
Algorithms for computing primary ideal

decomposition without producing

intermediate redundant components

Taro Kawazoe1

Department of Mathematics
Graduate school of Science, Kobe University
1-1 Rokkodai, Nada-ku, 657-8501, Kobe,

Japan

Masayuki Noro
Department of Mathematics

Graduate school of Science, Kobe University
1-1 Rokkodai, Nada-ku, 657-8501, Kobe,

Japan
JST CREST

Abstract

In Noro (2010) we proposed an algorithm for computing primary ideal decomposition by using
the notion of separating ideal and showed that it can efficiently decompose several examples
which are hard to decompose by existing algorithms. In particular the number of redundant
components produced in the algorithm is zero or very small in many examples, but no theoretical
explanation for the efficiency was made.

In this paper we define a more sophisticated class of separating ideals: saturated separating
ideal. By using this notion we modify the algorithm in Noro (2010) so that it directly outputs
a minimal primary decomposition without producing any intermediate redundant component.

By modifying the process of extraction of a primary component via pseudo-primary decom-
position proposed in Shimoyama, Yokoyama (1996), we find a method for intermediate decom-
position of an ideal and propose a variant of the new primary decomposition algorithm based
on this intermediate decomposition. Our experiment shows that this variant efficiently decom-
poses many examples which are still hard to decompose even if we apply the original version of
the new algorithm. Furthermore, in this algorithm we can bypass the computation of primary
components and obtain directly the set of all associated primes of an ideal.

Key words: primary ideal decomposition, ideal quotient, Gröbner basis computation

Email addresses: tkawazoe@math.kobe-u.ac.jp (Taro Kawazoe), noro@math.kobe-u.ac.jp
(Masayuki Noro).
1 The current address is: SOFTBANK MOBILE Corp., 1-9-1 Higashi-shimbashi, Minato-ku, Tokyo
105-7317, taro.kawazoe@mb.softbank.co.jp.

Preprint submitted to Elsevier 28 April 2011

1. Introduction

There are two well-known algorithms for computing primary ideal decomposition
based on zero-dimensional decomposition: the GTZ algorithm (Gianni et al., 1988) and
the SY algorithm (Shimoyama, Yokoyama, 1996). Let I be an ideal in a polynomial ring
k[X] = k[x1, . . . , xn] over a field k. The GTZ algorithm extracts some of primary com-
ponents Q1, . . . , Qk of I via a reduction to a zero-dimensional case. As a by-product of
this operation, one obtains an element fs /∈ I such that

I = (I : fs) ∩ (I + ⟨fs⟩), I : fs = I : f∞ = Q1 ∩ · · · ∩Qk. (1)

Then this procedure is applied to I + ⟨fs⟩ to obtain a primary decomposition of I. The
SY algorithm first computes the set of all minimal associated primes {P1, . . . , Pl} of I.
By using them, ideals Q̃1 . . . , Q̃l and elements f1, . . . , fl satisfying

√
Q̃i = Pi and

I = (Q̃1 ∩ · · · ∩ Q̃l) ∩ (I + ⟨f1, . . . , fl⟩), dim(I + ⟨f1, . . . , fl⟩) < dim I (2)

are computed. Each Q̃i contains only one isolated primary component Qi of I and we
can compute an ideal I ′ such that Q̃i = Qi ∩ I ′ and dim I ′ < dim I. Then this procedure
is applied to I ′ and I ′′ = I+⟨f1, . . . , fl⟩ to obtain a primary decomposition of I. Each Q̃i

is called a pseudo primary component and (2) is called a pseudo primary decomposition
of I.

These algorithms have the following common structure: Let Q be the intersection
of known primary components of I. Then these algorithms find an ideal J satisfying
I = Q ∩ J . J is called a remaining ideal. In general a remaining ideal contains com-
ponents which do not appear in the final minimal decomposition of I. Although these
components are removed after or during the decomposition procedure, there are cases
that the number of these useless components is very large. SY contains a mechanism for
detecting a redundant component soon after it is produced and SY works efficiently for
a wide range of input ideals. However there are cases that SY produces an intermediate
component which is very hard to decompose because of redundant components included
in the intermediate component.

In order to efficiently decompose such examples we proposed the following algorithm
in Noro (2010).

Algorithm 1.
Input : an ideal Iin ⊂ R
Output : a minimal primary decomposition of Iin
QLin ← ∅; Qin ← R; It ← Iin
RESTART: Q← R; I ← It; C = {0}
do

if It = R goto LAST
PLt ←MinimalAssociatedPrimes(It)
QLt ← IsolatedPrimaryComponents(It, PLt)

Qt ←
∩

J∈QLt

J

if Q ⊂ Qt goto RESTART else Q← Q ∩Qt

2

if Qin ̸⊂Qt then {Qin ← Qin ∩Qt; QLin ← QLin ∪QLt }
if Qt = It or Q = I or Qin = Iin goto LAST else Ct ← I : Q
if Ct = C goto RESTART else C ← Ct

It ← I + SeparatingIdeal(I,Q,C)
end do
LAST: QLin ← RemoveRedundancy(QLin)
return QLin

In this algorithm, MinimalAssociatedPrimes(I) returns the set of all minimal associ-
ated primes of an ideal I. IsolatedPrimaryComponents(I, PL) (PL = {P1, . . . , Pk})
computes the set of all isolated primary components {Q1, . . . , Qk} of an ideal I, where
PL is the set of all minimal associated primes of I and Pi is the associated prime
of Qi. SeparatingIdeal(I,Q,C) (C = I : Q) finds a separating ideal J for (I,Q),
that is an ideal J which gives a non trivial decomposition I = Q ∩ (I + J). Finally
RemoveRedundancy(QL) combines primary components with the same associated prime
and removes unnecessary components. Compared with GTZ and SY, Algorithm 1 differs
in the following points:
• While GTZ and SY simply try to decompose remaining ideals, Algorithm 1 keeps the
target ideal I as long as possible and It is used only for extracting its isolated primary
components.
• Algorithm 1 constructs a “large” separating ideal J to make It large. In GTZ and SY,
a remaining ideal is also constructed by adding a generator set to I. However the set
are chosen so as to satisfy (1) or (2) and the “size” of the set has not been considered.

