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Definition 1. Let Xi , Yi ⊂ R
n (i = 1, 2) be submanifolds with dim X1 =

dim X2 and dim Y1 = dim Y2, and let yi ∈ Xi ∩ Yi . We say that the
contact of X1 and Y1 at y1 is same type as the contact of X2 and Y2

at y2 if there is a diffeomorphism germ Φ : (Rn, x1) → (Rn, x2) such
that Φ(X1) = X2 and Φ(Y1) = Y2. In this case, we write K (X1, Y1; y1) =
K (X2, Y2; y2).
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Definition 2. Two function germs f , g : (Rn, 0) → (R, 0) are
K-equivalent if there are a diffeomorphism germ φ : (Rn, 0) → (Rn, 0)
and a function germ A : (Rn, 0) → R with A(0) 6= 0 such that
g ◦ φ(x) = A(x)f (x).

Theorem 3 (Montaldi, 1986). Let gi : (Xi , xi) → (Rn, yi) (i = 1, 2) be
immersion germs and fi : (Rn, 0) → (R, 0) be submersion germs with
Yi = f−1

i (0). Then K (X1, Y1; y1) = K (X2, Y2; y2) if and only if f1 ◦ g1 and
f2 ◦ g2 are K-equivalent.
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Example 4. Let γ : (R, 0) → (R2, 0) be a regular curve, and set

F (x , y ) = (x − a)2 + (y − b)2 − r 2.

Then γ has a circle with k -point contact at γ(t0) iff

f (t0) = F (γ(t0)) = 0, f (i)(t0) = 0 (1 ≤ i ≤ k − 1) and f (k )(t0) 6= 0.

The curve γ has k -th order vertex at γ(t0) if

κ(t0) 6= 0, κ(i)(t0) = 0 (1 ≤ i ≤ k ) and κ(k+1)(t0) 6= 0.

The curve γ has a circle with k -point contact (k ≥ 4) at γ(t0) iff γ has a
(k − 3)-th order vertex at γ(t0).
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In this talk, we consider the following contact types corresponding to
K-equivalence classes of (R2, 0) → (R, 0) represented by

A±
k : x2 ± yk+1, D±

k : x2y ± yk−1 (k ≥ 4).

A+
1 A−

1 A2 A+
3 A−

3

D+
4 D−

4 D5

Figure 1: Zero sets of Ak and Dk -singularities.
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Let S ⊂ R
3 be a regular surface, and let πv ,d be a plane defined by

〈x , v〉 = d (x = (x , y , z), v ∈ S2, d ∈ R).

The moduli space of planes is three dimensional.

The contact of S with πv ,d at p ∈ S ∩ πv is as follows:

⋆ A≥1-contact ⇐⇒ v = ±n(p)
⋆ A≥2-contact ⇐⇒ p is parabolic (i.e., κi(p) = 0, κj(p) 6= 0 (i 6= j))
⋆ A≥3-contact ⇐⇒ p is a ridge point w.r.t. v i

Definition 5. A non-umbilic point p is called a ridge point w.r.t. the
principal direction v i if v iκi(p) = 0. Moreover, p is called a k -th order
ridge point w.r.t. v i if v (n)

i κi(p) = 0 (1 ≤ n ≤ k ) and v (k+1)
i κi(p) 6= 0.
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The kernel filed of A−
1 -contact with planes defines asymptotic directions

in the hyperbolic region.

folded saddle folded node folded focus

Figure 2: Singularities of asymptotic curves.
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Let S ⊂ R
3 be a regular surface, and let Sa,r be the sphere defined by

|x − a|2 = r 2 (x = (x , y , z), a ∈ R
3, r > 0).

The moduli space of spheres is four dimensional.

