Quantum representation of Weyl group $W\left(E_{8}^{(1)}\right)$

Web-seminar on Painlevé equations and related topics 26 May. 2021

Yasuhiko Yamada (Kobe Univ.)

Based on the work [S.Moriyama-Y.Y. (arXiv:2104.06666v2[math:QA])]

Introduction

- Algebraic differential eq $\leftrightarrow \mathbf{a}$ field K with a derivation ${ }^{\prime}$.
e.g. The P_{IV} eq: $K=\mathbb{C}\left(p, q, t, a_{1}, a_{2}, \epsilon\right)$.

$$
\begin{aligned}
& q^{\prime}=2 p q-q^{2}-q t-a_{1}, \quad p^{\prime}=2 p q-p^{2}+p t+a_{2} \\
& t^{\prime}=\epsilon, \quad a_{i}^{\prime}=0, \quad \epsilon^{\prime}=0
\end{aligned}
$$

Non-autonomous Hamiltonian system with $H=p q(p-q-t)-a_{1} p-a_{2} q$. If $\epsilon=0$ (autonomous) $\rightarrow H(p, q)$ is conserved.

- Bäcklund transformations $\in \operatorname{Aut}(K)$ commuting with '.
e.g. $\left\langle s_{0}, s_{1}, s_{2}, \pi\right\rangle=\tilde{W}\left(A_{2}^{(1)}\right)$:

$$
\begin{aligned}
& s_{1}:\left\{p \rightarrow \frac{a_{1}}{q}, \quad a_{1} \rightarrow-a_{1}, \quad a_{2} \rightarrow a_{1}+a_{2}\right\}, \\
& \pi:\left\{q \rightarrow-p, \quad p \rightarrow q-p+t, \quad a_{1} \rightarrow a_{2}, \quad a_{2} \rightarrow \epsilon-a_{1}-a_{2}\right\}, \\
& s_{2}=\pi s_{1} \pi^{-1}, \quad s_{0}=\pi s_{2} \pi^{-1}
\end{aligned}
$$

(trivial actions are omitted)

- Discrete eq $\leftrightarrow T \in \operatorname{Aut}(K)$. iteration \rightarrow dynamical system.
e.g. d - $P_{\text {II }}$ eq: $K=\mathbb{C}\left(p, q, t, a_{1}, a_{2}, \epsilon\right)$,

$$
\begin{aligned}
T: & \left\{q \rightarrow Q=p-q-t-\frac{a_{2}}{p}, \quad p \rightarrow-q-\frac{a_{2}}{p}+\frac{a_{1}-\epsilon}{Q},\right. \\
& \left.a_{1} \rightarrow a_{1}-\epsilon, \quad a_{2} \rightarrow a_{2}+\epsilon\right\} .
\end{aligned}
$$

If $\epsilon \neq 0 \rightarrow$ non-autonomous system.
If $\epsilon=0 \rightarrow$ autonomous, $H(p, q)$ is conserved.

- Symmetry $=$ Aut (K) commuting with T.
e.g. Symmetry $=\left\langle r_{0}, r_{1}\right\rangle=W\left(A_{1}^{(1)}\right)$.

$$
T=\pi^{2} s_{0} s_{1} \text { and } r_{0}=s_{0}, r_{1}=s_{1} s_{2} s_{1} \in W\left(A_{2}^{(1)}\right)
$$

The flow T and its symmetry $W\left(A_{1}^{(1)}\right)$ are unified in a larger symmetry $W\left(A_{2}^{(1)}\right)$.
\rightarrow The full symmetry is of fundamental importance.

』Affine Weyl group approach to Painlevé type eq (e.g. [Noumi-Y (1998)])

- Pick a birational representation of affine Weyl group
\rightarrow discrete flows + its Bäcklund tr.
- This approach is useful in quantum setting as well.

』 Quantization
Known representations are birational symplectic.
\rightarrow Natural to consider their quantization through

$$
\{p, q\}=1 \quad \rightarrow \quad[p, q]=h \quad \text { or } \quad e^{p} e^{q}=e^{h} e^{q} e^{p}
$$

After AGT, the quantum Painlevé equations appear in various areas in math-phys.

- The main problem of the affine Weyl group approach is its initial step.

How can we find suitable birational reps?

- Two methods are known.