In Noro (2010) we showed that a careful selection of separating ideals makes the al-
gorithm very efficient. In particular the number of redundant components produced in
Algorithm 1 is zero or very small in many examples, which is realized by large separating
ideals. However Algorithm 1 is still unsatisfactory because it often produces completely
redundant set of primary components and we have to restart the computation in such a
case. In this case the target ideal I is replaced by the current remaining ideal It, which
tends to incorporate redundant components. Also there is no criterion of the size of a
separating ideal. Here we regard a separating ideal sufficiently large if it does not pro-
duce any redundant component. In this paper we give a clear criterion of the size of a
separating ideal and propose an algorithm for computing a minimal primary decomposi-
tion without producing any intermediate redundant components. In section 2 we define
a more sophisticated class of separating ideals: saturated separating ideal. By using this
notion we can modify Algorithm 1 so that it produces no redundant components and
the obtained primary decomposition is a minimal primary decomposition. This explains
the reason why the number of redundant components is small in Algorithm 1. That is,
if a separating ideal is close to a saturated separating ideal, then we can expect that the
number of redundant components is small. But the obtained algorithm (Algorithm 3)
is not necessarily efficient because the computation of saturated separating ideals and
isolated primary components are often very hard. In section 3 we propose an interme-
diate decomposition and apply it to reduce the costs of these computations. Let Qi−1

be the intersection of all primary components of an ideal I found before the i-th step in
Algorithm 3. Then the algorithm finds the primary components Qi1, . . . , Qini of I such
that {

√
Qi1, . . . ,

√
Qini} coincides with the set of all prime components of I : Qi−1. By

analyzing the process of extraction of each Qij via pseudo-primary decomposition pro-
posed in Shimoyama, Yokoyama (1996), we find that Qi and Qi−1∩Qij can be computed

3

by applying the same extraction process without computing Qij itself. Then Qij can be
computed as a component of Qi−1 ∩Qij and we obtain Algorithm 5, which is a variant
of Algorithm 3. At the same time we also obtain Algorithm 6 for computing the set of
all associated primes of an ideal without computing primary decomposition because they
can be computed if we know Qi’s. In section 4 we give some remarks on implementation.
In section 5 experimental results are shown.

2. An algorithm for computing a minimal primary decomposition

In this section we modify Algorithm 1 so that it directly produces a minimal primary
decomposition of an ideal in a Noetherian ring R. We assume that we have an algorithm
MinimalAssociatedPrimes(I) for computing the set of all minimal associated primes
of I.

2.1. Saturated separating ideal

Definition 1. Let I, Q be ideals in R satisfying I ⊂ Q. An ideal J is called a separating
ideal for (I,Q) if I = Q∩ (I + J) holds. If a separating ideal for (I,Q) satisfies

√
I : Q =√

I + J then J is called a saturated separating ideal for (I,Q).

If J is a separating ideal for (I,Q) then J ⊂ I + J ⊂ I : Q holds. Therefore a separating
ideal J is a saturated separating ideal if and only if

√
I : Q ⊂

√
I + J .

Example 2. There exists an integer m satisfying I = Q ∩ (I + (I : Q)m) (c.f. Noro
(2010)). For such m (I : Q)m is a saturated separating ideal. For the same m, J =
⟨fm

1 , . . . , fm
l ⟩ ⊂ (I : Q)m is also a saturated separating ideal, where S = {f1, . . . , fl} is

any generating set of I : Q. However, from the viewpoint of efficiency it is desirable to
find a saturated separating ideal ⟨fm1

1 , . . . , fml

l ⟩ with each mi as small as possible.

We can remove elements in
√
I from S to construct a saturated separating ideal of the

above type.

Proposition 3. Suppose that
√
I : Q =

√
⟨S⟩. If a separating ideal J for (I,Q) satisfies

(S \
√
I) ⊂

√
J then J is a saturated separating ideal for (I,Q).

Proof. (S \
√
I) ⊂

√
J implies S ⊂

√
I +
√
J and thus

√
I : Q =

√
⟨S⟩ ⊂

√√
I +
√
J =√

I + J . 2

The following theorem enables us to construct such a saturated separating ideal incre-
mentally.

Theorem 4. Let J be a separating ideal for (I,Q). If f ∈
√
I : Q then there exists a

positive integer m satisfying I = Q ∩ (I + J + ⟨fm⟩).

Proof. f ∈
√
I : Q implies that there exists k > 0 such that ⟨fk⟩Q ⊂ I. By Artin-Rees

lemma there exists an integer c such that ⟨fm⟩∩(I+J+Q) = ⟨fm−c⟩(⟨fc⟩∩(I+J+Q)) for
any integer m > c. We show that I = Q∩(I+J+⟨fm⟩) if m > c+k. If m > c+k we have
⟨fm⟩∩(I+J+Q) = ⟨fm−c⟩(⟨fc⟩∩(I+J+Q)) ⊂ ⟨fk⟩(I+J+Q) ⊂ I+J+⟨fk⟩Q ⊂ I+J .
If q ∈ Q ∩ (I + J + ⟨fm⟩), then there exist a ∈ R and j ∈ I + J satisfying q = j + afm.
Then afm = −j + q ∈ I + J + Q and afm ∈ ⟨fm⟩ ∩ (I + J + Q) ⊂ I + J . Thus
q = j + afm ∈ I + J and we have q ∈ Q ∩ (I + J) = I. 2

4

Corollary 5. If I = Q∩(I+J) and
√
I + J ̸=

√
I : Q then (I : Q)\

√
I + J ̸= ∅. For any

f ∈ (I : Q) \
√
I + J , there exists a positive integer m satisfying I = Q ∩ (I + J + ⟨fm⟩)

and I + J + ⟨fm⟩ ̸= I + J .

The following algorithm computes a saturated separating ideal incrementally.

Algorithm 2. SaturatedSeparatingIdeal(I,Q,C)

Input : ideals I,Q,C ⊂ R satisfying I ⊂ Q and
√
C =

√
I : Q

Output : a saturated separating ideal for (I,Q)
S ← a generating set of C

S0 = {f1, . . . , fl} ← S \
√
I

J = {0}
for i = 1 to l do

j ← 0

do j ← j + 1 while Q ∩ (I + J + ⟨f j
i ⟩) ̸= I

J ← J + ⟨f j
i ⟩

end for
return J

Proposition 6. Algorithm 2 outputs a saturated separating ideal for (I,Q).

Proof. Q ∩ (I + J) = I and fi ∈
√
I : Q imply that there exists an integer j satisfying

Q∩ (I+J + ⟨f j
i ⟩) = I by Theorem 4. The output J satisfies the condition of Proposition

3 and it is a saturated separating ideal for (I,Q). 2

Theorem 7. Suppose that I = Q ∩ J and
√
J =

√
I : Q for a proper ideal J . Let

Q1, . . . , Qr be the set of all isolated primary components of J and we set Q′ = Q∩
r∩

i=1

Qi.

If I = Q′ ∩ J ′ and
√
J ′ =

√
I : Q′ for a proper ideal J ′, then any minimal associated

prime of J ′ is a non-minimal associated prime of J . In particular any minimal associated
prime of J ′ properly contains a minimal associated prime of J .

