fH [ & AL D 2% & B E O Ew 2B iR

AKX
(BEFEMRFEEHEF V2 —FHREFRD)
BHBEMELDIIIE—K (BEXFE) LOXRARE LU,
M. Salarinoghabi K (Y 2/3o0X%E) LDHRBMEIZE DL

2016 £ 7 A5H, £63E rRAD—I RO L, EXRE



Contact (1)

Definition 1. Let X;,Y; C R" (i = 1, 2) be submanifolds with dim X; =
dimX, and dimY; = dimY,, and lety; € X; NY;. We say that the
contact of X; and Y; at y; iIs same type as the contact of X, and Y,
at y, If there is a diffeomorphism germ ¢ : (R",x;) — (R", X5) such
that ®(X,) = X, and ®(Y,) = Y>. In this case, we write K(X1,Y1;Vy1) =

K (X2, Y2;Y2).
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Contact (2)
-

Definition 2. Two function germs f,g : (R",0) — (R,0) are
JC-equivalent if there are a diffeomorphism germ ¢ : (R",0) — (R", 0)
and a function germ A : (R",0) — R with A(0) # 0 such that

g © ¢(x) = A(X)T(X).
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Contact (2)
-

Definition 2. Two function germs f,g : (R",0) — (R,0) are
JC-equivalent if there are a diffeomorphism germ ¢ : (R",0) — (R", 0)
and a function germ A : (R",0) — R with A(0) # 0 such that

g © ¢(x) = A(X)T(X).

Theorem 3 (Montaldi, 1986). Let g; : (Xi, %) — (R",y;) (i = 1,2) be
Immersion germs and f; : (R",0) — (IR, 0) be submersion germs with
Yi = £71(0). Then K(Xy, Y1;y1) = K(Xz, Y2;y2) if and only if f; o g; and
f, o g, are KC-equivalent.
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Contact (3)

Example 4. Let~: (R,0) — (R?,0) be a regular curve, and set
F(x,y) = (x —a)*+(y —b)* —r.
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Contact (3)

T
Example 4. Let~: (R,0) — (R?,0) be a regular curve, and set
F(x,y) = (x —a)*+(y —b)* —r.
Then ~ has a circle with k-point contact at ~(tg) iff
f(t) =F(y(t)) =0, fO(t))=0 (1<i<k—-1) and f(t)FO0.
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Contact (3)

Example 4. Let~: (R,0) — (R?,0) be a regular curve, and set
F(x,y) = (x —a)*+(y —b)* —r.
Then ~ has a circle with k-point contact at ~(tg) iff
f(t) =F(y(t)) =0, fO(t))=0 (1<i<k—-1) and f(t)FO0.
The curve ~ has k-th order vertex at ~(tg) if
k(o) 70, xV(t)=0 (1<i<k) and x&*(t) #0.
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Contact (3)

Example 4. Let~: (R,0) — (R?,0) be a regular curve, and set
F(x,y) = (x —a)*+(y —b)* —r.
Then ~ has a circle with k-point contact at ~(tg) iff
f(t) =F(y(t)) =0, fO(t))=0 (1<i<k—-1) and f(t)FO0.
The curve ~ has k-th order vertex at ~(tg) if
k(o) 70, xV(t)=0 (1<i<k) and x&*(t) #0.

The curve v has a circle with k-point contact (k > 4) at y(tp) Iff v has a
(k — 3)-th order vertex at y(tp).
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Ax and Dy-singularities

In this talk, we consider the following contact types corresponding to
K-equivalence classes of (R?,0) — (R, 0) represented by

AS X2 £y D x%y £y* 1 (k > 4).

>/\/

AL Az

N
N

Dy D, Ds

Figure 1. Zero sets of Ay and Dy -singularities.
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Contact with planes
-

Let S C R be a regular surface, and let , 4 be a plane defined by
(x,v) =d (X =(X,y,z), v € S%, d € R).
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Contact with planes
-

Let S C R be a regular surface, and let , 4 be a plane defined by
(x,v) =d (x =(x,y,z),v € S%, d € R).
The moduli space of planes is three dimensional.
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Contact with planes
-

Let S C R be a regular surface, and let , 4 be a plane defined by
(x,v) =d (x =(x,y,z),v € S%, d € R).
The moduli space of planes is three dimensional.

