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Introduction
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• Algebraic differential eq↔ a field K with a derivation ′.

e.g. The PIV eq: K = C(p, q, t, a1, a2, ϵ).

q′ = 2pq − q2 − qt− a1, p′ = 2pq − p2 + pt+ a2,

t′ = ϵ, a′i = 0, ϵ′ = 0.

Non-autonomous Hamiltonian system with H = pq(p− q − t)− a1p− a2q.
If ϵ = 0 (autonomous)→ H(p, q) is conserved.

• Bäcklund transformations ∈ Aut(K) commuting with ′.

e.g. ⟨s0, s1, s2, π⟩ = W̃ (A(1)
2 ):

s1 : {p→
a1
q
, a1→ −a1, a2→ a1 + a2},

π : {q → −p, p→ q − p+ t, a1→ a2, a2→ ϵ− a1 − a2},

s2 = πs1π
−1, s0 = πs2π

−1.

(trivial actions are omitted)
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• Discrete eq↔ T ∈ Aut(K). iteration→ dynamical system.

e.g. d-PII eq: K = C(p, q, t, a1, a2, ϵ),

T : {q → Q = p− q − t−
a2
p
, p→ −q −

a2
p

+
a1 − ϵ
Q

,

a1→ a1 − ϵ, a2→ a2 + ϵ}.
If ϵ ̸= 0→ non-autonomous system.

If ϵ = 0→ autonomous, H(p, q) is conserved.

• Symmetry = Aut(K) commuting with T .

e.g. Symmetry= ⟨r0, r1⟩ =W (A(1)
1 ).

T = π2s0s1 and r0 = s0, r1 = s1s2s1 ∈W (A(1)
2 ).

The flow T and its symmetry W (A(1)
1 ) are unified in a larger symmetry W (A(1)

2 ).

→ The full symmetry is of fundamental importance.
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▲ Affine Weyl group approach to Painlevé type eq (e.g. [Noumi-Y (1998)])

• Pick a birational representation of affine Weyl group

→ discrete flows + its Bäcklund tr.

• This approach is useful in quantum setting as well.

▲ Quantization

Known representations are birational symplectic.

→ Natural to consider their quantization through

{p, q} = 1 → [p, q] = h or epeq = eheqep.

After AGT, the quantum Painlevé equations appear in various areas in math-phys.
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• The main problem of the affine Weyl group approach is its initial step.

How can we find suitable birational reps?

• Two methods are known.
Lie theory rational surf

classical Noumi-Y(2000) Sakai(2001)
quantum Kuroki(2011) our problem

• Lie theory. Poisson actions of W (g) on S(n−) are formulated for

Kac-Moody alg g. Their good quantization exists for U(g) and also for

Uq(g). These are applicable for E(1)
8 , but huge in general.

• Rational surface. The Cremona isometry of rational surfaces give

birational reps including E(1)
8 . Its quantization is our target.

For that, a result on D(1)
5 [Hasegawa (2007)] gives an important hint.
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▲ Plan of the talk

1. D(1)
5 example

2. The representation of W (E(1)
8 )

3. Lifting the representation including τ variables

4. F polynomials and the quantum curve

7



1. D(1)
5 example
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▲ The geometry:

• Let X = X(hi,ei)
be a blow up

of P1 × P1 at the 8 points sitting

on 4 lines.

Picard group Pic(X) is gener-

ated by H1, H2, E1, . . ., E8. x = 0 x =∞

y = 0

y =∞

w−e−16

w−e−15

w−e1h2

w−e2h2

w
−h1e7

w
−h2e8

w−e4 w−e3

• The affine Weyl group W (D(1)
5 ).

⟨ s0 s4
| |

s1 − s2 − s3 − s5

∣∣∣∣∣∣∣
s2i = 1,

sisj = sjsi, (si sj),

sisjsi = sjsisj, (si − sj).

⟩

W (D(1)
5 ) acts on X (birationally on P1 × P1).
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• The explicit actions si on K = C(h1, h2, e1, . . . , e8, x, y):

s0 = {e7↔ e8}, s1 = {e3↔ e4},

s2 = {e3→
h1
e7
, e7→

h1
e3
, h2→

h1h2
e3e7

, y →
1+ e7

h1
x

1+ x
e3

y},

s3 = {e1→
h2
e5
, e5→

h2
e1
, h1→

h1h2
e1e5

, x→ x
1+ h2

e1
y

1+ e5y
},

s4 = {e1↔ e2}, s5 = {e5↔ e6}.

