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Twisted local systems Motivation
Definition and basic examples

Classification

Differential equations with symmetry

> Linear O.D.E. on a Riemann surface Y — locally constant
sheaves of vector spaces / groups.

» O.D.E. with symmetry — group S actingon Y.

> (orbifold) coveringmap p: Y — [Y/G]
— twisted local system on X := Y/G&.
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Twisted local systems

on and basic examples
Classification

Questions

> What is a twisted local system?
A torsor (=principal homogeneous space) under a local
system of groups.
> How to classify them?
Cohomology with coefficients in a local system of groups.
> What can we say about the geometry of the moduli space?
Algebraic structure, topology, etc.
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Twisted local systems

on and basic examples
Classification

Moduli varieties

> Constructed by P. Boalch and D. Yamakawa
(arXiv:1512:08091).

> They are complex Poisson varieties (including in the irregular
case).

> The proof uses twisted quasi-Hamiltonian geometry.
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Twisted local systems Motivation
Definition and basic examples

Classification

Twisted local systems

> X: atopological space, complex manifold etc.
» ¢4 — X :agroup cover of X.
e Acover9 — X.
e Amorphismu:¥ xx¥ — ¢ and asectione: X — ¥.
e Axioms: u is associative and e defines a unit element.
> A twisted local system is a torsor under ¥:
e Acover ¥V — X.
e A morphism ¥ xx ¢ — ¥ + axioms of a group action.
e The canonical morphism
VxXxY9 — YV xxV
(p.9) — (p.p-9)
is an isomorphism.
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Twisted local systems Motivation
Definition and basic examples

Classification

Group coverings - Constant groups

» G: a (complex reductive) Lie group, with discrete form G*.
& = X x G*: the trivial group covering of X.

» Principal homogeneous ¥-space = principal G¥-bundle
(also called a G-local system).

> Sheaves of sections = locally constant sheaves of groups.
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Twisted local systems Motivation
Definition and basic examples

Classification

Group coverings - Nonconstant groups (example)

> p:(Y,0) — CP': a hyperelliptic curve.
> G:=[(0)] = Z/2Z actson G := GL(n;C) viac : g — 'g7".
> G = [(Y X Gﬁ)/e] — group covering of X := [Y/&] (~ CP").

@-torsors (on X) « anti-invariant local systems on Y.
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Twisted local systems Motivation

Definition and basic examples
Classification

Group coverings

> & — X givesrise to g — X, equivariant group covering
with 4 X-action.

Proposition

Necessarily: & ~ X x I" with I discrete, and ¢ : 11X — Aut(I') a
group morphism.

> Case of special interest: I' = G* (discrete form of a Lie
group), and ¢ : 71 X — Aut(G) with finite image.
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Twisted local systems Motivation

Definition and basic examples
Classification

Holonomy representations

> %g = [(7 X Gﬁ)/mX], where ¢ : 11X — Aut(G).
YV :a %‘-torsor.

Proposition

The m1 X-equivariant structure on ¥ =~ XxGlis given by a crossed
morphism o : ;X — G.

> o(0102) = 0(01) ¢y (0(02))-
o' ~eif3g, Yo, o'(0) = go(o )¢ (g7").
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Twisted local systems Motivation

Definition and basic examples
Classification

Classification of ¢-torsors

> o:mX — G acrossed morphism.
> Define

Vg :=|(X x G¥)/mx]
where o - (£, h) = (o - £, 0(0") ¢ (9))-

The map o — ¥, induces an isomorphism
H}(m1X; G) = {go-twisted G-local systems}/ ~.
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Extended holonomy
Twisted Betti spaces Moduli spaces

Riemann-Hilbert correspondence

Crossed morphisms vs representations

> Given ¢ : 11X —> Aut(G), define G := G = Im ¢.
> There is a bijection o +— 0 := (0, ¢) between
Hl(m1X; G) = Z}(71X; G)/G
and
Hom,, (771 .X; G)/G
> o is called the extended holonomy representation.
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Twisted Betti spaces Moduli spaces

Riemann-Hilbert correspondence

Equivariant picture

> Define p : X, — X (cover) by 1 X, := ker ¢ C w1 X. Then
PG ~ X, x GI.
> H;(mX ; G) parameterises representations satisfying

1_>7T1X¢p m X Imp ——1
o
1 G GxImp ——Imp ——>1

> -twisted G-local systems on X:
{Szf-torsors}  {(Im ¢)-equivariant G-local systems on X, }
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Extended holonomy
Twisted Betti spaces Moduli spaces

Riemann-Hilbert correspondence

Special holonomy

> Involution 6 of G, acting trivially on Y.
> Set X :=[Y/(0)]. Then m1 X =~ m1 X X (0).