	Lie theory	rational surf
classical	Noumi-Y(2000)	Sakai(2001)
quantum	Kuroki(2011)	our problem

- Lie theory. Poisson actions of $W(\mathfrak{g})$ on $S\left(\mathfrak{n}_{-}\right)$are formulated for Kac-Moody alg \mathfrak{g}. Their good quantization exists for $U(\mathfrak{g})$ and also for $U_{q}(\mathfrak{g})$. These are applicable for $E_{8}^{(1)}$, but huge in general.
- Rational surface. The Cremona isometry of rational surfaces give birational reps including $E_{8}^{(1)}$. Its quantization is our target.
For that, a result on $D_{5}^{(1)}{ }_{[H a s e g a w a ~(2007)] ~ g i v e s ~ a n ~ i m p o r t a n t ~ h i n t . ~}^{\text {git }}$
\triangle Plan of the talk

1. $D_{5}^{(1)}$ example
2. The representation of $W\left(E_{8}^{(1)}\right)$
3. Lifting the representation including τ variables
4. F polynomials and the quantum curve
5. $D_{5}^{(1)}$ example

\triangle The geometry:

- Let $X=X_{\left(h_{i}, e_{i}\right)}$ be a blow up of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ at the 8 points sitting on 4 lines.
 ated by $H_{1}, H_{2}, E_{1}, \ldots, E_{8}$.
- The affine Weyl group $W\left(D_{5}^{(1)}\right)$.

$$
\left\langle\begin{array}{cc}
s_{0} & s_{4} \\
\mid & \mid \\
s_{1}-s_{2}-s_{3}-s_{5} & s_{i}^{2}=1 \\
s_{i} s_{j}=s_{j} s_{i}, & \left(\begin{array}{ll}
s_{i} & s_{j}
\end{array}\right), \\
s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j}, & \left(s_{i}-s_{j}\right)
\end{array}\right\rangle
$$

$W\left(D_{5}^{(1)}\right)$ acts on X (birationally on $\left.\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$.

- The explicit actions s_{i} on $K=\mathbb{C}\left(h_{1}, h_{2}, e_{1}, \ldots, e_{8}, x, y\right)$:

$$
\begin{aligned}
& s_{0}=\left\{e_{7} \leftrightarrow e_{8}\right\}, \quad s_{1}=\left\{e_{3} \leftrightarrow e_{4}\right\}, \\
& s_{2}=\left\{e_{3} \rightarrow \frac{h_{1}}{e_{7}}, e_{7} \rightarrow \frac{h_{1}}{e_{3}}, h_{2} \rightarrow \frac{h_{1} h_{2}}{e_{3} e_{7}}, y \rightarrow \frac{1+\frac{e_{7}}{h_{1}} x}{1+\frac{x}{e_{3}}} y\right\}, \\
& s_{3}=\left\{e_{1} \rightarrow \frac{h_{2}}{e_{5}}, e_{5} \rightarrow \frac{h_{2}}{e_{1}}, h_{1} \rightarrow \frac{h_{1} h_{2}}{e_{1} e_{5}}, x \rightarrow x \frac{1+\frac{h_{2}}{e_{1}} y}{1+e_{5} y}\right\}, \\
& s_{4}=\left\{e_{1} \leftrightarrow e_{2}\right\}, \quad s_{5}=\left\{e_{5} \leftrightarrow e_{6}\right\} .
\end{aligned}
$$

- Actions on $\left\{h_{i}, e_{i}\right\}$ are the standard 'linear' reflections on $\operatorname{Pic}(X)$ (written in multiplicative variables: $h_{i}=e^{H_{i}}, e_{i}=e^{E_{i}}$).
\rightarrow The actions on x, y are its natural birational lift to $\mathbb{P}^{1} \times \mathbb{P}^{1}$.
- The Weyl group relations hold true also when x, y are non-comutative [Hasegawa(2007)].
- Check of the Weyl group relations.

From $s_{2}=\left\{e_{3} \rightarrow \frac{h_{1}}{e_{7}}, e_{7} \rightarrow \frac{h_{1}}{e_{3}}, h_{2} \rightarrow \frac{h_{1} h_{2}}{e_{3} e_{7}}, y \rightarrow \frac{1+\frac{e_{7}}{h_{1}} x}{1+\frac{x}{e_{3}}} y\right\}$ \rightarrow the relation $s_{2}^{2}=\mathrm{id}$:

$$
\begin{aligned}
& s_{2}\left(\frac{h_{1}}{e_{7}}\right)=\frac{h_{1}}{s_{2}\left(e_{7}\right)}=\frac{h_{1}}{h_{1} / e_{3}}=e_{3} \\
& s_{2}^{2}\left(e_{3}\right)=s_{2}\left(s_{2}\left(e_{3}\right)\right)=s_{2}\left(\frac{h_{1}}{e_{7}}\right)=e_{3} \\
& s_{2}^{2}(y)=s_{2}\left(\frac{1+\frac{e_{7}}{h_{1}} x}{1+\frac{x}{e_{3}}} y\right)=\frac{1+\frac{1}{e_{3}} x}{1+\frac{e_{7}}{h_{1}} x} s_{2}(y)=y .
\end{aligned}
$$

- Check of $s_{2} s_{3} s_{2}(y)=s_{3} s_{2} s_{3}(y)$.

