TWIST OF KNOTS AND THE \(Q \)-POLYNOMIALS

CHAN-YOUNG PARK

(Joint work with Myeong-Ju Jeong and Younhee Choi)

For the \(Q \)-polynomial it is known that the \(n \)-th derivative \(Q_K^{(n)}(a) \) of the \(Q \)-polynomial \(Q_K(x) \) of a knot \(K \) at \(a \) is not a Vassiliev invariant if \(a \neq 1, -2 \).

The local transformation of two parallel strands with parallel orientation to the \(k \)-half twist of the two strands is called the \(t_k \)-move.

In this talk we show that, for any positive integer \(n \), \(Q_K^{(n)}(1) \) is not a Vassiliev invariant and \(Q_K^{(n)}(-2) \) is not a Vassiliev invariant of degree \(< 2n \), by using R. Trapp’s result on twist sequences of knots. Also by using higher derivatives \(Q_K^{(n)}(-2) \) of the \(Q \)-polynomial, we give some criterions to detect whether a knot \(K \) can be transformed to a knot \(K' \) by finitely many \(t_{2k} \)-moves, and if so, we give some results on the number of \(t_{2k} \)-moves necessary in the transformation.

This is a joint work with Dr. Myeong-Ju Jeong and Ms. Younhee Choi.

KYUNGPOOK NATIONAL UNIVERSITY