曲面と円柱の接触と曲面の輪郭線

長谷川大

(岩手医科大学教養教育センター情報科学科)

福井敏純氏と中川幸一氏(埼玉大学)との共同研究および、

M. Salarinoghabi氏(サンパウロ大学)との共同研究に基づく

2016 年 7 月 5 日, 第 63 回 トポロジーシンポジウム, 神戸大学

Definition 1. Let X_i , $Y_i \subset \mathbb{R}^n$ (i = 1, 2) be submanifolds with dim $X_1 = \dim X_2$ and dim $Y_1 = \dim Y_2$, and let $y_i \in X_i \cap Y_i$. We say that the contact of X_1 and Y_1 at y_1 is same type as the contact of X_2 and Y_2 at y_2 if there is a diffeomorphism germ $\Phi : (\mathbb{R}^n, x_1) \to (\mathbb{R}^n, x_2)$ such that $\Phi(X_1) = X_2$ and $\Phi(Y_1) = Y_2$. In this case, we write $K(X_1, Y_1; y_1) = K(X_2, Y_2; y_2)$.

Definition 2. Two function germs $f, g : (\mathbb{R}^n, 0) \to (\mathbb{R}, 0)$ are \mathcal{K} -equivalent if there are a diffeomorphism germ $\phi : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ and a function germ $A : (\mathbb{R}^n, 0) \to \mathbb{R}$ with $A(0) \neq 0$ such that $g \circ \phi(x) = A(x)f(x)$.

Theorem 3 (Montaldi, 1986). Let $g_i : (X_i, x_i) \to (\mathbb{R}^n, y_i)$ (i = 1, 2) be immersion germs and $f_i : (\mathbb{R}^n, 0) \to (\mathbb{R}, 0)$ be submersion germs with $Y_i = f_i^{-1}(0)$. Then $K(X_1, Y_1; y_1) = K(X_2, Y_2; y_2)$ if and only if $f_1 \circ g_1$ and $f_2 \circ g_2$ are \mathcal{K} -equivalent.

Definition 2. Two function germs $f, g : (\mathbb{R}^n, 0) \to (\mathbb{R}, 0)$ are \mathcal{K} -equivalent if there are a diffeomorphism germ $\phi : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ and a function germ $A : (\mathbb{R}^n, 0) \to \mathbb{R}$ with $A(0) \neq 0$ such that $g \circ \phi(x) = A(x)f(x)$.

Theorem 3 (Montaldi, 1986). Let $g_i : (X_i, x_i) \to (\mathbb{R}^n, y_i)$ (i = 1, 2) be immersion germs and $f_i : (\mathbb{R}^n, 0) \to (\mathbb{R}, 0)$ be submersion germs with $Y_i = f_i^{-1}(0)$. Then $K(X_1, Y_1; y_1) = K(X_2, Y_2; y_2)$ if and only if $f_1 \circ g_1$ and $f_2 \circ g_2$ are \mathcal{K} -equivalent.

Example 4. Let $\gamma : (\mathbb{R}, 0) \to (\mathbb{R}^2, 0)$ be a regular curve, and set $F(x, y) = (x - a)^2 + (y - b)^2 - r^2.$

Then γ has a circle with k-point contact at $\gamma(t_0)$ iff

 $f(t_0) = F(\gamma(t_0)) = 0$, $f^{(i)}(t_0) = 0$ $(1 \le i \le k - 1)$ and $f^{(k)}(t_0) \ne 0$.

The curve γ has k-th order vertex at $\gamma(t_0)$ if

 $\kappa(t_0) \neq 0, \quad \kappa^{(i)}(t_0) = 0 \quad (1 \leq i \leq k) \quad \text{and} \quad \kappa^{(k+1)}(t_0) \neq 0.$

Contact (3)

Example 4. Let $\gamma : (\mathbb{R}, 0) \to (\mathbb{R}^2, 0)$ be a regular curve, and set $F(x, y) = (x - a)^2 + (y - b)^2 - r^2$.

Then γ has a circle with *k*-point contact at $\gamma(t_0)$ iff

 $f(t_0) = F(\gamma(t_0)) = 0, \quad f^{(i)}(t_0) = 0 \quad (1 \le i \le k - 1) \text{ and } f^{(k)}(t_0) \ne 0.$

The curve γ has k-th order vertex at $\gamma(t_0)$ if

 $\kappa(t_0) \neq 0, \quad \kappa^{(i)}(t_0) = 0 \quad (1 \leq i \leq k) \quad \text{and} \quad \kappa^{(k+1)}(t_0) \neq 0.$

Contact (3)

Example 4. Let $\gamma : (\mathbb{R}, 0) \rightarrow (\mathbb{R}^2, 0)$ be a regular curve, and set $F(x, y) = (x - a)^2 + (y - b)^2 - r^2$.

Then γ has a circle with *k*-point contact at $\gamma(t_0)$ iff

 $f(t_0) = F(\gamma(t_0)) = 0, \quad f^{(i)}(t_0) = 0 \quad (1 \le i \le k - 1) \text{ and } f^{(k)}(t_0) \ne 0.$

The curve γ has *k*-th order vertex at $\gamma(t_0)$ if

 $\kappa(t_0) \neq 0, \quad \kappa^{(i)}(t_0) = 0 \quad (1 \leq i \leq k) \quad \text{and} \quad \kappa^{(k+1)}(t_0) \neq 0.$

Contact (3)

Example 4. Let $\gamma : (\mathbb{R}, 0) \rightarrow (\mathbb{R}^2, 0)$ be a regular curve, and set $F(x, y) = (x - a)^2 + (y - b)^2 - r^2.$

Then γ has a circle with *k*-point contact at $\gamma(t_0)$ iff

 $f(t_0) = F(\gamma(t_0)) = 0, \quad f^{(i)}(t_0) = 0 \quad (1 \le i \le k - 1) \text{ and } f^{(k)}(t_0) \ne 0.$

The curve γ has *k*-th order vertex at $\gamma(t_0)$ if

 $\kappa(t_0) \neq 0, \quad \kappa^{(i)}(t_0) = 0 \quad (1 \le i \le k) \text{ and } \kappa^{(k+1)}(t_0) \neq 0.$

A_k and D_k -singularities

In this talk, we consider the following contact types corresponding to \mathcal{K} -equivalence classes of $(\mathbb{R}^2, 0) \to (\mathbb{R}, 0)$ represented by

 $A_k^{\pm}: x^2 \pm y^{k+1}, \qquad D_k^{\pm}: x^2y \pm y^{k-1} \ (k \geq 4).$

Let $S \subset \mathbb{R}^3$ be a regular surface, and let $\pi_{\mathbf{v},d}$ be a plane defined by $\langle \mathbf{x}, \mathbf{v} \rangle = d$ $(\mathbf{x} = (\mathbf{x}, \mathbf{y}, \mathbf{z}), \mathbf{v} \in S^2, d \in \mathbb{R}).$

The moduli space of planes is three dimensional.