The contact of S with Sa,r at p ∈ S ∩ Sa,r is as follows:

⋆ A≥1-contact ⇐⇒ a = p ± r n(p)
⋆ A≥2-contact ⇐⇒ a = p + n(p)/κi(p)
⋆ A≥3-contact ⇐⇒ p is a ridge point w.r.t. v i

⋆ A≥4-contact ⇐⇒ p is at least second order ridge point w.r.t. v i

⋆ D≥4-contact ⇐⇒ p is an umbilic point
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The kernel filed of A2-contact with spheres defines principal directions
except at umbilic points.
Classification of singularity types of the lines of curvature at generic
umbilics are known as Darboux classification.

star monstar lemon

Figure 3: Singularities of lines of curvature near umbilic points.
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Definition 6. A homogenous surface in R
3 is an orbit of a certain

subgroup of the Euclidean motion group G = O(3) ⋊R
3.

Theorem 7 (Takahashi, 1970). Homogenous surfaces in R
3 are

planes, spheres and cylinders.

What do we get by measuring contact of a surface with cylinders?
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Let S ⊂ R
3 be a regular surface, and let denote Cv ,a,r the cylinder defined

by

|x − 〈x , v〉 − a|2 = r 2

(x = (x , y , z), (v , a) ∈ {(v , a) ∈ S2 × R
3| 〈v , a〉 = 0}, r > 0).

The moduli space of cylinders is five dimensional, and thus we expect
that there are generically A1, A2, A3, A4, A5, D4 and D5-contact cylinders
for a regular surface S ⊂ R

3.
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長谷川大（岩手医科大学） 曲面と円柱の接触と曲面の輪郭線 12 / ??

Theorem 8. The contact of S with Cv ,a,r at p ∈ S∩Cv ,a,r is as follows:

⋆ A≥1-contact ⇐⇒ v ∈ TpS and a = p − 〈p, v〉v ± r n(p)
⋆ A≥2-contact ⇐⇒ one of the following conditions holds:

• p is not a parabolic point, v is not asymptotic at p and a =
p − 〈p, v〉v + n(p)/κc,

• p is a parabolic but not umbilic point (i.e., κi(p) = 0, κj(p) 6=
0), v is asymptotic at p and λ 6= 1/κj(p),

• p is a flat umbilic point.
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Theorem 8. The contact of S with Cv ,a,r at p ∈ S∩Cv ,a,r is as follows:

⋆ A≥1-contact ⇐⇒ v ∈ TpS and a = p − 〈p, v〉v ± r n(p)
⋆ A≥2-contact ⇐⇒ one of the following conditions holds:

• p is not a parabolic point, v is not asymptotic at p and a =
p − 〈p, v〉v + n(p)/κc,

• p is a parabolic but not umbilic point (i.e., κi(p) = 0, κj(p) 6=
0), v is asymptotic at p and λ 6= 1/κj(p),

• p is a flat umbilic point.
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Theorem 9. Assume that p is not a parabolic point, v is not
asymptotic at p and r = 1/κc. Then
Ak -contact
⇐⇒ the apparent contour of S along v has a circle with (k +1)-contact
at the corresponding point to p,
⇐⇒ the apparent contour of S along v has a (k − 2)-th order vatex
at the corresponding point to p.
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Monge form of S is given by the following expression:

(1)





(x , y ) 7→ (x , y , f (x , y )),

f (x , y ) =
k∑

s=2

fs(x , y ) + o(x , y )k , fs =
∑

i+j=s

aij

i !j !
x iy j

In case of k = 3, f is given by

f (x , y ) =
1
2

(a20x2 + 2a11xy + a02y2)

+
1
6

(a30x3 + 3a21x2y + 3a12xy2 + a03y3) + o(u, v )3
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Definition 10. We say that (dx1, dy2) and (dx2, dy2) are conjugate at
p if

Ldx1dx2 + M(dx1dy2 + dx2dy1) + Ndy1dy2 = 0

at p, where L, M, N are the coefficients of the second fundamental
form at p.

Assume that S is given in Monge form (1).

Directions (dx , dy ) and (a11dx + a02dy ,−a20dx − a11dy ) are conjugate.
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Assume that the origin be not a parabolic point.
If S has A≥3-contact with Cv ,a,r at the origin, then (a11dx+a02dy ,−a20dx−
a11dy ) is a root of f3.

