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Introduction



e Algebraic differential eq <+ a field K with a derivation .

e.g. The P eq: K = C(p,q,t,aq1,an,¢€).

t' =€,

¢ =2pq—q®—qt —ay, P =2pqg—p?—+pt+aos,

/I __ I __
a; =0, € =0.

Non-autonomous Hamiltonian system with H = pg(p — g — t) — a1p — anq.
If e = O (autonomous) — H (p, q) is conserved.

e Backlund transformations ¢ Aut(X) commuting with ’.
~ 1
e.g. (so, 51,52, 7) = W(AS):

. ai
S1 - {p —

q

. {q — —P,
Sy — 7T817T_1,

a1 — —aj, a> — al aQ},

p_>q_p+t7 ay — an, CLQ-)G-CL]_—CLQ},

Sp = 7T827T_1.

(trivial actions are omitted)




e Discrete eq <+ T' € Aut(K). iteration — dynamical system.

e'g' d_PII eq- K = C(p7Q7t7alaa’27€):
as a
T:{q—-Q=p—q—t——, p——q——A |
D D Q

a1 — a1 — €, CL2—>CL2—|—€}.

If ¢ 2 O — non-autonomous system.
If e = 0 — autonomous, H(p, q) is conserved.
e Symmetry = Aut(K) commuting with 7.
e.g. Symmetry= (rg,rq1) = W(Agl)).
T = n2sgs1 and rg = sg, r{ = S15981 € W(Agl)).
The flow T and its symmetry W(Agl)) are unified in a larger symmetry W(Agl)).

— The full symmetry is of fundamental importance.



a Affine Weyl group approach to Painleve type eq (e.g. [Noumi-Y (1998)])

e Pick a birational representation of affine Weyl group

— discrete flows + its Backlund tr.

e This approach is useful in quantum setting as well.

4 Quantization
Known representations are birational symplectic.

— Natural to consider their quantization through

(p,gy =1 — |[pgl=h or ePed=clelel.

After AGT, the quantum Painlevé equations appear in various areas in math-phys.



e The main problem of the affine Weyl group approach is its initial step.

How can we find suitable birational reps?

e Two methods are known.

Lie theory rational surf

classical | Noumi-Y(2000) | Sakai(2001)
quantum | Kuroki(2011) | our problem

e Lie theory. Poisson actions of W (g) on S(n_) are formulated for
Kac-Moody alg g. Their good quantization exists for U(g) and also for
Uq(g). These are applicable for Eél), but huge in general.
e Rational surface. The Cremona isometry of rational surfaces give
birational reps including Eél). Its quantization is our target.

For that, a result on Dél) [Hasegawa (2007)] gives an important hint.



a Plan of the talk
1. Dél) example
2. The representation of W(Eél))
3. Lifting the representation including 7 variables

4. F' polynomials and the quantum curve



1. Dé” example



s The geometry:

olet X = X, . beablowup
of P1 x P! at the 8 points sitting
on 4 lines.

Picard group Pic(X) is gener-
ated by Hq, H», E1, ..., Eg.

e The affine Weyl group W (D).

< S0 S4
| |

§$1 — 82 — 83 — Spg

—E€ —E€
NS y = 00
—1
0_65 o_%
—1
0_66 o_%
=0
o _ha |
€7 €g
£r — xr — OO
S,L-Q =1,

sisj = sjsi,  (si s5), >

8i5j8; = 5j5;5;, (8; — 5;).

W(Dél)) acts on X (birationally on P1 x P1).



e The explicit actions s; on K = C(hq1,ho,e1,...,€8,2,Y):
so ={e7 <> eg}, s1={e3 <+ ey},
e7
hi hi hiho 1+ 5
S — {63 — ——, €7 —7 —, h2 7 ) 7 - y}7
e7 e3 e3e7 1+ s
ho
ho ho hiho 1+ 2y
83:{61%—7 65_>—7 hl 7 y T —7 X L }7
es e1 e1€es 1+ esy
sq ={e1 <> e}, s5={e5 <> ep}.

e Actions on {h;, e;} are the standard ‘linear’ reflections on Pic(X)

(written in multiplicative variables: h; = efli, ¢; = ef).

— The actions on x,y are its natural birational lift to P1 x P1.

e The Weyl group relations hold true also when x, y are non-comutative

[Hasegawa(2007)].
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e Check of the Weyl group relations.
h h hih 1+ o
From 82:{63—>—1, e7—>—1, ho — 1 2, Yy — h’;
e7 e3 e3e7 1+ s

Yy}

— the relation |s3 = id |

er”  so(er)  hi/es |
h1
s5(e3) = so (82(63)) = 82(—> = e3.

e7

1+l )zl——laz
1 4

y =3
142

S%(y) — 52( e7x52(y) — Y.
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e Check of | s0s355(y) = s35253(Y) |.

