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Basic notation

Fix the data

• CP1: complex projective line,

• r = 2 rank (i.e., G = Sl2(C)),

• p1, . . . , pn ∈ CP1 logarithmic singularities (with local charts
zj),

• D = p1 + · · ·+ pn parabolic divisor,

• L = K (D) twisted cotangent bundle,

• α−j = 1
4 < α+

j = 3
4 Dolbeault parabolic weights
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Hitchin’s equations, tame harmonic bundles
We consider Hitchin’s equations

D0,1θ = 0

FD + [θ, θ†h ] = 0

for a unitary connection D on a rank 2 smooth Hermitian vector
bundle (V , h) and a field θ : V → V ⊗ Ω1,0

C .
Simpson tame harmonic bundles ’90: at the parabolic divisor we
require

• θ has first order poles at pj ,

• the eigenvalues of respj (θ) are equal to 0 (strongly parabolic),

• and with respect to a compatible trivialization,

h ≈ diag(|zj |2α
−
j , |zj |2α

+
j ) = diag(|zj |

1
2 , |zj |

3
2 )

 solutions up to gauge equivalence: MHod non-abelian Hodge
moduli space, a hyper-Kähler manifold.
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de Rham and Dolbeault structures

Two Kähler structures on MHod have a geometric meaning:

• de Rham: MdR parameterising certain poly-stable parabolic
connections (E ,∇) with regular singularities

• Dolbeault: MDol parameterising certain poly-stable parabolic
Higgs bundles (E , θ) with first-order poles.

By non-abelian Hodge theory, MdR and MDol are diffeomorphic to
each other (via MHod):

NAHT: MDol
∼−→MdR.
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Character variety, Riemann–Hilbert correspondence

Character variety MB: moduli space parameterising (filtered) local
systems ρ on CP1 \ D, with eigenvalues on a simple positive loop
around pj given by

c±j = exp(−2π
√
−1α±j ) = ±

√
−1.

Regular-singular Riemann–Hilbert correspondence: bi-analytic map

RH: MdR →MB.

Conclusion: MdR, MDol and MB are all diffeomorphic to each
other (and to MHod), in particular

(RH ◦NAHT)∗ : H•(MB,Q)
∼=−→ H•(MDol,Q).
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Perverse filtration on Dolbeault spaces

Hitchin ’87: for MDol a Dolbeault moduli space there exists a
surjective proper algebraic map of quasi-projective varieties

H : MDol → Y = CN .

This endows H•(MDol,Q) with a perverse filtration P defined by

PpH∗(Y ,RH∗QM) = Im(H∗(Y ,pτ≤−pRH∗QM)→ H∗(Y ,RH∗QM)),

where
pτ≤i : Db

constr(Y ,Q)→pD≤iconstr(Y ,Q)

are the Beilinson–Bernstein–Deligne truncation functors.
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Weight filtration on Betti spaces

MB is an affine algebraic variety. Deligne’s Hodge II. (’71)
⇒ H∗(MB,C) carries a Mixed Hodge Structure, in particular a
weight filtration W .
Known: there exists a spectral sequence depending on the
cohomology groups of a smooth compactification M̃B of MB and
the combinarorics of a compactifying divisor, abutting to W .
Hausel–Rodriguez-Villegas ’08: for character varieties one has
W2k = W2k−1.
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P = W conjecture

Theorem (de Cataldo–Hausel–Migliorini ’12)

If C is a smooth projective curve and r = 2, then for the Dolbeault
and Betti spaces corresponding to each other under non-abelian
Hodge theory and the Riemann–Hilbert correspondence, the
filtrations P and W get mapped into each other:

(RH ◦NAHT)∗W2iH
k(MB,Q) = P iHk(MDol,Q).

Conjecture (de Cataldo–Hausel–Migliorini ’12)

The same property holds for any rank r .
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Progress on P = W conjecture

• M. de Cataldo, D. Maulik and J. Shen ’19 established it for
curves of genus 2.

• J. Shen and Z. Zhang ’18 proved it for five infinite families of
moduli spaces of parabolic Higgs bundles over CP1.

