Folding transformations for q-Painlevé equations

Anton Shchechkin

Skoltech \& HSE University, Moscow, Russia

Joint work with Mikhail Bershtein, arXiv 2110.15320

Contents

(1) Example of q-Painlevé $V I$ folding
(2) Classification
(3) q-Painlevé after folding

q-Painlevé VI equation

q-difference dynamics on variables F, G depending on $a_{0}, \ldots a_{5}$:

$$
\begin{align*}
F \underline{F} & =a_{1}^{-1} \frac{\left(G-a_{3}^{-1}\right)\left(G-a_{5}^{-1} a_{3}^{-1}\right)}{(G-1)\left(G-a_{4}\right)} \tag{1}\\
G \bar{G} & =a_{4} \frac{\left(F-a_{2}\right)\left(F-a_{0} a_{2}\right)}{(F-1)\left(F-a_{1}^{-1}\right)} . \tag{2}
\end{align*}
$$

Variables F, G could be viewed as functions on $a_{0}, \ldots a_{5}$, such that

$$
\begin{align*}
& \overline{(F, G)}\left(a_{0}, \ldots a_{5}\right)=(F, G)\left(a_{0}, a_{1}, q a_{2}, q^{-1} a_{3}, a_{4}, a_{5}\right) \tag{3}\\
& \underline{(F, G)}\left(a_{0}, \ldots a_{5}\right)=(F, G)\left(\ldots q^{-1} a_{2}, q a_{3}, \ldots\right)
\end{align*}
$$

where $q=a_{0} a_{1} a_{2}^{2} a_{3}^{2} a_{4} a_{5}$. Actually, F, G depend on 4 parameters $a_{0,1,4,5}$ and independent variable $z=a_{3}^{-1}$, shifting on q.

Symmetries of q-Painlevé VI equation

- Symmetries are given by $W^{e}\left(D_{5}^{(1)}\right)$ - affine Weyl group, extended by automorphisms.
- It acts on a_{i} as follows (thus called multiplicative root variables):

$$
\begin{aligned}
s_{i}\left(a_{j}\right) & =a_{j} a_{i}^{-c_{i j}}, \quad C_{i j} \text { is Cartan matrix } \\
\pi\left(a_{i}\right) & =a_{\pi(i)}
\end{aligned}
$$

$W^{e}\left(D_{5}^{(1)}\right)$ also acts on functions F, G

	s_{0}	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	π
F	F	$a_{1} F$	$a_{2}^{-1} F$	$F \frac{G-1}{G-a_{3}^{-1}}$	F	F	$1 / G$
G	G	G	$G \frac{F-1}{F-a_{2}}$	$a_{3} G$	$a_{4}^{-1} G$	G	F / a_{2}

Example: element $w=s_{0} s_{1} s_{4} s_{5}$

$$
F \mapsto a_{1} F, \quad G \mapsto a_{4}^{-1} G
$$

- $w=s_{0} s_{1} s_{4} s_{5}$ preserves q and commutes with the dynamics $a_{2} \mapsto q a_{2}, a_{3} \mapsto q^{-1} a_{3},(F, G) \mapsto(\bar{F}, \bar{G})$.
- If $w(\vec{a})=\vec{a}$ (e.g. $a_{0,1,4,5}=-1$), then the pairs (F, G) and $(w(F), w(G))$ (e.g. $(-F,-G))$ satisfy the same q-Painlevé VI .
- So, we obtain dynamics on w-invariant functions (e.g. gen. by $F^{2}, F G, G^{2}$) \Rightarrow some (another) q-Painlevé (presumably).