Proof. In general if T is primary then U ̸⊂T implies
√
T : U =

√
T and U⊂T implies

T : U = ⟨1⟩. Let

J =

r∩
i=1

Qi ∩
s∩

i=1

Si

be a minimal primary decomposition of J . Si is an embedded primary component of J .
Then

I : Q′ =
s∩

i=1

(Si : Q
′) =

∩
Q′ ̸⊂Si

(Si : Q
′)

implies
√
J ′ =

√
I : Q′ =

∩
Q′ ̸⊂Si

√
Si. The minimal prime decomposition of

√
J ′ is ob-

tained by removing redundant components from {
√
Si | Q′ ̸⊂Si}. Therefore all minimal

associated primes of J ′ appear in
√
S1, . . . ,

√
Ss. Since Si is an embedded primary com-

ponent of J , there exists a minimal associated prime of J which is properly contained in√
Si. 2

5

Corollary 8. For J and J ′ in Theorem 7,
√
J ′ properly contains

√
J .

Proof. Each prime component of
√
J ′ properly contains a prime component of

√
J . Thus√

J ⊂
√
J ′ holds but

√
J =
√
J ′ cannot hold because of the uniqueness of prime compo-

nents of a radical ideal. 2

2.2. An algorithm for computing a minimal primary decomposition

We assume that we have an algorithm IsolatedPrimaryComponents(I, PL) for com-

puting the set of all isolated primary components of an ideal I from PL, the set of all

minimal associated primes of I. By using the notion of saturated separating ideal, we

propose an algorithm for computing primary ideal decomposition.

Algorithm 3. SY C PrimaryDecomposition(I) †

Input : an ideal I ⊂ R

Output : a list of sets of primary components of I

QL← ∅; Q0 ← R; I1 ← I; Ci ← I; i← 1

do

PLi ←MinimalAssociatedPrimes(Ci)

QLi ← IsolatedPrimaryComponents(Ii, PLi)

Qi ← Qi−1 ∩
∩

J∈QLi

J

If Qi = I then return (QL1, . . . , QLi)

Ci+1 ← I : Qi

Ji+1 ← SaturatedSeparatingIdeal(I,Qi, Ci+1)

Ii+1 ← I + Ji+1

i← i+ 1

end do

Remark 9. In Algorithm 3, we can take any ideal Ci+1 such that
√
Ci+1 =

√
I : Qi

instead of I : Qi. See Section 4.2 for details.

Theorem 10. (1) Algorithm 3 terminates.

(2) In Algorithm 3, all primary ideals in QLi’s are distinct and
∪
i

QLi gives a minimal

primary decomposition of I.

Proof. (1) If i = 1 then
√
C1 =

√
I1. If i ≥ 2 then Ji is a saturated separating ideal

for (I,Qi−1) and
√
Ci =

√
I : Qi−1 =

√
Ii holds. Therefore PLi consists of all minimal

associated primes of Ii and is valid as the argument of IsolatedPrimaryComponents.

We also have I = Qi−1 ∩ Ii = Qi ∩ Ii+1 and Qi = Qi−1 ∩
∩

J∈QLi

J . By Corollary 8,
√

Ii+1

properly contains
√
Ii. Therefore the algorithm terminates because R is a Noetherian

ring.

† SY C stands for Shimoyama-Yokoyama with Colon ideal.

6

(2) Set QLi = {Qi1, . . . , Qini}. If the algorithm terminates in t steps, then we have

I =
t∩

i=1

ni∩
j=1

Qij . We first show Pij =
√
Qij are all distinct. Suppose Pij = Pkl. We may

assume i ≤ k. If i < k then there exists a strictly decreasing sequence

Pkl = Pkjk ⊃ Pk−1,jk−1
⊃ · · · ⊃ Piji

starting from Pkl by Theorem 7. Then Piji is a proper subset of Pij , which cannot happen
because

√
Ii = Pi1∩· · ·∩Pini is the minimal prime decomposition of

√
Ii. Thus i = k and

we have j = l by the same reason. Suppose that Qkl is redundant, then I =
∩

(i,j) ̸=(k,l)

Qij .

In the algorithm Qk−1 =
k−1∩
i=1

ni∩
j=1

Qij , I = Qk−1 ∩ Ik and
√

I : Qk−1 =
√
Ik hold. Then

we have I : Qk−1 =
∩

i≥k,(i,j)̸=(k,l)

(Qij : Qk−1) and

√
I : Qk−1 =

∩
i≥k,(i,j) ̸=(k,l)

√
Qij : Qk−1 =

∩
i≥k,(i,j)̸=(k,l),Qk−1 ̸⊂Qij

Pij .

Thus Pkl does not appear in the prime decomposition of
√
I : Qk−1 =

√
Ik because all

the Pij ’s are distinct. But this contradicts to the fact that
√
Ik = Pk1 ∩ · · · ∩ Pknk

is the
minimal prime decomposition of

√
Ik. 2

2.3. Computation of isolated primary components

In this subsection we set R = k[x1, . . . , xn], an n-variate polynomial ring over a field
k. According to Shimoyama, Yokoyama (1996) we can compute isolated primary compo-
nents of an ideal I via pseudo primary decomposition. For Y ⊂ X = {x1, . . . , xn}, we
set RY = k(Y)[X \ Y].

Algorithm 4. IsolatedPrimaryComponents(I, PL)

Input : an ideal I ⊂ R; the set of all minimal associated primes of I: PL = {P1, . . . , Pm}
Output : the set of all isolated primary components of I
for j = 1 to m do

f ← an element of (
∩
l ̸=j

Pl) \ Pj

Y ← a maximally independent set for Pj

Tj ← (I : f∞)RY ∩R
end for
return {T1, . . . , Tm}

By the following theorem this algorithm computes the set of all isolated primary com-
ponent of an ideal I.

Theorem 11. Let {T1, . . . , Tm} be the set of all isolated primary components of an ideal

I and Pj =
√

Tj . Let Yj be a maximally independent set for Pj . If fj ∈ (
∩
l ̸=j

Pl) \Pj then

Tj = (I : f∞
j)RYj ∩R.

7

Proof. Let I =
m∩

k=1

Tk ∩
q∩

l=1

Sl be a primary decomposition of I such that Sl’s are em-

bedded primary components of I. Then we have

(I : f∞
j)RYj ∩R =

m∩
k=1

((Tk : f∞
j)RYj ∩R) ∩

q∩
l=1

((Sl : f
∞
j)RYj ∩R).

Since fj /∈ Pj and fj ∈ Pk (k ̸= j), Tj : f
∞
j = Tj and Tk : f∞

j = R (k ̸= j) hold. Thus we

have

m∩
k=1

((Tk : f∞
j)RYj ∩ R) = Tj . For each Sl there exists Tkl

such that Pkl
is proper

subset of
√
Sl. If kl ̸= j then fj ∈ Pkl

⊂
√
Sl and Sl : f∞

j = R. If kl = j then
√
Sl

properly contains Pj and Yj cannot be an independent set of Sl. Thus k[Yj]∩
√
Sl ̸= {0}

and (Sl : f
∞
j)RYj ∩R = R. Thus we have

q∩
l=1

((Sl : f
∞
j)RYj ∩R) = R. Therefore we have

Tj = (I : f∞
j)RYj ∩R. 2

Remark 12. I : f∞
j in Theorem 11 is called a pseudo primary component of I and it

contains only one isolated primary component Tj whose associated prime is Pj .