The contact of S with $\pi_{\mathbf{v},d}$ at $\mathbf{p} \in \mathbf{S} \cap \pi_{\mathbf{v}}$ is as follows:

*
$$A_{\geq 1}$$
-contact $\iff \mathbf{v} = \pm \mathbf{n}(\mathbf{p})$

- * $A_{\geq 2}$ -contact $\iff p$ is parabolic (i.e., $\kappa_i(p) = 0$, $\kappa_j(p) \neq 0$ $(i \neq j)$)
- * $A_{\geq 3}$ -contact $\iff p$ is a ridge point w.r.t. v_i

Let $S \subset \mathbb{R}^3$ be a regular surface, and let $\pi_{\mathbf{v},d}$ be a plane defined by $\langle \mathbf{x}, \mathbf{v} \rangle = d$ $(\mathbf{x} = (x, y, z), \mathbf{v} \in S^2, d \in \mathbb{R}).$

The moduli space of planes is three dimensional.

The contact of S with $\pi_{\mathbf{v},d}$ at $\mathbf{p} \in \mathbf{S} \cap \pi_{\mathbf{v}}$ is as follows:

* $A_{\geq 1}$ -contact $\iff v = \pm n(p)$

- * $A_{\geq 2}$ -contact $\iff p$ is parabolic (i.e., $\kappa_i(p) = 0$, $\kappa_j(p) \neq 0$ $(i \neq j)$)
- * $A_{\geq 3}$ -contact $\iff p$ is a ridge point w.r.t. v_i

Let $S \subset \mathbb{R}^3$ be a regular surface, and let $\pi_{\mathbf{v},d}$ be a plane defined by $\langle \mathbf{x}, \mathbf{v} \rangle = d$ $(\mathbf{x} = (\mathbf{x}, \mathbf{y}, \mathbf{z}), \mathbf{v} \in S^2, d \in \mathbb{R}).$

The moduli space of planes is three dimensional.

The contact of S with $\pi_{\mathbf{v},d}$ at $\mathbf{p} \in \mathbf{S} \cap \pi_{\mathbf{v}}$ is as follows:

- * $A_{>1}$ -contact $\iff v = \pm n(p)$
- * $A_{\geq 2}$ -contact $\iff p$ is parabolic (i.e., $\kappa_i(p) = 0$, $\kappa_j(p) \neq 0$ $(i \neq j)$)
- * $A_{\geq 3}$ -contact $\iff p$ is a ridge point w.r.t. v_i

Let $S \subset \mathbb{R}^3$ be a regular surface, and let $\pi_{\mathbf{v},d}$ be a plane defined by $\langle \mathbf{x}, \mathbf{v} \rangle = d$ $(\mathbf{x} = (x, y, z), \mathbf{v} \in S^2, d \in \mathbb{R}).$

The moduli space of planes is three dimensional.

The contact of *S* with $\pi_{\mathbf{v},d}$ at $\mathbf{p} \in S \cap \pi_{\mathbf{v}}$ is as follows:

$$\star \quad A_{\geq 1} \text{-contact} \iff \mathbf{v} = \pm \mathbf{n}(\mathbf{p})$$

- * $A_{\geq 2}$ -contact $\iff p$ is parabolic (i.e., $\kappa_i(p) = 0$, $\kappa_j(p) \neq 0$ $(i \neq j)$)
- * $A_{\geq 3}$ -contact $\iff p$ is a ridge point w.r.t. v_i

Let $S \subset \mathbb{R}^3$ be a regular surface, and let $\pi_{\mathbf{v},d}$ be a plane defined by $\langle \mathbf{x}, \mathbf{v} \rangle = d$ $(\mathbf{x} = (\mathbf{x}, \mathbf{y}, \mathbf{z}), \mathbf{v} \in S^2, d \in \mathbb{R}).$

The moduli space of planes is three dimensional.

The contact of *S* with $\pi_{\mathbf{v},d}$ at $\mathbf{p} \in S \cap \pi_{\mathbf{v}}$ is as follows:

*
$$A_{\geq 1}$$
-contact $\iff \mathbf{v} = \pm \mathbf{n}(\mathbf{p})$

- * $A_{\geq 2}$ -contact $\iff \mathbf{p}$ is parabolic (i.e., $\kappa_i(\mathbf{p}) = 0, \kappa_j(\mathbf{p}) \neq 0 \ (i \neq j)$)
- * $A_{\geq 3}$ -contact $\iff p$ is a ridge point w.r.t. v_i

Let $S \subset \mathbb{R}^3$ be a regular surface, and let $\pi_{\mathbf{v},d}$ be a plane defined by $\langle \mathbf{x}, \mathbf{v} \rangle = d$ $(\mathbf{x} = (x, y, z), \mathbf{v} \in S^2, d \in \mathbb{R}).$

The moduli space of planes is three dimensional.

