# Folding transformations for q-Painlevé equations

#### Anton Shchechkin

Skoltech & HSE University, Moscow, Russia

Joint work with Mikhail Bershtein, arXiv 2110.15320





### 2 Classification

9 q-Painlevé after folding

*q*-difference dynamics on variables F, G depending on  $a_0, \ldots a_5$ :

$$F\underline{F} = a_1^{-1} \frac{(G - a_3^{-1})(G - a_5^{-1}a_3^{-1})}{(G - 1)(G - a_4)}$$
(1)  

$$G\overline{G} = a_4 \frac{(F - a_2)(F - a_0a_2)}{(F - 1)(F - a_1^{-1})}.$$
(2)

Variables F, G could be viewed as functions on  $a_0, \ldots a_5$ , such that

$$\overline{(F,G)}(a_0,\ldots a_5) = (F,G)(a_0,a_1,qa_2,q^{-1}a_3,a_4,a_5)$$
  
(F,G)(a\_0,\ldots a\_5) = (F,G)(\ldots q^{-1}a\_2,qa\_3,\ldots) (3)

where  $q = a_0 a_1 a_2^2 a_3^2 a_4 a_5$ . Actually, F, G depend on 4 parameters  $a_{0,1,4,5}$  and independent variable  $z = a_3^{-1}$ , shifting on q.

# Symmetries of *q*-Painlevé VI equation

- Symmetries are given by W<sup>e</sup>(D<sub>5</sub><sup>(1)</sup>)
   — affine Weyl group, extended by
   automorphisms.
- It acts on a<sub>i</sub> as follows (thus called multiplicative root variables):

$$s_i(a_j) = a_j a_i^{-C_{ij}}, \quad C_{ij}$$
 is Cartan matrix  
 $\pi(a_i) = a_{\pi(i)}$ 



|   | <i>s</i> <sub>0</sub> | <i>s</i> <sub>1</sub> | <i>s</i> <sub>2</sub> | <i>s</i> <sub>3</sub>     | <i>S</i> 4  | <i>S</i> 5 | $\pi$   |
|---|-----------------------|-----------------------|-----------------------|---------------------------|-------------|------------|---------|
| F | F                     | a <sub>1</sub> F      | $a_2^{-1}F$           | $F\frac{G-1}{G-a_3^{-1}}$ | F           | F          | 1/G     |
| G | G                     | G                     | $G\frac{F-1}{F-a_2}$  | a <sub>3</sub> G          | $a_4^{-1}G$ | G          | $F/a_2$ |

### $W^e(D_5^{(1)})$ also acts on functions F, G

### Example: element $w = s_0 s_1 s_4 s_5$



 $F \mapsto a_1 F$ ,  $G \mapsto a_4^{-1} G$ 

- $w = s_0 s_1 s_4 s_5$  preserves q and commutes with the dynamics  $a_2 \mapsto q a_2, a_3 \mapsto q^{-1} a_3, (F, G) \mapsto (\overline{F}, \overline{G}).$
- If  $w(\vec{a}) = \vec{a}$  (e.g.  $a_{0,1,4,5} = -1$ ), then the pairs (F, G) and (w(F), w(G))(e.g. (-F, -G)) satisfy the same q-Painlevé VI.
- So, we obtain dynamics on *w*-invariant functions (e.g. gen. by F<sup>2</sup>, FG, G<sup>2</sup>) ⇒ some (another) *q*-Painlevé (presumably).

### Folding of *q*-Painlevé VI by $w = s_0 s_1 s_4 s_5$

$$F\underline{F} = a_1^{-1} \frac{(G - a_3^{-1})(G - a_5^{-1}a_3^{-1})}{(G - 1)(G - a_4)}$$
  

$$G\overline{G} = a_4 \frac{(F - a_2)(F - a_0a_2)}{(F - 1)(F - a_1^{-1})}$$

Taking  $a_{0,1,4,5} = -1$ , we obtain difference of squares in r.h.s. Then introduce tilde half-shift  $\tilde{G} = F$ ,  $\tilde{\tilde{G}} = \overline{G}$ ,  $\tilde{a_3} = q^{-1/2}a_3$ 

$$F\underline{F} = \frac{G^2 - a_3^{-2}}{G^2 - 1} \qquad \Longrightarrow \qquad \widetilde{G} \underbrace{G}_{\sim} = \frac{G^2 - a_3^{-2}}{G^2 - 1}$$
$$G\overline{G} = \frac{F^2 - a_2^2}{F^2 - 1} \qquad \qquad \widetilde{G} \widetilde{\widetilde{G}} = \frac{\widetilde{G}^2 - q^{1/2} a_3^{-2}}{\widetilde{G}^2 - 1}$$