Folding of q-Painlevé VI by $w=s_{0} s_{1} s_{4} s_{5}$

$$
\begin{aligned}
F \underline{F} & =a_{1}^{-1} \frac{\left(G-a_{3}^{-1}\right)\left(G-a_{5}^{-1} a_{3}^{-1}\right)}{(G-1)\left(G-a_{4}\right)} \\
G \bar{G} & =a_{4} \frac{\left(F-a_{2}\right)\left(F-a_{0} a_{2}\right)}{(F-1)\left(F-a_{1}^{-1}\right)}
\end{aligned}
$$

Taking $a_{0,1,4,5}=-1$, we obtain difference of squares in r.h.s. Then introduce tilde half-shift $\widetilde{G}=F, \widetilde{\widetilde{G}}=\bar{G}, \widetilde{a_{3}}=q^{-1 / 2} a_{3}$

$$
\begin{array}{ll}
F \underline{F}=\frac{G^{2}-a_{3}^{-2}}{G^{2}-1} \\
G \bar{G}=\frac{F^{2}-a_{2}^{2}}{F^{2}-1}
\end{array} \Rightarrow \quad \begin{aligned}
\widetilde{G} G & =\frac{G^{2}-a_{3}^{-2}}{G^{2}-1} \\
& \Rightarrow \widetilde{\widetilde{G}}
\end{aligned}
$$

Parameterless q-Painlevé III equation

Introducing new variables $\mathbf{G}=G^{2}, \mathbf{F}=F G$

$$
\begin{equation*}
\underset{\sim}{\mathbf{F F}}=\frac{\mathbf{G}\left(\mathbf{G}-a_{3}^{-2}\right)}{\mathbf{G}-1} \quad \mathbf{G} \widetilde{\mathbf{G}}=\mathbf{F}^{2} \tag{4}
\end{equation*}
$$

we obtain q-Painlevé III with symmetry $A_{1}^{(1)}$ and corresponding variables

$$
\begin{equation*}
\mathbf{a}_{0}=a_{3}^{2}, \quad \mathbf{a}_{1}=a_{2}^{2}, \quad \mathbf{q}=\mathbf{a}_{0} \mathbf{a}_{1}=q^{1 / 2} \tag{5}
\end{equation*}
$$

So we obtained degree 2 algebraic transformation between two q-Painlevé

$$
\begin{equation*}
\left.D_{5}^{(1)} \mathrm{eq} \cdot\right|_{a_{0,1,4,5}=-1} \xrightarrow{/ w=s_{0} s_{1} s_{4} 5_{5}} A_{1}^{(1)} \text { eq. } \tag{6}
\end{equation*}
$$

Why foldings are interesting?

- For differential Painlevé foldings classified by Tsuda, Okamoto, Sakai '05. What about q-generalization?
- New algebraic relations between solutions of different types of (q-)Painlevé

$$
\begin{equation*}
(F(z), G(z)) \xrightarrow{\text { folding } \psi}(\mathbf{F}(z), \mathbf{G}(z))=f(F(z), G(z)) \tag{7}
\end{equation*}
$$

Way to connect special solutions: algebraic, Riccati, hypergeometric.

- Solutions of $(q-)$ Painlevé written in terms of Nekrasov instanton partition functions \mathcal{Z} (Gamayun, lorgov, Lisovyi, '12; Jimbo, Nagoya, Sakai, '17; etc)

$$
\begin{equation*}
\mathcal{Z}_{1} \rightarrow(F(z), G(z)), \quad \mathcal{Z}_{2} \rightarrow(\mathbf{F}, \mathbf{G})=f(F(z), G(z)) \quad \Rightarrow \mathcal{Z}_{1} \approx \mathcal{Z}_{2} \tag{8}
\end{equation*}
$$

Way to relations on instanton partition functions of different theories.

- Answer to the q-Painlevé folding classification- engaging form by himself.

