## WKB Filtrations and the Singularly Perturbed Riccati Equation

based on arXiv: 1909.04011, arXiv: 2008.06492 and work in progress

## Nikita Nikolaev



7 April 2021

The Painlevé Seminar

- Consider a meromorphic  $\hbar\text{-connection}\;(\mathcal{E},\nabla)$  on a compact Riemann surface X
- Let  $(E, \phi) := \lim_{h \to 0} (\mathcal{E}, \nabla)$ , the limiting meromorphic Higgs bundle on X
- Generically and locally, get eigendecomposition  $(E, \phi) = \bigoplus (L_i, \eta_i)$

## Theorem [N]: WKB Filtrations (rough statement)

Generically (and at least if  $rank(\mathcal{E}) = 2$ ), the vector bundle  $\mathcal{E}$  has a canonical  $\nabla$ -invariant piecewise filtration  $\mathcal{E}^{\bullet} = (\mathcal{E}^1 \subset \mathcal{E}^2 \subset \cdots \subset \mathcal{E})$  such that

$$\lim_{\hbar \to 0} \left( \operatorname{gr} \mathcal{E}^{\bullet}, \operatorname{gr} \nabla \right) \xrightarrow{\sim} \bigoplus (L_i, \eta_i)$$

- Generically, WKB filtrations are transverse, yielding piecewise decompositions  $(\mathcal{E}, \nabla) \xrightarrow{\sim} \bigoplus (\mathcal{L}_i, \partial_i)$  with the property  $\lim_{h \to 0} (\mathcal{L}_i, \partial_i) \xrightarrow{\sim} (L_i, \eta_i)$ .
- Generically, **WKB filtrations restrict to Levelt filtrations** for fixed nonzero *ħ*.
- Important special case (the Schrödinger equation): if (E, ∇) is sl<sub>2</sub>-ħ-oper, (that is, E is 1-jet of anticanonical line bundle, ∇ is 1-jet of ħ<sup>2</sup>∂<sub>x</sub> + Q(x, ħ)) then E<sup>1</sup> ⊂ E is generated by 1-jet of the exact WKB solutions.
- Construction of WKB filtrations is a generalisation of the exact WKB analysis from  $\mathfrak{sl}_2-\hbar$ -opers to general  $\hbar$ -connections of rank 2 [rank n is work in progress].

#### Filtered Singularly Perturbed Differential Systems

Consider a singularly perturbed linear differential system:

$$abla := \hbar \,\mathrm{d} + A(x,\hbar) \,\mathrm{d}x \quad \text{i.e.} \quad 
abla_{\partial_x} \psi = \left(\hbar \frac{\mathrm{d}}{\mathrm{d}x} + A(x,\hbar)\right) \psi(x,\hbar) = 0 ,$$

where  $A(x, \hbar) = n \times n$  matrix, meromorphic in x and holomorphic<sup>\*</sup> at  $\hbar = 0$ .

• We say  $\nabla$  is *filtered* if it is gauge equivalent to a triangular system:

$$\nabla \simeq \tilde{\nabla} = \hbar \,\mathrm{d} + \tilde{A} \,\mathrm{d}x = \hbar \,\mathrm{d} + \begin{bmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{bmatrix} \,\mathrm{d}x$$

• A filtration on  $\nabla$  is induced by the standard canonical filtration on  $\tilde{\nabla}$ :

$$\left\langle \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\rangle \subset \left\langle \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\rangle \subset \cdots \subset \underline{\mathbb{C}^n}$$

- This filtration is *canonical* if it is independent of x and preserved by automorphisms.
- Difficulty: gauge transformations  $\nabla \mapsto \tilde{\nabla}$  are generically <u>not</u> holomorphic at  $\hbar = 0$ .

## Proposition [N] (roughly stated):

At least for n = 2, there is a large class of systems  $\nabla$  which are canonically filtered via gauge transformations that admit asymptotic expansions as  $\hbar \to 0$  in a halfplane.

#### Filtering a System. Step 1: diagonalise the leading-order

- Put n = 2, and restrict  $(x, \hbar)$  to some  $U \times \mathbb{D} \subset \mathbb{C}^2_{x\hbar}$  where A is holomorphic.
- In fact, assume  $\mathbb{D} =$  infinitesimal disc, so  $A \in Mat_2(\mathcal{O}_{U} \{\hbar\})$ .
- **Standard fact:** generically,  $A_0(x) := A(x, 0)$  is diagonalisable via holomorphic gauge transformations, locally away from *turning points* := zeros of the discriminant  $\Delta_0$ .

#### Assumption 0: no turning points

 $U \subset \mathbb{C}_x$  contains no turning points and supports a univalued branch of  $\sqrt{\Delta_0}$ .