### Parameterless q-Painlevé III equation

Introducing new variables  $\mathbf{G} = G^2$ ,  $\mathbf{F} = FG$ 

$$\mathbf{F}_{\sim}^{\mathbf{F}} = \frac{\mathbf{G}(\mathbf{G} - \mathbf{a}_{3}^{-2})}{\mathbf{G} - 1} \qquad \mathbf{G}\widetilde{\mathbf{G}} = \mathbf{F}^{2}$$
(4)

we obtain q-Painlevé III with symmetry  $A_1^{(1)}$  and corresponding variables

$$\mathbf{a}_0 = a_3^2, \quad \mathbf{a}_1 = a_2^2, \qquad \mathbf{q} = \mathbf{a}_0 \mathbf{a}_1 = q^{1/2}$$
 (5)

So we obtained degree 2 algebraic transformation between two q-Painlevé

$$D_5^{(1)} ext{ eq. } |_{a_{0,1,4,5}=-1} \xrightarrow{/w=s_0 s_1 s_4 s_5} A_1^{(1)} ext{ eq.}$$
 (6)

- For **differential** Painlevé foldings classified by Tsuda, Okamoto, Sakai '05. What about *q*-generalization?
- New algebraic relations between solutions of different types of (q-)Painlevé

$$(F(z), G(z)) \xrightarrow{\text{folding } \psi} (\mathbf{F}(z), \mathbf{G}(z)) = f(F(z), G(z))$$
(7)

Way to connect special solutions: algebraic, Riccati, hypergeometric.

 Solutions of (q-)Painlevé written in terms of Nekrasov instanton partition functions Z (Gamayun, lorgov, Lisovyi, '12; Jimbo, Nagoya, Sakai, '17; etc)

$$\mathcal{Z}_1 \to (F(z), G(z)), \quad \mathcal{Z}_2 \to (\mathbf{F}, \mathbf{G}) = f(F(z), G(z)) \quad \Rightarrow \mathcal{Z}_1 \approx \mathcal{Z}_2$$
 (8)

Way to relations on instanton partition functions of different theories.

• Answer to the q-Painlevé folding classification— engaging form by himself.

Example of *q*-Painlevé VI folding



g-Painlevé after folding

### q-Painlevé equations and spaces of initial conditions

• Celebrated Sakai classification (Sakai '01):

q-Painlevé eq.  $\longrightarrow \mathbb{P}^1 \times \mathbb{P}^1$ , blowed up in 8 points

- These surfaces are known as spaces of initial conditions.
- Birational symmetries of surfaces and corresponding *q*-Painlevé equations affine Weyl groups  $W^e(E_{8-n}^{(1)})$ , where  $E_5 = D_5, E_4 = A_4 \dots$

$$\frac{A_0^{(1)}}{E_8^{(1)}} \to \frac{A_1^{(1)}}{E_7^{(1)}} \to \frac{A_2^{(1)}}{E_6^{(1)}} \to \frac{A_3^{(1)}}{D_5^{(1)}} \to \frac{A_4^{(1)}}{A_4^{(1)}} \to \frac{A_5^{(1)}}{(A_2 + A_1)^{(1)}} \to \frac{A_6^{(1)}}{(2A_1)^{(1)}} \to \frac{A_7^{(1)}}{A_1^{(1)}}$$
  
•  $A_{8-n}^{(1)} = (E_n^{(1)})^{\perp}$  in  $E_8^{(1)}$ .

### Definition

**Folding transformation** of *q*-Painlevé equation: Group element  $w \in W^{ae}$  and subset  $\mathcal{A}_w$  of root variable space  $\mathcal{A} = (\mathbb{C}^*)^{r+1}$ :

•  $A_w$  is connected component of w-invariant subset:

$$\mathcal{A}_w = (ec{a} \in \mathcal{A} | w(ec{a}) = ec{a})$$

• For generic  $\vec{a} \in A_w$ :

 $w((F,G)) \neq (F,G)$ 

• There exist translation (q-difference dynamics), that commutes with w:

$$t \in P \subset W^{ae}$$
:  $tw = wt$ .