The contact of *S* with $\pi_{\mathbf{v},d}$ at $\mathbf{p} \in S \cap \pi_{\mathbf{v}}$ is as follows:

*
$$A_{\geq 1}$$
-contact $\iff \mathbf{v} = \pm \mathbf{n}(\mathbf{p})$

- * $A_{\geq 2}$ -contact $\iff \mathbf{p}$ is parabolic (i.e., $\kappa_i(\mathbf{p}) = 0, \kappa_j(\mathbf{p}) \neq 0 \ (i \neq j)$)
- * $A_{\geq 3}$ -contact $\iff \boldsymbol{p}$ is a ridge point w.r.t. \boldsymbol{v}_i

The kernel filed of A_1^- -contact with planes defines asymptotic directions in the hyperbolic region.

Figure 2: Singularities of asymptotic curves.

The moduli space of spheres is four dimensional.

The contact of S with $S_{a,r}$ at $p \in S \cap S_{a,r}$ is as follows:

*
$$A_{\geq 1}$$
-contact $\iff a = p \pm r n(p)$

- * $A_{\geq 2}$ -contact $\iff a = p + n(p)/\kappa_i(p)$
- * $A_{\geq 3}$ -contact $\iff p$ is a ridge point w.r.t. v_i
- * $A_{>4}$ -contact $\iff p$ is at least second order ridge point w.r.t. v_i

The moduli space of spheres is four dimensional.

The contact of S with $S_{a,r}$ at $p \in S \cap S_{a,r}$ is as follows:

- * $A_{\geq 1}$ -contact $\iff a = p \pm r n(p)$
- * $A_{\geq 2}$ -contact $\iff a = p + n(p) / \kappa_i(p)$
- * $A_{\geq 3}$ -contact $\iff p$ is a ridge point w.r.t. v_i
- * $A_{>4}$ -contact $\iff p$ is at least second order ridge point w.r.t. v_i

The moduli space of spheres is four dimensional.

The contact of *S* with $S_{a,r}$ at $p \in S \cap S_{a,r}$ is as follows:

- * $A_{\geq 1}$ -contact $\iff a = p \pm r n(p)$
- * $A_{\geq 2}$ -contact $\iff a = p + n(p) / \kappa_i(p)$
- * $A_{\geq 3}$ -contact $\iff p$ is a ridge point w.r.t. v_i
- * $A_{>4}$ -contact $\iff p$ is at least second order ridge point w.r.t. v_i

The moduli space of spheres is four dimensional.

The contact of *S* with $S_{a,r}$ at $p \in S \cap S_{a,r}$ is as follows:

$$\star \quad A_{\geq 1} \text{-contact} \iff \boldsymbol{a} = \boldsymbol{p} \pm r \, \boldsymbol{n}(\boldsymbol{p})$$

- * $A_{\geq 2}$ -contact $\iff a = p + n(p) / \kappa_i(p)$
- * $A_{\geq 3}$ -contact $\iff p$ is a ridge point w.r.t. v_i
- * $A_{>4}$ -contact $\iff p$ is at least second order ridge point w.r.t. v_i

The moduli space of spheres is four dimensional.

The contact of *S* with $S_{a,r}$ at $p \in S \cap S_{a,r}$ is as follows:

$$\star \quad A_{\geq 1} \text{-contact} \iff \boldsymbol{a} = \boldsymbol{p} \pm r \, \boldsymbol{n}(\boldsymbol{p})$$

*
$$A_{\geq 2}$$
-contact $\iff a = p + n(p) / \kappa_i(p)$

- * $A_{\geq 3}$ -contact $\iff p$ is a ridge point w.r.t. v_i
- * $A_{>4}$ -contact $\iff p$ is at least second order ridge point w.r.t. v_i

The moduli space of spheres is four dimensional.

The contact of *S* with $S_{a,r}$ at $p \in S \cap S_{a,r}$ is as follows:

*
$$A_{\geq 1}$$
-contact $\iff a = p \pm r n(p)$

- * $A_{\geq 2}$ -contact $\iff a = p + n(p) / \kappa_i(p)$
- * $A_{\geq 3}$ -contact $\iff \boldsymbol{p}$ is a ridge point w.r.t. \boldsymbol{v}_i
- * $A_{>4}$ -contact $\iff p$ is at least second order ridge point w.r.t. v_i

The moduli space of spheres is four dimensional.

The contact of *S* with $S_{a,r}$ at $p \in S \cap S_{a,r}$ is as follows:

*
$$A_{\geq 1}$$
-contact $\iff a = p \pm r n(p)$

- * $A_{\geq 2}$ -contact $\iff a = p + n(p) / \kappa_i(p)$
- * $A_{\geq 3}$ -contact $\iff \boldsymbol{p}$ is a ridge point w.r.t. \boldsymbol{v}_i
- * $A_{>4}$ -contact $\iff p$ is at least second order ridge point w.r.t. v_i

The moduli space of spheres is four dimensional.

The contact of *S* with $S_{a,r}$ at $p \in S \cap S_{a,r}$ is as follows:

*
$$A_{\geq 1}$$
-contact $\iff a = p \pm r n(p)$

- * $A_{\geq 2}$ -contact $\iff a = p + n(p) / \kappa_i(p)$
- * $A_{\geq 3}$ -contact $\iff \boldsymbol{p}$ is a ridge point w.r.t. \boldsymbol{v}_i
- * $A_{>4}$ -contact $\iff p$ is at least second order ridge point w.r.t. v_i
- * $D_{>4}$ -contact $\iff p$ is an umbilic point

The kernel filed of A_2 -contact with spheres defines principal directions except at umbilic points.

Classification of singularity types of the lines of curvature at generic umbilics are known as Darboux classification.

Figure 3: Singularities of lines of curvature near umbilic points.

Definition 6. A homogenous surface in \mathbb{R}^3 is an orbit of a certain subgroup of the Euclidean motion group $G = O(3) \rtimes \mathbb{R}^3$.

Theorem 7 (Takahashi, 1970). Homogenous surfaces in \mathbb{R}^3 are planes, spheres and cylinders.

What do we get by measuring contact of a surface with cylinders?

Definition 6. A homogenous surface in \mathbb{R}^3 is an orbit of a certain subgroup of the Euclidean motion group $G = O(3) \rtimes \mathbb{R}^3$.

Theorem 7 (Takahashi, 1970). Homogenous surfaces in \mathbb{R}^3 are planes, spheres and cylinders.