The contact of S with m, g at p € S N, Is as follows:
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Contact with planes

Let S C R be a regular surface, and let , 4 be a plane defined by
(x,v) =d (X =(X,y,z), v € S%, d € R).

The moduli space of planes is three dimensional.

The contact of S with m, g at p € S N, Is as follows:

x Asq-contact <= v = £n(p)
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Contact with planes

Let S C R be a regular surface, and let , 4 be a plane defined by
(x,v) =d (X =(X,y,z), v € S%, d € R).

The moduli space of planes is three dimensional.

The contact of S with m, g at p € S N, Is as follows:

* Asi-contact <—= v = £n(p)
*x  Asp-contact <= p is parabolic (i.e., xi(p) =0, xj(p) Z 0 (I Z}J))
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Contact with planes

Let S C R* be a regular surface, and let 7, 4 be a plane defined by
(x,v) =d (X =(X,y,z), v € S%, d € R).

The moduli space of planes is three dimensional.

The contact of S with m, g at p € S N, Is as follows:

x  Asj-contact <= v = £n(p)
*x  Asp-contact <= p is parabolic (i.e., xi(p) =0, xj(p) Z 0 (I Z}J))
* Asz-contact <= p Is a ridge point w.r.t. v;

Definition 5. A non-umbilic point p is called a ridge point w.r.t. the
principal direction v; if vixi(p) = 0. Moreover, p is called a k-th order

ridge point w.r.t. v; if vVki(p) =0 (1 < n < k) and v“™xi(p) # 0.
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Singularities of asymptotic curves

The kernel filed of A] -contact with planes defines asymptotic directions
In the hyperbolic region.

N L =

folded saddle  folded node folded focus

Figure 2: Singularities of asymptotic curves.
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Contact with spheres
-

Let S C R be a regular surface, and let S, , be the sphere defined by

X —al*=r* (X =(X,y,z),acR3r>0).
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Contact with spheres
-

Let S C R be a regular surface, and let S, , be the sphere defined by

X —al*=r* (X =(X,y,z),acR3r>0).

The moduli space of spheres is four dimensional.
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Contact with spheres
-

Let S C R be a regular surface, and let S, , be the sphere defined by

X —al*=r* (X =(X,y,z),acR3r>0).

The moduli space of spheres is four dimensional.

The contact of S with S, atp € SN S, Is as follows:
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Contact with spheres

Let S C R be a regular surface, and let S, , be the sphere defined by
X —al*=r* (X =(X,y,z),acR3r>0).

The moduli space of spheres is four dimensional.

The contact of S with S, atp € SN S, Is as follows:

*x Asi-contact <= a=p £ rn(p)

ERNK (BFERKZE) HEE & FAX D1t & B E O RS 8/ 7?7



Contact with spheres

Let S C R be a regular surface, and let S, , be the sphere defined by
X —al*=r* (X =(X,y,z),acR3r>0).

The moduli space of spheres is four dimensional.

The contact of S with S, atp € SN S, Is as follows:

* Asi-contact <= a=p £rn(p)
*x  Aspy-contact <= a =p +n(p)/xi(p)
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Contact with spheres

Let S C R be a regular surface, and let S, , be the sphere defined by
X —al*=r* (X =(X,y,z),acR3r>0).

The moduli space of spheres is four dimensional.

The contact of S with S, atp € SN S, Is as follows:

x Asp-contact <= a=p £rn(p)
*x  Aspy-contact <= a =p +n(p)/xi(p)
* Asz-contact <= p Is a ridge point w.r.t. v;
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Contact with spheres

Let S C R be a regular surface, and let S, , be the sphere defined by

X —al*=r* (X =(X,y,z),acR3r>0).

The moduli space of spheres is four dimensional.

The contact of S with S, atp € SN S, Is as follows:

A-i-contact <= a=p £rn(p)

A-,-contact <= a =p + n(p)/xi(p)

A-3-contact <= p Is a ridge point w.r.t. v;

A-,4-contact <= p Is at least second order ridge point w.r.t. v;

P S D, S o
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Contact with spheres
-

Let S C R be a regular surface, and let S, , be the sphere defined by

X —al*=r* (X =(X,y,z),acR3r>0).

The moduli space of spheres is four dimensional.