3. Application of intermediate decomposition to Algorithm 3

By introducing the notion of saturated separating ideal, we have obtained Algorithm
3 which directly outputs a minimal primary decomposition. However, if we execute the
algorithm we observe that the cost for computing saturated separating ideals and isolated
primary components are often very high. In this section we propose a variant of Algorithm
3 based on an intermediate decomposition. In that variant each saturated separating ideal
is computed for extracting only one unknown primary component and it makes both the
computation of the saturated separating ideal and the primary component easy.

3.1. An intermediate decomposition of an ideal

Algorithm 3 introduces a decomposition of the set of all associated primes of I:
Ass(R/I) = PL1 ∪ · · · ∪ PLt. We first show that this decomposition has a definite
meaning which depends on only I.

Definition 13. Let A = Ass(R/I) be the set of all associated primes of I. We define
Ai ⊂ A for i ≥ 1 recursively:

Ai = {P ∈ A | P is minimal with respect to the inclusion relation in A \
i−1∪
k=1

Ak}.

An element of Ai is called an associated prime of level i.

Proposition 14. Let I =
t∩

k=1

nk∩
l=1

Qkl be a minimal primary decomposition such that

{Pi1, . . . , Pini} coincides with Ai, the set of all associated primes of level i for i = 1, . . . , t

and Pkl =
√
Qkl. Set Qi =

i∩
k=1

nk∩
l=1

Qkl and Si = R \
∪

k≤i,P∈Ak

P . Then Qi = IRSi ∩R.

8

Proof. Although this proposition is a corollary of Lemma 2.19 in Shimoyama, Yokoyama

(1996), we show a proof for convenience. From I =

t∩
k=1

nk∩
l=1

Qkl we have

IRSi ∩R =
t∩

k=1

nk∩
l=1

(QklRSi ∩R).

If k ≤ i then Pkl ∩ Si = ∅ and QklRSi ∩R = Qkl. Suppose k > i. We show Pkl ∩ Si ̸= ∅.
If Pkl ∩ Si = ∅ then Pkl ⊂

∪
a≤i,P∈Aa

P . By the prime avoidance Pkl ⊂ Pab for some a ≤ i

and b. Then Pkl is a proper subset of Pab because a ≤ i < k. But this is a contradiction

because Pab is minimal in A \
∪
i<a

Ai =
∪
a≤i

Ai and Pkl ∈
∪
a≤i

Ai. Thus if k > i then

Pkl ∩ Si ̸= ∅ and QklRSi ∩R = R. Therefore

IRSi ∩R =

i∩
k=1

nk∩
l=1

Qkl = Qi. 2

Corollary 15. Let I =
∩
k

Tk be a minimal primary decomposition of an ideal I and Qi

the intersection of all primary components Tk such that the level of
√
Tk is not greater

than i. Then Qi is independent of a minimal primary decomposition.

Theorem 16. PLi in Algorithm 3 coincides with Ai. In particular PLi is independent

of saturated separating ideals.

Proof. If i = 1, then PL1 is the set of all minimal associated primes of I and PL1 = A1.

Assume PLk = Ak for all k ≤ i − 1. If P ∈ Ai then P is minimal in A \
i−1∪
k=1

Ak =

A \
i−1∪
k=1

PLk. If P ∈ PLk for some k > i then there exists P ′ ∈ PLi which is properly

contained in P . Then P ′ /∈
i−1∪
k=1

PLk implies P, P ′ ∈ A \
i−1∪
k=1

PLk, which contradicts to

the minimality of P . Thus P ∈ PLi. Conversely suppose P ∈ PLi. If P /∈ Ai then there

exists P ′ ∈ A\
i−1∪
k=1

PLk which is properly contained in P . If P ′ ∈ PLk (k ≥ i) then there

exists P ′′ ∈ PLi satisfying P ′′ ⊂ P ′. Then P, P ′′ ∈ PLi and P ′′ is a proper subset of

P , which is a contradiction. Thus P ∈ Ai and we have PLi = Ai. By induction we have

PLi = Ai (i ≥ 1). 2

Remark 17. Qi in Algorithm 3 is independent of saturated separating ideals Ii. Ii only

affects the shapes of primary components in QLi.

In the rest of this section we set R = k[X] for a field k and X = {x1, . . . , xn}.

9

Theorem 18. Let I be an ideal in R. We retain the notations in Proposition 14. Let

Yj ⊂ X be a maximally independent set for Pij . Set Si,j = R \ (Pij ∪
∪

k≤i−1,P∈Ak

P). If

fj ∈ (
∩
l ̸=j

Pil) \ Pij then

(1) Qi−1 ∩ ((I : f∞
j)RYj ∩R) = Qi−1 ∩Qij ,

(2) Qi−1 ∩
ni∩
j=1

((I : f∞
j)RYj ∩R) = Qi.

(3) Qi−1 ∩Qij = IRSi,j ∩R.

Proof. Let I =

t∩
k=1

nk∩
l=1

Qkl be a minimal primary decomposition such thatAi = {Pi1, . . . , Pini},

Pij =
√
Qij for i = 1, . . . , t. Then Qi−1 =

i−1∩
k=1

nk∩
l=1

Qkl, I = Qi−1 ∩
t∩

k=i

nk∩
l=1

Qkl and

Qi1, . . . , Qini are all isolated primary components of
t∩

k=i

nk∩
l=1

Qkl. Thus

(I : f∞
j)RYj ∩R = ((Qi−1 : f∞

j)RYj ∩R) ∩Qij

by Theorem 11. Since Qi−1 ⊂ (Qi−1 : f∞
j)RYj ∩R we have

Qi−1 ∩ ((I : f∞
j)RYj

∩R) = Qi−1 ∩Qij and Qi−1 ∩
ni∩
j=1

((I : f∞
j)RYj

∩R) = Qi.

The proof of (3) is similar to that of Proposition 14. 2

3.2. An algorithm for computing primary decomposition via intermediate decomposition

Theorem 18 means that the intermediate components Qi−1∩Qij and Qi can be computed
recursively without knowing individual Qij . Furthermore (3) of Theorem 18 means that
Qi−1∩Qij does not depend on a particular primary decomposition and is determined only
by Pij . Since Qij can be obtained as a component of Qi−1 ∩Qij , we have the following
algorithm:

Algorithm 5. SY CI PrimaryDecomposition(I) ‡

Input : an ideal I ⊂ R
Output : a minimal primary decomposition of I
i← 1; R0 ← R
do

PLi = {Pi1, . . . , Pini} ←MinimalAssociatedPrimes(I : Ri−1)
for j = 1 to ni do

Yij ← a maximally independent set for Pij

fij ← an element in (
∩
k ̸=j

Pik) \ Pij

‡ SY CI stands for Shimoyama-Yokoyama with Colon ideal and Intermediate decomposition.

