Go to the first, previous, next, last section, table of contents.
- dp_red(dpoly1,dpoly2,dpoly3)
- 
- dp_red_mod(dpoly1,dpoly2,dpoly3,mod)
- 
:: Single reduction operation
- return
- 
list
- dpoly1  dpoly2  dpoly3
- 
distributed polynomial
- vlist
- 
list
- mod
- 
prime
- 
Reduces a distributed polynomial, dpoly1 + dpoly2,
by dpoly3 for single time.
- 
An input for dp_red_mod()must be converted into a distributed
polynomial with coefficients in a finite field.
- 
This implies that
the divisibility of the head term of dpoly2 by the head term of
dpoly3 is assumed.
- 
When integral coefficients, computation is so carefully performed that
no rational operations appear in the reduction procedure.
It is computed for integers a and b, and a term t as:
a(dpoly1 + dpoly2)-bt dpoly3.
- 
The result is a list [a dpoly1,a dpoly2 - bt dpoly3].
[157] D=(3)*<<2,1,0,0,0>>+(3)*<<1,2,0,0,0>>+(1)*<<0,3,0,0,0>>;
(3)*<<2,1,0,0,0>>+(3)*<<1,2,0,0,0>>+(1)*<<0,3,0,0,0>>
[158] R=(6)*<<1,1,1,0,0>>;                                    
(6)*<<1,1,1,0,0>>
[159] C=12*<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>>; 
(12)*<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>>
[160] dp_red(D,R,C);                                         
[(6)*<<2,1,0,0,0>>+(6)*<<1,2,0,0,0>>+(2)*<<0,3,0,0,0>>,
(-1)*<<0,1,1,1,0>>+(-1)*<<1,1,0,0,1>>]
- References
- 
section dp_mod,dp_rat.
Go to the first, previous, next, last section, table of contents.