Contents

(1) Example of q-Painlevé VI folding

(2) Classification
(3) q-Painlevé after folding

q-Painlevé equations and spaces of initial conditions

- Celebrated Sakai classification (Sakai '01):

$$
q \text {-Painlevé eq. } \longrightarrow \mathbb{P}^{1} \times \mathbb{P}^{1} \text {, blowed up in } 8 \text { points }
$$

- These surfaces are known as spaces of initial conditions.
- Birational symmetries of surfaces and corresponding q-Painlevé equations affine Weyl groups $W^{e}\left(E_{8-n}^{(1)}\right)$, where $E_{5}=D_{5}, E_{4}=A_{4} \ldots$

$$
\frac{A_{0}^{(1)}}{E_{8}^{(1)}} \rightarrow \frac{A_{1}^{(1)}}{E_{7}^{(1)}} \rightarrow \frac{A_{2}^{(1)}}{E_{6}^{(1)}} \rightarrow \frac{A_{3}^{(1)}}{D_{5}^{(1)}} \rightarrow \frac{A_{4}^{(1)}}{A_{4}^{(1)}} \rightarrow \frac{A_{5}^{(1)}}{\left(A_{2}+A_{1}\right)^{(1)}} \rightarrow \frac{A_{6}^{(1)}}{\left(2 A_{1}\right)^{(1)}} \rightarrow \frac{A_{7}^{(1)}}{A_{1}^{(1)}}
$$

- $A_{8-n}^{(1)}=\left(E_{n}^{(1)}\right)^{\perp}$ in $E_{8}^{(1)}$.

Foldings: definition

Definition

Folding transformation of q-Painlevé equation:
Group element $w \in W^{\text {ae }}$ and subset \mathcal{A}_{w} of root variable space $\mathcal{A}=\left(\mathbb{C}^{*}\right)^{r+1}$:

- \mathcal{A}_{w} is connected component of w-invariant subset:

$$
\mathcal{A}_{w}=(\vec{a} \in \mathcal{A} \mid w(\vec{a})=\vec{a})
$$

- For generic $\vec{a} \in \mathcal{A}_{w}$:

$$
w((F, G)) \neq(F, G)
$$

- There exist translation (q-difference dynamics), that commutes with w :

$$
t \in P \subset W^{a e}: t w=w t .
$$

Foldings: restrictions

$$
s_{3}: \quad F \mapsto F \frac{G-1}{G-a_{3}^{-1}}, \quad G \mapsto a_{3} G
$$

s_{3} stabilizes \vec{a}, iff $a_{3}=1 \Rightarrow s_{3}$ acts trivially.

Lemma (~Tsuda, Okamoto, Sakai)

For all symmetries $W\left(E_{n}^{(1)}\right)$ of q-Painlevé equations

$$
a_{i}=1 \Rightarrow s_{i}(F, G)=(F, G)
$$

External automorphisms $\widehat{\Omega}$

But external automorphisms (group $\widehat{\Omega}$) of affine Weyl group give us foldings (both in differential and q-case). Here is the list of such folding group elements in q-case

$\left(A_{2}+A_{1}\right)^{(1)}$

Stabilizers of invariant subsets

Tsuda, Okamoto, Sakai '05: foldings in differential case come only from $\widehat{\Omega}$. Differential Painlevé are parametrized by additive root variables $x_{i}, \sum x_{i}=1$.

Lemma (Humphreys)

For $x_{i} \geq 0$ stabilizer of \vec{x} is

$$
\begin{equation*}
W_{\vec{x}}^{a e} \equiv\left(w \in W^{a e} \mid w(\vec{x})=\vec{x}\right)=\widehat{\Omega}_{\vec{x}} \ltimes W_{I}^{\circ}, \tag{9}
\end{equation*}
$$

where W_{i}° generated by reflections $s_{i}, i \in I$ and subset $I=\left(i \in\{0 \ldots r\} \mid x_{i}=0\right)$.

- It follows from lemma that product of reflections cannot give a folding in differential case.
- But, in q-difference case we obtain much more: we can build foldings as a very special products of simple reflections! (e.g. $w=s_{0} s_{1} s_{4} s_{5}$).
- New type of foldings due to multiplicativity of root variables \Rightarrow roots of unity.