• Actions on {hi, ei} are the standard ‘linear’ reflections on Pic(X)

(written in multiplicative variables: hi = eHi, ei = eEi).

→ The actions on x,y are its natural birational lift to P1 × P1.

• The Weyl group relations hold true also when x, y are non-comutative

[Hasegawa(2007)].
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• Check of the Weyl group relations.

From s2 = {e3→
h1
e7
, e7→

h1
e3
, h2→

h1h2
e3e7

, y →
1+ e7

h1
x

1+ x
e3

y}

→ the relation s22 = id :

s2(
h1
e7

) =
h1

s2(e7)
=

h1
h1/e3

= e3.

s22(e3) = s2

(
s2(e3)

)
= s2

(h1
e7

)
= e3.

s22(y) = s2

(1+ e7
h1
x

1+ x
e3

y
)
=

1+ 1
e3
x

1+ e7
h1
x
s2(y) = y.
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• Check of s2s3s2(y) = s3s2s3(y) .

By definition

s2(y) = (1+
e7
h1
x)(1 +

x

e3
)−1y,

s3 = {e1→
h2
e5
, e5→

h2
e1
, h1→

h1h2
e1e5

, x→ x
1+ h2

e1
y

1+ e5y
},

we have

s3(s2(y)) = s3

(
(1 +

e7
h1
x)(1 +

x

e3
)−1y

)

=
(
1+

e1e5e7
h1h2

x
1+ h2

e1
y

1+ e5y

)(
1+

1

e3
x
1+ h2

e1
y

1+ e5y

)−1
y.
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s3s2(y) =
(
1+

e1e5e7
h1h2

x
1+ h2

e1
y

1+ e5y

)(
1+

1

e3
x
1+ h2

e1
y

1+ e5y

)−1
y.

Using AB−1 = ACC−1B−1 = (AC)(BC)−1 , we have

=
(
1+ e5y+

e1e5e7
h1h2

x(1 +
h2
e1
y)

)(
1+ e5y+

1

e3
x(1 + y

h2
e1

)
)−1

y

=
(
1+

e1e5e7
h1h2

x+ e5(1 +
e7
h1
x)y

)(
1+

1

e3
x+ (e5 +

h2
e1e3

x)y
)−1

y.

The last expression is s2-invariant, hence

s2s3s2(y) = s3s2(y) = s3s2s3(y) .

•We don’t need any commutation relations between x and y.

→ The Weyl group relations hold true also when x, y are non-

commutative [Hasegawa(2007)].
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•W (D(1)
5 ) gives the q-PVI and its symmetry.

(commuative case [Jimbo-Sakai(1996)], quantum case [Hasegawa(2007)])

ell. E
(1)
8

A
(1)
1↗

q E
(1)
8 → E

(1)
7 → E

(1)
6 → D

(1)
5 → A

(1)
4 → A

(1)
2+1 → A

(1)
1+1 → A

(1)
1 → A

(1)
0

add. E
(1)
8 → E

(1)
7 → E

(1)
6 → D

(1)
4 → A

(1)
3 → A

(1)
1+1 → A

(1)
1 → A

(1)
0

↘ ↘
A
(1)
2 → A

(1)
1 → A

(1)
0

• Our target is the quantum version of the q-difference E(1)
8 case.
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2. The representation of W (E(1)
8 )
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▲ Various root systems can be realized on

X = Bl8(P1 × P1).

• e.g. 2+2+2+2 points on 4 lines:

−KX = δ0 + δ1 + δ2 + δ3.

δ1 = H1 − E1 − E2 , δ2 = H2 − E3 − E4 ,

δ3 = H1 − E5 − E6 , δ0 = H2 − E7 − E8 .

→ Roots R := ⟨δ0, δ1, δ2, δ3⟩⊥ = D
(1)
5 . (Eij = Ei − Ej)

E12 E34
| |

E56 − H2−E1−E5 − H1− E3 − E7 − E78

→ affine Weyl group W (D(1)
5 ).
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• e.g. 4+2+2 points on a curve and 2 lines:

−KX = H1 +H2−E1−· · ·−E4 + H1−E5−E6 + H2−E7−E8 .

→ affine Weyl group W (E(1)
6 ).

• e.g. 8 points on an elliptic curve (smooth/nodal/cusp.):

−KX = δ = 2H1 +2H2 − E1 − · · · − E8 .