By definition

$$
\begin{aligned}
& s_{2}(y)=\left(1+\frac{e_{7}}{h_{1}} x\right)\left(1+\frac{x}{e_{3}}\right)^{-1} y, \\
& s_{3}=\left\{e_{1} \rightarrow \frac{h_{2}}{e_{5}}, e_{5} \rightarrow \frac{h_{2}}{e_{1}}, h_{1} \rightarrow \frac{h_{1} h_{2}}{e_{1} e_{5}}, x \rightarrow x \frac{1+\frac{h_{2}}{e_{1}} y}{1+e_{5} y}\right\},
\end{aligned}
$$

we have

$$
\begin{aligned}
s_{3}\left(s_{2}(y)\right) & =s_{3}\left(\left(1+\frac{e_{7}}{h_{1}} x\right)\left(1+\frac{x}{e_{3}}\right)^{-1} y\right) \\
= & \left(1+\frac{e_{1} e_{5} e_{7}}{h_{1} h_{2}} x \frac{1+\frac{h_{2}}{e_{1}} y}{1+e_{5} y}\right)\left(1+\frac{1}{e_{3}} x \frac{1+\frac{h_{2}}{e_{1}} y}{1+e_{5} y}\right)^{-1} y .
\end{aligned}
$$

$$
s_{3} s_{2}(y)=\left(1+\frac{e_{1} e_{5} e_{7}}{h_{1} h_{2}} x \frac{1+\frac{h_{2}}{e_{1}} y}{1+e_{5} y}\right)\left(1+\frac{1}{e_{3}} x \frac{1+\frac{h_{2}}{e_{1}} y}{1+e_{5} y}\right)^{-1} y
$$

Using $A B^{-1}=A C C^{-1} B^{-1}=(A C)(B C)^{-1}$, we have

$$
\begin{aligned}
& =\left(1+e_{5} y+\frac{e_{1} e_{5} e_{7}}{h_{1} h_{2}} x\left(1+\frac{h_{2}}{e_{1}} y\right)\right)\left(1+e_{5} y+\frac{1}{e_{3}} x\left(1+y \frac{h_{2}}{e_{1}}\right)\right)^{-1} y \\
& =\left(1+\frac{e_{1} e_{5} e_{7}}{h_{1} h_{2}} x+e_{5}\left(1+\frac{e_{7}}{h_{1}} x\right) y\right)\left(1+\frac{1}{e_{3}} x+\left(e_{5}+\frac{h_{2}}{e_{1} e_{3}} x\right) y\right)^{-1} y .
\end{aligned}
$$

The last expression is s_{2}-invariant, hence

$$
s_{2} s_{3} s_{2}(y)=s_{3} s_{2}(y)=s_{3} s_{2} s_{3}(y) \text {. }
$$

- We don't need any commutation relations between x and y.
\rightarrow The Weyl group relations hold true also when x, y are noncommutative [Hasegawa(2007)].
- $W\left(D_{5}^{(1)}\right)$ gives the $q-P_{\mathrm{VI}}$ and its symmetry. (commuative case [Jimbo-Sakai(1996)], quantum case [Hasegawa(2007)])

$$
\begin{aligned}
& \text { ell. } \left.\begin{array}{l}
E_{8}^{(1)} \\
q \\
\text { add. } \\
E_{8}^{(1)} \rightarrow E_{7}^{(1)} \rightarrow E_{6}^{(1)} \rightarrow D_{5}^{(1)} \rightarrow A_{4}^{(1)} \rightarrow A_{2+1}^{(1)} \rightarrow A_{1+1}^{(1)} \rightarrow A_{1}^{(1)} \rightarrow A_{0}^{(1)} \\
E_{8}^{(1)} \rightarrow E_{7}^{(1)} \rightarrow E_{6}^{(1)} \rightarrow A_{4}^{(1)} \rightarrow A_{3}^{(1)} \rightarrow A_{1+1}^{(1)} \rightarrow A_{1}^{(1)} \rightarrow A_{0}^{(1)} \\
\searrow A_{2}^{(1)} \rightarrow A_{1}^{(1)} \rightarrow A_{0}^{(1)}
\end{array}\right]
\end{aligned}
$$

- Our target is the quantum version of the q-difference $E_{8}^{(1)}$ case.