What do we get by measuring contact of a surface with cylinders?

Definition 6. A homogenous surface in \mathbb{R}^3 is an orbit of a certain subgroup of the Euclidean motion group $G = O(3) \rtimes \mathbb{R}^3$.

Theorem 7 (Takahashi, 1970). Homogenous surfaces in \mathbb{R}^3 are planes, spheres and cylinders.

What do we get by measuring contact of a surface with cylinders?

Cylinders

Let $S \subset \mathbb{R}^3$ be a regular surface, and let denote $C_{\mathbf{v},\mathbf{a},r}$ the cylinder defined by

 $|\boldsymbol{x}-\langle \boldsymbol{x}, \boldsymbol{v} \rangle - \boldsymbol{a}|^2 = r^2$

 $(\mathbf{x} = (\mathbf{x}, \mathbf{y}, \mathbf{z}), (\mathbf{v}, \mathbf{a}) \in \{(\mathbf{v}, \mathbf{a}) \in S^2 \times \mathbb{R}^3 | \langle \mathbf{v}, \mathbf{a} \rangle = 0\}, r > 0\}.$

The moduli space of cylinders is five dimensional, and thus we expect that there are generically A_1 , A_2 , A_3 , A_4 , A_5 , D_4 and D_5 -contact cylinders for a regular surface $S \subset \mathbb{R}^3$.

Let $S \subset \mathbb{R}^3$ be a regular surface, and let denote $C_{\mathbf{v},\mathbf{a},r}$ the cylinder defined by

 $|\boldsymbol{x}-\langle \boldsymbol{x}, \boldsymbol{v}\rangle-\boldsymbol{a}|^2=r^2$

 $(\mathbf{x} = (\mathbf{x}, \mathbf{y}, \mathbf{z}), (\mathbf{v}, \mathbf{a}) \in \{(\mathbf{v}, \mathbf{a}) \in S^2 \times \mathbb{R}^3 | \langle \mathbf{v}, \mathbf{a} \rangle = 0\}, r > 0).$

The moduli space of cylinders is five dimensional, and thus we expect that there are generically A_1 , A_2 , A_3 , A_4 , A_5 , D_4 and D_5 -contact cylinders for a regular surface $S \subset \mathbb{R}^3$.

• **p** is a flat umbilic point.

- * $A_{\geq 1}$ -contact $\iff \mathbf{v} \in T_{\mathbf{p}}S$ and $\mathbf{a} = \mathbf{p} \langle \mathbf{p}, \mathbf{v} \rangle \mathbf{v} \pm r \mathbf{n}(\mathbf{p})$
- * $A_{\geq 2}$ -contact \iff one of the following conditions holds:
 - **p** is not a parabolic point, **v** is not asymptotic at **p** and **a** = $\mathbf{p} \langle \mathbf{p}, \mathbf{v} \rangle \mathbf{v} + \mathbf{n}(\mathbf{p}) / \kappa_c$,
 - *p* is a parabolic but not umbilic point (i.e., κ_i(*p*) = 0, κ_j(*p*) ≠ 0), *v* is asymptotic at *p* and λ ≠ 1/κ_j(*p*),
 - **p** is a flat umbilic point.
Theorem 9. Assume that p is not a parabolic point, v is not asymptotic at p and $r = 1/\kappa_c$. Then

 A_k -contact

 \iff the apparent contour of S along v has a circle with (k+1)-contact at the corresponding point to p,

 \iff the apparent contour of S along v has a (k - 2)-th order vatex at the corresponding point to **p**.

Theorem 9. Assume that p is not a parabolic point, v is not asymptotic at p and $r = 1/\kappa_c$. Then

 A_k -contact

 \iff the apparent contour of S along v has a circle with (k+1)-contact at the corresponding point to **p**,

 \iff the apparent contour of S along v has a (k - 2)-th order vatex at the corresponding point to **p**.

Theorem 9. Assume that p is not a parabolic point, v is not asymptotic at p and $r = 1/\kappa_c$. Then A_k -contact

 \iff the apparent contour of S along v has a circle with (k+1)-contact at the corresponding point to **p**,

 \iff the apparent contour of S along v has a (k - 2)-th order vatex at the corresponding point to **p**.

Monge form

Monge form of *S* is given by the following expression:

1)
$$\begin{cases} (x, y) \mapsto (x, y, f(x, y)), \\ f(x, y) = \sum_{s=2}^{k} f_{s}(x, y) + O(x, y)^{k}, \quad f_{s} = \sum_{i+j=s} \frac{a_{ij}}{i!j!} x^{i} y^{j} \end{cases}$$

In case of
$$k = 3$$
, f is given by

$$f(x, y) = \frac{1}{2}(a_{20}x^{2} + 2a_{11}xy + a_{02}y^{2}) + \frac{1}{6}(a_{30}x^{3} + 3a_{21}x^{2}y + 3a_{12}xy^{2} + a_{03}y^{3}) + o(u, v)^{3}$$

Monge form

Monge form of *S* is given by the following expression:

(1)
$$\begin{cases} (x, y) \mapsto (x, y, f(x, y)), \\ f(x, y) = \sum_{s=2}^{k} f_{s}(x, y) + O(x, y)^{k}, \quad f_{s} = \sum_{i+j=s} \frac{a_{ij}}{i!j!} x^{i} y^{j} \end{cases}$$

In case of k = 3, f is given by

$$f(x, y) = \frac{1}{2}(a_{20}x^2 + 2a_{11}xy + a_{02}y^2) + \frac{1}{6}(a_{30}x^3 + 3a_{21}x^2y + 3a_{12}xy^2 + a_{03}y^3) + o(u, v)^3$$

Definition 10. We say that (dx_1, dy_2) and (dx_2, dy_2) are conjugate at p if

 $Ldx_1 dx_2 + M(dx_1 dy_2 + dx_2 dy_1) + Ndy_1 dy_2 = 0$

at p, where L, M, N are the coefficients of the second fundamental form at p.

Assume that S is given in Monge form (1).

Directions (dx, dy) and ($a_{11}dx + a_{02}dy$, $-a_{20}dx - a_{11}dy$) are conjugate.