• Roots R = ⟨δ⟩⊥ = E
(1)
8 :

E12
|

H1−H2 − H2−E1−E2 − E23 − E34 − · · · − E78

→ affine Weyl group W (E(1)
8 ).
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▲ Configurations for E(1)
n :

q-D5 q-E6

q-E7 q-E8

• For D(1)
5 , we have ω = dx∧dy

xy → Poisson bracket {x, y} = xy.

But for E(1)
n → quantization is not so easy.

e.g. {x, y} = xy(xy − 1), (for E(1)
6 ).
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▲ Another realization. Blk(P1 × P1), k > 8 (degenerate config.)

w
w

w
w

w w

w w

y = 0

y =∞

x = 0 x =∞

D
(1)
5

w
w wlnm

ww w

ww w

E
(1)
6

wwlnm wwlnm

wwww

wwww

E
(1)
7

wtkll������������ wtkll������������

wwwwww

wlnmwlnmwlnm

E
(1)
8
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• E(1)
8 :

(x = 0)3 (x =∞)3

y = 0

(y =∞)2

wptriple11 wptriple10

wp1 wp2 wp3 wp4 wp5 wp6

wp
double
7 wp

double
8 wp

double
9

• −KX is of high degree but g = 1 due to the singularities.

−KX = 6H1+3H2−
6∑
i=1

Ei−2
8∑
i=7

Ei−3
11∑
i=10

Ei

= H2−
6∑
i=1

Ei +2H2−
8∑
i=7

Ei +3H1−E10 +3H1−E11 .

20



• Thm. Let k = C(h1, h2, e1, . . . , e11). On a skew field K = k(x, y),

we have a birational representation of W (E(1)
8 ).

s0 = {e10→
h2
e11

, e11→
h2
e10

, h1→
h1h2
e10e11

, x→ x
1+ y h2e10
1+ ye11

},

s1 = {e8↔ e9}, s2 = {e7↔ e8},

s3 = {e1→
h1
e7
, e7→

h1
e1
, h2→

h1h2
e1e7

, y →
1+ xe7h1
1+ x

e1

y},

s4 = {e1↔ e2}, s5 = {e2↔ e3}, s6 = {e3↔ e4},
s7 = {e4↔ e5}, s8 = {e5↔ e6}.

• In commutative case, this rep was known (e.g. [Tsuda (2006)][Tsuda-Takenawa(2009)]).

• Similar to the D(1)
5 case, the actions give a representation also when

x, y are non-commutative.
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• To apply the rep to Painlevé equation, we want to compute the action

of translations.

For E(1)
8 case, we have (2×)120 directions. Each of them is given by

58 simple reflections→ too big!

• In commutative case, we have the following factorization

w(x) =
A

B
, w(y) =

C1C2 · · ·C6

D1D2D3
, w ∈W (E(1)

8 ).

HereA,B,Ci, Di are some polynomials in x, y. They are complicated

for general w, but have a simple geometric characterization. [Kajiwara

et.al(2003)] [Tsuda(2006)][Tsuda-Takenawa(2009)]

• To study these polynomials, a lift of the rep including tau-variables

is essential. Its quantization is our next problem.
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3. Lifting the representation including τ variables

23



• τ -variables. In addition to hi, ei, x, y, we introduce new variables

σ1, σ2, τ1, . . . , τ11.

• The following q-commutation relations are crucial

yx = qxy

σihj = qHi.Hj hjσi, τiej = qEi.Ej ejτi.

• Note. The parameters {hi, ei} and the τ -variables {σi, τi} are non-

commutative. This important idea is borrowed from the formulation by

Kuroki [arXiv:1206.3419(math-QA)], where he found

simple coroots : α∨i ←→
canonical conjugate

τ - variables : τi.
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• Thm. One can extend the quantum repW (E(1)
8 ) on Cskew(hi, ei, x, y)

to Cskew(hi, ei, x, y, σi, τi) as algebra auto

s0 = {τ10 → (1+ye11)
σ2
τ11

, τ11 →
σ2
τ10

(1+y
h2
e10

), σ1 → (1+ye11)
σ1σ2
τ10τ11

},

s1 = {τ8 ↔ τ9}, s2 = {τ7 ↔ τ8},

s3 = {τ1 → (1+x
e7
h1

)
σ1
τ7
, τ7 →

σ1
τ1

(1+
x

e1
), σ2 →

σ1σ2
τ1τ7

(1+
x

e1
)},

s4 = {τ1 ↔ τ2}, s5 = {τ2 ↔ τ3}, s6 = {τ3 ↔ τ4},

s7 = {τ4 ↔ τ5}, s8 = {τ5 ↔ τ6}.