Folding classification: colouring of Dynkin diagrams

New foldings: encoded by Dynkin diagram colorings in black and white

$S_{0} S_{1} S_{4} S_{5}$

$s_{1} S_{5} S_{3} S_{4}$

- Coloring denotes both the invariant subset \vec{a} and group element w
- White points: arbitrary a_{i}.
- Black points (the subset I): $a_{i}=$ roots of unity.
- Subset I splits in connected (A-type) components.
- A_{n} connected component: Multiplier $s_{1} s_{2} \ldots s_{n}$ in w.

Classificational theorem

For Weyl group S_{n+1} of A_{n} introduce group $\Omega \simeq C_{n+1}$:

$$
\begin{equation*}
\Omega=\left\langle s_{1} s_{2} \ldots s_{n}\right\rangle=\langle(1 \ldots n+1)\rangle \tag{10}
\end{equation*}
$$

Theorem

Folding transformation w are of the form:

$$
\begin{equation*}
w \in \widehat{\Omega} \ltimes \prod \Omega_{\Phi_{j}} \tag{11}
\end{equation*}
$$

where Φ_{j} are A-type connected components of black subset I for some coloring.
So, in general, folding is described not only by coloring but also by element in $\widehat{\Omega}$.

Folding classification: selection rules

For $w \in \prod \Omega_{\Phi_{j}}$ we take colourings such that

- Black connected components are of A-type.
- Mark points of each black $A_{n_{j}}$ by numbers $\phi_{i}=\frac{i m_{j}}{n_{j}+1}, i=1 \ldots n_{j}$ with some m_{j}, $\operatorname{gcd}\left(m_{j}, n_{j}+1\right)=1$.
- $\exists\left\{m_{j}\right\}$ such that for all white points p

$$
\begin{equation*}
\sum_{p^{\prime} \in I \cap N(p)} \phi_{p^{\prime}} \in \mathbb{Z} \tag{12}
\end{equation*}
$$

where I is black subset, $N(p)$ is set of vertices, incident to (white) p.

On connected component Φ_{j} we have $a_{i}=e^{\frac{2 \pi i m_{j}}{j_{j}+1}}$.

Folding classification: admissible colorings

Folding classification: mixed case

Additionally we have 2 mixed foldings (1 for $E_{7}^{(1)}$ and 1 for $D_{5}^{(1)}$), containing both reflections and outer automorphisms. They are covered by certain generalization of the selection rule.

$w=\pi s_{0} s_{1} s_{3}$

$$
W=\pi^{2} S_{2} S_{4}
$$

Folding classification: "big" subgroups

Above foldings generate cyclic folding subgroups. In some cases we can construct bigger groups from the above foldings

Theorem

Only in above cases we have non-cyclic folding subgroups

- For $E_{7}^{(1)}$ we have two non-isomorphic folding subgroups $D i h_{4} \simeq C_{2} \ltimes C_{4}$
- For $D_{5}^{(1)}$ we have C_{2}^{3}.

Any other non-cyclic subgroup is a subgroup of above.
Example: C_{2}^{2} for $D_{5}^{(1)}$ could be obtained from $s_{0} s_{1} s_{4} s_{5}$ and $s_{4} s_{5}$, last generator acts as $(F, G) \mapsto(F,-G)$.

Contents

(1) Example of q-Painlevé VI folding

(2) Classification
(3) q-Painlevé after folding

Quotient

Now we want to find Painlevé dynamics after taking quotient over the folding group element, using spaces of initial conditions. The scheme is as follows:

- First we proceed to the quotient $Y^{\prime}=X_{\vec{a}} /\langle w\rangle$.
- Usually it has toric singularities (corresponding to the fixed points of action).
- We resolve them in minimal way and obtain \widetilde{Y}.
- \widetilde{Y} can be non-minimal, namely anticanonical class admits blowdown of (-1) components: $\widetilde{Y} \mapsto Y$.