2. The representation of $W\left(E_{8}^{(1)}\right)$
Δ Various root systems can be realized on

$$
X=\mathrm{BI}_{8}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)
$$

- e.g. 2+2+2+2 points on 4 lines:

$$
-\mathcal{K}_{X}=\delta_{0}+\delta_{1}+\delta_{2}+\delta_{3}
$$

$$
\begin{array}{ll}
\delta_{1}=H_{1}-E_{1}-E_{2}, & \delta_{2}=H_{2}-E_{3}-E_{4}, \\
\delta_{3}=H_{1}-E_{5}-E_{6}, & \delta_{0}=H_{2}-E_{7}-E_{8}
\end{array}
$$

\rightarrow Roots $R:=\left\langle\delta_{0}, \delta_{1}, \delta_{2}, \delta_{3}\right\rangle^{\perp}=D_{5}^{(1)} . \quad\left(E_{i j}=E_{i}-E_{j}\right)$

$$
\begin{gathered}
\frac{E_{12}}{\mid} \frac{\stackrel{E_{34}}{\mid}}{E_{56}}-\frac{\mid}{H_{2}-E_{1}-E_{5}}-\frac{H_{1}-E_{3}-E_{7}}{E_{78}}
\end{gathered}
$$

\rightarrow affine Weyl group $W\left(D_{5}^{(1)}\right)$.

- e.g. $4+2+2$ points on a curve and 2 lines:

$$
-\mathcal{K}_{X}=H_{1}+H_{2}-E_{1}-\cdots-E_{4}+H_{1}-E_{5}-E_{6}+H_{2}-E_{7}-E_{8} .
$$ \rightarrow affine Weyl group $W\left(E_{6}^{(1)}\right)$.

- e.g. 8 points on an elliptic curve (smooth/nodal/cusp.):

$$
-\mathcal{K}_{X}=\delta=2 H_{1}+2 H_{2}-E_{1}-\cdots-E_{8}
$$

- Roots $R=\langle\delta\rangle^{\perp}=E_{8}^{(1)}$.

$$
\begin{gathered}
\frac{E_{12}}{1} \\
H_{1}-H_{2}-H_{2}-E_{1}-E_{2}-E_{23}-E_{34}-\cdots-E_{78}
\end{gathered}
$$

\rightarrow affine Weyl group $W\left(E_{8}^{(1)}\right)$.
\triangle Configurations for $E_{n}^{(1)}$:

- For $D_{5}^{(1)}$, we have $\omega=\frac{d x \wedge d y}{x y} \rightarrow$ Poisson bracket $\{x, y\}=x y$. But for $E_{n}^{(1)} \rightarrow$ quantization is not so easy.
e.g. $\{x, y\}=x y(x y-1)$, (for $\left.E_{6}^{(1)}\right)$.
Δ Another realization. $\mathrm{BI}_{k}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right), k>8$ (degenerate config.)

- $E_{8}^{(1)}$.
- $-\mathcal{K}_{X}$ is of high degree but $g=1$ due to the singularities.

$$
\begin{aligned}
-\mathcal{K}_{X} & =6 H_{1}+3 H_{2}-\sum_{i=1}^{6} E_{i}-2 \sum_{i=7}^{8} E_{i}-3 \sum_{i=10}^{11} E_{i} \\
& =H_{2}-\sum_{i=1}^{6} E_{i}+2 H_{2}-\sum_{i=7}^{8} E_{i}+3 H_{1}-E_{10}+3 H_{1}-E_{11} .
\end{aligned}
$$

- Thm. Let $k=\mathbb{C}\left(h_{1}, h_{2}, e_{1}, \ldots, e_{11}\right)$. On a skew field $K=k(x, y)$, we have a birational representation of $W\left(E_{8}^{(1)}\right)$.

$$
\begin{aligned}
& s_{0}=\left\{e_{10} \rightarrow \frac{h_{2}}{e_{11}}, \quad e_{11} \rightarrow \frac{h_{2}}{e_{10}}, h_{1} \rightarrow \frac{h_{1} h_{2}}{e_{10} e_{11}}, x \rightarrow x \frac{1+y \frac{h_{2}}{e_{10}}}{1+y e_{11}}\right\}, \\
& s_{1}=\left\{e_{8} \leftrightarrow e_{9}\right\}, \quad s_{2}=\left\{e_{7} \leftrightarrow e_{8}\right\}, \\
& s_{3}=\left\{e_{1} \rightarrow \frac{h_{1}}{e_{7}}, e_{7} \rightarrow \frac{h_{1}}{e_{1}}, h_{2} \rightarrow \frac{h_{1} h_{2}}{e_{1} e_{7}}, y \rightarrow \frac{1+x \frac{e_{7}}{h_{1}}}{1+\frac{x}{e_{1}}}\right\}, \\
& s_{4}=\left\{e_{1} \leftrightarrow e_{2}\right\}, \quad s_{5}=\left\{e_{2} \leftrightarrow e_{3}\right\}, \quad s_{6}=\left\{e_{3} \leftrightarrow e_{4}\right\}, \\
& s_{7}=\left\{e_{4} \leftrightarrow e_{5}\right\}, \quad s_{8}=\left\{e_{5} \leftrightarrow e_{6}\right\} .
\end{aligned}
$$