• C. Felisetti and M. Mauri ’20 proved it for character varieties
admitting a symplectic resolution, i.e. in genus 1 and arbitrary
rank and genus 2 and rank 2.

• Sz ’19 established it for complex 2-dimensional moduli spaces
of rank 2 Higgs bundles with irregular singularities over CP1

corresponding to the Painlevé cases.

• L. Katzarkov, A. Harder and V. Przyjalkowski ’19 have
formulated a version for log-Calabi–Yau manifolds and their
mirror pairs.

• · · ·
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Geometric P = W conjecture

• L. Katzarkov, A. Noll, P. Pandit and C. Simpson, 2015:
conjectured a certain homotopy commutativity property for
RH ◦NAHT (see next Section).

• Trivial consequence of this homotopy commutativity:
|D∂MB(~c , ~γ)| has homotopy type SN−1, where
2N = dimCMB.

• A. Komyo, 2015: proved that for n = 5 with our notations,
|D∂MB(~c , ~γ)| is homotopy equivalent to S3.

• C. Simpson, 2015: generalized the homotopy equivalence
assertion to any n ≥ 5, and named the homotopy
commutativity assertion “Geometric P = W conjecture”.

• M. Mauri, E. Mazzon and M. Stevenson, 2018: showed that
|D∂MB| for the Gl(n,C) character variety of a 2-torus is
homeomorphic to S2n−1.
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Map to Danilov complex

Let M̃B be a smooth compactification of MB by a simple normal
crossing divisor D and denote by D∂MB(~c , ~γ) the nerve (aka.
dual) simplicial complex of D:

• to each irreducible component Di ⊂ D  a 0-cell in
D∂MB(~c , ~γ)0,

• to each nonempty intersection Di ∩ Di ′ 6= ∅ a 1-cell in
D∂MB(~c , ~γ)1,

• etc.

Let Ti ⊂MB be a punctured tubular neighbourhood of Di and

T = ∪iTi .

There exists (up to homotopy) a natural map

Φ: T → |D∂MB(~c , ~γ)|.
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Geometric P = W conjecture in the Painlevé 6 case

Let n = 4, D = 0 + 1 + t +∞.

Theorem (Sz ’19 (to appear in Adv. Math.), Némethi–Sz ’20
(IMRN))

For some sufficiently large compact K ⊂MB there exists a
homotopy commutative square

MDol \ ψ−1(K )

H
��

ψ //MB \ K

Φ
��

D× // |D∂MB(~c , ~γ)|.

Here, D× = C− BR(0) ⊂ Y and ψ = RH ◦NAHT.
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Hitchin base and standard spectral curve

Proof of the Theorem based on Sz. 1906.01856. Assumptions
⇒ tr(θ) ≡ 0, Hitchin base:

H0(CP1,K 2(0 + 1 + t +∞)) ∼= C,

spanned by
(dz)⊗2

z(z − 1)(z − t)
.

Set L = K (0 + 1 + t +∞), and take the canonical section

ζ
dz

z(z − 1)(z − t)

of p∗LL over Tot(L). In Tot(L) we consider the curve

X̃1,0 = {(z , ζ) : ζ2 + z(z − 1)(z − t) = 0}.
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Rescaling of spectral curve
For R � 0, ϕ ∈ R/2πZ let (ER,ϕ, θR,ϕ) be a rank 2 logarithmic
Higgs bundle over CP1 with

det(θR,ϕ) = −Re
√
−1ϕ ∈ H0(CP1,K 2(0 + 1 + t +∞)).

Its spectral curve is

X̃R,ϕ =

{
(z , ζ) : det

(
θR,ϕ − ζ

dz

z(z − 1)(z − t)

)
= 0

}
⊂ Tot(L),

with natural projection given by

p : X̃R,ϕ → CP1

(z , ζ) 7→ z .

We have

(z , ζ) ∈ X̃R,ϕ ⇔ (z ,
√
−1R−

1
2 e−

√
−1ϕ/2ζ) ∈ X̃1,0.
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Abelianization

Set

ω =
dz√

z(z − 1)(z − t)
.

