グラフの Hom 複体と彩色数について

松下 尚弘

京都大学理学研究科

2016年7月6日

- The Hom complex $\operatorname{Hom}(T,G)$ is a poset associated to a pair of graphs (T,G).
- A group action on T induces a group action on Hom(T,G).
- The equivariant homotopy type of $\operatorname{Hom}(T,G)$ is closely related to the chromatic number $\chi(G)$ (graph coloring problem).

Graphs

A graph is a pair G=(V(G),E(G)) consisting of a set V(G) together with a symmetric subset E(G) of $V(G)\times V(G)$, i.e.

$$(x,y) \in E(G) \Rightarrow (y,x) \in E(G).$$

- Namely, our graphs are undirected, have no multiple edges, may have loops.
- A graph is simple if a graph has no looped vertices.

3 / 45

Graph coloring problem

Definition 1 (Chromatic number)

An n-coloring of G is a map $c:V(G) \to \{1,\cdots,n\}$ such that $(x,y) \in E(G) \Rightarrow c(x) \neq c(y)$. The chromatic number $\chi(G)$ of G is the smallest integer n such that G has an n-coloring.

Problem 2 (Graph coloring problem)

Compute the chromatic number of a given graph G.

Lovász applied algebraic topology to this subject, in the proof of Kneser's conjecture.

4 / 45

Graph homomorphism

A graph homomorphism is a map $f:V(G)\to V(H)$ such that $(f\times f)(E(G))\subset E(H)$, i.e. $(x,y)\in E(G)\Rightarrow (f(x),f(y))\in E(H)$. For $n\geq 0$, define the graph K_n by $V(K_n)=\{1,\cdots,n\}$ and $E(K_n)=\{(x,y)\mid x\neq y\}$.

• Then an n-coloring of G is identified with a graph homomorphism from G to K_n . Thus

$$\chi(G) = \inf\{n \ge 0 \mid \exists G \to K_n\}$$

5 / 45

K_4

Multi-homomorphism

A multi-homomorphism from G to H is a map $\eta:V(G)\to 2^{V(H)}\setminus\{\emptyset\}$ such that $(v,w)\in E(G)\Rightarrow \eta(v)\times \eta(w)\subset E(H).$ We write $\eta\leq \eta'$ if $\eta(v)\subset \eta'(v)$ for every $v\in V(G).$

• A graph homomorphism $f:G \to H$ is regarded as a multi-homomorphism $v \mapsto \{f(v)\}.$

Definition 3

The Hom complex $\mathrm{Hom}(G,H)$ of graphs G and H is the poset of multi-homomorphisms from G to H.

In particular, we write B(G) instead of $\mathrm{Hom}(K_2,G)$, and call it the box complex of G.

Functorial property

Let ${\mathcal G}$ denote the category of graphs and ${\mathcal P}$ the category of posets. The Hom complex gives a functor

$$\mathcal{G}^{\mathrm{op}} \times \mathcal{G} \to \mathcal{P}, \ (T, G) \mapsto \mathrm{Hom}(T, G).$$

Let Γ be a finite group.

- Let T be a (right) Γ -graph. Then $\operatorname{Hom}(T,G)$ is a (left) Γ -poset. In particular, $B(G) = \operatorname{Hom}(K_2,G)$ as a \mathbb{Z}_2 -poset.
- A graph homomorphism $f:G\to H$ induces a Γ -poset map $\operatorname{Hom}(T,G)\to\operatorname{Hom}(T,H).$

Conversely, if there is no Γ -equivariant map from $\operatorname{Hom}(T,G)$ to $\operatorname{Hom}(T,H)$, then there is no graph homomorphism $G \to H$.

Box complex and neighborhood complex

In general, it is difficult to describe Hom(T,G) even if $T=K_2$.

Definition 4 (Lovász '79)

Let G be a graph. The $\operatorname{\it neighborhood}$ $\operatorname{\it complex}$ N(G) of G is the simplicial complex

$$N(G) = \{ \sigma \subset V(G) \mid \#\sigma < +\infty, \exists v \in V(G) \text{ s.t. } \sigma \subset N(v) \}.$$

Here we denote by N(v) the set of vertices adjacent to v.

Proposition 5 (Babson-Kozlov '07)

Let G be a graph. Then N(G) and B(G) are homotopy equivalent.

 $N(1) = \{2, 3, 4\}$

 $N(2) = \{1, 3, 4\}$

 $N(K_4) \approx \partial \Delta^3 \approx S^2$

In general, $N(K_n) \approx \partial \Delta^{n-1} \approx S^{n-2} \ (n \geq 1)$.