The contact of S with S, atp € SN S, Is as follows:

A-i-contact <= a=p £rn(p)

A-,-contact <= a =p + n(p)/xi(p)

A-3-contact <= p Is a ridge point w.r.t. v;

A-,4-contact <= p Is at least second order ridge point w.r.t. v;
D.4-contact <= p is an umbilic point

P SR S D S o
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Singularities of the lines of curvature

The kernel filed of A,-contact with spheres defines principal directions
except at umbilic points.

Classification of singularity types of the lines of curvature at generic
umbilics are known as Darboux classification.

=y
—

star monstar lemon

Figure 3: Singularities of lines of curvature near umbilic points.
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Homogenous surfaces
B

Definition 6. A homogenous surface in R® is an orbit of a certain
subgroup of the Euclidean motion group G = O(3) x R>.
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Homogenous surfaces
B

Definition 6. A homogenous surface in R® is an orbit of a certain
subgroup of the Euclidean motion group G = O(3) x R>.

Theorem 7 (Takahashi, 1970). Homogenous surfaces in R® are
planes, spheres and cylinders.
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Homogenous surfaces
B

Definition 6. A homogenous surface in R® is an orbit of a certain
subgroup of the Euclidean motion group G = O(3) x R>.

Theorem 7 (Takahashi, 1970). Homogenous surfaces in R® are
planes, spheres and cylinders.

What do we get by measuring contact of a surface with cylinders?
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Cylinders
-

Let S C R3 be aregular surface, and let denote C, ,, the cylinder defined
by
X —(x,v) —al*=r?
(x =(x,Y,2), (v,a) € {(v,a) € S* x R*|(v,a) =0}, r > 0).

EAINK (BFEHXS) HEE & A At & s E DR 11/ 7??



Cylinders
-

Let S C R3 be aregular surface, and let denote C, ,, the cylinder defined
by
X —(x,v) —al*=r?
(x =(x,Y,2), (v,a) € {(v,a) € S* x R*|(v,a) =0}, r > 0).
The moduli space of cylinders is five dimensional, and thus we expect

that there are generically A;, A,, Az, A4, As, D4 and Ds-contact cylinders
for a regular surface S c R®.
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Contact with cylinders (1)

Theorem 8. The contactof SwithC, 5, atp € SNC, 4, Is as follows:
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Contact with cylinders (1)

Theorem 8. The contactof SwithC, 5, atp € SNC, 4, Is as follows:

x Asj-contact <= v € T,Sanda=p — (p,v)v £rn(p)
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Contact with cylinders (1)

Theorem 8. The contactof SwithC, 5, atp € SNC, 4, Is as follows:

*x Asj-contact <= v € T,Sanda=p — (p,v)v £rn(p)
*x As,-contact <= one of the following conditions holds:
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Contact with cylinders (1)

Theorem 8. The contactof SwithC, 5, atp € SNC, 4, Is as follows:

*x Asj-contact <= v € T,Sanda=p — (p,v)v £rn(p)
*x As,-contact <= one of the following conditions holds:

e D IS not a parabolic point, v Is not asymptotic at p and a =
P — (P, V)V +n(p)/Ae,
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Contact with cylinders (1)

Theorem 8. The contactof SwithC, 5, atp € SNC, 4, Is as follows:

*x Asj-contact <= v € T,Sanda=p — (p,v)v £rn(p)
*x As,-contact <= one of the following conditions holds:

e D IS not a parabolic point, v Is not asymptotic at p and a =
p— (P, V)V +n(p)/kec,

e p Is a parabolic but not umbilic point (i.e., i(p) = 0, xj(p) #
0), v is asymptotic at p and A Z 1/x;(p),
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Contact with cylinders (1)

Theorem 8. The contactof SwithC, 5, atp € SNC, 4, Is as follows:

*x Asj-contact <= v € T,Sanda=p — (p,v)v £rn(p)
*x As,-contact <= one of the following conditions holds:

e D IS not a parabolic point, v Is not asymptotic at p and a =
p—(pP,V)v +n(p)/ke,

e p Is a parabolic but not umbilic point (i.e., i(p) = 0, xj(p) #
0), v is asymptotic at p and A Z 1/x;(p),

e p is a flat umbilic point.
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Contact with cylinders (2)

Theorem 9. Assume that p Is not a parabolic point, v is not
asymptoticatp and r = 1/ke..
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Contact with cylinders (2)

Theorem 9. Assume that p Is not a parabolic point, v is not
asymptoticatp andr =1/k.. Then

Ay -contact

<= the apparent contour of S along v has a circle with (k+1)-contact
at the corresponding point to p,

EAINK (BFEHXS) HEE & A At & s E DR 13/ ??