T. Mochizuki (2016): on simply connected open sets
U ⊂ C \ {0, 1, t} there is a gauge e1(z), e2(z) of E with respect to
which

θR,ϕ(z)−

(√
Re
√
−1ϕ/2 0

0 −
√
Re
√
−1ϕ/2

)
ω → 0

as R →∞, and the Hermitian–Einstein metric h is close to an
abelian model hab.

Crucial observation
Since ω has ramification at 0, 1, t,∞, along a simple loop γ around
these points, the local sections e1(z), e2(z) get interchanged.
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Non-abelian Hodge theory at large R

The connection matrix associated to (ER,ϕ, θR,ϕ) is

aR,ϕ(z , z̄) = θR,ϕ(z) + θR,ϕ(z) + bR,ϕ

≈
√
R

(
e
√
−1ϕ/2ω + e−

√
−1ϕ/2ω̄ 0

0 −e
√
−1ϕ/2ω − e−

√
−1ϕ/2ω̄

)
+ bR,ϕ

where d + bR,ϕ is the Chern connection associated to the
holomorphic structure of E and hab. So bR,ϕ takes values in
s(u(1)⊕ u(1)).
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Monodromy matrices at large R

The monodromy matrices of the connection d + aR,ϕ along a
simple loop γj around j ∈ {0, 1, t} are

Bj(R, ϕ) = T exp

∮
γj

−aR,ϕ(z , z̄) = TAj(R, ϕ)·

exp
√
R

(
−e
√
−1ϕ/2πj − e−

√
−1ϕ/2πj 0

0 e
√
−1ϕ/2πj + e−

√
−1ϕ/2πj

)

where we have set

πj =

∮
γj

ω, T =

(
0 1
1 0

)
,

and Aj(R, ϕ) ∈ S(U(1)× U(1)) is the monodromy of the Chern
connection.
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Products of monodromy matrices at large R

Setting

Aj(R, ϕ) =

(
e
√
−1µj 0

0 e−
√
−1µj

)
and

d01(R, ϕ) = exp
(√
−1(µ1 − µ0) + 2

√
R<(e

√
−1ϕ/2(π0 − π1))

)
it follows that

B0(R, ϕ)B1(R, ϕ) ≈
(
d01(R, ϕ) 0

0 d01(R, ϕ)−1

)
.
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Affine coordinates on the Betti space
Let us set

x1(R, ϕ) = tr(B0(R, ϕ)B1(R, ϕ))

x2(R, ϕ) = tr(Bt(R, ϕ)B0(R, ϕ))

x3(R, ϕ) = tr(B1(R, ϕ)Bt(R, ϕ)).

These co-ordinates satisfy Fricke–Klein cubic relation:

x1x2x3 + x2
1 + x2

2 + x2
3 − s1x1 − s2x2 − s3x3 + s4 = 0

for some s1, s2, s3, s4 ∈ C. Compactifying divisor of M̃PX
B :

D = (x1x2x3) ⊂ CP2
∞

= L1 ∪ L2 ∪ L3

where Li are lines pairwise intersecting each other in points
P1,P2,P3.
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Dual boundary complex

The nerve complex D∂MB(~c , ~γ) of D has vertices v1, v2, v3

corresponding to line components

L1 = [0 : 0 : x2 : x3], L2 = [0 : x1 : 0 : x3], L3 = [0 : x1 : x2 : 0]

of D and edges
[v1v2], [v2v3], [v3v1]

corresponding to intersection points of the components:

[0 : 0 : 0 : 1], [0 : 1 : 0 : 0], [0 : 0 : 1 : 0]

v3 v1

v2
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Simpson’s map

Let Ti be an open tubular neighbourhood of Li in M̃B and set

T = T1 ∪ T2 ∪ T3.

Let {φi} be a partition of unity subordinate to the cover of T by
{Ti}. Define the map

Φ : T → R3

x 7→

φ1(x)
φ2(x)
φ3(x)

 .