Proposition
There is a bijection
H} (1 X; G) =~ Hom(m; X; G’)/ G

> In particular, G’ can be a real form of G.
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Extended holonomy
Twisted Betti spaces Moduli spaces

Riemann-Hilbert correspondence

Affine quotients

» G algebraic = ZJ, (m1X; G) is an affine algebraic set.
> G reductive: 4 a GIT quotient

Mg(X;¥9,) = ZJ,(mX; G)//G
> Points of Mg(X;¥,) = closed G-orbits in Z] (1 X; G).
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Extended holonomy
Twisted Betti spaces Moduli spaces

Riemann-Hilbert correspondence

Closed orbits

> GIT: 0y ~ 02 if O1 N O, # 0.

> Better understood in terms of extended representations
0:mX— G:=GxIme.
—Zar —
> Set H(p) :=0(mX) cG.
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Extended holonomy
Twisted Betti spaces Moduli spaces

Riemann-Hilbert correspondence

Stability

Theorem (Cheng Shu, 2020)

The following conditions are equivalent:
1. G- s closed in Z} (1 X; G).
2. G-y s closed in Homgy (71 X; @).
3. H(o) is a reductive subgroup of G.
4. 9(n1X) c P parabolic in G = 9{m1X) C Lp (Levi factor).
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Extended holonomy
Twisted Betti spaces Moduli spaces

Riemann-Hilbert correspondence

Untwisted case

> G a complex Lie group. A representation o : 71X — G gives
rise to a flat G-bundle
& = (X x G)/m X
» This induces an equivalence
{flat G—bundles} — {G-Iocal systems}.
> Goal: extend to twisted G-local systems.
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Extended holonomy
Twisted Betti spaces Moduli spaces

Riemann-Hilbert correspondence

Bundles with connection

» G a complex Lie group. ¢ : 11X — Aut(G) a group
morphism.
> &, := [(X x G)/n1X] is now a holomorphic group bundle.
» Connection on a ¥ -torsor & = splitting of
0 —ad(&) — A(E) — TY — 0
where At(E) = {%,—invariant vector fields on 8}.
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Twisted Betti spaces Moduli spaces

Riemann-Hilbert correspondence

Integrable connections / De Rham space

> A connection on a ¥,-torsor & is called integrable, or flat, if it
is induced by a global section of the quotient sheaf &/%,.

Theorem (“Riemann-Hilbert correspondence”)

There is a bijection
H} (1 X; G) ~ {ﬂat ¢,—torsors (&,V) on Y}/ isom.

> Proof: uses the cover p : X, — X.
Holonomy representations o : 71X, — G associated to
Im g-invariant flat connections extend to morphisms

0:mX — GxImo.
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From De Rham to Dolbeault
Harmonic reductions

Higgs bundles for nonconstant groups Equivariant version

Higgs bundles and local systems

> Goal: for G reductive, generalize to the twisted setting the
Non-Abelian Hodge Correspondence (NAHC)

{local systems} «— {semistable Higgs bundles}
of Hitchin, Simpson, Donaldson and Corlette.

> Application: topology and geometry of twisted representation
spaces.

> This also answers a question of Carlos Simpson’s on the
Dolbeault interpretation of the Betti space H},(71X; G) in the
case when ¢ : 11X — Aut(G) is non-trivial (1992).
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From De Rham to Dolbeault
Harmonic reductions

Higgs bundles for nonconstant groups Equivariant version

The Abelian case

Given a compact connected Riemann surface X of genus g, there
is a homeomorphism
H'(X;C) =~ T'Jac(X)

——— ~———
Betti space Dolbeault space

Intuition:
. TVJac(X
ETE4E) ~ Jac(X)( ><)§21 (X;C)
~ Hom(m X; C*) - hol \ /!
- () = (C9/Z9) X8
=~ (81 xR)¥ ~ S9xR¥
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From De Rham to Dolbeault
Harmonic reductions

Higgs bundles for nonconstant groups Equivariant version

Proof in the rank 1 case

TVJac(X) = Jac(X) x Q!