• Then  $A_0$  is holomorphically equivalent over U to a diagonal matrix of its eigenvalues:

$$PA_0P^{-1} = \Lambda_0 = \begin{bmatrix} \lambda_1 \\ & \lambda_2 \end{bmatrix}, \qquad \begin{cases} \lambda_i = \lambda_i(x) & \in \mathcal{O}(\mathsf{U}), \\ P = P(x) & \in \mathsf{GL}_2\left(\mathcal{O}(\mathsf{U})\right) \end{cases}$$

• The assignment  $\nabla \mapsto \Lambda_0 \, dx$  is canonical up to permutation and coordinate change.

• Then P gives a holomorphically equivalent differential system

$$\nabla' := P\nabla P^{-1} = \hbar d + (\Lambda_0 + \hbar B) dx = \hbar d + \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} dx + \hbar \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} dx$$

## Filtering a System. Step 2: the WKB ansatz

• To put the system  $\nabla'$  into a triangular form, we search for a gauge transformation  $G = G(x, \hbar)$  in the following unipotent form:

$$G = \begin{bmatrix} 1 & 0 \\ s & 1 \end{bmatrix}$$
 where  $s = s(x, \hbar)$  is to be solved for.

• Transforming  $\nabla'$  by G we get:

$$\tilde{\nabla} := G \nabla' G^{-1} = \hbar \,\mathrm{d} + \begin{bmatrix} \lambda_1 + \hbar (b_{11} - sb_{12}) & \hbar b_{12} \\ * & \lambda_2 + \hbar (b_{22} + sb_{12}) \end{bmatrix} \mathrm{d}x$$

where  $* = -\hbar \partial_x s + (\lambda_1 - \lambda_2)s + \hbar \Big( -b_{12}s^2 + (b_{11} - b_{22})s + b_{21} \Big).$ 

• Thus,  $\tilde{\nabla}$  is upper-triangular  $\Leftrightarrow s$  satisfies a *singularly perturbed Riccati equation*:

$$\hbar \partial_x s = \sqrt{\Delta_0} s + \hbar \left( a_2 s^2 + a_1 s + a_0 \right)$$

- Standard filtration  $\left< \begin{bmatrix} 1\\0 \end{bmatrix} \right> \subset \underline{\mathbb{C}^2}$  yields filtration  $\left< P^{-1}G^{-1} \begin{bmatrix} 1\\0 \end{bmatrix} = P^{-1} \begin{bmatrix} 1\\-s \end{bmatrix} \right> \subset \underline{\mathbb{C}^2}$  on  $\nabla$ .
- Moreover, G admits asymptotics as  $\hbar \to 0 \quad \Leftrightarrow \quad s$  admits asymptotics as  $\hbar \to 0$ .
- In particular,  $s_0(x) := \lim s(x, \hbar)$  as  $\hbar \to 0$  must exist and equals 0.
- Canonicity of this filtration is equivalent to finding a canonical solution *s*.

Filtering a System. Step 3: E&U of exact solutions for the Riccati equation

$$\hbar\partial_x s = \sqrt{\Delta_0 s} + \hbar \left(a_2 s^2 + a_1 s + a_0\right)$$

**Upshot:** this Riccati equation has a canonical *exact* solution *s* defined for  $x \in U$  and  $\hbar \in S$  a halfplane sectorial domain (or germ), provided U is the complete forward flow of a certain vector field and the  $a_0, a_1, a_2$  are appropriately bounded along this flow.

- Consider the holomorphic vector field  $L := \frac{1}{\sqrt{\Delta_0}} \partial_x$  on U.
- The *real forward flow* of *L* is the flow of  $\operatorname{Re}(L)$  for positive time.
- Concretely, the flow line through  $x_0 \in U$  is given by  $\operatorname{Im} \int_{-\infty}^x \sqrt{\Delta_0(t)} \, \mathrm{d}t = 0.$

# Assumption 1: completeness

The forward flow of every point in U is complete; i.e., exists for all positive time.

## **Assumptions 2: regularity**

The coefficients  $a_0, a_1, a_2$  are bounded by  $\sqrt{\Delta_0}$  along the forward flow.

## Main Technical Lemma [N]: E&U of exact Riccati solutions

The Riccati equation has a unique holomorphic solution s on  $U \times S$  which admits Gevrey asymptotics as  $\hbar \to 0$  along  $[-\pi/2, +\pi/2]$  with leading-order  $s_0 = 0$ .

#### Theorem [N]: Existence of local WKB Filtrations

Under assumptions 0,1,2 (no turning points, completeness, regularity):

- **1** The system  $\nabla$ , restricted to U × S, has a canonical filtration whose associated graded converges as  $\hbar \rightarrow 0$  to the eigendecomposition of  $\phi = A_0 \, dx$ .
- ② If the U flows into a pole p of ∇, then for every fixed nonzero ħ ∈ S close to the positive real direction, this local WKB filtration restricts to the Levelt filtration associated with p or with the corresponding (anti-)Stokes sector at p.
- If U is complete for both forward and backward flows, then ∇ restricted to U × S has two such filtrations (one for each flow direction) which are transverse.
   ⇒ canonical diagonalisation of ∇ over U × S.