- In commutative case, this rep was known (e.g. [Tsuda (2006)[TTsuda-Takenawa(2009)]).
- Similar to the $D_{5}^{(1)}$ case, the actions give a representation also when
x, y are non-commutative.
- To apply the rep to Painlevé equation, we want to compute the action of translations.
For $E_{8}^{(1)}$ case, we have $(2 \times) 120$ directions. Each of them is given by 58 simple reflections \rightarrow too big!
- In commutative case, we have the following factorization

$$
w(x)=\frac{A}{B}, \quad w(y)=\frac{C_{1} C_{2} \cdots C_{6}}{D_{1} D_{2} D_{3}}, \quad w \in W\left(E_{8}^{(1)}\right)
$$

Here A, B, C_{i}, D_{i} are some polynomials in x, y. They are complicated for general w, but have a simple geometric characterization. [Kajiwara et.al(2003)] [Tsuda(2006)][Tsuda-Takenawa(2009)]

- To study these polynomials, a lift of the rep including tau-variables is essential. Its quantization is our next problem.

3. Lifting the representation including τ variables

- τ-variables. In addition to h_{i}, e_{i}, x, y, we introduce new variables

$$
\sigma_{1}, \sigma_{2}, \tau_{1}, \ldots, \tau_{11}
$$

- The following q-commutation relations are crucial

$$
\begin{gathered}
y x=q x y \\
\sigma_{i} h_{j}=q^{H_{i} \cdot H_{j}} h_{j} \sigma_{i}, \quad \tau_{i} e_{j}=q^{E_{i} \cdot E_{j}} e_{j} \tau_{i} .
\end{gathered}
$$

- Note. The parameters $\left\{h_{i}, e_{i}\right\}$ and the τ-variables $\left\{\sigma_{i}, \tau_{i}\right\}$ are noncommutative. This important idea is borrowed from the formulation by Kuroki [arXiv:1206.3419(math-QA)], where he found

$$
\text { simple coroots }: \alpha_{i}^{\vee} \text { canonical conjugate } \tau \text { - variables }: \tau_{i}
$$

- Thm. One can extend the quantum rep $W\left(E_{8}^{(1)}\right)$ on $\mathbb{C}_{\text {skew }}\left(h_{i}, e_{i}, x, y\right)$ to $\mathbb{C}_{\text {skew }}\left(h_{i}, e_{i}, x, y, \sigma_{i}, \tau_{i}\right)$ as algebra auto

$$
\begin{aligned}
& s_{0}=\left\{\tau_{10} \rightarrow\left(1+y e_{11}\right) \frac{\sigma_{2}}{\tau_{11}}, \tau_{11} \rightarrow \frac{\sigma_{2}}{\tau_{10}}\left(1+y \frac{h_{2}}{e_{10}}\right), \sigma_{1} \rightarrow\left(1+y e_{11}\right) \frac{\sigma_{1} \sigma_{2}}{\tau_{10} \tau_{11}}\right\}, \\
& s_{1}=\left\{\tau_{8} \leftrightarrow \tau_{9}\right\}, \quad s_{2}=\left\{\tau_{7} \leftrightarrow \tau_{8}\right\}, \\
& s_{3}=\left\{\tau_{1} \rightarrow\left(1+x \frac{e_{7}}{h_{1}}\right) \frac{\sigma_{1}}{\tau_{7}}, \tau_{7} \rightarrow \frac{\sigma_{1}}{\tau_{1}}\left(1+\frac{x}{e_{1}}\right), \sigma_{2} \rightarrow \frac{\sigma_{1} \sigma_{2}}{\tau_{1} \tau_{7}}\left(1+\frac{x}{e_{1}}\right)\right\}, \\
& s_{4}=\left\{\tau_{1} \leftrightarrow \tau_{2}\right\}, \quad s_{5}=\left\{\tau_{2} \leftrightarrow \tau_{3}\right\}, \quad s_{6}=\left\{\tau_{3} \leftrightarrow \tau_{4}\right\}, \\
& s_{7}=\left\{\tau_{4} \leftrightarrow \tau_{5}\right\}, \quad s_{8}=\left\{\tau_{5} \leftrightarrow \tau_{6}\right\} .
\end{aligned}
$$

(The actions on $\left\{h_{i}, e_{i}, x, y\right\}$ are the same as before.)