By definition
€7 L _
s2(y) = (14 —2)(1+ )71y,
1 €3 B
h h hih 1+ 2y
s3={e1 ==, e5 > =, hi > ——=2, x5 a2},
es el e1es 1 + ey
we have
€7 I\ _
s3(s2(1)) = s3((L+To) (1 + )71y
1 €3

— (1 | 616567m1 M ay) (1 i 1 xl _ ay)_ly.
hiho 1+ esy
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4 ho
1 Y

€1€E5€
s3s2(y) = (1+— > "o

1 14+ 2y —
b €5y><1 | . 61y> 1y.

ez 1+ ey
Using| AB~1 = AcCc— 1B~ ! = (4C)(BC) 1| we have

eq1exe h 1 h —1
= (1—|—65y | ;L ‘;’L7:13(1+—2y))(1+65y+—x(1+y—2)) Y
1742 €1 €3 €1
o . eieser er N S . ho —1
— (1 | bl x 65(1—|—h1:13)y><1 . 63:1: - (es 4 6163:17)?;) Y.

The last expression is so-invariant, hence

s25352(y) = 5352(y) = s35253(Yy) .
e We don’t need any commutation relations between x and y.

— The Weyl group relations hold true also when x, y are non-
commutative [Hasegawa(2007)].
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o W(Dgl)) gives the g- P, and its symmetry.

(commuative case [Jimbo-Sakai(1996)], quantum case [Hasegawa(2007)])

ell.

add.

e

Eél) — E%l) — Eél) — Dél) — Agl) — A(l)l — A(l)l — Agl) |

Y o g gY

24 1+

Dgl) — Aél) — Agl_lzl — A%U |
N N\
A oAt

e Our target is the quantum version of the ¢-difference Eél) case.
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: 1
2. The representation of W(EE(; ))
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a Various root systems can be realized on
X = Blg(P! x P1).

¢ €.g9. 2+2+2+2 points on 4 lines:
—Kx = dp + 1 + 02 + 3.
51 =|H, — E1 — Fa|, 6, =|Hy— E3— Ey4
53 =|Hy — Es — Egl, 69=|Ho— E- — Eg|
— Roots R := (5o, 51,80, 03)~ = DV (E;; = E; — E;)

E1o E3q

| |
bisg|—|Hop— Ly —Fs|— | Hy— k3 — B7|— | b7

— affine Weyl group W(Dgl)).



e €.g. 4+2+2 points on a curve and 2 lines:

—Kx =|H1+ Hy—F1—--—F4 +|H1—Es—Eg|+|Ho—E7—Eg|
— affine Weyl group W(Eél)).
¢ e.g. 8 points on an elliptic curve (smooth/nodal/cusp.):
Ky =06=|2H1+2H,— E{ —---— Eg|

s\t ().

e Roots R = (§)~ = Eg -
I,
|
Hy—Ho|—|Ho—E1—FEo|—|Eo3|—|E34|— -+ —|E78

— affine Weyl group W(Eél)).
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a Configurations for ET(Ll):

q-Ds | o ‘ q-Lg

g-E7 ¢-Es a

o For DSV, we have w = 92Ady

> Poisson bracket {x,y} = xy.

But for Ele) — quantization is not so easy.
1
e.g- {z,y} = xy(zy — 1), (for Eé ).
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a Another realization. Bl (P1 x P1), k > 8 (degenerate config.)

=20

r — OO

oS

Yy =0
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° Eél):

double, . double,. double

i (y = )
.p’irliple ‘p’ir(i)ple
P1 P2 P3 pa ps po y=0
(z =0)3 (& = 0)3

e —Cx Is of high degree but g = 1 due to the singularities.

_]CX

6

3

11

6H,1+3H,— Y E,—2 > E;—3 Y E;

6
Hy— ) E;
i=1

=1

+2

1=7

S
Ho— ) E;
i=7

+3

1=10

H1—FE10

+3

Hi—FE1q|
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e Thm. Let K = C(hq, ho,e1,...,e11). On a skew field K = k(z,y),

we have a birational representation of W(Eél)).

ho
ho ho hiho 1ty
so = {e1g > —, e11 > —, h1 — , T —> X 10y
€11 €10 €10€11 1+ ye1q
s1 ={eg <> eg}, sp = {e7 <> eg},
h1 h1 hiho 14 z3f
83:{61%—7 ey — —, hQ 7 s Y — 1y}
e7 e1 e1e7 1+ ot
sq4 = {e1 <> en}, s5={ex<r ez}, 8sg={e3 <> es},
s7 = {eq <> e5}, sg = {e5 <> eg}.

e In commutative case, this rep was Known (e.g. [Tsuda (2006)][Tsuda-Takenawa(2009)] ).

e Similar to the Dél) case, the actions give a representation also when

X, Yy are nhon-commutative.
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e To apply the rep to Painlevé equation, we want to compute the action

of translations.