10

Rij ← Ri−1 ∩ ((I : f∞
ij)RYij ∩R)

Cij ← an ideal satisfying
√

Cij = Pij

Jij ← SaturatedSeparatingIdeal(Rij , Ri−1, Cij)
Tij ← (Rij + Jij)RYij ∩R

end for
QLi = {Ti1, . . . , Tini}
Ri ← Ri1 ∩ · · · ∩Rini

If Ri = I then return (QL1, . . . , QLi)
i← i+ 1

end do

Theorem 19. Algorithm 5 outputs a minimal primary decomposition of I.

Proof. We fix a minimal primary decomposition of I as in the proof of Theorem 18.
Then it is easy to see that Ri = Qi, Rij = Qi−1 ∩ Qij and PLi = Ai, the set of
all associated primes of level i, for all i, j. If Jij is a saturated separating ideal for
(Rij , Ri−1) then

√
Rij + Jij =

√
Qij : Qi−1 = Pij and Tij = (Rij + Jij)RYij ∩ R is the

unique isolated Pij-primary component of Rij + Jij . Let Rij + Jij = Tij ∩
s∩

l=1

Ul be a

minimal primary decomposition of Rij + Jij such that Ul’s are embedded components.

Then Rij =
i−1∩
k=1

nk∩
l=1

Qkl∩Tij∩
s∩

l=1

Ul is a primary decomposition of Rij . Since
√
Ul properly

contains
√
Tij = Pij and Ass(R/Rij) =

i−1∪
k=1

PLk ∪ {Pij},
√
Ul cannot be an associated

prime of Rij . Thus all Ul’s are redundant and we have Rij = Qi−1∩Tij . Thus Tij is valid
as the Pij-primary component of I. 2

Remark 20. For computing a saturated separating ideal for (Rij , Ri−1), we need
√
Rij .

Fortunately it coincides with
√
I and it is sufficient to compute it only once after com-

puting PL1.

If we only want to know Ass(R/I) then Algorithm 5 is simplified as follows.

Algorithm 6. SY CI AssociatedPrimes(I)

Input : an ideal I ⊂ R
Output : the set of all associated primes of I
i← 1; R0 ← R
do

PLi = {Pi1, . . . , Pini} ←MinimalAssociatedPrimes(I : Ri−1)
for j = 1 to ni do

Yij ← a maximally independent set for Pij

fij ← an element in (
∩
k ̸=j

Pik) \ Pij

Rij ← ((I : f∞
ij)RYij ∩R)

end for
Ri ← Ri−1 ∩Ri1 ∩ · · · ∩Rini

11

If Ri = I then return (PL1, . . . , PLi)
i← i+ 1

end do

4. Efficient implementation of the new algorithms

In order to realize an efficient implementation of Algorithm 3, Algorithm 5 and Algo-
rithm 6, we need efficient implementation for computing saturated separating ideals, ideal
quotients and isolated primary components. In this section we propose several methods
for each part. Again we set R = k[x1, . . . , xn].

4.1. Computation of saturated separating ideals

If we apply Algorithm 2 for computing a saturated separating ideal, we often observe
that the computation of j satisfying Q∩ (I+J+ ⟨f j

i ⟩) = I becomes harder as J becomes

larger. From our experiments we guess that adding f j
i with a large j makes the subsequent

computation harder and we propose the following variant so that we can find fsi
i with

smaller si earlier.

Algorithm 7. SaturatedSeparatingIdeal2(I,Q,C)

Input : ideals I,Q,C ⊂ R satisfying I ⊂ Q and
√
C =

√
I : Q

Output : a saturated separating ideal for (I,Q)
S ← a generating set of C

S0 = {f1, . . . , fl} ← S \
√
I

J = {0}; U ← S0; j ← 1
while U ̸= ∅ do
(∗) for each fi ∈ U if Q ∩ (I + J + ⟨f j

i ⟩) = I then {J ← J + ⟨f j
i ⟩; U ← U \ {i}}

j ← j + 1
end while
return J

Since a large part of U satisfies the condition in (∗) as j becomes large, we may apply
such a strategy that if Q ∩ (I + J + T) = I for a subset T ⊂ U j = {f j

i | j ∈ U} then we
try to find T ′ ⊂ U j \ T with Q ∩ ((I + J + T) + T ′) = I and |T ′| = 2|T |.

In Algorithm 7, We have to compute many ideal intersections of Q ∩ (J + ⟨f⟩)-type.
Suppose that we have a Gröbner basis G of tJ + (1 − t)Q with respect to an elimina-
tion order < such that {t} >> {x1, . . . , xn}. We can apply the following methods for
improving the efficiency.
• Incremental computation
For computing Q ∩ (J + ⟨f⟩) it is sufficient to compute a Gröbner basis of ⟨G ∪ {tf}⟩
with respect to <. Since G is a Gröbner basis, we don’t have to consider S-polynomials
constructed from G when we execute the Buchberger algorithm for G ∪ {tf}.
• Early termination
If Q ∩ J = I then G contains a Gröbner basis of I. Therefore if an element g ∈
R is generated during an execution of the Buchberger algorithm to check whether
Q ∩ (J + ⟨f⟩) or not, then it means that g /∈ I and thus Q ∩ (J + ⟨f⟩) ̸= I.

Thus if a function for computing Gröbner basis allows incremental computation and early
termination, we can reduce the cost for necessary Gröbner basis computations.

12

4.2. Computation of ideal quotients

Ideal quotients are used in two ways in Algorithm 3 and Algorithm 5.
(1) We need the set of all minimal associated primes of I : Qi.
(2) We need a generating set of an ideal C satisfying

√
C =

√
I : Q to compute a

saturated separating ideal.

For (1) we can compute the required set via
√
I : Qi =

k∩
j=1

√
I; gj , where {g1, . . . , gk} is

a generating set of Qi. However, for (2) it is not clear whether we can use a generating
set of

√
I : Q instead of that of I : Q from a practical point of view. If we use the former

one, then it is possible that the required exponent m in Theorem 4 is high, which may
make the check of I = Q ∩ (I + J + ⟨fm⟩) hard. In general, in Algorithm 3 the cost
for computing ideal quotients is not dominant and it will be safe to set Ci+1 = I : Qi.
However, in Algorithm 5 the cost for computing ideal quotients tends to occupy a large
part of the whole computation. If we set Cij =

√
Rij : Ri−1 = Pij , then we can bypass

the computation of Rij : Ri−1. In our experiment the computations become faster by
setting Cij = Pij in Algorithm 5. Therefore we set Cij = Pij in our implementation
unless an option to set Cij = Rij : Ri−1 is specified.