Definition 11. We say that (dx , dy ) is the cylindrical direction at the
origin if

f3(a11dx + a02dy ,−a20dx − a11dy ) = 0.

The kernel filed of A3-contact with cylinders defines cylindrical directions.

The principal and asymptotic directions are defined by quadratic Binary
Differential Equations (BEDs), but the cylindrical direction is defined by
a cubic BDE.
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Singularities of integral curves of cylindrical directions
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The thick lines represent the locus of points where the discriminant of f3
is zero.
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Definition 12. Two map-germs f , g : (Rm, 0) → (Rn, 0) are
A-equivalent if there exist diffeomorphism-germs σ : (Rm, 0) →

(Rm, 0) and τ : (Rn, 0) → (Rn, 0) such that τ ◦ f ◦ σ = g holds.

Table 1: Generic A-singularities of orthogonal projections of regular surfaces.

Name Normal form

Fold (x , y2)

Cusp (x , xy + y3)

Lips/Beaks (x , y3 ± x2y )

Goose (x , y3 + x3y )

Swallowtail (x , y + y4)

Butterfly (x , xy + y5 ± y7)

Gulls (x , xy2 +y4 +y5)
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Figure 4:

Figure 5:



Apparent contours
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Let φ : U ⊂ R
2 → R

3 be a parameterization of a regular surface S.
The family of orthogonal projections P : U × S2 → TS2 of S is given by

P(x , y , v) = (v , Pv ), Pv = 〈φ(x , y ), v〉v

We consider Pv as the orthogonal projection of M along fixed direction v .
We denote Σ(Pv ) the set of critical points of Pv .
The image of Σ(Pv ) by Pv is the apparent contour of S along v .
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We take v0 ∈ TpS.
We can rotate the coordinate axes if necessary and set v0 = (0, 1, 0).
We then take the surface S in Monge form

φ(x , y ) = (x , y , f (x , y )), f (x , y ) =
k∑

i+j=2

aij

i !j !
x iy j + o(x , y )k

at a point p considered to be the origin in R
3

With above setting, we have

Pv0 = (x , f (x , y )).

We parametrize the directions near v0 by

v = (− cos v sin u, cos u cos v ,− sin v ).
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We modify P by the rotation

R =




cos u sin u 0

− cos v sin u cos u cos v − sin v

− sin u sin v cos u sin v cos v


 ,

and we obtain the family of (germs of) projections P̃ : (R2 ×R
2, (0, 0)) →

(R2, 0) of S given by

P̃(x , y , u, v ) =

(
x cos u + y sin v

−x sin u sin v + y cos u sin v + f (x , y ) cos v

)
.

Remark that
Pv0 = P̃(x , y , 0, 0) = (x , f (x , y )).
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Assume that Pv0 has a beaks singularity, that is, Pv0 is A-equivalent to
(x , y3 − x2y ).
Then Σ(Pv0) is locally a pair of intersecting smooth curves, and the
deformation of Σ(P̃v ) is as shown in Figure 6.
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Assume that Pv0 has a beaks singularity, that is, Pv0 is A-equivalent to
(x , y3 − x2y ).
Then Σ(Pv0) is locally a pair of intersecting smooth curves, and the
deformation of Σ(P̃v ) is as shown in Figure 6.

Figure 6: The modele of the deformation of Σ(P̃v ).
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The beaks singularity is stable under perturbation of u, and thus we
consider

F (x , y , v ) = P̃(x , y , 0, v ).

To investigate inflections, cusps and vertices on the deformation in the
apparent contour, we consider intersections between Σ(F ) and sets
haveing some properties in the parameter space, where

Σ(F ) = {(x , y )|Fx = Fy = 0}.
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Koenderink’s theorem shows that if κn(v) 6= 0, then

K = κn(v)κc

holds.
Therefore, K = 0 iff κc = 0 when κn(v ) 6= 0 .
Set

I(x , y ) = L(x , y )N(x , y ) − M(x , y )2.