Definition 10. We say that (dx_1, dy_2) and (dx_2, dy_2) are conjugate at p if

 $Ldx_1 dx_2 + M(dx_1 dy_2 + dx_2 dy_1) + Ndy_1 dy_2 = 0$

at **p**, where *L*, *M*, *N* are the coefficients of the second fundamental form at **p**.

Assume that S is given in Monge form (1).

Directions (dx, dy) and ($a_{11}dx + a_{02}dy$, $-a_{20}dx - a_{11}dy$) are conjugate.

Definition 10. We say that (dx_1, dy_2) and (dx_2, dy_2) are conjugate at p if

 $Ldx_1 dx_2 + M(dx_1 dy_2 + dx_2 dy_1) + Ndy_1 dy_2 = 0$

at p, where L, M, N are the coefficients of the second fundamental form at p.

Assume that S is given in Monge form (1).

Directions (dx, dy) and $(a_{11}dx + a_{02}dy, -a_{20}dx - a_{11}dy)$ are conjugate.

If S has $A_{\geq 3}$ -contact with $C_{v,a,r}$ at the origin, then $(a_{11}dx + a_{02}dy, -a_{20}dx - a_{11}dy)$ is a root of f_3 .

Definition 11. We say that (dx, dy) is the cylindrical direction at the origin if $f_0(a_1, dx + a_2, dy) = 0$

The kernel filed of A_3 -contact with cylinders defines cylindrical directions.

Assume that the origin be not a parabolic point. If S has $A_{\geq 3}$ -contact with $C_{v,a,r}$ at the origin, then $(a_{11}dx + a_{02}dy, -a_{20}dx - a_{11}dy)$ is a root of f_3 .

Definition 11. We say that (dx, dy) is the cylindrical direction at the origin if $f_3(a_{11}dx + a_{02}dy, -a_{20}dx - a_{11}dy) = 0.$

The kernel filed of A_3 -contact with cylinders defines cylindrical directions.

If S has $A_{\geq 3}$ -contact with $C_{v,a,r}$ at the origin, then $(a_{11}dx + a_{02}dy, -a_{20}dx - a_{11}dy)$ is a root of f_3 .

Definition 11. We say that (dx, dy) is the cylindrical direction at the origin if

 $f_3(a_{11}dx + a_{02}dy, -a_{20}dx - a_{11}dy) = 0.$

The kernel filed of A_3 -contact with cylinders defines cylindrical directions.

If S has $A_{\geq 3}$ -contact with $C_{v,a,r}$ at the origin, then $(a_{11}dx + a_{02}dy, -a_{20}dx - a_{11}dy)$ is a root of f_3 .

Definition 11. We say that (dx, dy) is the cylindrical direction at the origin if

 $f_3(a_{11}dx + a_{02}dy, -a_{20}dx - a_{11}dy) = 0.$

The kernel filed of A_3 -contact with cylinders defines cylindrical directions.

If S has $A_{\geq 3}$ -contact with $C_{v,a,r}$ at the origin, then $(a_{11}dx + a_{02}dy, -a_{20}dx - a_{11}dy)$ is a root of f_3 .

Definition 11. We say that (dx, dy) is the cylindrical direction at the origin if

 $f_3(a_{11}dx + a_{02}dy, -a_{20}dx - a_{11}dy) = 0.$

The kernel filed of A_3 -contact with cylinders defines cylindrical directions.

Singularities of integral curves of cylindrical directions

The thick lines represent the locus of points where the discriminant of f_3 is zero.

Definition 12. Two map-germs $f, g : (\mathbb{R}^m, 0) \rightarrow (\mathbb{R}^n, 0)$ are *A*-equivalent if there exist diffeomorphism-germs $\sigma : (\mathbb{R}^m, 0) \rightarrow (\mathbb{R}^m, 0)$ and $\tau : (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}^n, 0)$ such that $\tau \circ f \circ \sigma = g$ holds.

Table 1: Generic A-singularities of orthogonal projections of regular surfaces.

Name	Normal form
Fold	(x, y^2)
Cusp	$(x, xy + y^3)$
Lips/Beaks	$(x, y^3 \pm x^2 y)$
Goose	$(x, y^3 + x^3 y)$
Swallowtail	$(x, y + y^4)$
Butterfly	$(x, xy + y^5 \pm y^7)$
Gulls	$(x, xy^2 + y^4 + y^5)$

Definition 12. Two map-germs $f, g : (\mathbb{R}^m, 0) \rightarrow (\mathbb{R}^n, 0)$ are *A*-equivalent if there exist diffeomorphism-germs $\sigma : (\mathbb{R}^m, 0) \rightarrow (\mathbb{R}^m, 0)$ and $\tau : (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}^n, 0)$ such that $\tau \circ f \circ \sigma = g$ holds.

Table 1: Generic A-singularities of orthogonal projections of regular surfaces.

Name	Normal form
Fold	(x, y^2)
Cusp	$(x,xy+y^3)$
Lips/Beaks	$(x, y^3 \pm x^2 y)$
Goose	$(x, y^3 + x^3 y)$
Swallowtail	$(x, y + y^4)$
Butterfly	$(x, xy + y^5 \pm y^7)$
Gulls	$(x,xy^2+y^4+y^5)$

Figure 4:

Figure 5:

Let φ : U ⊂ ℝ² → ℝ³ be a parameterization of a regular surface S. The family of orthogonal projections P : U × S² → TS² of S is given by P(x, y, v) = (v, P_v), P_v = ⟨φ(x, y), v⟩v
We consider P_v as the orthogonal projection of M along fixed direction v. We denote Σ(P_v) the set of critical points of P_v. The image of Σ(P_v) by P_v is the apparent contour of S along v.

 $P(x, y, v) = (v, P_v), \quad P_v = \langle \phi(x, y), v \rangle v$

We consider P_v as the orthogonal projection of M along fixed direction v. We denote $\Sigma(P_v)$ the set of critical points of P_v .

The image of $\Sigma(P_v)$ by P_v is the apparent contour of S along v.