4.3. Computation of isolated primary components

In Algorithm 4, J = I : f∞ and JRY ∩ R are often hard to compute. The following
two remarks may be useful for improving Algorithm 4.
• Change of the order of two localizations
The order of two localizations can be changeable, that is Qi can be computed as
Qi = (IRY ∩R) : f∞.
• Computation of JRY ∩R
This type of localization can be computed as follows: Let Gi be a Gröbner basis of JRY

in k(Y)[X \ Y]. Set h = LCM(the square free part of LC(g) | g ∈ Gi), where LC(g) is
the leading coefficient of g as an element in k(Y)[X \ Y]. Then JRY ∩R = ⟨Gi⟩ : h∞.
Gi can be computed in two ways: direct computation in k(Y)[X\Y], or computation in
k[X] with respect to an elimination order. It often happens that the efficiency greatly
differs between these two methods.

In both cases it is hard to predict which choice is faster than the other. Again in these
cases a competitive computation will be useful.

5. Experiments

In this section we will show the performance of the new algorithms in Risa/Asir
(Noro et al., 2011) and Singular (Decker et al., 2010). The implementation in Risa/Asir
is an improved version of noro_pd.rr described in Noro (2010), which is contained in
the OpenXM package (OpenXM committers, 2011). The implementation in Singular is
an ongoing work and it uses a function for computing minimal associated primes in
primdec.lib. The file primdecSYCI.lib is available from Noro (2011).

In order to measure the performance of Algorithm 3 and Algorithm 5, we need exam-
ples which have many embedded primary components and are hard to decompose by SY
or GTZ. In addition to the examples used in Noro (2010), we use ideals Ti generated by

13

monomials, binomials and trinomials. We randomly generate such kind of ideals and use
for our experiments. The input ideals are as follows:
Ak,m,n denotes the ideal generated by adjacent k × k minors of m × n matrix X with
indeterminate entries (Diaconis et al., 1998). I2, I3 are ideals related to local b-functions
introduced in Noro (2010).

T1 = ⟨cdefghiz + cdefhjz + bcdeijz, 3cdfghz3 + 4bdefghj + 4bdehjz2,

2bfghijz + fhjz3, 4bcefhz + cfgijz, cdjz, 3egjz4 + bcdgij + 2cdhjz2,

3defiz + 2defz2 + 4bcei, 4bcefiz + 3dfhjz2, cefhjz + bcfiz2 + giz4,

4ceghiz + bcejz⟩ ⊂ Q[b, c, d, e, f, g, h, i, j, z]

T2 = ⟨3bcegz2 + 4bcghi+ 2bcez2, bcez + 3dhi, cfgiz3 + bcdegh, cfgz4 + 3cdefgh,

2bcfgiz2 + bcdegh+ z6, bchz + 4bcg, 4bcdgiz + 2cfhiz2 + 3bdfhi, bdefhz + bz4,

3befgiz + 2cefgz2 + 4cfhz2, 3bfh+ 4fhi+ bz2⟩ ⊂ Q[b, c, d, e, f, g, h, i, z]

T3 = ⟨4befjkmz3 + 2bcdhijlm+ cdegkmz2, cdeghjlz, 2defghilz + 4jlz6 + defjlz2,

beghjlmz + 4ceghiz2 + bdeflz2⟩ ⊂ Q[b, c, d, e, f, g, h, i, j, k, l,m, z]

T4 = ⟨2cfhiz2 + bdefh, bcfijz + 4bcghi, 2cdejz + 4cdfj + ijz2,

bcdfgijz + cdijz3, 3bceijz + 3cgijz2 + beiz3, 4bchjz + cgiz2, behj,

3cdefhiz + 2bdfgjz + 2bchjz2⟩ ⊂ Q[b, c, d, e, f, g, h, i, j, z]

T5 = ⟨4bc2d2e2gh2iz2 + b2ciz9 + 2bceg2hz5, bcd2e2g2h2, bcfhz5 + b2dfg2iz,

4bc2e2f2h2i2z2 + b2c2e2fh2iz3, 2b2de2f2hi2z + 3b2c2e2h2i2⟩
⊂ Q[b, c, d, e, f, g, h, i, z]

T6 = ⟨4bcdfghlz + 3bcfhlz3, befhkl + defghz, 3bdefhijklz + 2cfhjkz5 + bdehkz4,

4befijkl + dgklz3, bcdefghj + 2bcdegijz + 2bcdhjklz,

cdegijz + 3bcdefk + 4fhklz2, 2bdeghjkz + cdez5 + 3eghjz3,

bcdghijz + cdfhklz + 2bcdhkz2, 2bcdefi+ bhijkl, eghjkz5 + 2bcefghjkl,

gilz2 + 2beil, g, 3cdefijkl + 4bcdgjz3, cdehijz + 4cegjz3, bchkl,

cdfghklz + befhilz + cdfgjlz, fiz5 + 2cdfghk + bdfhiz, befijklz2 + 3bcdghijl,

2bgijklz + 2bcghil + cefhjz, 2defghjz + 3cefhijz + 3bdghiz⟩
⊂ Q[b, c, d, e, f, g, h, i, j, k, l, z]

T7 = ⟨cfghijklz + cdz7, 3bdikz7 + 3bcdefghikl + 4bfghkz5, 3befghijkz + 2bcegijz3,

3cfhjlz + dfhjlz + 4bdfkl, 3bejz4 + bdfgjk + 2begjz2,

cdefgjkz + 3efgjlz2 + 4elz5, bcdefghjk, 4cehjlz4 + 3ceghijkl, efghjklz, ik,

4beghijkz3 + 3bdeghijkl, cdefkl + dgjklz, 2bghijlz + bcdgiz + 4eghjkz,

bcehijklz + cdghijlz2, 2bcdefglz + 2cfgijlz2 + chz6,

4bdefhjlz + bdhijlz + 2defgklz, 2cdgiklz + cehklz2 + 4cghilz, chjkl,

2bcdhijlz + cgijz4, bdfhijkz + 4bdijkz3 + 2dhlz4⟩ ⊂ Q[b, c, d, e, f, g, h, i, j, k, l, z]

T8 = ⟨3bejz4 + bdfgjk + 2begjz2, cdefgjkz + 3efgjlz2 + 4elz5,

14

bcdefghjk, 4cehjlz4 + 3ceghijkl⟩ ⊂ Q[b, c, d, e, f, g, h, i, j, k, l, z]

T9 = ⟨3hz4 + 2cdfg, bdefgh+ cfgz3 + cgz4, bcgz2 + cdef + defz,

3efgh+ bcez + 2bfz2, 3defh+ 2cegh, dehz + 4cgz2, 2cdefhz + chz3,

3cdefhz + 2cfghz, 3dfghz + 2efhz2 + 2bcgz, bdhz + 2efz + 2bhz⟩
⊂ Q[b, c, d, e, f, g, h, z]