For ESY case, we have (2x)120 directions. Each of them is given by

58 simple reflections — too big!

¢ In commutative case, we have the following factorization

A C1Co - Cg

w(z) ==, wly) =

 wew(EM.
B D D,D, @ P EWE)

Here A, B, C;, D; are some polynomials in z, y. They are complicated
for general w, but have a simple geometric characterization. [Kajiwara

et.al(2003)] [Tsuda(2006)][Tsuda-Takenawa(2009)]

e To study these polynomials, a lift of the rep including tau-variables

IS essential. Its quantization is our next problem.
22



3. Lifting the representation including = variables
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e 7-variables. In addition to h;, e;, x, y, we introduce new variables

01,02,7T1y.--,7T11-

e The following g-commutation relations are crucial

Yyr — qry

O'ihj = q "I th'z', Ti€; = g L €T

e Note. The parameters {h;, e;} and the r-variables {o;, 7;} are non-
commutative. This important idea is borrowed from the formulation by

Kuroki [arxiv:1206.3419(math-QA)], where he found

simple coroots : o’ — T- variables : ;.

canonical conjugate
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e Thm. One can extend the quantum rep W(Eél)) on Cgerew (hi, €5, ,y)

to Cgkew(his €4, ¢, y, 04, 7;) as algebra auto

0102

}7

so = {710 — (14ye11)—2, 11 — —(1+y 2), 01 = (1+ye11)
T11 T10 e10 T107T11

s1 = {1g <> 19}, sp = {77 > 78},
0107

01 x
7—>—(1+ ) o — (1+—)},
1 7_7 1 177 €1

sqa = {11 <> 1™}, s5={m < 13}, 86—{T3<—>T4},

S§3 = {7‘1 — (1—|—CBZ

s7 =414 <> 15}, sg= {15 > T6}.

(The actions on {h;, e;, z,y} are the same as before.)
e When x =y =0, the actions on {o;, 7;} are just a copy of the actions

on {hi, 67;}.
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e.g. For w = sps3s45059535958150525453, We have

h2h2 o202
w(ey1) = L2 |w(mi) = F(z,y) 172 ,
€1€2€7€EGETOC11 T1727T77T8T10711
_ T T 2
Fo,y) = (14 Z)(1 4+ 2) + (+ + =2 + xa2)y

+ (14 fLa) (1 + Ba)y?
= (14 e119)(1 + wler1)y) + z(1 + 229) (x + xy)

€10
| 2(1 4 fe2 L qh2

e Regularity. For any w € W(Eél)), we see
w(r;) = F; (x,y) x (monomial of {0}, 7;}),

where F; ,,(z,y) is a non-commutative polynomial in z, y (cf. “Laurent

phenomena”, “singularity confinement”). We will clarify the reason.
26



4. F'-polynomials and the quantum curve
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e When ¢ = 1, the regularity of F'(x, y) is known as follows.

e The polynomial F' can be determined by the data (d;, m;) through
the linear system:

2 11
(F=0) ¢ ‘,\ = .21 d;H; — -21 m,;E; € Pic(X)|.
1= 1=

e In particular, for A € EX (exceptional class) = W(Eél)) orbit of
{FE;}, the corresponding curves F'(xz,y) = 0O are rigid and g = 0.
These polynomials give the factors of the rational expressions of w(x), w(y).

e We will formulate the analog of these properties for ¢ = 1.

Where F(x,vy) is nhon-commutative (yx = qxvy), i.e. a g-difference

operator.
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¢ Non-logarithmic singularity.([Carmichael], [Birkhoff], [Adams])

Consider a g-difference equation Di(x) = 0 where

D = Ag(y) + zA1(y) + 22 As(y) +--- . (yx = qzy)

e Exponents: Ag(¢?) = 0 — F(z) = 2P(1 + cyz+---).
e Resonances of exponents (o’ — p € Z) generically bring log-terms

to v (x). However, in some special “non-logarithmic” cases, one can

still have solutions without log-terms.
e.g. Ag < (y—g”)(y—q’ 1) (y—q¢’12),
Ay o< (y—gP)(y—qP11), Az x (y—qP).
e Our F'(x,y) operators have many resonances, but they all are non-

logarithmic!