Simple example: $w=s_{0} s_{1} s_{4} s_{5}$

- (-1) self-intersection
- (-2) self-intersection

- We start from $D_{5}^{(1)} / A_{3}^{(1)}$ surface and factor it over $(F, G) \mapsto(-F,-G)$
- 4 stationary points $(0,0),(0, \infty),(\infty, 0),(\infty, \infty) \Rightarrow A_{1}$ singularities
- Resolving them, we recognize Sakai geometry of q-Painlevé $A_{1}^{(1)} / A_{7}^{(1)^{\prime}}$

Another example: $w=s_{321} s_{765}$

Folding on $E_{7}^{(1)} / A_{1}^{(1)}$

Action on coordinates is

$$
\begin{equation*}
F \mapsto-\mathrm{i} F, \quad G \mapsto \mathrm{i} G . \tag{13}
\end{equation*}
$$

Folding of order 4.

$w=s_{321} s_{765}:$ quotient

- Stationary points $(0,0),(\infty, \infty) \Rightarrow A_{3}$ singularities, $(0, \infty),(\infty, 0) \Rightarrow(-4)$ singularities (brown divisor on the picture).
- We obtain non-minimal anticanonical class: contains (-1) curves \mathcal{E}^{a} and \mathcal{E}^{b}.

$w=s_{321} s_{765}:$ blow down

Blowing down \mathcal{E}^{a} and $\mathcal{E}^{b} \Rightarrow E_{7}^{(1)} / A_{1}^{(1)}$ surface with parameters and coordinates

$$
\begin{align*}
& \mathbf{F}=\frac{F G-a_{0}}{F G-1} \frac{G^{4}-1}{G^{4}-a_{4}^{-4}}, \tag{14}\\
& \mathbf{G}=\frac{F G-1}{F G-a_{0}} .
\end{align*}
$$

Final theorem I

Symm./surf.	Diagram	Ord.	Goes to	N. I.	Symmetry
$E_{8}^{(1)} / A_{0}^{(1)}$	$\rightarrow \rightarrow-\chi_{0 \rightarrow-0 \rightarrow 0 \rightarrow 0}$	3	$E_{6}^{(1)} / A_{2}^{(1)}$	$2 A_{2}$	$C_{2} \ltimes W_{A_{2}}^{a}$
	$0-0.00000000$	2	$E_{7}^{(1)} / A_{1}^{(1)}$	$3 A_{1}$	$S_{3} \ltimes W_{D_{4}}^{z}$
	$\cdots-a+\infty$	4	$D_{5}^{(1)} / A_{3}^{(1)}$	$A_{3}+A_{1}$	$W_{A_{1}}^{a}$
$E_{7}^{(1)} / A_{1}^{(1)}$	$0=0$	2	$E_{8}^{(1)} / A_{0}^{(1)}$	D_{4}	$S_{3} \ltimes\left(C_{2}^{2} \times W_{D_{4}}^{2}\right)$
	$0-00000000$			$4 A_{1}$	$S_{4} \ltimes W_{D_{4}}^{a}$
	$\rightarrow 0 \rightarrow 0$	2	$D_{5}^{(1)} / A_{3}^{(1)}$	$2 A_{1}$	$C_{2}^{2} \ltimes W_{A_{3}}^{a}$
	$\rightarrow 0-0.000$	3	$E_{3}^{(1)} / A_{5}^{(1)}$	A_{2}	$W_{A_{1}}^{a e}$
	$\cdots-0-\infty-\infty$	4	$E_{7}^{(1)} / A_{1}^{(1)}$	$2 A_{3}$	$C_{2} \times W_{A_{1}}^{\text {ae }}$
	-			D_{6}	$C_{2}^{2} \times W_{A_{1}}{ }^{\text {a }}$
$E_{6}^{(1)} / A_{2}^{(1)}$		3	$E_{8}^{(1)} / A_{0}^{(1)}$	E_{6}	$C_{2} \ltimes\left(S_{3} \times W_{A_{2}}^{a}\right)$
	\&			$3 A_{2}$	$S_{3} \ltimes W_{A_{2}}^{a}$
	!	2	$E_{3}^{(1)} / A_{5}^{(1)}$	A_{1}	$W_{A_{2}}^{\text {ae }}$