 $P(x, y, v) = (v, P_v), \quad P_v = \langle \phi(x, y), v \rangle v$

We consider P_v as the orthogonal projection of M along fixed direction v. We denote $\Sigma(P_v)$ the set of critical points of P_v . The image of $\Sigma(P_v)$ by P_v is the apparent contour of S along v.

 $P(x, y, v) = (v, P_v), \quad P_v = \langle \phi(x, y), v \rangle v$

We consider P_v as the orthogonal projection of M along fixed direction v. We denote $\Sigma(P_v)$ the set of critical points of P_v .

The image of $\Sigma(P_v)$ by P_v is the apparent contour of S along v.

 $P(x, y, v) = (v, P_v), \quad P_v = \langle \phi(x, y), v \rangle v$

We consider P_v as the orthogonal projection of M along fixed direction v. We denote $\Sigma(P_v)$ the set of critical points of P_v .

The image of $\Sigma(P_v)$ by P_v is the apparent contour of S along v.

We can rotate the coordinate axes if necessary and set $v_0 = (0, 1, 0)$. We then take the surface S in Monge form

$$\phi(x, y) = (x, y, f(x, y)), \quad f(x, y) = \sum_{i+j=2}^{k} \frac{a_{ij}}{i!j!} x^{i} y^{j} + o(x, y)^{k}$$

at a point p considered to be the origin in \mathbb{R}^3 With above setting, we have

$$P_{\mathbf{v}_0}=(x,f(x,y)).$$

We parametrize the directions near v_0 by

We take $v_0 \in T_p S$. We can rotate the coordinate axes if necessary and set $v_0 = (0, 1, 0)$. We then take the surface S in Monge form

$$\phi(x, y) = (x, y, f(x, y)), \quad f(x, y) = \sum_{i+j=2}^{k} \frac{a_{ij}}{i!j!} x^{i} y^{j} + o(x, y)^{k}$$

at a point p considered to be the origin in \mathbb{R}^3 With above setting, we have

$$P_{\mathbf{v}_0} = (\mathbf{x}, f(\mathbf{x}, \mathbf{y})).$$

We parametrize the directions near v_0 by

We can rotate the coordinate axes if necessary and set $v_0 = (0, 1, 0)$. We then take the surface S in Monge form

$$\phi(x, y) = (x, y, f(x, y)), \quad f(x, y) = \sum_{i+j=2}^{\kappa} \frac{a_{ij}}{i!j!} x^i y^j + o(x, y)^k$$

1.

at a point \boldsymbol{p} considered to be the origin in \mathbb{R}^3

With above setting, we have

 $P_{\boldsymbol{v}_0} = (\boldsymbol{x}, f(\boldsymbol{x}, \boldsymbol{y})).$

We parametrize the directions near v_0 by

We can rotate the coordinate axes if necessary and set $v_0 = (0, 1, 0)$. We then take the surface S in Monge form

$$\phi(x, y) = (x, y, f(x, y)), \quad f(x, y) = \sum_{i+j=2}^{\kappa} \frac{a_{ij}}{i!j!} x^i y^j + o(x, y)^k$$

1.

at a point \boldsymbol{p} considered to be the origin in \mathbb{R}^3 . With above setting, we have

 $P_{\mathbf{v}_0} = (\mathbf{x}, f(\mathbf{x}, \mathbf{y})).$

We parametrize the directions near v_0 by

We can rotate the coordinate axes if necessary and set $v_0 = (0, 1, 0)$. We then take the surface S in Monge form

$$\phi(x, y) = (x, y, f(x, y)), \quad f(x, y) = \sum_{i+j=2}^{\kappa} \frac{a_{ij}}{i!j!} x^i y^j + o(x, y)^k$$

1 .

at a point \boldsymbol{p} considered to be the origin in \mathbb{R}^3 . With above setting, we have

$$P_{\mathbf{v}_0} = (\mathbf{x}, f(\mathbf{x}, \mathbf{y})).$$

We parametrize the directions near \boldsymbol{v}_0 by

We modify *P* by the rotation

$$R = \begin{pmatrix} \cos u & \sin u & 0 \\ -\cos v \sin u & \cos u \cos v & -\sin v \\ -\sin u \sin v & \cos u \sin v & \cos v \end{pmatrix},$$

and we obtain the family of (germs of) projections \widetilde{P} : ($\mathbb{R}^2 \times \mathbb{R}^2$, (0, 0)) \rightarrow (\mathbb{R}^2 , 0) of S given by

$$\widetilde{P}(x, y, u, v) = \begin{pmatrix} x \cos u + y \sin v \\ -x \sin u \sin v + y \cos u \sin v + f(x, y) \cos v \end{pmatrix}$$

Remark that

$$P_{v_0} = \widetilde{P}(x, y, 0, 0) = (x, f(x, y)).$$

We modify *P* by the rotation

$$R = \begin{pmatrix} \cos u & \sin u & 0 \\ -\cos v \sin u & \cos u \cos v & -\sin v \\ -\sin u \sin v & \cos u \sin v & \cos v \end{pmatrix},$$

and we obtain the family of (germs of) projections \widetilde{P} : ($\mathbb{R}^2 \times \mathbb{R}^2$, (0, 0)) \rightarrow (\mathbb{R}^2 , 0) of S given by

$$\widetilde{P}(x, y, u, v) = \begin{pmatrix} x \cos u + y \sin v \\ -x \sin u \sin v + y \cos u \sin v + f(x, y) \cos v \end{pmatrix}$$

Remark that

$$P_{\mathbf{v}_0} = \widetilde{P}(x, y, 0, 0) = (x, f(x, y)).$$

The modified family of orthogonal projections (3)

Assume that P_{v_0} has a beaks singularity, that is, P_{v_0} is \mathcal{A} -equivalent to $(x, y^3 - x^2 y)$.

Then $\Sigma(P_{v_0})$ is locally a pair of intersecting smooth curves, and the deformation of $\Sigma(\widetilde{P}_v)$ is as shown in Figure 6.

Assume that P_{v_0} has a beaks singularity, that is, P_{v_0} is \mathcal{A} -equivalent to $(x, y^3 - x^2 y)$.