T10 = ⟨4cdfhjkz + 4efhijz2 + cehiz2, bcdfiz, 3bdefhj + 4cdeghz, cdegkz + bdiz3,

bcdkz2 + 2begjk, 2cdefhijz + 3cehijz3 + bcdhz4, efhjkz + 3bcfhz,

2bcegiz + 3dghijz + 3fghiz, bdfjz + dfjkz, 4efhikz + 3befhi+ 2dfghi,

cdhijz + 2efgkz2, bcdgikz2 + bcdfgik, 00, dfgikz, 2bcdghiz + bcegiz2 + bdfijk,

cdefghijz, bcdegijkz + cdefkz4, 4bdfghjz + bdgkz3 + 2bcdeij,

cefghijkz + 4defgikz3 + 4eghkz4, bcdgijkz + ceghjkz2 + 4cefghz3⟩
⊂ Q[b, c, d, e, f, g, h, i, j, k, z]

As to the sub-algorithms called in each algorithm, we fix them according to preliminary
experiments as follows:

• In Algorithm 3 we use Algorithm 7 for computing a saturated separating ideal because
the number of generators of I : Qi tends to be large and the trick explained after Al-
gorithm 7 often takes effect. In Asir the competitive computation explained in Section
4.3 is applied for computing a Gröbner basis with respect to an elimination order. This
is realized by the OpenXM reset protocol described in Maekawa et al. (2001).
• In Algorithm 5 we use Algorithm 2 for computing a saturated separating ideal since the
number of generators of Rij : Ri−1 or its radical Pij is relatively small. In Algorithm
2 we set Cij = Pij .
• Each extraction of Qij in Algorithm 3 or Rij in Algorithm 5 is computed by (IRY ∩R) :
f∞ in Asir and (I : f∞)RY ∩ R in Singular for appropriate I, Y and f (see Section
4.3).
• In Singular minAssGTZ is used for computing minimal associated primes.
• The incremental Gröbner basis computation and the early termination in Section 4.1
are used in both algorithms in Asir. These are available in Risa/Asir after version
20110112.

Two functions noro_pd.syc_dec(Ideal,Vars) and noro_pd.syci_dec(Ideal,Vars)

are available in noro_pd.rr. These functions implement Algorithm 3 and 5 respectively.
Ideal is a list of polynomials with variables Vars. a list [L1, . . . , Lt] representing a min-
imal primary decomposition of Ideal is returned, where Li = [QPi1, . . . , QPini] and
each QPij is a pair [Qij , Pij] such that Pij is an associated prime of level i and Qij

is Pij-primary component of Ideal. A function primdecSYCI(ideal I) is available in
primdecSYCI.lib. This function implements Algorithm 5.

Timings were measured on a 64-bit Linux machine with Intel Xeon X5570, 2.93GHz.
We show elapsed time in seconds. In Table 1 the time for Algorithm 5 by noro_pd.syci_dec
in Asir is shown with the time for Algorithm 6 in parentheses. We also show the timings

15

of Algorithm 5 by primdecSYCI and SY by primdecSY in Singular. The last column
shows the number of components in each QLi. In that table ‘—’ means that the timing
was not measured because it is expected that it takes very long time.

Ideal Asir Singular |QL1|, . . . , |QLt|

Alg. 3 Alg. 5 (Alg. 6) SY Alg. 5

I2 0.4 0.5 (0.4) >1h 5.9 1,1,1

I3 11 36 (16) — 230 1,2,1,1

A2,3,5 1.3 1.0 (0.6) 42000 1.9 10,5,3,1

A2,3,6 12 5.4 (3.2) — 8.9 18,12,8,2,1

A2,3,7 330 33 (20) — 54 32,26,20,7,2,1

A2,3,8 17000 220(130) — 390 57,56,46,19,7,2,1

A2,3,9 — 1800(1100) — 3500 102,116,103,46,21,8,5,1

A2,3,10 — 14000(9200) — 31000 182,236,224,110,55,26,19,2,1

A2,4,4 5.5 3.8 (2.4) >3h 5.6 15,12,4,1

A2,4,5 1200 100 (67) — 135 35,30,19,9,2,1

A2,4,6 >100h 6400(4300) — 6500 82,89,73,36,18,10,4,1

A2,4,7 — 300h(260h) — — 193,254,236,136,74,63,35,16,1

A2,5,5 — 38000(24000) — 39000 100,107,80,61,35,32,18,4,1

T1 950 48 (30) 1800 75 49,36,26,23,17,12,5,1

T2 26 13 (12) 40 26 15,22,15,7,4

T3 1900 ‡ 80 (43) >5h 140 46,68,64,19,3

T4 57 25 (14) 2000 46 § 40,34,25,17,18,6,4,1

T5 7500 34 (20) >5h 67 14,28,30,27,7,2,1

T6 4.5 3.6 (2.4) 210 5.0 48,42,18,8,4,2

T7 580 180 (97) >3h 330 § 55,58,66,62,56,44,37,12,1

T8 1.5 1.3 (0.9) >3h 2.0 § 37,16

T9 8.0 4.6 (3.3) 4.4 8.6 § 15,14,12,10,4,1

T10 1000 280 (160) >1h 290 76,49,54,47,39,33,28,10,1

Table 1. Timing data for computing primary decomposition

I2 I3 A2,3,5 A2,3,6 A2,3,7 A2,3,8 A2,4,4 A2,4,5

0.9 17 5 133 3540 146h 31 12700

Table 2. Timing data of Algorithm 1 (from Noro (2010))

In Table 3 we show the timings for the examples in Decker et al. (1998) which do
not necessarily have many embedded components but were taken from a wide range of

16

sources. In this table the timings by Singular primdecGTZ, primdecSY and primdecSYCI

for non zero-dimensional ideals are shown. All computations are done over Q. Here we

omit zero-dimensional ideals because primdecSYCI calls primdecGTZ for zero-dimensional

ideals.

No. 1 2 3 4 5 6 7 9 12 14 16 19 20

GTZ 0.03 1.3 0.1 0.4 7.4 1.2 0.2 0.1 0.3 0.03 0.2 0.1 0.1

SY 5.2 0.5 0.04 0.2 0.4 0.2 0.2 0.7 ¶ 12 ¶ 0.1 0.4 0.1 ¶ 1.0

SYCI 0.2 0.3 0.1 0.1 0.8 4.0 0.1 0.6 3.6 0.1 1.3 § 0.1 0.1

No. 21 22 23 24 25 27 28 29 30 31 32 33

GTZ 0.1 0.3 0.2 0.3 1.1 0.01 0.03 55 6.6 0.04 1.0 0.04

SY 0.1 0.2 2 0.2 0.9 ¶ 0.1 0.2 49 ¶ 0.6 0.01 0.3 0.02

SYCI 0.2 0.4 0.7 0.1 0.8 0.1 0.1 2.3 0.7 0.1 0.6 0.1

Table 3. Timing data in Singular for examples in Decker et al. (1998)

6. Discussion

6.1. Evaluation of the new algorithms

Our initial purpose was to clarify the reason of the efficiency of Algorithm 1 and it has

been satisfied by introducing the notion of saturated separating ideal. As a result we could

propose Algorithm 3, which is simpler than Algorithm 1 and produces no intermediate

redundant components. However, from a practical point of view we cannot expect a

significant speed-up by Algorithm 3 because the number of redundant components is

already zero or very small in Algorithm 1 and the most time-consuming part is the

computation of separating ideals in both these two algorithms. Nevertheless Table 1 and

Table 2 show that Algorithm 3 is more efficient than Algorithm 1. There are two possible

reasons of this improvement: one is that we have introduced various techniques to speed

up the computation of saturated separating ideals, and the other is that we compute the

minimal associated primes of Ii from not Ii itself but I : Qi−1.