Intersections between Σ(F ) and I(x , y ) = 0 correspond to points where
κc = 0, that is, inflections on the apparent contour along v .
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Intersections between Σ(F ) and I(x , y ) = 0 correspond to points where
κc = 0, that is, inflections on the apparent contour along v .
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If v is asymptotic at p, that is, κn(v) = 0 then the apparent contour along
v has a cusp at point corresponding to p.
For a tangent vector w = aφx + bφy , set

Cw (x , y ) = a2L(x , y ) + 2abM(x , y ) + b2N(x , y ).

Since Cw (x , y ) = 0 iff κn(w ) = 0, Cw (x , y ) = 0 is the locus of points where
w is asymptotic.
Therefore, intersections between Σ(F ) and Cw (x , y ) = 0 correspond to
cusps on the apparent contour along w .
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To consider the locus of points where a tangen vector w = aφx + bφy

is cylinderical, we consider Monge form of a surface S given by Monge
form

φ(x , y ) = (x , y , f (x , y )), f (x , y ) =
k∑

i+j=2

aij

i !j !
x iy j + o(x , y )k

at a point (x , y , f (x , y )) considered to be the origin.
By the translation, change of basis matrix and change of coordinates,
we obtain new Monge form of the surface S at (x , y , f (x , y )):

φ̃(s, t) = (s, t , f̃ (s, t)), f̃ (s, t) =
k∑

i+j=2

Aij(x , y )
i !j !

si t j + o(s, t)k ,

where, for example,

A20(x , y ) = a20 + a30x + a21y + o(x , y ).
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At the orign φ̃(0, 0), that is, the point (x , y , f (x , y )), the conjugate direction
of w = aφ̃s + bφ̃t is

(aA11(x , y ) + bA20(x , y ))φ̃s + (−aA20(x , y ) − bA11(x , y ))φ̃t .

Hence, a tangent vector w = aφ̃s + bφ̃t is cylinderical iff

Vw (x , y ) = f̃3(aA11(x , y ) + bA20(x , y ), −aA20(x , y ) − bA11(x , y )) = 0,

where f̃3 denotes the cubic part of f̃ .
Therefore, intersections between Σ(F ) and Vw (x , y ) = 0 correspond to
vertices on the apparent contour along w .
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The arrangement of Σ(F ), I(x , y ) = 0, Cv (x , y ) = 0 and Vv (x , y ) = 0
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Now we consider v = (0, cos v , − sin v ).
We then show that I(x , y ) = 0 and Cv (x , y ) = 0 are tangent at (0, 0),
and that Vv (x , y ) has generically a D±

4 -singularity, that is Vv (x , y ) = 0 is
locally one smooth curve or three intersecting smooth curves near (0, 0).
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Now we consider v = (0, cos v , − sin v ).
We then show that I(x , y ) = 0 and Cv (x , y ) = 0 are tangent at (0, 0),
and that Vv (x , y ) has generically a D±

4 -singularity, that is Vv (x , y ) = 0 is
locally one smooth curve or three intersecting smooth curves near (0, 0).

Figure 7: The arrangement of Σ(F ), I(x , y) = 0, Cv (x , y) = 0 and Vv (x , y) = 0:
Vv has a D+

4 (left), Vv has a D−
4 (right).



Inflections, cusps and vertices on Σ(F )
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vertex
cusp
inflection

Figure 8: Inflections, cusps and vertices on Σ(F ) when Vv has a D+
4 -singularity.

Figure 9: Inflections, cusps and vertices on Σ(F ) when Vv has a D−
4 -singularity.



Two generic types of beaks singularity
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Theorem 13. There are generically two beaks type singularity of
orthogonal projections of S along v , one labeled D+

4 -beaks where
Vv has a D+

4 -singularity, and the other labeled D−
4 -beaks where Vv

has a D−
4 -singularity. The deformation of the apparent coutour of D+

4

and D−
4 -beaks are shown as in Figure 10 and 11, respectively.
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4 -beaks
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Figure 10: The deformation of the apparent contour of D+
4 -beaks.

Figure 11: The deformation of the apparent contour of D−
4 -beaks.
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