Then,
Im(Φ) = [v1v2] ∪ [v2v3] ∪ [v3v1] ∼= S1.
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Asymptotic of Riemann–Hilbert correspondence at large R

Fix R � 0 and let ϕ ∈ [0, 2π) vary. Need to show: the loop

Φ ◦ RH(ER,ϕ, θR,ϕ)

generates π1(Im(Φ)) ∼= Z.
Key fact: for d ∈ C with |<(d)| � 0 we have

|2 cosh(d)| ≈ e |d |.

This implies

|x1(R, ϕ)| ≈ exp
(

2
√
R|<(e

√
−1ϕ/2(π0 − π1))|

)
,

|x2(R, ϕ)| ≈ exp
(

2
√
R|<(e

√
−1ϕ/2(πt − π0))|

)
,

|x3(R, ϕ)| ≈ exp
(

2
√
R|<(e

√
−1ϕ/2(π1 − πt))|

)
.
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Rotating triangle
Let ∆ ⊂ C be the triangle with vertices π0, π1, πt , assume ∆ is
non-degenerate. Denote its sides by

a = π0 − π1, b = πt − π0, c = π1 − πt .

Let us denote by e
√
−1ϕ/2∆ the triangle obtained by rotating ∆ by

angle ϕ/2 in the positive direction, with sides

e
√
−1ϕ/2a, e

√
−1ϕ/2b, e

√
−1ϕ/2c.

y

x

π0

π1

πt

a

b

c
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Critical angles

Lemma
For each side a, b, c there exists exactly one value
ϕa, ϕb, ϕc ∈ [0, 2π) such that e

√
−1ϕa/2a (respectively

e
√
−1ϕb/2b, e

√
−1ϕc/2c) is purely imaginary. The function

<(e
√
−1ϕ/2b)−<(e

√
−1ϕ/2c)

changes sign at ϕ = ϕa. Similar statements hold with a, b, c
permuted.

Definition
ϕa, ϕb, ϕc are the critical angles associated to the sides a, b, c
respectively.
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Arc decomposition of the circle

The critical angles decompose S1 into three closed arcs

S1 = I1 ∪ I2 ∪ I3

satisfying:

max(|<(e
√
−1ϕ/2(π0−π1))|, |<(e

√
−1ϕ/2(πt−π0))|, |<(e

√
−1ϕ/2(π1−πt))|)

is attained

• by |<(e
√
−1ϕ/2(π0 − π1))| for ϕ ∈ I1,

• by |<(e
√
−1ϕ/2(πt − π0))| for ϕ ∈ I2,

• and by |<(e
√
−1ϕ/2(π1 − πt))| for ϕ ∈ I3.



Tame harmonic bundles, character varieties, P = W Painlevé 6 case Garnier n = 5 case

Arc decomposition of the circle

I3

I2

I1

ϕa

ϕc

ϕb
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Limiting Riemann–Hilbert map

We deduce

• for ϕ ∈ Int(I1), we have

[x0 : x1 : x2 : x3]→ [0 : 1 : 0 : 0],

• for ϕ ∈ Int(I2), we have

[x0 : x1 : x2 : x3]→ [0 : 0 : 1 : 0],

• for ϕ ∈ Int(I3), we have

[x0 : x1 : x2 : x3]→ [0 : 0 : 0 : 1].
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Limiting Simpson’s map

Applying Simpson’s map Φ to the previous limits we get that

• for ϕ ∈ Int(I1), we have

Φ(ER,ϕ, θR,ϕ) ∈ [v2v3],

• for ϕ ∈ Int(I2), we have

Φ(ER,ϕ, θR,ϕ) ∈ [v3v1],

• for ϕ ∈ Int(I3), we have

Φ(ER,ϕ, θR,ϕ) ∈ [v1v2].

Thus, Φ sends a generator of π1(S1
ϕ) into a generator of

π1(Im(Φ)).
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Limiting composed map

Φ ◦ ψ

MDol MB

ϕa

ϕb

ϕc
v3 v1

v2
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Result in Garnier case with 5 logarithmic points

From now on we let n = 5, based on arXiv:2103.00932.

Theorem
There exists a value of the map

Φ ◦ RH ◦ψ ◦ σ : S3 → S3

whose preimages lie in a tubular neighbourhood of a curve C ⊂ S3,
and the derivative of the map at one of the preimages is invertible.