Table 1 clearly shows that the performance of Algorithm 5 is remarkable for harder

problems. Let us examine the results in Asir for A2,3,8 for example. If we apply Algo-

rithm 3 it takes 4.4 hours to compute saturated separating ideals. In Algorithm 5 each

saturated separating ideal is constructed for extracting a single primary component and

it is relatively easy to compute them. In fact it took only 90 seconds. Consequently the

total time is greatly reduced.

‡ Primary components are computed as (I : f∞)RY ∩R.
§ noFacstd is specified in minAssGTZ.
¶ minAssGTZ is used in primdecSY.

17

6.2. Comparison with other methods

Table 1 shows that SY can decompose some of the input ideals. However the comput-
ing time of SY tends to be longer than that of the new algorithms. We guess that this
is caused by a large number of redundant components. For example the number of em-
bedded components of A2,3,5 is 9. But Singular SY produces 411 redundant components
during the execution. In SY we cannot predict how many redundant components will be
produced. Our new algorithm not only produces no intermediate redundant components
but also it produces components with a definite property in a definite order: in the i-
th step all the primary components whose associated primes are of level i are exactly
produced.

A2,m,n’s are binomial ideals and we can apply a special algorithm based on cellular
decomposition (Eisenbud, Sturmfels, 1996) to them. An implementation of the algorithm
is available in Macaulay2 (Grayson, Stillman, 2011) but it took 85 seconds and 115
minutes to decompose A2,3,5 and A2,4,4 respectively and it could not decompose the
other ones in reasonable time.

Table 3 shows that the performances of primdecGTZ, primdecSY and primdecSYCI

are comparable except for a few examples. The reason is that the dominant part in these
functions is often the zero-dimensional decomposition if the computation of embedded
components is not hard and that subroutines in primdec.lib are commonly used in
these functions. In particular GTZ performs best for zero-dimensional ideals and there is
no reason to apply Algorithm 5 for such ideals. However, as shown in Table 1, Algorithm
5 can surely decompose some examples which are hard to decompose by GTZ and SY.
Since Algorithm 5 is an improvement of SY, it is practical to choose either Algorithm 5
or GTZ depending on an input ideal.

6.3. Computation of associated primes

We also presented Algorithm 6 for computing all associated primes of an ideal I
without computing primary decomposition. Since it does not contain the computation
of saturated separating ideals, we expected at first that the computation would be much
faster than Algorithm 5. However Table 1 shows that Algorithm 6 is not significantly
faster than Algorithm 5. The reason is that the extraction of Qij from Qi−1∩Qij is done
very efficiently compared with the extraction of Qij from Ii in Algorithm 3.

An algorithm for computing the set of all associated primes of an ideal I has already
been presented in Eisenbud et al. (1992). It is based on equidimensional decomposition
and the radical of each equidimensional component is first computed by homological
algebra. Then the associated primes are obtained by the prime decomposition of the
radical. In our algorithm the radical decomposition of I : Qi is first computed and the
algorithm proceeds with the knowledge of the prime components of I : Qi. It is an
interesting future work to compare two methods from a practical point of view.

6.4. parallel computation

Finally we mention an application of parallel computation. There are several parts
where we can apply parallel computation: computation of the radical decomposition of an
ideal quotient, extraction of isolated primary components in Algorithm 3 and extraction
of Qij from Qi−1∩Qij in Algorithm 5. If the cost for non-parallelizable parts is not large,
we can expect that the parallelization of these parts reduce the total elapsed time.

18

Acknowledgements

We would like to thank Prof. Kazuhiro Yokoyama for valuable comments and sugges-
tions. In particular we could improve the efficiency of our implementation of Algorithm
5 according to his suggestion on the choice of Cij in that algorithm. We would also like
to thank anonymous referees for their useful suggestions.

References

W. Decker, G.-M. Greuel, G. Pfister, H. Schönemann. Singular 3-1-2 — A computer
algebra system for polynomial computations, http://www.singular.uni-kl.de/.

W. Decker, G.-M. Greuel, G. Pfister, 1998. Primary decomposition: Algorithms and
comparisons, Algorithmic algebra and number theory, Springer, 187–220.

P. Diaconis, D. Eisenbud, B. Sturmfels, 1998. Lattice walks and primary decomposi-
tion, in B. Sagan, R. Stanley eds, Mathematical Essays in Honor of Gian-Carlo Rota,
Birkhäuser, 173–194.

D. Eisenbud, C. Huneke, W. Vasconcelos, 1992. Direct methods for primary decomposi-
tion, Invent. Math. 110, 207–235.

D. Eisenbud, B. Sturmfels, 1996. Binomial Ideals, Duke Math. J. 84, 1–45.
P. Gianni, B. Trager, G. Zacharias, 1988. Gröbner basis and primary decomposition of
polynomial ideals, J. Symb. Comp. 6, 149–167.

D.R. Grayson, M.E. Stillman, 2011. Macaulay2, a software system for research in alge-
braic geometry, Available at http://www.math.uiuc.edu/Macaulay2/.

M. Maekawa, M. Noro, K. Ohara, N. Takayama, Y. Tamura, 2001. The Design and
Implementation of OpenXM-RFC 100 and 101, Proc. ASCM2001, World Scientific,
102–111.

M. Noro, 2010. New algorithms for computing primary decomposition of polynomial
ideals, in Proc. ICMS 2010, LNCS 6327, 233–244.

M. Noro, 2011. Packages for computing primary decomposition.
http://www.math.kobe-u.ac.jp/HOME/noro/pd.html.

M. Noro, N. Takayama, H. Nakayama, K. Nishiyama, K. Ohara, 2011. Risa/Asir : A
computer algebra system. http://www.math.kobe-u.ac.jp/Asir/asir.html.

OpenXM committers, 2011. OpenXM, a project to integrate mathematical software sys-
tems, http://www.openxm.org.

T. Shimoyama, K. Yokoyama, 1996. Localization and Primary Decomposition of Poly-
nomial ideals, J. Symb. Comp. 22, 247–277.

19