Then $\Sigma(P_{v_0})$ is locally a pair of intersecting smooth curves, and the deformation of $\Sigma(\widetilde{P}_v)$ is as shown in Figure 6.

Figure 6: The modele of the deformation of $\Sigma(\widetilde{P}_{\mathbf{v}})$.

The beaks singularity is stable under perturbation of *u*, and thus we consider

 $F(x, y, v) = \widetilde{P}(x, y, 0, v).$

To investigate inflections, cusps and vertices on the deformation in the apparent contour, we consider intersections between $\Sigma(F)$ and sets haveing some properties in the parameter space, where

 $\Sigma(F) = \{(x, y) | F_x = F_y = 0\}.$

The beaks singularity is stable under perturbation of *u*, and thus we consider

 $F(x, y, v) = \widetilde{P}(x, y, 0, v).$

To investigate inflections, cusps and vertices on the deformation in the apparent contour, we consider intersections between $\Sigma(F)$ and sets haveing some properties in the parameter space, where

 $\Sigma(F) = \{(x, y) | F_x = F_y = 0\}.$

Koenderink's theorem shows that if $\kappa_n(\mathbf{v}) \neq 0$, then

 $\boldsymbol{K} = \kappa_n(\boldsymbol{v})\kappa_c$

holds.

Therefore, K = 0 iff $\kappa_c = 0$ when $\kappa_n(\mathbf{v}) \neq 0$. Set

$$I(x, y) = L(x, y)N(x, y) - M(x, y)^2.$$

Intersections between $\Sigma(F)$ and I(x, y) = 0 correspond to points where $\kappa_c = 0$, that is, inflections on the apparent contour along v.

Koenderink's theorem shows that if $\kappa_n(\mathbf{v}) \neq 0$, then

 $\boldsymbol{K} = \kappa_n(\boldsymbol{v})\kappa_c$

holds.

Therefore, K = 0 iff $\kappa_c = 0$ when $\kappa_n(\mathbf{v}) \neq 0$.

Set

$$I(x, y) = L(x, y)N(x, y) - M(x, y)^{2}.$$

Intersections between $\Sigma(F)$ and I(x, y) = 0 correspond to points where $\kappa_c = 0$, that is, inflections on the apparent contour along v.

Koenderink's theorem shows that if $\kappa_n(\mathbf{v}) \neq 0$, then

 $\boldsymbol{K} = \kappa_n(\boldsymbol{v})\kappa_c$

holds.

Therefore, K = 0 iff $\kappa_c = 0$ when $\kappa_n(\mathbf{v}) \neq 0$. Set

$$I(x, y) = L(x, y)N(x, y) - M(x, y)^2.$$

Intersections between $\Sigma(F)$ and I(x, y) = 0 correspond to points where $\kappa_c = 0$, that is, inflections on the apparent contour along v.
Koenderink's theorem shows that if $\kappa_n(\mathbf{v}) \neq 0$, then

 $\boldsymbol{K} = \kappa_n(\boldsymbol{v})\kappa_c$

holds.

Therefore, K = 0 iff $\kappa_c = 0$ when $\kappa_n(\mathbf{v}) \neq 0$. Set

$$I(x, y) = L(x, y)N(x, y) - M(x, y)^2.$$

Intersections between $\Sigma(F)$ and I(x, y) = 0 correspond to points where $\kappa_c = 0$, that is, inflections on the apparent contour along v.

If **v** is asymptotic at **p**, that is, $\kappa_n(\mathbf{v}) = 0$ then the apparent contour along **v** has a cusp at point corresponding to **p**.

For a tangent vector $w = a\phi_x + b\phi_y$, set

 $C_w(x, y) = a^2 L(x, y) + 2abM(x, y) + b^2 N(x, y).$

Since $C_w(x, y) = 0$ iff $\kappa_n(w) = 0$, $C_w(x, y) = 0$ is the locus of points where *w* is asymptotic.

If **v** is asymptotic at **p**, that is, $\kappa_n(\mathbf{v}) = 0$ then the apparent contour along **v** has a cusp at point corresponding to **p**. For a tangent vector $\mathbf{w} = a\phi_x + b\phi_y$, set

$$C_w(x, y) = a^2 L(x, y) + 2abM(x, y) + b^2 N(x, y).$$

Since $C_w(x, y) = 0$ iff $\kappa_n(w) = 0$, $C_w(x, y) = 0$ is the locus of points where *w* is asymptotic.

If **v** is asymptotic at **p**, that is, $\kappa_n(\mathbf{v}) = 0$ then the apparent contour along **v** has a cusp at point corresponding to **p**.

For a tangent vector $\boldsymbol{w} = \boldsymbol{a}\phi_x + \boldsymbol{b}\phi_y$, set

$$C_w(x, y) = a^2 L(x, y) + 2abM(x, y) + b^2 N(x, y).$$

Since $C_w(x, y) = 0$ iff $\kappa_n(w) = 0$, $C_w(x, y) = 0$ is the locus of points where *w* is asymptotic.

If **v** is asymptotic at **p**, that is, $\kappa_n(\mathbf{v}) = 0$ then the apparent contour along **v** has a cusp at point corresponding to **p**.

For a tangent vector $\mathbf{w} = \mathbf{a}\phi_x + \mathbf{b}\phi_y$, set

$$C_w(x, y) = a^2 L(x, y) + 2abM(x, y) + b^2 N(x, y).$$

Since $C_w(x, y) = 0$ iff $\kappa_n(w) = 0$, $C_w(x, y) = 0$ is the locus of points where *w* is asymptotic.

To consider the locus of points where a tangen vector $\mathbf{w} = a\phi_x + b\phi_y$ is cylinderical, we consider Monge form of a surface S given by Monge form

1.

$$\phi(x, y) = (x, y, f(x, y)), \quad f(x, y) = \sum_{i+j=2}^{k} \frac{a_{ij}}{i!j!} x^{i} y^{j} + o(x, y)^{k}$$

at a point (x, y, f(x, y)) considered to be the origin.