### Foldings: restrictions



$$s_3: \quad F \mapsto F \frac{G-1}{G-a_3^{-1}}, \qquad G \mapsto a_3 G$$

 $s_3$  stabilizes  $\vec{a}$ , iff  $a_3 = 1 \Rightarrow s_3$  acts trivially.

#### Lemma (~ Tsuda, Okamoto, Sakai)

For all symmetries  $W(E_n^{(1)})$  of q-Painlevé equations

$$a_i = 1 \Rightarrow s_i(F, G) = (F, G)$$

# External automorphisms $\widehat{\Omega}$

But external automorphisms (group  $\widehat{\Omega}$ ) of affine Weyl group give us foldings (both in differential and *q*-case). Here is the list of such folding group elements in *q*-case



Tsuda, Okamoto, Sakai '05: foldings in differential case come only from  $\hat{\Omega}$ . Differential Painlevé are parametrized by additive root variables  $x_i$ ,  $\sum x_i = 1$ .

Lemma (Humphreys)

For  $x_i \ge 0$  stabilizer of  $\vec{x}$  is

$$W_{\vec{x}}^{ae} \equiv (w \in W^{ae} | w(\vec{x}) = \vec{x}) = \widehat{\Omega}_{\vec{x}} \ltimes W_{I}^{\circ}, \tag{9}$$

where  $W_i^{\circ}$  generated by reflections  $s_i, i \in I$  and subset  $I = (i \in \{0 \dots r\} | x_i = 0)$ .

- It follows from lemma that product of reflections cannot give a folding in differential case.
- But, in *q*-difference case we obtain much more: we can build foldings as a very special products of simple reflections! (e.g.  $w = s_0 s_1 s_4 s_5$ ).
- New type of foldings due to multiplicativity of root variables  $\Rightarrow$  roots of unity.

New foldings: encoded by Dynkin diagram colorings in black and white



- Coloring denotes both the invariant subset  $\vec{a}$  and group element w
- White points: arbitrary *a<sub>i</sub>*.
- Black points (the subset *I*):  $a_i =$  roots of unity.
- Subset *I* splits in connected (*A*-type) components.
- *A<sub>n</sub>* connected component: Multiplier *s*<sub>1</sub>*s*<sub>2</sub>...*s<sub>n</sub>* in *w*.

For Weyl group  $S_{n+1}$  of  $A_n$  introduce group  $\Omega \simeq C_{n+1}$ :

$$\Omega = \langle s_1 s_2 \dots s_n \rangle = \langle (1 \dots n+1) \rangle \tag{10}$$

#### Theorem

Folding transformation w are of the form:

$$w \in \widehat{\Omega} \ltimes \prod \Omega_{\Phi_j} \tag{11}$$

where  $\Phi_i$  are A-type connected components of black subset I for some coloring.

So, in general, folding is described not only by coloring but also by element in  $\widehat{\Omega}$ .

### Folding classification: selection rules

For  $w \in \prod \Omega_{\Phi_i}$  we take colourings such that

- Black connected components are of A-type.
- Mark points of each black  $A_{n_j}$  by numbers  $\phi_i = \frac{im_j}{n_j+1}$ ,  $i = 1 \dots n_j$  with some  $m_j$ ,  $gcd(m_j, n_j + 1) = 1$ .
- $\exists \{m_j\}$  such that for all white points p

$$\sum_{\mathbf{p}'\in I\cap \mathcal{N}(\mathbf{p})}\phi_{\mathbf{p}'}\in\mathbb{Z},$$

where I is black subset, N(p) is set of vertices, incident to (white) p.

On connected component  $\Phi_j$  we have  $a_i = e^{rac{2\pi i m_j}{n_j+1}}$ 



(12)

### Folding classification: admissible colorings



Additionally we have 2 **mixed foldings** (1 for  $E_7^{(1)}$  and 1 for  $D_5^{(1)}$ ), containing both reflections and outer automorphisms. They are covered by certain generalization of the selection rule.



Above foldings generate **cyclic folding subgroups**. In some cases we can construct bigger groups from the above foldings

#### Theorem

Only in above cases we have non-cyclic folding subgroups

- For  $E_7^{(1)}$  we have two non-isomorphic folding subgroups  $Dih_4 \simeq C_2 \ltimes C_4$
- For  $D_5^{(1)}$  we have  $C_2^3$ .