Remark
For the Geometric P = W conjecture, we would also need that the
given value is only attained at one point of S3. We strongly believe
this is true, however have no rigorous proof as of now.
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Hitchin base and map

Let (E , θ) be a strongly parabolic Higgs bundle of rank 2 with 5
logarithmic points.
Again, we have tr(θ) ≡ 0. Hitchin base:

B = {q : q(tj) = 0 for all 0 ≤ j ≤ 4} ⊂ H0(CP1, L⊗2) ∼= C7,

so dimC(B) = 2. Hitchin map:

H : MDol(~0, ~α)→ B
(E , θ) 7→ − det(θ)
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Spectral curve

For q ∈ S3
1 ⊂ B we write ζ±(Rq, z) for the roots of

ζ2 − Rq = 0,

specifically
ζ±(Rq, z) = ±

√
Rq(z , 1).

Denote the corresponding meromorphic 1-forms by

Z±(Rq, z) = ±
√
Rq(z , 1)

dz∏4
j=0(z − tj)

.

We denote by

XRq = {([z : w ],±
√

Rq(z ,w))} → CP1

the Riemann surface of the bivalued function ζ±(Rq, z).
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Ramification divisor and Hopf fibration
We set

∆q = {z ∈ C : q(z) = 0}

for the ramification divisor of XRq. We then have

∆q = {t0, t1, t2, t3, t4, t(q)}

for some t(q) ∈ CP1. Namely,

q(z) =
(az − b)dz⊗2∏4

j=0(z − tj)
.

for some (a, b) ∈ C2. The map

t : S3
1 → CP1

q 7→ t(q)

is the Hopf fibration.
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Idea of proof

We fix a generic element q ∈ S3
1 and consider (E , θ) ∈MDol(~0, ~α)

such that
H(E , θ) = q.

For R > 0 we have
H(E ,

√
Rθ) = Rq.

It is then possible to express the R →∞ asymptotic behaviour of
Φ ◦ψ in function of

∫
γ Z±(q, z) over various paths γ in CP1, up to

factors belonging to U(1).
We choose a smooth section

σ : S3
1 →MDol(~0, ~α)

to get rid of the U(1) factors.
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Asymptotic abelianization
Let h√R and ∇√R denote the Hermite–Einstein metric and

integrable connection associated to (E ,
√
Rθ). Introduce

∇model√
R

= ∇hq,∞ +

(
2<Z+(Rq, z) 0

0 2<Z−(Rq, z)

)
.

where hq,∞ is some explicit abelian solution of Hitchin’s equation
(i.e., with values in S(U(1)× U(1))) and ∇hq,∞ the corresponding
unitary connection.

Theorem (T. Mochizuki ’16)

Over any simply connected compact set K ⊂ C \∆q there exists a
gauge transformation g√R such that

g√R · ∇√R −∇
model√
R
→ 0

(measured with respect to h√R) as R →∞, uniformly over K.
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Fiducial solution, Painlevé 3

R. Mazzeo, J. Swoboda, H. Weiss, F. Witt ’16 (near ramification
points t(q)), L. Fredrickson, R. Mazzeo, J. Swoboda, H. Weiss ’20
(near parabolic points D): local models for the R � 0 behaviour
of h√R and ∇√R , called fiducial solutions.
Near t(q): let `√R be the solution of the Painlevé 3-type equation(

d2

dr̃2
+

1

r̃

d

dr̃

)
`√R = 8Rr̃ sinh(2`√R)

satisfying the boundary behaviours

`√R(r̃) ≈ −1

2
log(r̃), r̃ → 0+

`√R(r̃) ≈ 1

π
K0

(
8

3

√
Rr̃3

)
≈

√
3

2π
√

2
4
√
Rr̃3

e−
8
3

√
Rr̃3
, r̃ →∞,

with K0 the modified Bessel function of order 0.
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Fiducial solution, approximate solution
Then, for a co-ordinate z̃ on the disc |z̃ | < 1 introduce a unitary
connection and Higgs field:

Afid√
R

=

(
1

8
+

1

4
r̃∂r̃ `√R

)(
1 0
0 −1

)
2
√
−1dϕ̃

θfid√
R

=

(
0 r̃1/2e`

√
R(r̃)

z̃ r̃−1/2e−`
√
R(r̃) 0

)
dz̃ .