In general, $B(C_{2n})\simeq N(C_{2n})\approx S^1\sqcup S^1$ $(n\geq 3).$ If n=1, one can show $N(C_4)\simeq S^0.$

The neighborhood complex of C_{2n+1}

The neighborhood complex of C_{2n+1}

 $N(C_5) \approx S^1$. In general $N(C_{2n+1}) \approx S^1$. $(n \ge 1)$.

Theorem 6 (Babson-Kozlov '06)

For $n \geq 1$, $B(K_n) \approx_{\mathbb{Z}_2} S^{n-2}$.

Corollary 7 (Lovász '79)

If $N(G)(\simeq B(G))$ is n-connected, then $\chi(G) \geq n+3$.

Proof.

Suppose $\chi(G)=m$ and let $f:G\to K_m$. Then $f_*:B(G)\to B(K_m)\approx_{\mathbb{Z}_2}S^{m-2}$. If B(G) is n-connected, there is a \mathbb{Z}_2 -map $S^{n+1}\to B(G)$. Thus there is a \mathbb{Z}_2 -map from S^{n+1} to S^{m-2} . By the Borsuk-Ulam theorem, we have $n+1\leq m-2$.

Kneser's conjecture

Let n and k be positive integers with $n \geq 2k$. Define the Kneser graph $KG_{n,k}$ as follows:

$$V(KG_{n,k}) = \{ \sigma \subset \{1, \dots, n\} \mid \#\sigma = k \},$$
$$E(KG_{n,k}) = \{ (\sigma, \tau) \mid \sigma \cap \tau = \emptyset \}.$$

- $\bullet \ KG_{n,1} = K_n$
- $KG_{2k,k}$ is a disjoint union of K_2 .

Kneser's conjecture

 $KG_{5,2}$: Peterson graph

Kneser's conjecture

Problem 8 (Kneser's conjecture, '55)

$$\chi(KG_{n,k}) = n - 2k + 2$$

$$\chi(KG_{5,2}) = 5 - 2 \cdot 2 + 2 = 3$$

It is easy to see $\chi(KG_{n,k}) \leq n-2k+2$. Lovász showed that $N(KG_{n,k})$ $(\simeq B(KG_{n,k}))$ is (n-2k-1)-connected and $\chi(KG_{n,k})=n-2k+2$.

In this talk, we investigate the relationship between the topology of Hom complexes and the chromatic number.

- A conjecture by Kozlov about "homotopy test graphs"
- The homotopy types of $\operatorname{Hom}(T,G)$ do not determine $\chi(G)$. Namely, for a finite graph T and a graph G with $\chi(G)>2$, there is a graph H such that $\operatorname{Hom}(T,G)\simeq\operatorname{Hom}(T,H)$ but $\chi(H)$ is much greater than $\chi(G)$.
- $B(G) \cong B(H)$ as \mathbb{Z}_2 -posets, then $G \cong H$ up to isolated vertices. Moreover, we have $\chi(G) = \chi(H)$.

Homotopy test graphs

Definition 9 (Kozlov '07)

A graph T is a homotopy test graph if the following inequality holds for every graph G:

$$\chi(G) > \text{conn}(\text{Hom}(T,G)) + \chi(T)$$

For a space X, $\mathrm{conn}(X)$ is the maximal integer n such that X is n-connected.

Example 10

Since $\operatorname{Hom}(K_2,G)=B(G)\simeq N(G)$, Lovász's result implies that

$$\chi(G) \geq \operatorname{conn}(N(G)) + 3$$

$$= \operatorname{conn}(\operatorname{Hom}(K_2, G)) + \chi(K_2) + 1.$$

Thus K_2 is a homotopy test graph.

Homotopy test graphs

- K_n $(n \ge 3)$ is a homotopy test graph (Babson-Kozlov).
- An odd cycle C_{2r+1} $(r \ge 3)$ is a homotopy test graph (Babson-Kozlov).
- Lovász conjectured that every graph with at least one edge is a homotopy test graph. But there is a graph which is not a homotopy test graph (Hoory-Linial).

Kozlov (2007) conjectured that if $\chi(T)=2$, then T is a homotopy test graph. I solved this conjecture affirmatively.

Theorem 11 (M.)

 $\chi(T) = 2$ implies that T is a homotopy test graph.

Here we give a proof of the theorem.