- When $x=y=0$, the actions on $\left\{\sigma_{i}, \tau_{i}\right\}$ are just a copy of the actions on $\left\{h_{i}, e_{i}\right\}$.
e.g. For $w=s_{0} s_{3} s_{4} s_{0} s_{2} s_{3} s_{2} s_{1} s_{0} s_{2} s_{4} s_{3}$, we have

$$
\begin{aligned}
w\left(e_{11}\right)= & \frac{h_{1}^{2} h_{2}^{2}}{e_{1} e_{2} e_{7} e_{8} e_{10}^{2} e_{11}}, \quad w\left(\tau_{11}\right)=F(x, y) \frac{\sigma_{1}^{2} \sigma_{2}^{2}}{\tau_{1} \tau_{2} \tau_{7} \tau_{8} \tau_{10}^{2} \tau_{11}} \\
F(x, y)= & \left(1+\frac{x}{e_{1} q}\right)\left(1+\frac{x}{e_{2} q}\right)+\left(*+* x+* x^{2}\right) y \\
& +*\left(1+\frac{e_{7}}{h_{1}} x\right)\left(1+\frac{e_{8}}{h_{1}} x\right) y^{2} \\
= & \left(1+e_{11} y\right)\left(1+w\left(e_{11}\right) y\right)+x\left(1+\frac{h_{2}}{e_{10}} y\right)(*+* y) \\
& +* x^{2}\left(1+\frac{h_{2}}{e_{10}} y\right)\left(1+\frac{q h_{2}}{e_{10}} y\right) .
\end{aligned}
$$

- Regularity. For any $w \in W\left(E_{8}^{(1)}\right)$, we see

$$
w\left(\tau_{i}\right)=F_{i, w}(x, y) \times\left(\text { monomial of }\left\{\sigma_{j}, \tau_{j}\right\}\right)
$$

where $F_{i, w}(x, y)$ is a non-commutative polynomial in x, y (cf. "Laurent phenomena", "singularity confinement"). We will clarify the reason.
4. F-polynomials and the quantum curve

- When $q=1$, the regularity of $F(x, y)$ is known as follows.
- The polynomial F can be determined by the data $\left(d_{i}, m_{i}\right)$ through the linear system:

$$
(F=0) \in\left|\lambda:=\sum_{i=1}^{2} d_{i} H_{i}-\sum_{i=1}^{11} m_{i} E_{i} \in \operatorname{Pic}(X)\right|
$$

- In particular, for $\lambda \in E X$ (exceptional class) $=W\left(E_{8}^{(1)}\right)$ orbit of $\left\{E_{i}\right\}$, the corresponding curves $F(x, y)=0$ are rigid and $g=0$.

These polynomials give the factors of the rational expressions of $w(x), w(y)$.

- We will formulate the analog of these properties for $q \neq 1$.

Where $F(x, y)$ is non-commutative $(y x=q x y$), i.e. a q-difference operator.

- Non-logarithmic singularity.([Carmichael], [Birkhoff], [Adams])

Consider a q-difference equation $D \psi(x)=0$ where

$$
D=A_{0}(y)+x A_{1}(y)+x^{2} A_{2}(y)+\cdots . \quad(y x=q x y)
$$

- Exponents: $A_{0}\left(q^{\rho}\right)=0 \rightarrow{ }^{\exists} \psi(x)=x^{\rho}\left(1+c_{1} x+\cdots\right)$.
- Resonances of exponents ($\rho^{\prime}-\rho \in \mathbb{Z}$) generically bring log-terms to $\psi(x)$. However, in some special "non-logarithmic" cases, one can still have solutions without log-terms.

$$
\begin{array}{ll}
\text { e.g. } & A_{0} \propto\left(y-q^{\rho}\right)\left(y-q^{\rho+1}\right)\left(y-q^{\rho+2}\right) \\
& A_{1} \propto\left(y-q^{\rho}\right)\left(y-q^{\rho+1}\right), \quad A_{2} \propto\left(y-q^{\rho}\right)
\end{array}
$$