Gluing construction of the fiducial solution and Mochizuki’s
abelian form  approximate solution happr√

R
.

Theorem (MSWW ’16, FMSW ’20)

Assume that all the zeroes of q are simple. Then, there exists a
small perturbation (for an appropriate Hölder norm) of the
Hermitian metric happr√

R
that satisfies Hitchin’s equation for

(E ,
√
Rθ).
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Pair-of-pants decomposition

x2
x3

x4

s2 s3

ρ1 = ξ1

D1

ξ2 D2

ξ3

D3

ξ0 = ρ4

D0

ξ4

D4

ρ3ρ2

ψ2 ψ3

η1

η2 η3

η0

η4
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Simpson’s Fenchel–Nielsen co-ordinates

Simpson ’16: MB carries complex length co-ordinates

ti = tr RH(∇)[ρi ] ∈ C (i ∈ {2, 3}),

and complex twist co-ordinates

[pi : qi ] ∈ CP1 (i ∈ {2, 3}),

subject to the condition

p2
i + tipiqi + q2

i 6= 0.
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Boundary divisor of character variety

Introduce

Q = {(t, [p : q]) ∈ (C\{±2})×CP1 satisfying p2 + tpq+q2 6= 0}.

Simpson: homotopy type of the dual boundary complex of
MB(~c , ~γ) agrees with the one of Q2

D∂MB(~c , ~γ) ∼ D∂Q2 ∼ D∂Q ∗ D∂Q ∼ S1 ∗ S1 ∼ S3.
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Boundary divisor of Q
Set

Ci = (p2
i + tipiqi + q2

i ), Fi ,± = {t = ±2} ⊂ CP1 × CP1.

Fi ,− Fi ,+Fi ,∞

Ci

[0 : 1]

[1 : 0]

This is not simple normal crossing ⇒ one needs to apply blow-ups.
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First blow-up

Fi ,− Fi ,+Fi ,∞

E 1
i ,− E 1

i ,+

Ci

[0 : 1]

[1 : 0]

Still not SNC.
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Second blow-up

Fi ,− Fi ,+Fi ,∞

E 1
i ,− E 1

i ,+

E 2
i ,− E 2

i ,+

Ci

[0 : 1]

[1 : 0]

This is SNC.
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Dual complex of ∂Q
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E 2
− E 2

+

F+F∞

CE 1
− E 1

+

e∞
e0
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Parallel transport map

For any loop γ in CP1 \∆q let us write

RH(∇√R)[γ] =

(
a(γ, q,R) b(γ, q,R)
c(γ, q,R) d(γ, q,R)

)
.

For 0 ≤ j ≤ 2 introduce

πj(q) =

∫ tj

x2

Z+(q, z) ∈ C,

τj(q) =
atj − b∏

0≤k≤4,k 6=j(tj − tk)
∈ C.



Tame harmonic bundles, character varieties, P = W Painlevé 6 case Garnier n = 5 case

Asymptotics of complex length co-ordinates t2

Proposition

Fix q ∈ S3
1 and consider the loop γ = ρ2. In case <(π1 − π2) 6= 0

there exists a complex 1-parameter family of sections σ of the
Hitchin map H such that as R →∞ we have the limit

t2(q,R) = exp
(

4
√
R|<(π1 − π2)|

)
+ o(1).

In case <(π1 − π2) = 0 the limit of t2(q,R) as R →∞ exists and
is finite.

Proposition

Fix q ∈ S3
1 and assume π1(q) 6= π2(q). Then there exists a unique

ϕ2 ∈ [0, 2π) such that t2(e
√
−1ϕ2q,R) is bounded as R →∞.
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Asymptotics of complex length co-ordinates

Proposition

Let q ∈ S3
1 satisfy

<(π4(q)− π0(q)) 6= 0 6= <(π1(q)− π2(q)).