If $\chi(T)=2$, then K_2 is a retract of T. Namely, there are graph homomorphisms $i:K_2\to T$ and $r:T\to K_2$ such that $ri=\mathrm{id}_{K_2}$. Suppose that $\mathrm{conn}(\mathrm{Hom}(T,G))=n$. Then $\mathrm{Hom}(K_2,G)$ is n-connected since $\mathrm{Hom}(K_2,G)$ is a retract of $\mathrm{Hom}(T,G)$. Since K_2 is a homotopy test graph, we have

$$\chi(G)>n+2=\mathrm{conn}(\mathrm{Hom}(T,G))+\chi(T).$$

Thus one can expect that $\operatorname{Hom}(T,G)$ determines $\chi(G)$ for some homotopy test graph T. Walker considered that the \mathbb{Z}_2 -homotopy type of $\operatorname{Hom}(K_2,G)$ does not determine $\chi(G)$.

Walker (1983) showed that $B(G_1) \simeq_{\mathbb{Z}_2} B(G_2)$ but $\chi(G_1) \neq \chi(G_2)$.

Theorem 12 (M.)

Let T be a finite graph, G a graph with $\chi(G)>2$, and n an integer. Then there is a graph H which contains G as a subgraph and satisfies the following properties:

- (1) The inclusion $\operatorname{Hom}(T,G) \hookrightarrow \operatorname{Hom}(T,H)$ is a homotopy equivalence.
- (2) $\chi(H) > n$

In case $T=K_2$, then we can take H so that $\operatorname{Hom}(T,G)\hookrightarrow\operatorname{Hom}(T,H)$ is a \mathbb{Z}_2 -homotopy equivalence.

Thus the homotopy type of $\operatorname{Hom}(T,G)$ or the \mathbb{Z}_2 -homotopy type of B(G) does not determine $\chi(G)$. Moreover, there is no homotopy invariant of $\operatorname{Hom}(T,G)$ which gives an upper bound for $\chi(G)$.

A sketch of the proof

We give a sketch of the proof in case $T = K_2$.

Definition 13

The girth g(G) of a graph G is the minimum integer n such that the n-cycle C_n embeds into G.

Intuitively, the girth of a graph G is large implies that G is "locally tree". Thus the following theorem implies that the chromatic number is not a local invariant of graphs.

Theorem 14 (Erdős)

Let n be an integer. Then there is a finite graph G such that $\chi(G)>n$ and g(G)>n.

It is known that if the girth of G is greater than 4, then B(G) is \mathbb{Z}_2 -homotopy equivalent to a 1-dimensional \mathbb{Z}_2 -complex.

Proposition 15 (M.)

Let G and H be finite graphs and $\varphi: |B(G)| \to |B(H)|$ a \mathbb{Z}_2 -map. Then there are a graph G' and graph homomorphisms $\varepsilon: G' \to G$ and $f: G' \to H$ which satisfies the following:

- $\varepsilon_* : B(G') \to B(G)$ is a \mathbb{Z}_2 -homotopy equivalence.
- The diagram

$$B(G) \xrightarrow{\varphi} B(H)$$

$$\varepsilon \uparrow \qquad \qquad \parallel$$

$$B(G') \xrightarrow{f_*} B(H)$$

is commutative up to \mathbb{Z}_2 -homotopy.

We turn to the proof of the theorem. Let G be a graph with $\chi(G)>2$ and n an positive integer. We want to construct a graph H containing G such that $B(G)\hookrightarrow B(H)$ is a \mathbb{Z}_2 -homotopy equivalence and $\chi(H)>n$.

Since $\chi(G)>2$, there is a graph homomorphism from C_{2m+1} to G for some m. Thus there is a \mathbb{Z}_2 -map from $S^1(\approx_{\mathbb{Z}_2})B(C_{2m+1})$ to B(G).

Let X be a finite graph such that $\chi(X)>n$ and g(X)>4. Since g(X)>4, the box complex B(X) is \mathbb{Z}_2 -homotopy equivalent to a 1-dimensional \mathbb{Z}_2 -complex. Hence there is a \mathbb{Z}_2 -map from B(X) to B(G).

Let X' be a finite graph and graph homomorphisms $\varepsilon: X' \to X$ and $f: X' \to G$ such that $\varphi \circ \varepsilon_* \simeq_{\mathbb{Z}_2} f$.

Let k be a positive integer with $k \geq 2$. Define the graph I_n as follows:

$$V(I_n) = \{0, 1, \cdots, n\}$$

$$E(I_n) = \{(x, y) \mid |x - y| \le 1\}.$$

Consider "the cylinder" $X' \times I_n$ of X'. The graph H is obtained by attaching two ends of $X' \times I_n$ by $\varepsilon : X' \to X$ and $f : X' \to G$.