- Our $F(x, y)$ operators have many resonances, but they all are nonlogarithmic!
- Def. For a data $\lambda=\left(d_{i}, m_{i}\right)$, we define a q-difference operator $F_{\lambda}(x, y)$ so that the following two expressions are consistent:

$$
\begin{aligned}
F_{\lambda} & =\sum_{i=0}^{d_{1}} x^{i} \prod_{t=i}^{m_{11}-1}\left(1+q^{t} e_{11} y\right) \prod_{t=d_{1}-m_{10}}^{i-1}\left(1+q^{t} \frac{h_{2}}{e_{10}} y\right) U_{i}(y) \\
& =\sum_{i=0}^{d_{2}} \prod_{k=1}^{6} \prod_{t=i-m_{k}}^{-1}\left(1+q^{t} \frac{1}{e_{k}} x\right) \prod_{k=7}^{9} \prod_{t=0}^{i-d_{2}+m_{k}-1}\left(1+q^{t} \frac{e_{k}}{h_{1}} x\right) V_{i}(x) y^{i}
\end{aligned}
$$

Here U_{i}, V_{i} are polynomials: $\operatorname{deg}_{y}\left(U_{i}\right)=d_{2}-\left(i-d_{1}+m_{10}\right)_{+}-\left(m_{11}-i\right)_{+}, \quad \operatorname{deg}_{x}\left(V_{i}\right)=$ $d_{1}-\sum_{k=1}^{6}\left(m_{k}-i\right)_{+}-\sum_{k=7}^{9}\left(i-d_{2}+m_{k}\right)_{+}, \quad(x)_{+}=\max (x, 0)$.

- The 1st [or 2nd] line specifies the non-logarithmic singularities around $x=0, \infty$ [or $y=0, \infty]$.
(In the latter, x is viewed as a q-shift operator: $x \psi(y)=\psi\left(q^{-1} y\right)$.)
- Main Thm. For $\lambda=\sum_{i=1}^{2} d_{i} H_{i}-\sum_{i=1}^{11} m_{i} E_{i}=w\left(E_{i}\right) \in \mathrm{EX}$, the quantum polynomial F_{λ} is unique (under the normalization $F_{\lambda}(0,0)=1$).
Moreover, it coincides with $F_{i, w}$ generated by the Weyl group action:

$$
F_{i, w}(x, y)=F_{\lambda}(x, y)
$$

This shows the regularity of $F_{i, w}$ and its geometric characterization.

- A key fact for the proof: The non-logarithmic property of $F_{i, w}$ is preserved under the Weyl group actions.
This fact is proved using a realization of the Weyl group actions as gauge transformations (gauge factor $=q$-dilogarithm).
- Bilinear equations. Consider an infinite system of bilinear equations generated by the seed equations ($1 \leq i \leq 6$ and $7 \leq j \leq 9$)

$$
\begin{aligned}
& \tau\left(e_{10}\right) \tau\left(\frac{h_{2}}{e_{10}}\right)=\frac{h_{2}}{e_{10}} \tau\left(\frac{h_{2}}{e_{i}}\right) \tau\left(e_{i}\right)+\tau\left(\frac{h_{2}}{e_{j}}\right) \tau\left(e_{j}\right), \\
& \tau\left(\frac{h_{2}}{e_{11}}\right) \tau\left(e_{11}\right)=e_{11} \tau\left(\frac{h_{2}}{e_{i}}\right) \tau\left(e_{i}\right)+\tau\left(\frac{h_{2}}{e_{j}}\right) \tau\left(e_{j}\right), \\
& \tau\left(e_{i}\right) \tau\left(\frac{h_{1}}{e_{i}}\right)=\frac{1}{e_{i}} \tau\left(\frac{h_{1}}{e_{11}}\right) \tau\left(e_{11}\right)+\tau\left(\frac{h_{1}}{e_{10}}\right) \tau\left(e_{10}\right), \\
& \tau\left(\frac{h_{1}}{e_{j}}\right) \tau\left(e_{j}\right)=\frac{e_{j}}{h_{1}} \tau\left(\frac{h_{1}}{e_{11}}\right) \tau\left(e_{11}\right)+\tau\left(\frac{h_{1}}{e_{10}}\right) \tau\left(e_{10}\right), \\
& \tau\left(\frac{h_{2}}{e_{1}}\right) \tau\left(e_{1}\right)=\ldots=\tau\left(\frac{h_{2}}{e_{6}}\right) \tau\left(e_{6}\right), \\
& \tau\left(\frac{h_{2}}{e_{7}}\right) \tau\left(e_{7}\right)=\ldots=\tau\left(\frac{h_{2}}{e_{9}}\right) \tau\left(e_{9}\right),
\end{aligned}
$$

and their $W\left(E_{8}^{(1)}\right)$ transformations (obtained by $w(\tau(\lambda))=\tau(w \cdot \lambda)$).

- Thm. The overdetermined system given above is consistent and has a solution given by $\tau(\lambda)=F_{\lambda}(x, y) \tau^{\lambda}$.
\rightarrow a quantum Plücker embedding of the Okamoto space X.