Any other non-cyclic subgroup is a subgroup of above.

Example:  $C_2^2$  for  $D_5^{(1)}$  could be obtained from  $s_0s_1s_4s_5$  and  $s_4s_5$ , last generator acts as  $(F, G) \mapsto (F, -G)$ .

Example of *q*-Painlevé VI folding

2 Classification



Now we want to find **Painlevé dynamics after taking quotient** over the folding group element, using spaces of initial conditions. The scheme is as follows:



- First we proceed to the quotient  $Y' = X_{\vec{a}}/\langle w \rangle$ .
- Usually it has toric singularities (corresponding to the fixed points of action).
- We resolve them in minimal way and obtain  $\widetilde{Y}$ .
- *Y* can be non-minimal, namely anticanonical class admits blowdown of (−1) components: *Y* → *Y*.

### Simple example: $w = s_0 s_1 s_4 s_5$



• We start from  $D_5^{(1)}/A_3^{(1)}$  surface and factor it over  $(F,G)\mapsto (-F,-G)$ 

- 4 stationary points  $(0,0), (0,\infty), (\infty,0), (\infty,\infty) \Rightarrow A_1$  singularities
- Resolving them, we recognize Sakai geometry of q-Painlevé  $A_1^{(1)}/A_7^{(1)'}$

Folding on  $E_7^{(1)}/A_1^{(1)}$ 



$$F \mapsto -iF, \qquad G \mapsto iG.$$
 (13)

Folding of order 4.

### $w = s_{321}s_{765}$ : quotient



 Stationary points (0,0), (∞,∞) ⇒ A<sub>3</sub> singularities, (0,∞), (∞,0) ⇒ (-4) singularities (brown divisor on the picture).

• We obtain non-minimal anticanonical class: contains (-1) curves  $\mathcal{E}^a$  and  $\mathcal{E}^b$ .

### $w = s_{321}s_{765}$ : blow down

Blowing down  $\mathcal{E}^a$  and  $\mathcal{E}^b \Rightarrow E_7^{(1)}/A_1^{(1)}$  surface with parameters and coordinates



# Final theorem I

| Symm./surf.           | Diagram                              | Ord. | Goes to               | N. I.           | Symmetry                              |
|-----------------------|--------------------------------------|------|-----------------------|-----------------|---------------------------------------|
|                       | •••••••                              | 3    | $E_6^{(1)}/A_2^{(1)}$ | 2A <sub>2</sub> | $C_2 \ltimes W^a_{A_2}$               |
| $E_8^{(1)}/A_0^{(1)}$ | 0-0-0-0-0-0-0-0                      | 2    | $E_7^{(1)}/A_1^{(1)}$ | 3A1             | $S_3 \ltimes W_{D_4}^a$               |
|                       | •- <b>o</b> - <b>•</b> •••••         | 4    | $D_5^{(1)}/A_3^{(1)}$ | $A_3 + A_1$     | $W_{A_1}^a$                           |
|                       |                                      | 2    | $E_8^{(1)}/A_0^{(1)}$ | D <sub>4</sub>  | $S_3 \ltimes (C_2^2 	imes W_{D_4}^a)$ |
|                       | •-o-•-o-o-o                          |      |                       | $4A_1$          | $S_4 \ltimes W_{D_4}^a$               |
| $E_7^{(1)}/A_1^{(1)}$ | ●- <b>○-●-</b> Ô-●- <b>○</b> -●      | 2    | $D_5^{(1)}/A_3^{(1)}$ | 2A1             | $C_2^2 \ltimes W_{A_3}^a$             |
|                       | •- <b>•</b> - <b>•</b> - <b>•</b> -• | 3    | $E_3^{(1)}/A_5^{(1)}$ | A <sub>2</sub>  | $W_{A_1}^{ae}$                        |
|                       | • • • • • • • •                      | 4    | $E_7^{(1)}/A_1^{(1)}$ | 2A3             | $C_2 	imes W_{A_1}^{ae}$              |
|                       |                                      |      |                       | D <sub>6</sub>  | $C_2^2 	imes W^a_{A_1}$               |
| $E_6^{(1)}/A_2^{(1)}$ |                                      | 3    | $E_8^{(1)}/A_0^{(1)}$ | E <sub>6</sub>  | $C_2\ltimes (S_3	imes W^a_{A_2})$     |
|                       | ••••                                 |      |                       | 3 <i>A</i> 2    | $S_3 \ltimes W^a_{A_2}$               |
|                       | •- <b>0-</b> •- <b>0</b> -•          | 2    | $E_3^{(1)}/A_5^{(1)}$ | $A_1$           | $W^{ae}_{A_2}$                        |