Contact with cylinders (2)

Theorem 9. Assume that p Is not a parabolic point, v is not
asymptoticatp andr =1/k.. Then

Ay -contact

<= the apparent contour of S along v has a circle with (k+1)-contact
at the corresponding point to p,

<> the apparent contour of S along v has a (k — 2)-th order vatex
at the corresponding point to p.
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Monge form
-

Monge form of S is given by the following expression:

(X, y) = (XYL PG YD),
(1) < < k _ Aj i
foGy) =Dt y)+ot ) fo= ) fxly
X s=2 i+j=s
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Monge form
-

Monge form of S is given by the following expression:

(1)

/

x,y) = (x,y,f(x,y)),

FOGy) =) fsxy)+o(x,y), fo=)  —Exly!
s=2 '

\

In case of k = 3, f is given by

1

f(X,y) = z(azox2 + 2a31Xy + agay?)

1
¥ g(asox?’ + 3a21x2y + 3<'J\12Xy2 T a03y3) +o(u, V)3
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Conjugate directions
-

Definition 10. We say that (dx;, dy,) and (dx,, dy,) are conjugate at
p If
Ldx,dXx, + M(dX;dy, + dx,dy;) + Ndy,dy, =0

at p, where L, M, N are the coefficients of the second fundamental
form at p.
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Conjugate directions
-

Definition 10. We say that (dx;, dy,) and (dx,, dy,) are conjugate at
p If
Ldx,dXx, + M(dX;dy, + dx,dy;) + Ndy,dy, =0

at p, where L, M, N are the coefficients of the second fundamental
form at p.

Assume that S is given in Monge form (1).

EAINK (BFEHXS) HEE & A At & s E DR 15/ ?7?



Conjugate directions
-

Definition 10. We say that (dx;, dy,) and (dx,, dy,) are conjugate at
p If
Ldx,dXx, + M(dX;dy, + dx,dy;) + Ndy,dy, =0

at p, where L, M, N are the coefficients of the second fundamental
form at p.

Assume that S is given in Monge form (1).

Directions (dx, dy) and (a;;dx + ag,dy, —asodx — a;;dy) are conjugate.
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Cylindrical directions
-

Assume that the origin be not a parabolic point.
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Cylindrical directions
-

Assume that the origin be not a parabolic point.
If S has A-3-contact with C, 5 at the origin, then (a;;dx+agdy, —azodXx —
a;1dy) Is a root of fs.
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Cylindrical directions
-

Assume that the origin be not a parabolic point.
If S has A.3-contact with C, 5 at the origin, then (a;;dx+agdy, —azodXx —
a;1dy) Is a root of fs.

Definition 11. We say that (dx, dy) is the cylindrical direction at the
origin if

fs(a;1dx + agpdy, —azedx — ajidy) = 0.
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Cylindrical directions
-

Assume that the origin be not a parabolic point.
If S has A.3-contact with C, 5 at the origin, then (a;;dx+agdy, —azodXx —
a;1dy) Is a root of fs.

Definition 11. We say that (dx, dy) is the cylindrical direction at the
origin if

fs(a;1dx + agpdy, —azedx — ajidy) = 0.

The kernel filed of As-contact with cylinders defines cylindrical directions.
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Cylindrical directions
-

Assume that the origin be not a parabolic point.
If S has A.3-contact with C, 5 at the origin, then (a;;dx+agdy, —azodXx —
a;1dy) Is a root of fs.

Definition 11. We say that (dx, dy) is the cylindrical direction at the
origin if

fs(a;1dx + agpdy, —azedx — ajidy) = 0.

The kernel filed of As-contact with cylinders defines cylindrical directions.

The principal and asymptotic directions are defined by quadratic Binary
Differential Equations (BEDs), but the cylindrical direction is defined by
a cubic BDE.
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Singularities of integral curves of cylindrical directions

- ~

M UL X S

The thick lines represent the locus of points where the discriminant of f;
IS zero.