1 (X; C) is a sub-space of

H'(X; Oy) x HO(X; Q).

Sketch of proof

The Abelian case of the NAHC (!) is obtained form the short exact
sequence

0_>Z—>0Xﬂ>0§(_’1

and the Hodge decomposition theorem

H'(X;C) ~ H'(X; Ox) x H°(X; Q} ).
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From De Rham to Dolbeault
Harmonic reductions

Higgs bundles for nonconstant groups Equivariant version

Dolbeault moduli spaces

» Dolbeault space for G = GL(r; C):
H (X GL(r;C)) := {(&.6) | 6 € Q ,(X; End(&)))/ isom.
» r =1 (line bundles) : End(£) =~ X x C, so the Higgs field 6 is
just a holomorphic 1-form.
» For a reductive group G, a G-Higgs bundle is a pair (P, 6)
where:

> P is a holomorphic principal G-bundle,
> Qe Q}jol(X; ad(P)).
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From De Rham to Dolbeault
Harmonic reductions

Higgs bundles for nonconstant groups Equivariant version

Harmonic bundles

> Notion introduced by C. Simpson, serves as an intermediary
between flat and Higgs bundles.
» Quadruple (E, h, A,¢) where:

> Eis a C™ complex vector bundle.
> his a Hermitian metric on E.
> A is a unitary connection and y € QL,(X; Herm(E, h)).

> Hitchin equations:
Fa+3ilyy] = 0

day =
diy = 0

o
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From De Rham to Dolbeault
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Higgs bundles for nonconstant groups Equivariant version

Non-Abelian Hodge Correspondence

(E,h,A,¥)

T

(E,V:=A+y)<—— —CHNA_ _ _ > (E §p,0 :=y'0)

» Left-hand-side: Fy = 0; (E, V) polystable.
> Right-hand-side: 946 = 0; (E,da. 6) polystable.

» The main result is the existence of special Hermitian metrics
(= harmonic metric) on these objects (Corlette, Simpson).

> Moduli spaces of stable objects are complex symplectic
manifolds which are diffeomorphic but not biholomorphic.
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Higgs bundles for nonconstant groups Equivariant version

Equivariant approach

> Let Y be a compact analytic orbi-curve of negative Euler
characteristic. Assume given ¢ : 711 X — Aut(G).

> Fix a presentation Y =~ [X/I'] with I a finite group such that
m1 X C ker¢. Denote by p : X — Y the canonical projection.

> If &is a ¥,-torsor on Y, then p*& is a I'-equivariant principal
G-bundle on X:

X<~—T
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Higgs bundles for nonconstant groups Equivariant version

Equivariant Higgs bundles

» Take (X, I") as above, with G reductive.
» A I'-equivariant G-Higgs bundle is a triple (P, 6, 7) where:
> P is a holomorphic principal G-bundle.

> 9e Q] (X;ad(P)).

> 7 = (7y)yer is a I'-equivariant structure on P, that leaves 6
invariant.
> The orbi-bundle & := [P/l on Y := [X/I'], endowed with the
1-form 6 € Q! (Y;ad(&)) induced by 6, is a ¥,-Higgs torsor
(where ¢, = [(X x G)/T).
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From De Rham to Dolbeault
Harmonic reductions

Higgs bundles for nonconstant groups Equivariant version

Equivariant NAHC

» On a Riemann surface with symmetries (X, I"), one can
consider I'-invariant solutions of the Hitchin equations.

» This gives rise to the following I"-equivariant version of the
NAHC, in which the Hermitian metric h is I'-invariant:

(E,h,A,y.,T)

/

(E.V:=A+4y,I)=<-———CHNA_ _ _ _ > (E,9a,4"0, 1)

> The key point in the above is that the existence of a
I'-invariant harmonic metric is a property which is “invariant
under taking finite covers”.
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