(The actions on {hi, ei, x, y} are the same as before.)

•When x=y=0, the actions on {σi, τi} are just a copy of the actions

on {hi, ei}.
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e.g. For w = s0s3s4s0s2s3s2s1s0s2s4s3, we have

w(e11) =
h21h

2
2

e1e2e7e8e
2
10e11

, w(τ11) = F (x, y)
σ21σ

2
2

τ1τ2τ7τ8τ
2
10τ11

,

F (x, y) = (1+ x
e1q

)(1 + x
e2q

) + (∗+ ∗x+ ∗x2)y

+ ∗ (1 + e7
h1
x)(1 + e8

h1
x)y2

= (1+ e11y)(1 + w(e11)y) + x(1 + h2
e10
y)(∗+ ∗y)

+ ∗ x2(1 + h2
e10
y)(1 + qh2

e10
y).

• Regularity. For any w ∈W (E(1)
8 ), we see

w(τi) = Fi,w(x, y)× (monomial of {σj, τj}),

where Fi,w(x, y) is a non-commutative polynomial in x, y (cf. “Laurent

phenomena”, “singularity confinement”). We will clarify the reason.
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4. F -polynomials and the quantum curve
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•When q = 1, the regularity of F (x, y) is known as follows.

• The polynomial F can be determined by the data (di,mi) through

the linear system:

(F = 0) ∈
∣∣∣∣λ :=

2∑
i=1

diHi −
11∑
i=1

miEi ∈ Pic(X)
∣∣∣∣.

• In particular, for λ ∈ EX (exceptional class) = W (E(1)
8 ) orbit of

{Ei}, the corresponding curves F (x, y) = 0 are rigid and g = 0.

These polynomials give the factors of the rational expressions of w(x), w(y).

•We will formulate the analog of these properties for q ̸= 1.

Where F (x, y) is non-commutative (yx = qxy), i.e. a q-difference

operator.
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• Non-logarithmic singularity.([Carmichael], [Birkhoff], [Adams])

Consider a q-difference equation Dψ(x) = 0 where

D = A0(y) + xA1(y) + x2A2(y) + · · · . (yx = qxy)

• Exponents: A0(q
ρ) = 0→ ∃ψ(x) = xρ(1 + c1x+ · · · ).

• Resonances of exponents (ρ′ − ρ ∈ Z) generically bring log-terms

to ψ(x). However, in some special “non-logarithmic” cases, one can

still have solutions without log-terms.

e.g. A0 ∝ (y−qρ)(y−qρ+1)(y−qρ+2),

A1 ∝ (y−qρ)(y−qρ+1), A2 ∝ (y−qρ).

• Our F (x, y) operators have many resonances, but they all are non-

logarithmic!
29



• Def. For a data λ = (di,mi), we define a q-difference operator

Fλ(x, y) so that the following two expressions are consistent:

Fλ =
d1∑
i=0

xi
m11−1∏
t=i

(1+qte11y)
i−1∏

t=d1−m10

(1+qt
h2
e10

y) Ui(y),

=
d2∑
i=0

6∏
k=1

−1∏
t=i−mk

(1+qt
1

ek
x)

9∏
k=7

i−d2+mk−1∏
t=0

(1+qt
ek
h1
x) Vi(x) y

i,

Here Ui, Vi are polynomials: degy(Ui) = d2−(i−d1+m10)+−(m11−i)+, degx(Vi) =

d1−
∑6

k=1(mk−i)+−
∑9

k=7(i−d2+mk)+, (x)+ = max(x,0).

• The 1st [or 2nd] line specifies the non-logarithmic singularities around

x = 0,∞ [or y = 0,∞].

(In the latter, x is viewed as a q-shift operator: xψ(y) = ψ(q−1y).)
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• Main Thm. For λ =
2∑
i=1

diHi −
11∑
i=1

miEi = w(Ei) ∈ EX, the

quantum polynomial Fλ is unique (under the normalization Fλ(0,0) = 1).

Moreover, it coincides with Fi,w generated by the Weyl group action:

Fi,w(x, y) = Fλ(x, y).

This shows the regularity of Fi,w and its geometric characterization.

• A key fact for the proof: The non-logarithmic property of Fi,w is

preserved under the Weyl group actions.