29



e Def. For a data A\ = (d;, m;), we define a g-difference operator

F\(x,y) so that the following two expressions are consistent:

di mi1-1 i—1
=> 2 [] (A+derny) ]I (14424 Ui(y),
1=0 t=1 t:dl_mlo €10
9 idytmy—1

—Z H H (144" w>H 1 (144" D) Vi@ v’

1=0 k=1t=1-my

Here U;, V; are polynomials: deg,(U;) = do—(i—di4+mi0)s—(mi1—i)y, deg,(Vi) =
di =Y Ry (me— i)=Y R s (i—do+mi)y,  (2)4 = max(z,0).

e The 1st[or 2nd] line specifies the non-logarithmic singularities around
x = 0,00 [ory = 0, o].

(In the latter, = is viewed as a g-shift operator: ¢ (y) = ¥ (¢~ 1y).)
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e Main Thm. For \ = Z d;H; Z m;E; = w(k;) € EX, the

quantum polynomial Fy |s unlque (under the normalization F,(0,0) = 1).

Moreover, it coincides with F; ., generated by the Weyl group action:

Fy w(z,y) = Fx(z,y).

This shows the regularity of F; ,, and its geometric characterization.

o A key fact for the proof: The non-logarithmic property of F; ., is
preserved under the Weyl group actions.

This fact is proved using a realization of the Weyl group actions as

gauge transformations (gauge factor = ¢-dilogarithm).

31



¢ Bilinear equations. Consider an infinite system of bilinear equa-

tions generated by the seed equations (1 <i<6and7 < j < 9)

r(e10)7(22) = G27(2)7(er) + ()7 (e)),
r(Z2)7(e11) = e117(R)7(en) + 7(2)7(e)),

r(e)T(P) = Er(I)r(e11) + m(21)7(e10),

r(E7(ej) = prr(Ghm(ern) + 7(GE)m(e10).
T(2)7(e1) = ... = 7(2)7(e6);
T(2)7(er) = ... = 1(2)7(e9),

and their W(Eél)) transformations (obtained by w(r(A)) = 7(w - A)).
e Thm. The overdetermined system given above is consistent and
has a solution given by 7(\) = Fy(z, y) .

— a quantum Plicker embedding of the Okamoto space X.
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a Application to the quantum mirror curve.

e For generic parameters (h;, e;), the curve C'in the linear system

6 9 11
\—’CX\=‘6H1+3H2— >. B -2 E; -3 ) E
i=1 i=7 i=10

is unique g(z,y) = 23y = 0 (XS’X%YOQYl = 0).
— 1,

61,3
e If the parameters are special: p = hihs
P b (e1---e6)(e7egeq)?(e10e11)>

— The curve C € | — K x| form a pencil |\ f(x,y) + pg(x,y) = 0|

— The Painlevé equation reduces to an autonomous integrable system
where the pencil gives the algebraic integral.

e The curve is the quantum curve for Eg [Moriyama (2020)].

It is also related to Ruijsenaars - van Diejen operator [Takemura (2018)],

[Noumi-Ruijsenaars-Y (2020)], [Chen-Haghighat-Kim-Sperling-Wang (2021)].
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e From W(Eél)) symmetry, one can determine the curve explicitly.

3 .
A(.;O Ci(z)y") + pa>y = 0|

C3(x) = g e3q H7(1+ )(1-|-q

Co(z) = qe?q H7(1-|- ){[3:q+q€EA—1+q%A15E2+[3]q/<35133},
C1(z) = e11{[3lg+[20gA_10+ (kA1 +A_5)? E(%Az A_q)a?
I[2](11432141 5 [3]q/<;2

> T~ 3 x6}7 CO(x)_ H (1—|——$)
q q i=1 AS)

9

1— qk

[k]q = 1 , Ag1 = g ail, App = E (aia;)*t,
— 4 i= 1<i<j<9

er7€egegt1pe
az:ez(1§z§6)7 azzﬁ(7§,&§9) o — 7821011
h2ho
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e The quantum curve for Eél) was first obtained by S.Moriyama (2020)
[arXix:2007.05148] @S @ quantization of a commutative case [Kim-Yagi (2015)].

e The spectral determinant (ST) of the quantum curve can be com-
puted exactly and it gives the full partition function of the topological
string (TS) on an open Calabi-Yau =—K x over X ~ Blg(P2).

(Known as the TS/ST duality [Grassi-Hatsuda-Marino(arXiv:1401.3382)] - one of the very sophisti-
cated version of the mirror symmetry-. Though this is confirmed for various examples, many problems,

in particular for ey cases, are waiting for the challenges.)
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a Summary of the results
e We contracted a quantum birational rep of affine Weyl group W(Eél)).
e A lift of the rep including the tau variables is also obtained.

e Regularity of the quantum polynomials F' and their geometric char-

acterization are proved.

e The quantum mirror curve of type q-Eél) IS rederived from its sym-

metry.

a Future studies

e There are many problems to be clarified.
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Thank you for your attention!

37