Final theorem II

Symm./surf.	Diagram	Ord.	Goes to	Nod. lat.	Symmetry
$D_{5}^{(1)} / A_{3}^{(1)}$		2	$E_{7}^{(1)} / A_{1}^{(1)}$	D_{4}	$S_{3} \ltimes\left(C_{2}^{2} \times\left(C_{2} \ltimes W_{3 A_{1}}^{a}\right)\right)$
				$4 A_{1}$	$\left(S_{3} \ltimes C_{2}^{3}\right) \ltimes W_{3 A_{1}}^{a}$
		4	$E_{8}^{(1)} / A_{0}^{(1)}$	E_{7}	$C_{2}^{2} \times W_{A_{1}}^{a}$
				$2 A_{3}+A_{1}$	$W_{A_{1}}^{a e}$
	*			$D_{6}+A_{1}$	$C_{2}^{2} \times W_{A_{1}}^{a}$
		2	$A_{1}^{(1)} / A_{7}^{(1)^{\prime}}$	\varnothing	$C_{2} \times\left(C_{4} \ltimes W_{A_{1}}^{a}\right)$

Final theorem III

Symm./surf.	Diagram	Ord.	Goes to	N. I.	Symmetry
$E_{3}^{(1)} / A_{5}^{(1)}$	$\bigwedge_{0} \pi^{3} 0^{0}$	2	$E_{6}^{(1)} / A_{2}^{(1)}$	D_{4}	$C_{2}^{2} \times W_{A_{2}}^{a e}(2 \delta)$
	$\Omega_{0} \rightleftharpoons$			$4 A_{1}$	$W_{A_{2}}^{\text {ae }}$
		3	$E_{7}^{(1)} / A_{1}^{(1)}$	E_{6}	$S_{3} \times W_{A_{1}}^{a e},(3 \delta)$
	$\bigwedge_{0} \Longrightarrow 0$			$3 A_{2}$	$W_{A_{1}}^{a e}$
$A_{1}^{(1)} / A_{7}^{(1)^{\prime}}$	$\stackrel{\pi^{2}}{\Longrightarrow} 0$	2	$D_{5}^{(1)} / A_{3}^{(1)}$	D_{4}	$C_{2}^{2} \times W_{A_{1}}^{a}$
	$\stackrel{\sigma}{\Longrightarrow}$			$4 A_{1}$	$C_{4} \ltimes W_{A_{1}}^{a}$

Remarks

- We find 4 of our 24 foldings in the literature: $E_{6}^{(1)} \leftrightarrows\left(A_{2}+A_{1}\right)^{(1)}$ and $E_{7}^{(1)} \leftrightarrows D_{5}^{(1)}$ (Ramani, Grammatikos, Tamizhmani '00)
- Natural question: to connect q-case foldings to the differential foldings. However, the $q \rightarrow 1$ limit is not straightforward:
Folding $w=s_{0} s_{1} s_{4} s_{5}: q P V I \rightarrow q P I I I_{3}$ goes to folding $P I I I_{1} \mapsto P I I I_{3}$. Differential limits depend on special configurations of \vec{a}.
- q-Painlevé $\longleftrightarrow 5$ d SUSY gauge theories.

Foldings \Rightarrow covering of the Seiberg-Witten curves of the corr. theories.

- Nodal curves play an important role in the folding transformations.
- For the special configurations of \vec{a} before and after folding we often have projective reductions - "fractional" translations (e.g. tilde for $s_{0} s_{1} s_{4} s_{5}$).

Thank you for your attention!