N N AN S N\
\\X X X// NAVANAVA

W
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N
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/
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Singularities of orthogonal projections

Definition 12. Two map-germs f,g : (R™,0 — (R",0) are
A-equivalent if there exist diffeomorphism-germs o : (R™,0) —
(R™, 0) and 7 : (R",0) — (R",0) such that 7 o f o ¢ = g holds.
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Singularities of orthogonal projections

Definition 12. Two map-germs f,g : (R™,0 — (R",0) are
A-equivalent if there exist diffeomorphism-germs o : (R™,0) —
(R™, 0) and 7 : (R",0) — (R",0) such that 7 o f o ¢ = g holds.

Table 1: Generic A-singularities of orthogonal projections of regular surfaces.

Name Normal form
Fold (X,y?)

Cusp (X, xy +y°)
Lips/Beaks (X,y® £ x2y)
Goose (x,y° +x3y)
Swallowtail X,y +y9
Butterfly (X,xy +y>+y’)
Gulls (X, xy2+y*+y®)
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Figure 5:
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Apparent contours
-

Let ¢ : U C R? — R3 be a parameterization of a regular surface S.
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Apparent contours
-

Let ¢ : U C R? — R3 be a parameterization of a regular surface S.
The family of orthogonal projections P : U x S? — TS? of S is given by

P(X,y,V) — (V, Pv)’ I:)V — <¢(X1y)’ V>V

EAINK (BFEHXS) HEE & A At & s E DR 20/ ??



Apparent contours
-

Let ¢ : U C R? — R3 be a parameterization of a regular surface S.
The family of orthogonal projections P : U x S? — TS? of S is given by

P(X,y,V):(V, PV)’ I:)V - <¢(X1y)’ V>V
We consider P, as the orthogonal projection of M along fixed direction v.
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Apparent contours
-

Let ¢ : U C R? — R3 be a parameterization of a regular surface S.
The family of orthogonal projections P : U x S? — TS? of S is given by

P(X,y,V) — (V, Pv)’ I:)V — <¢(X1y)’ V>V

We consider P, as the orthogonal projection of M along fixed direction v.
We denote 2 (P, ) the set of critical points of P, .
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Apparent contours
-

Let ¢ : U C R? — R3 be a parameterization of a regular surface S.
The family of orthogonal projections P : U x S? — TS? of S is given by

P(X,y,V) — (V, Pv)’ I:)V — <¢(X1y)’ V>V

We consider P, as the orthogonal projection of M along fixed direction v.
We denote 2 (P, ) the set of critical points of P, .
The image of X (P,) by P, Is the apparent contour of S along v.
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The modified family of orthogonal projections (1)
-

We take vy € T, S.
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The modified family of orthogonal projections (1)
-

We take vy € T, S.
We can rotate the coordinate axes if necessary and set vy = (0, 1, 0).
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The modified family of orthogonal projections (1)
-

We take vy € T, S.
We can rotate the coordinate axes if necessary and set vy = (0, 1, 0).

We then take the surface S in Monge form
K
o(x,y) = (%Y, f(x,y),  f(x,y)=> =Ix'yl +o(x,y)"

1!
|+]=2
at a point p considered to be the origin in R3
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The modified family of orthogonal projections (1)
-

We take vy € T, S.
We can rotate the coordinate axes if necessary and set vy = (0, 1, 0).

We then take the surface S in Monge form

Kk
oY) = 06y, FOGY)), FGy) = ) ax'y! +o(x, y)"
i+=2 1
at a point p considered to be the origin in R3
With above setting, we have

Py, = (X,f(X,Y)).
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The modified family of orthogonal projections (1)
-

We take vy € T, S.
We can rotate the coordinate axes if necessary and set vy = (0, 1, 0).