By the translation, change of basis matrix and change of coordinates, we obtain new Monge form of the surface S at (x, y, f(x, y)):

$$\widetilde{\phi}(s,t) = (s,t,\widetilde{f}(s,t)), \quad \widetilde{f}(s,t) = \sum_{i+j=2}^{k} \frac{A_{ij}(x,y)}{i!j!} s^{i} t^{j} + o(s,t)^{k},$$

where, for example,

$$A_{20}(x, y) = a_{20} + a_{30}x + a_{21}y + o(x, y).$$

To consider the locus of points where a tangen vector $\mathbf{w} = a\phi_x + b\phi_y$ is cylinderical, we consider Monge form of a surface S given by Monge form

$$\phi(x, y) = (x, y, f(x, y)), \quad f(x, y) = \sum_{i+j=2}^{k} \frac{a_{ij}}{i!j!} x^{i} y^{j} + o(x, y)^{k}$$

at a point (x, y, f(x, y)) considered to be the origin. By the translation, change of basis matrix and change of coordinates,

we obtain new Monge form of the surface S at (x, y, f(x, y)):

$$\widetilde{\phi}(s,t) = (s,t,\widetilde{f}(s,t)), \quad \widetilde{f}(s,t) = \sum_{i+j=2}^{k} \frac{A_{ij}(x,y)}{i!j!} s^{i} t^{j} + o(s,t)^{k},$$

where, for example,

$$A_{20}(x, y) = a_{20} + a_{30}x + a_{21}y + o(x, y).$$

At the orign $\tilde{\phi}(0, 0)$, that is, the point (x, y, f(x, y)), the conjugate direction of $\mathbf{w} = a\tilde{\phi}_s + b\tilde{\phi}_t$ is

 $(aA_{11}(x,y)+bA_{20}(x,y))\widetilde{\phi}_s+(-aA_{20}(x,y)-bA_{11}(x,y))\widetilde{\phi}_t.$

Hence, a tangent vector $w = a\phi_s + b\phi_t$ is cylinderical iff

 $V_w(x, y) = f_3(aA_{11}(x, y) + bA_{20}(x, y), -aA_{20}(x, y) - bA_{11}(x, y)) = 0,$

where f_3 denotes the cubic part of f.

At the orign $\tilde{\phi}(0, 0)$, that is, the point (x, y, f(x, y)), the conjugate direction of $\mathbf{w} = a\tilde{\phi}_s + b\tilde{\phi}_t$ is

 $(aA_{11}(x,y)+bA_{20}(x,y))\widetilde{\phi}_s+(-aA_{20}(x,y)-bA_{11}(x,y))\widetilde{\phi}_t.$

Hence, a tangent vector $\mathbf{w} = \mathbf{a}\widetilde{\phi}_s + \mathbf{b}\widetilde{\phi}_t$ is cylinderical iff

 $V_{w}(x, y) = \tilde{f}_{3}(aA_{11}(x, y) + bA_{20}(x, y), -aA_{20}(x, y) - bA_{11}(x, y)) = 0,$ where \tilde{f}_{3} denotes the cubic part of \tilde{f} .

At the orign $\tilde{\phi}(0, 0)$, that is, the point (x, y, f(x, y)), the conjugate direction of $\mathbf{w} = a\tilde{\phi}_s + b\tilde{\phi}_t$ is

 $(aA_{11}(x,y)+bA_{20}(x,y))\widetilde{\phi}_s+(-aA_{20}(x,y)-bA_{11}(x,y))\widetilde{\phi}_t.$

Hence, a tangent vector $\mathbf{w} = \mathbf{a}\widetilde{\phi}_s + \mathbf{b}\widetilde{\phi}_t$ is cylinderical iff

 $V_w(x, y) = \tilde{f}_3(aA_{11}(x, y) + bA_{20}(x, y), -aA_{20}(x, y) - bA_{11}(x, y)) = 0,$ where \tilde{f}_3 denotes the cubic part of \tilde{f} . Therefore, intersections between $\Sigma(F)$ and $V_w(x, y) = 0$ correspond to vertices on the apparent contour along w. The arrangement of $\Sigma(F)$, I(x, y) = 0, $C_v(x, y) = 0$ and $V_v(x, y) = 0$

Now we consider $\mathbf{v} = (0, \cos v, -\sin v)$.

We then show that I(x, y) = 0 and $C_v(x, y) = 0$ are tangent at (0, 0), and that $V_v(x, y)$ has generically a D_4^{\pm} -singularity, that is $V_v(x, y) = 0$ is locally one smooth curve or three intersecting smooth curves near (0, 0). The arrangement of $\Sigma(F)$, I(x, y) = 0, $C_v(x, y) = 0$ and $V_v(x, y) = 0$

Now we consider $\mathbf{v} = (0, \cos v, -\sin v)$.

We then show that I(x, y) = 0 and $C_v(x, y) = 0$ are tangent at (0, 0), and that $V_v(x, y)$ has generically a D_4^{\pm} -singularity, that is $V_v(x, y) = 0$ is locally one smooth curve or three intersecting smooth curves near (0, 0).

Figure 7: The arrangement of $\Sigma(F)$, I(x, y) = 0, $C_v(x, y) = 0$ and $V_v(x, y) = 0$: V_v has a D_4^+ (left), V_v has a D_4^- (right).

Inflections, cusps and vertices on $\Sigma(F)$

Figure 8: Inflections, cusps and vertices on $\Sigma(F)$ when V_v has a D_4^+ -singularity.

Figure 9: Inflections, cusps and vertices on $\Sigma(F)$ when V_v has a D_4^- -singularity.

Theorem 13. There are generically two beaks type singularity of orthogonal projections of *S* along *v*, one labeled D_4^+ -beaks where V_v has a D_4^+ -singularity, and the other labeled D_4^- -beaks where V_v has a D_4^- -singularity. The deformation of the apparent coutour of D_4^+ and D_4^- -beaks are shown as in Figure 10 and 11, respectively.

Figure 10: The deformation of the apparent contour of D_4^+ -beaks.

Figure 11: The deformation of the apparent contour of D_4^- -beaks.