Then there exists a section σ of H such that we have limits

lim
R→∞

t2(q,R) exp
(
−4
√
R|<(π1(q)− π2(q))|

)
= 1

and

lim
R→∞

t3(q,R) exp
(
−4
√
R|<(π4(q)− π0(q))|

)
= 1.
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Limit of complex twist co-ordinate [p2 : q2]

Proposition

Fix q ∈ S3
1 such that <(π2 − π1) 6= 0. Then, the complex twist

co-ordinate [p2 : q2] associated to Rq converges to [0 : 1] as
R →∞ if the conditions∫

ψ2

<Z+ < 2<(2
√
s2τ2 −

√
s2τ1 −

√
s3τ3)

|<(π1 − π2)| = 2
√
s2<(
√
τ1 −

√
τ2)

hold for one choice of a square root Z+ of Q.
On the other hand, under the condition

|<(π1 − π2)| 6= 2
√
s2<(
√
τ1 −

√
τ2)

[p2 : q2] converges to [1 : 0].
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Asymptotics of complex twist co-ordinate [p2 : q2]

Specifically, in the first situation we have

p2

q2
≈ exp 4

√
R<

(∫
ψ2

Z+(q)− 2(2
√
s2τ2(q)−

√
s2τ1(q)−

√
s3τ3(q))

)
.

This behaviour follows from some miraculous cancellations.
Conclusion:

• the behaviour p2
q2
→∞ is generic,

• the challenge is to find q ∈ S3
1 such that p2

q2
→ 0.
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Geometry of period integrals
Define the open subset

U2(s2) ⊂ S3
1

by the conditions

0 6= π1(q)− π2(q) 6= ±2
√
s2(
√
τ1(q)−

√
τ2(q)).

For every q ∈ U2 there exists a unique ϕ∗ ∈ [0, 2π) such that

<(π1(e
√
−1ϕ∗q)−π2(e

√
−1ϕ∗q)) = 2

√
s2<(
√
τ1(e

√
−1ϕ∗q)−

√
τ2(e

√
−1ϕ∗q)).

This provides a smooth section of the Hopf fibration

S2 : t(U2)→ S3
1

[a : b] 7→ e
√
−1ϕ∗(q)q
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Finding small [p2 : q2]

We make the choices

t0 = −1

k
, t1 = 0, t2 = 1, t3 = −1, t4 =

1

k

for some 0 < k < 1.

Proposition

Let q = S2(t1). Then q belongs to U2(s2) for every s2 > 0, and we
have <(π1(q)− π2(q)) 6= 0. Moreover, there exist distinct points
x2, x3 ∈ CP1 \ D and

ρ = ρ(q, t0, . . . , t4, x2, x3) > 0

such that for every 0 < s2, s3 < ρ we have [p2 : q2]→ [0 : 1] as
R →∞.
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Idea of proof to find small [p2 : q2]

Rotating triangles, again. Before:

y

x

∫
ψ2

Z+

∫
ψ2

Z+ − 2<(2
√
s2τ2 −

√
s3τ3)

π1 − π2

−2
√
s2τ2

ϕ∗

2

a = 1
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Idea of proof to find small [p2 : q2]
After:

y

x

∫
ψ2

Z+ − 2<(2
√
s2τ2 −

√
s3τ3)

π1 − π2

−2
√
s2τ2

a = e
√
−1ϕ∗
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Finding small [p2 : q2] and [p3 : q3] simultaneously

Proposition

There exist 0 < s2, s3, s4 < ρ′′ such that S2(t1) = S3(t1). For the
choice q = S2(t1), we have [p2 : q2]→ [0 : 1] and
[p3 : q3]→ [0 : 1] as R →∞.

I suspect that the value

Φ ◦ RH ◦ψ ◦ σ(RS2(t1))

is regular with a single preimage. I can show that the derivative at
RS2(t1) is of full rank.
All its preimages lie in a tubular neighbourhood of the curve

C = Im(S2) ∩ Im(S3).

Needs to be done: it admits a unique preimage.
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