We then take the surface S in Monge form

Kk
oY) = 06y, FOGY)), FGy) = ) ax'y! +o(x, y)"
i+=2 1
at a point p considered to be the origin in R3
With above setting, we have

Py, = (X,f(X,Y)).
We parametrize the directions near v by

v = (—Ccosv sinu,cosucosv, —sinv).
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The modified family of orthogonal projections (2)
-

We modify P by the rotation

cos u sinu 0
R=| —-cosvsinu cosucosv —sinv |,
—sSlnusSINY CcosusSInNV COoSV

and we obtain the family of (germs of) projections P : (R2 x R2, (0, 0)) —
(R?,0) of S given by

5(x,y,u,v): (

X COSU+Yysinv
—xsinusinv +ycosusinv +f(x,y)cosv |
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The modified family of orthogonal projections (2)
-

We modify P by the rotation

cos u sinu 0
R=| —-cosvsinu cosucosv —sinv |,
—sSlnusSINY CcosusSInNV COoSV

and we obtain the family of (germs of) projections P : (R2 x R2, (0, 0)) —
(R?,0) of S given by

5(x,y,u,v): (

Remark that

X COSU+Yysinv
—xsinusinv +ycosusinv +f(x,y)cosv |

Py, = P(X,y,0,0) = (x,f(x,y)).
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The modified family of orthogonal projections (3)
-

Assume that P,, has a beaks singularity, that is, P, Is .A-equivalent to
(X, y° —x?y).
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The modified family of orthogonal projections (3)

Assume that P,, has a beaks singularity, that is, P, Is .A-equivalent to

(X, y° —x?y).
Then X (Py,) Is locally a pair of intersecting smooth curves, and the
deformation of > (P, ) is as shown in Figure 6.

) (XX

Figure 6: The modele of the deformation of Z(ISV).
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The modified family of orthogonal projections (4)
-________________________________________________________________

The beaks singularity is stable under perturbation of u, and thus we
consider B
F(X,y,v) =P(x,y,0,v).
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The modified family of orthogonal projections (4)
-________________________________________________________________

The beaks singularity is stable under perturbation of u, and thus we
consider

F(X,y,V) = 5(x,y,0,v).

To investigate inflections, cusps and vertices on the deformation in the
apparent contour, we consider intersections between X (F) and sets
haveing some properties in the parameter space, where

L(F)={(,y)[Fx=F, =0}
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Inflections on X (F)
I

Koenderink’s theorem shows that if x,(v) #Z O, then

K = kn(V)~e
holds.
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Inflections on X (F)
I

Koenderink’s theorem shows that if x,(v) #Z O, then

K = kn(V)~e

holds.
Therefore, K = 0 iff k. = 0 when g,(v) # 0.
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Inflections on X (F)

Koenderink’s theorem shows that if k,(v) #Z O, then

K= /fn(v)/fc

holds.
Therefore, K = 0 iff k. = 0 when g,(v) # 0.
Set

1(X,y) = L(X, Y)N(X,y) — M(x,y)>.
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Inflections on X (F)

Koenderink’s theorem shows that if k,(v) #Z O, then

K = kn(V)~e
holds.
Therefore, K = 0 iff k. = 0 when g,(v) # 0.
Set

1(X,y) = L(X, Y)N(X,y) — M(x,y)>.

Intersections between > (F) and I(x,y) = O correspond to points where
rc = 0, that is, inflections on the apparent contour along v.
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Cuspson X (F)

If v Is asymptotic at p, that is, x,(v) = O then the apparent contour along
v has a cusp at point corresponding to p.
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Cuspson X(F)

If v Is asymptotic at p, that is, x,(v) = O then the apparent contour along
v has a cusp at point corresponding to p.
For a tangent vector w = agy + bgy, set

Cw (X,y) = @°L(x,y) + 2abM(x, y) + b*N(x, y).
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Cuspson X(F)

If v Is asymptotic at p, that is, x,(v) = O then the apparent contour along

v has a cusp at point corresponding to p.
For a tangent vector w = agy + bgy, set

Cw (X,y) = @°L(x,y) + 2abM(x, y) + b*N(x, y).

Since C,, (X,y) =0iff ko,(w) =0, Cy, (X,y) = 01is the locus of points where
W IS asymptotic.
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Cuspson X(F)
-

If v Is asymptotic at p, that is, x,(v) = O then the apparent contour along
v has a cusp at point corresponding to p.
For a tangent vector w = agy + bgy, set

Cw (X,y) = @°L(x,y) + 2abM(x, y) + b*N(x, y).

Since C,, (X,y) =0iff ko,(w) =0, Cy, (X,y) = 01is the locus of points where
W IS asymptotic.