• Can prove a similar E&U theorem for a very general Riccati equation

$$\hbar \partial_x s = as^2 + bs + c$$

where a, b, c are holomorphic functions of  $(x, \hbar) \in U \times S$  which only admit Gevrey asymptotics as  $\hbar \to 0$  in a halfplane.

[proof inspired by ideas of Koike-Schäfke]

- $\implies$  existence of (local) WKB filtration for a much larger class of systems  $\nabla$  defined over U × S which only admit Gevrey asymptotics as  $\hbar \rightarrow 0$  in a halfplane.
- $\implies$  obtain a general existence and uniqueness of exact WKB solutions and Borel summability of formal WKB solutions for
  - **1** a large class of  $2^{nd}$ -order ODEs on U × S with Gevrey asymptotics as  $\hbar \rightarrow 0$  in a halfplane:

$$\hbar^2 \partial_x^2 \psi + p(x,\hbar)\hbar \partial_x \psi + q(x,\hbar)\psi = 0$$

2 more invariantly, a large class of meromorphic singularly perturbed  $2^{nd}$ -order differential operators on an arbitrary line bundle  $\mathcal{L}$  over a Riemann surface.

- Let (X, D) := compact Riemann surface + effective divisor.
- Working Definition: An ħ-connection on (X, D) is an ħ-family (E, ∇) of vector bundles E on U and morphisms

$$\nabla: \mathcal{E} \to \mathcal{E} \otimes \omega_{\mathsf{X}}(\mathsf{D})$$

satisfying the  $\hbar$ -twisted Leibniz rule:  $\nabla(fe) = f\nabla(e) + e \otimes \hbar df$ .

- Then  $(E, \phi) := \lim(\mathcal{E}, \nabla)$  as  $\hbar \to 0$  is the limiting Higgs bundle.
- If  $rank(\mathcal{E}) = 2$ , the Higgs field  $\phi$  has characteristic polynomial

$$\chi_{\phi}(\eta) = \eta^2 - \operatorname{tr}(\phi)\eta + \det(\phi)$$

whose discriminant  $\Delta_{\phi} := tr(\phi)^{\otimes 2} - 4 \det(\phi)$  is a quadratic differential on X.

• In a local coordinate,  $\Delta_{\phi} = \Delta_0(x) dx^2$ .

• Horizontal foliation of  $\Delta_{\phi} \quad \leftrightarrow \quad \text{real flow lines of } L = \frac{1}{\sqrt{\Delta_0}} \partial_x.$ 

#### **Global WKB Filtration for** *h***-Connections**

• General Fact about Quadratic Differentials:

If  $|\mathsf{D}| \ge 1$  (or  $|\mathsf{D}| \ge 3$  if  $\mathsf{X} \cong \mathbb{P}^1$ ), the generic situation is:

- the horizontal foliation of  $\Delta_{\phi}$  covers X \ {turning points} by complete maximal forward and backward flow domains (*cells*).
- 2 Double intersections of cells consist of *strips* that cover X \ {critical graph}, and their flows are complete in both directions.

If  $D = \emptyset$ , consider  $\Delta_{\phi}$  Strebel  $\implies X \setminus \{ \text{critical graph} \}$  is decomposed into cylinders.

#### Theorem [N]: WKB Filtrations

Suppose  $(\mathcal{E}, \nabla)$  is a rank-two  $\hbar$ -connection on (X, D) with Higgs field  $(E, \phi)$  such that **1** the discriminant  $\Delta_{\phi}$  induces one of the above generic situations;

**2**  $\forall p \in D$ , eigenvalues of  $\nabla_p$  are bounded by corresponding eigenvalues of  $\phi_p$ .

Then  $(\mathcal{E}, \nabla)$ , restricted to  $X \times S$ , has a canonical flat piecewise filtration  $\mathcal{E}^{\bullet}$  over  $X \setminus \{\text{turning points}\}$ , comprised of local WKB filtrations over all the cells or cylinders.

- Over each cell, as ħ → 0 in S, its associated graded converges (in a canonical way) to the local Higgs eigendecomposition: lim(gr 𝔅•, gr ∇) ≅ (L<sub>1</sub> ⊕ L<sub>2</sub>, η<sub>1</sub> ⊕ η<sub>2</sub>).
- Over each strip or cylinder,  $(\mathcal{E}, \nabla)$  has canonical decomposition  $(\mathcal{L}_1, \partial_1) \oplus (\mathcal{L}_2, \partial_2)$ , and  $\lim_{n \to \infty} (\mathcal{L}_1, \partial_1) = (\mathcal{L}_2, \partial_2)$

$$\lim_{\hbar \to 0} (\mathcal{L}_i, \partial_i) = (L_i, \eta_i) \quad .$$

"I thank you for your attention! "