Δ Application to the quantum mirror curve.

- For generic parameters $\left(h_{i}, e_{i}\right)$, the curve C in the linear system

$$
\left|-\mathcal{K}_{X}\right|=\left|6 H_{1}+3 H_{2}-\sum_{i=1}^{6} E_{i}-2 \sum_{i=7}^{9} E_{i}-3 \sum_{i=10}^{11} E_{i}\right|
$$

is unique $g(x, y)=x^{3} y=0\left(X_{0}^{3} X_{1}^{3} Y_{0}^{2} Y_{1}=0\right)$.

- If the parameters are special: $p:=\frac{h_{1}^{6} h_{2}^{3}}{\left(e_{1} \cdots e_{6}\right)\left(e_{7} e_{8} e_{9}\right)^{2}\left(e_{10} e_{11}\right)^{3}}=1$, \rightarrow The curve $C \in\left|-\mathcal{K}_{X}\right|$ form a pencil $\lambda f(x, y)+\mu g(x, y)=0$.
\rightarrow The Painlevé equation reduces to an autonomous integrable system where the pencil gives the algebraic integral.
- The curve is the quantum curve for E_{8} [Moriyama (2020)]. It is also related to Ruijsenaars - van Diejen operator [Takemura (2018)],
[Noumi-Ruijsenaars-Y (2020)], [Chen-Haghighat-Kim-Sperling-Wang (2021)].
- From $W\left(E_{8}^{(1)}\right)$ symmetry, one can determine the curve explicitly.

$$
\lambda\left(\sum_{i=0}^{3} C_{i}(x) y^{i}\right)+\mu x^{3} y=0
$$

$$
\begin{aligned}
& C_{3}(x)=q^{3} e_{11}^{3} \prod_{i=7}^{9}\left(1+\frac{e_{i}}{h_{1}} x\right)\left(1+q \frac{e_{i}}{h_{1}} x\right), \\
& C_{2}(x)=q e_{11}^{2} \prod_{i=7}^{9}\left(1+\frac{e_{i}}{h_{1}} x\right)\left\{[3]_{q}+q x A_{-1}+q \kappa A_{1} x^{2}+[3]_{q} \kappa x^{3}\right\}, \\
& C_{1}(x)=e_{11}\left\{[3]_{q}+[2]_{q} A_{-1} x+\left(\kappa A_{1}+A_{-2}\right) x^{2}+\frac{\kappa}{q}\left(\kappa A_{2}+A_{-1}\right) x^{4}\right. \\
& \left.\quad+\frac{[2]_{q} \kappa^{2} A_{1}}{q^{2}} x^{5}+\frac{[3]_{q} \kappa^{2}}{q^{3}} x^{6}\right\}, \quad C_{0}(x)=\prod_{i=1}^{6}\left(1+\frac{1}{q e_{i}} x\right), \\
& \\
& \quad[k]_{q}=\frac{1-q^{k}}{1-q}, \quad A_{ \pm 1}=\sum_{i=1}^{9} a_{i}^{ \pm 1}, \quad A_{ \pm 2}=\sum_{1 \leq i<j \leq 9}\left(a_{i} a_{j}\right)^{ \pm 1}, \\
& a_{i}=e_{i}(1 \leq i \leq 6), \quad a_{i}=\frac{h_{i}}{e_{i}}(7 \leq i \leq 9) \quad \kappa=\frac{e_{7} e_{8} e_{9} e_{10} e_{11}}{h_{1}^{2} h_{2}} .
\end{aligned}
$$

- The quantum curve for $E_{8}^{(1)}$ was first obtained by S.Moriyama (2020) [arXix:2007.05148] as a quantization of a commutative case [Kim-Yagi (2015)].

- The spectral determinant (ST) of the quantum curve can be computed exactly and it gives the full partition function of the topological string (TS) on an open Calabi-Yau $=-\mathcal{K}_{X}$ over $X \simeq B I_{9}\left(\mathbb{P}^{2}\right)$. (Known as the TS/ST duality [Grassi-Hatsuda-Marino(arXiv:1401.3382)] - one of the very sophisticated version of the mirror symmetry-. Though this is confirmed for various examples, many problems, in particular for $E_{n}^{(1)}$ cases, are waiting for the challenges.)
\triangle Summary of the results
- We contracted a quantum birational rep of affine Weyl group $W\left(E_{8}^{(1)}\right)$.
- A lift of the rep including the tau variables is also obtained.
- Regularity of the quantum polynomials F and their geometric characterization are proved.
- The quantum mirror curve of type $q-E_{8}^{(1)}$ is rederived from its symmetry.
a Future studies
- There are many problems to be clarified.

Thank you for your attention!