Therefore, intersections between > (F) and C,,(x,y) = O correspond to
cusps on the apparent contour along w.
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Vertices on X (F) (1)

To consider the locus of points where a tangen vector w = agx + bgy
IS cylinderical, we consider Monge form of a surface S given by Monge
form
K a: . -
oY) = 06y, FOGY)), Fy) = ) ooxy! +o(x,y)f
i+j=2 )
at a point (x, vy, f(x,y)) considered to be the origin.
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Verticeson X (F) (1)

To consider the locus of points where a tangen vector w = agx + bgy
IS cylinderical, we consider Monge form of a surface S given by Monge

form
k

oY) = 06y, FOGY)), Fy) = ) ooxy! +o(x,y)f
i+j=2 ek
at a point (x, vy, f(x,y)) considered to be the origin.
By the translation, change of basis matrix and change of coordinates,

we obtain new Monge form of the surface S at (x,y, f(x,y)):

K
o(s,t) = (s,t,f(s, 1)), f(s,t)= Z

I+]=2
where, for example,

Axp(X,Y) = ay + agpX +axy +o(x,y).
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Vertices on X (F) (2)

At the ori/gn 5((1 0), that is, the point (X, vy, f(x,y)), the conjugate direction
of w =ags + boy IS

(@A11(X, Y) + bA(X, ¥))ds + (—ahan(X,y) — bA11(X,Y))er.
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Vertices on X (F) (2)

At the ori/gn 5(9/ 0), that is, the point (X, vy, f(x,y)), the conjugate direction
of w =ags + boy IS
(aA11(X, ) + DAz(X, ¥))ds + (—aAs(X,Y) — bA1(X, Y))ér.
Hence, a tangent vector w = a%s + b%t IS cylinderical iff
Vi (X, y) = f3(@A11(X, ) + bA2(X, ¥), —aAx(X,y) — bA1(X,y)) = O,
where E denotes the cubic part of f
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Vertices on X (F) (2)

At the oriQn 5(9/ 0), that is, the point (X, vy, f(x,y)), the conjugate direction
of w =ags + boy IS

(aA11(X, Y) + bAgo(X,Y))ds + (—aAz0(X,Y) — bALL(X,Y))dr.
Hence, a tangent vector w = a%s + bgAb/t IS cylinderical iff

Vi (X, y) = f3(@A11 (X, ¥) + bAso(X, y), —aAx0(X,y) — bA1(X,Yy)) =0,

where E denotes the cubic part of f.
Therefore, intersections between > (F) and V,,(x,y) = 0 correspond to
vertices on the apparent contour along w.
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The arrangement of >(F), I(x,y) =0, C,(x,y)=0and V,(x,y) =0

Now we consider v = (0, cosv, —sinvV).
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The arrangement of >(F), I(x,y) =0, C,(x,y)=0and V,(x,y) =0

Now we consider v = (0, cosv, —sinV).

We then show that I(x,y) = 0 and C,(x,y) = 0 are tangent at (0, 0),
and that V, (x,y) has generically a D, -singularity, that is V, (x,y) = 0 is
locally one smooth curve or three intersecting smooth curves near (0O, 0).

N 7 X 7

7~ N\ # N\

Figure 7: The arrangement of X (F), I(x,y) =0, Cy(X,y) =0 and V, (x,y) = 0O:
Vy has a Dj (left), Vy has a D, (right).
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Inflections, cusps and verticeson > (F)

\/ oinflection
- - ACUSP
m overtex

Figure 8: Inflections, cusps and vertices on X(F) when V, has a D;-singularity.

ST

Figure 9: Inflections, cusps and vertices on >(F) when V, has a D, -singularity.
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Two generic types of beaks singularity

Theorem 13. There are generically two beaks type singularity of
orthogonal projections of S along v, one labeled D;-beaks where
V, has a Dj-singularity, and the other labeled D, -beaks where V,
has a D, -singularity. The deformation of the apparent coutour of D;
and D, -beaks are shown as in Figure 10 and 11, respectively.
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The deformation of the apparent contour of D; -beaks

o 2 T T

Figure 10: The deformation of the apparent contour of D, -beaks.

Figure 11: The deformation of the apparent contour of D, -beaks.
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