infty$.

Idea of proof to find small [$p_{2}: q_{2}$]

Rotating triangles, again. Before:

Idea of proof to find small $\left[p_{2}: q_{2}\right]$

After:

Finding small $\left[p_{2}: q_{2}\right]$ and $\left[p_{3}: q_{3}\right]$ simultaneously

Proposition

There exist $0<s_{2}, s_{3}, s_{4}<\rho^{\prime \prime}$ such that $S_{2}\left(t_{1}\right)=S_{3}\left(t_{1}\right)$. For the choice $q=S_{2}\left(t_{1}\right)$, we have $\left[p_{2}: q_{2}\right] \rightarrow[0: 1]$ and $\left[p_{3}: q_{3}\right] \rightarrow[0: 1]$ as $R \rightarrow \infty$.
I suspect that the value

$$
\Phi \circ \mathrm{RH} \circ \psi \circ \sigma\left(R S_{2}\left(t_{1}\right)\right)
$$

is regular with a single preimage. I can show that the derivative at $R S_{2}\left(t_{1}\right)$ is of full rank.
All its preimages lie in a tubular neighbourhood of the curve

$$
C=\operatorname{Im}\left(S_{2}\right) \cap \operatorname{Im}\left(S_{3}\right)
$$

Needs to be done: it admits a unique preimage.