# Final theorem II

| Symm./surf.           | Diagram | Ord. | Goes to                | Nod. lat.                                       | Symmetry                                             |
|-----------------------|---------|------|------------------------|-------------------------------------------------|------------------------------------------------------|
|                       |         | 2    | $E_7^{(1)}/A_1^{(1)}$  | D <sub>4</sub>                                  | $S_3 \ltimes (C_2^2 	imes (C_2 \ltimes W_{3A_1}^a))$ |
|                       |         |      |                        | 4 <i>A</i> 1                                    | $(S_3 \ltimes C_2^3) \ltimes W^a_{3A_1}$             |
|                       |         |      |                        |                                                 |                                                      |
| $D_5^{(1)}/A_3^{(1)}$ |         | 4    | $E_8^{(1)}/A_0^{(1)}$  | E <sub>7</sub>                                  | $C_2^2 	imes W^a_{A_1}$                              |
|                       | $\geq$  |      |                        | 2 <i>A</i> <sub>3</sub> + <i>A</i> <sub>1</sub> | $W^{ae}_{\mathcal{A}_1}$                             |
|                       |         |      |                        | $D_6 + A_1$                                     | $C_2^2 	imes W_{A_1}^a$                              |
|                       | $\succ$ | 2    | $A_1^{(1)}/A_7^{(1)'}$ | Ø                                               | $C_2	imes (C_4\ltimes W^a_{A_1})$                    |

# Final theorem III

| Symm./surf.            | Diagram                       | Ord. | Goes to               | N. I.          | Symmetry                                              |
|------------------------|-------------------------------|------|-----------------------|----------------|-------------------------------------------------------|
|                        |                               | 2    | $E_6^{(1)}/A_2^{(1)}$ | D <sub>4</sub> | $C_2^2 	imes W^{ae}_{A_2}\left(2\delta ight)$         |
| $E_3^{(1)}/A_5^{(1)}$  |                               |      |                       | 4 <i>A</i> 1   | $W^{ae}_{A_2}$                                        |
|                        | $\pi^2$ $\pi^2$ occord        |      |                       |                |                                                       |
|                        |                               | 3    | $E_7^{(1)}/A_1^{(1)}$ | E <sub>6</sub> | $S_3	imes W^{ae}_{A_1},~(3\delta)$                    |
|                        |                               |      |                       | 3A2            | $W^{ae}_{\mathcal{A}_1}$                              |
| $A_1^{(1)}/A_7^{(1)'}$ | <i>π</i> <sup>2</sup><br>∞⇒⇒∞ | 2    | $D_5^{(1)}/A_3^{(1)}$ | D <sub>4</sub> | $\mathcal{C}_2^2 	imes \mathcal{W}_{\mathcal{A}_1}^a$ |
|                        | <i>σ</i><br>ο≔≕⇒ο             |      |                       | $4A_1$         | $C_4 \ltimes W^a_{A_1}$                               |

# Remarks

- We find 4 of our 24 foldings in the literature:  $E_6^{(1)} \cong (A_2+A_1)^{(1)}$  and  $E_7^{(1)} \cong D_5^{(1)}$  (Ramani, Grammatikos, Tamizhmani '00)
- Natural question: to connect *q*-case foldings to the differential foldings. However, the  $q \rightarrow 1$  limit is not straightforward: Folding  $w = s_0 s_1 s_4 s_5 : qPVI \rightarrow qPIII_3$  goes to folding  $PIII_1 \mapsto PIII_3$ . Differential **limits depend on special configurations of**  $\vec{a}$ .
- *q*-Painlevé  $\longleftrightarrow$  5d SUSY gauge theories. Foldings  $\Rightarrow$  covering of the **Seiberg-Witten curves** of the corr. theories.
- Nodal curves play an important role in the folding transformations.
- For the special configurations of  $\vec{a}$  before and after folding we often have **projective reductions** "fractional" translations (e.g. tilde for  $s_0s_1s_4s_5$ ).

# Thank you for your attention!