 I_4

Since $X \subset H$, we have that $\chi(H) \geq \chi(X) > n$. Moreover, one can show that B(H) is a homotopy pushout of $\varepsilon_*: B(X') \to B(X)$ and $f_*: B(X') \to B(G)$. Since ε_* is a \mathbb{Z}_2 -homotopy equivalence, we have that $B(G) \hookrightarrow B(H)$ is a \mathbb{Z}_2 -homotopy equivalence.

Poset structure of B(G)

Thus to determine the chromatic number, we must investigate more rigid structures of the Hom complex $\mathrm{Hom}(T,G)$. However, in case $T=K_2$, the following theorem holds:

Theorem 16 (M.)

Let G and H be graphs having no isolated vertices. Then the following hold:

- (1) $K_2 \times G \cong K_2 \times H$ iff $B(G) \cong B(H)$ as posets.
- (2) $G \cong H$ iff $B(G) \cong B(H)$ as \mathbb{Z}_2 -posets.
- (3) If $K_2 \times G \cong K_2 \times H$, then $N(G) \cong N(H)$. On the other hand, if G and H are stiff and $N(G) \cong N(H)$, then $K_2 \times G \cong K_2 \times H$.

The graph $K_2 \times G$ is called the *Kronecker double covering of G*.

Poset structure of B(G)

- In the previous theorem, we have that $B(G) \cong B(H)$ as \mathbb{Z}_2 -posets, then $G \cong H$ and hence $\chi(G) = \chi(H)$.
- On the other hand, we use (1) to construct graphs G and H whose neighborhood complexes and box complexes are isomorphic (as posets), but whose chromatic numbers are different.

Kronecker double covering

Let G and H be graphs. Define the (Kronecker) product $G \times H$ as follows:

$$V(G \times H) = V(G) \times V(H),$$

$$E(G \times H) = \{((x, y), (x', y')) \mid (x, x') \in E(G), (y, y') \in E(H)\}.$$

In general, it is difficult to describe the product of graphs. However, the Kronecker double covering $K_2 \times G$ has a simple geometric description.

Kronecker double coverings

A graph G is bipartite if $\chi(G) \leq 2$. Suppose that X is a connected bipartite graph. Then an involution α of X is odd if a length of a path joining v to $\alpha(v)$ is odd for some (or any) vertex of v. For an odd involution α of X, the quotient by the \mathbb{Z}_2 -action is denoted by X/α . The Kronecker double covering $K_2 \times G$ is bipartite. The involution

$$\alpha: K_2 \times G \to K_2 \times G, \ (1,v) \leftrightarrow (2,v)$$

is an odd involution of $K_2 \times G$.

Proposition 17

Let α be an odd involution of a bipartite graph X. Then there is an isomorphism

$$K_2 \times (X/\alpha) \xrightarrow{\cong} X.$$

Examples of Kronecker double coverings

 $K_2 \times K_4$

Proposition 18 (M.)

Let m and n be integers greater than 1. Then there are graphs G and H such that $\chi(G)=m$, $\chi(H)=n$, and $K_2\times G\cong K_2\times H$.

Corollary 19 (M.)

Let m and n be integers greater than 1. Then there are graphs G and H such that $\chi(G)=m$, $\chi(H)=n$, but $B(G)\cong B(H)$ as posets and $N(G)\cong N(H)$.

Lovász (1979) asked if there is a topological invariant of the neighborhood complex N(G) which is equivalent to the chromatic number. The above corollary gives a negative answer to his question.

$$X \cong K_2 \times G \cong K_2 \times H$$

$$G = X/\alpha_1, \ \chi(G) = 4$$

$$H = X/\alpha_2, \ \chi(H) = 3$$

$$X \cong K_2 \times G \cong K_2 \times H$$

$$H = X/\alpha_2, \ \chi(H) = 3$$

 $X \cong K_2 \times G \cong K_2 \times H$

$$K_2 \times K_3$$

$$G = X/\alpha_1, \ \chi(G) = 4$$

 $H = X/\alpha_2, \ \chi(H) = 3$

Summary

- The homotopy type of $\operatorname{Hom}(T,G)$ does not determine $\chi(G)$.
- On the other hand, the \mathbb{Z}_2 -poset structure of B(G) determines the graph (up to isolated points) and the chromatic number.
- \bullet However, the poset structure of B(G), or N(G) does not determine $\chi(G).$

Thank you very much for listening.