This fact is proved using a realization of the Weyl group actions as

gauge transformations (gauge factor = q-dilogarithm).
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• Bilinear equations. Consider an infinite system of bilinear equa-

tions generated by the seed equations (1 ≤ i ≤ 6 and 7 ≤ j ≤ 9)

τ(e10)τ(
h2
e10

) = h2
e10
τ(h2ei

)τ(ei) + τ(h2ej
)τ(ej),

τ( h2e11
)τ(e11) = e11τ(

h2
ei
)τ(ei) + τ(h2ej

)τ(ej),

τ(ei)τ(
h1
ei
) = 1

ei
τ( h1e11

)τ(e11) + τ( h1e10
)τ(e10),

τ(h1ej
)τ(ej) =

ej
h1
τ( h1e11

)τ(e11) + τ( h1e10
)τ(e10),

τ(h2e1
)τ(e1) = . . . = τ(h2e6

)τ(e6),

τ(h2e7
)τ(e7) = . . . = τ(h2e9

)τ(e9),

and their W (E(1)
8 ) transformations (obtained by w(τ(λ)) = τ(w · λ)).

• Thm. The overdetermined system given above is consistent and

has a solution given by τ(λ) = Fλ(x, y)τ
λ.

→ a quantum Plücker embedding of the Okamoto space X.
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▲ Application to the quantum mirror curve.

• For generic parameters (hi, ei), the curve C in the linear system

| − KX| =
∣∣∣∣6H1 +3H2 −

6∑
i=1

Ei − 2
9∑
i=7

Ei − 3
11∑
i=10

Ei

∣∣∣∣
is unique g(x, y) = x3y = 0 (X3

0X
3
1Y

2
0 Y1 = 0).

• If the parameters are special: p :=
h61h

3
2

(e1···e6)(e7e8e9)2(e10e11)3
= 1,

→ The curve C ∈ | − KX| form a pencil λf(x, y) + µg(x, y) = 0 .

→ The Painlevé equation reduces to an autonomous integrable system

where the pencil gives the algebraic integral.

• The curve is the quantum curve for E8 [Moriyama (2020)].

It is also related to Ruijsenaars - van Diejen operator [Takemura (2018)] ,

[Noumi-Ruijsenaars-Y (2020)], [Chen-Haghighat-Kim-Sperling-Wang (2021)].
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• From W (E(1)
8 ) symmetry, one can determine the curve explicitly.

λ(
3∑
i=0

Ci(x)y
i) + µx3y = 0 .

C3(x) = q3e311
9∏
i=7

(1+
ei
h1
x)(1+q

ei
h1
x),

C2(x) = qe211
9∏
i=7

(1+
ei
h1
x){[3]q+qxA−1+qκA1x

2+[3]qκx
3},

C1(x) = e11{[3]q+[2]qA−1x+(κA1+A−2)x
2+

κ

q
(κA2+A−1)x

4

+
[2]qκ2A1

q2
x5+

[3]qκ2

q3
x6}, C0(x) =

6∏
i=1

(1+
1

qei
x),

[k]q =
1− qk

1− q
, A±1 =

9∑
i=1

a±1i , A±2 =
∑

1≤i<j≤9

(aiaj)
±1,

ai = ei (1 ≤ i ≤ 6), ai =
h1

ei
(7 ≤ i ≤ 9) κ =

e7e8e9e10e11

h21h2
.
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• The quantum curve forE(1)
8 was first obtained by S.Moriyama (2020)

[arXix:2007.05148] as a quantization of a commutative case [Kim-Yagi (2015)].
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• The spectral determinant (ST) of the quantum curve can be com-

puted exactly and it gives the full partition function of the topological

string (TS) on an open Calabi-Yau =−KX over X ≃ Bl9(P2).

(Known as the TS/ST duality [Grassi-Hatsuda-Marino(arXiv:1401.3382)] - one of the very sophisti-

cated version of the mirror symmetry-. Though this is confirmed for various examples, many problems,

in particular for E(1)
n cases, are waiting for the challenges.)
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▲ Summary of the results

•We contracted a quantum birational rep of affine Weyl groupW (E(1)
8 ).

• A lift of the rep including the tau variables is also obtained.

• Regularity of the quantum polynomials F and their geometric char-

acterization are proved.

• The quantum mirror curve of type q-E(1)
8 is rederived from its sym-

metry.

▲ Future studies

• There are many problems to be clarified.
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Thank you for your attention!
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