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@ The Hom complex Hom(T', G) is a poset associated to a pair of
graphs (T, G).
@ A group action on T induces a group action on Hom(T, G).

@ The equivariant homotopy type of Hom(7', G) is closely related to the
chromatic number x(G) (graph coloring problem).

77 7 0 Hom #ifk & F itz o1 T 2016 427 H 6 H 2 /45



Graphs

A graph is a pair G = (V(G), E(G)) consisting of a set V(G) together
with a symmetric subset E(G) of V(G) x V(G), i.e.

(z,y) € E(G) = (y,z) € E(Q).

@ Namely, our graphs are undirected, have no multiple edges, may have
loops.

@ A graph is simple if a graph has no looped vertices.
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Graph coloring problem

Definition 1 (Chromatic number)

An n-coloring of G is a map c¢: V(G) — {1,--- ,n} such that
(z,y) € E(G) = c¢(z) # c(y). The chromatic number x(G) of G is the
smallest integer n such that G has an n-coloring.

Problem 2 (Graph coloring problem)

Compute the chromatic number of a given graph G.

Lovasz applied algebraic topology to this subject, in the proof of Kneser's
conjecture.
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Graph homomorphism

A graph homomorphism is a map f: V(G) — V(H) such that

(f x HIE(G)) C E(H), ie. (x,y) € E(G) = (f(x), f(y)) € E(H).
For n > 0, define the graph K,, by V(K,) ={1,--- ,n} and

E(Ky) ={(z,y) | = # y}.

@ Then an n-coloring of G is identified with a graph homomorphism
from G to K,,. Thus

X(G) =inf{n > 0| 3G — K,}
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Multi-homomorphism

A multi-homomorphism from G to H is a map 7 : V(G) — 2V \ {(}
such that (v,w) € E(G) = n(v) x n(w) C E(H). We write n </ if
n(v) C n'(v) for every v € V(G).
@ A graph homomorphism f : G — H is regarded as a
multi-homomorphism v — {f(v)}.

Definition 3

The Hom complex Hom(G, H) of graphs G and H is the poset of
multi-homomorphisms from G to H.

In particular, we write B(G) instead of Hom(K>, G), and call it the box
complex of G.

77 7 0 Hom #ifk & F itz o1 T 2016 427 H 6 H 7 /45



Functorial property

Let G denote the category of graphs and P the category of posets. The
Hom complex gives a functor

GPxG—P, (T,G)— Hom(T, Q).

Let I" be a finite group.

@ Let T be a (right) I'-graph. Then Hom(7, G) is a (left) I'-poset. In
particular, B(G) = Hom(K3, G) as a Za-poset.

@ A graph homomorphism f : G — H induces a I'-poset map
Hom(T,G) — Hom(T, H).

Conversely, if there is no I'-equivariant map from Hom(7', G) to
Hom(T, H), then there is no graph homomorphism G — H.

AT 5L R R AR
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.
Box complex and neighborhood complex

In general, it is difficult to describe Hom(T', G) even if T' = K.

Definition 4 (Lovasz '79)

Let G be a graph. The neighborhood complex N (G) of G is the simplicial
complex

N(G) ={o C V(G) | #0 < +00,Fv € V(G) st. o C N(v)}.

Here we denote by N (v) the set of vertices adjacent to v.

Proposition 5 (Babson-Kozlov '07)
Let G be a graph. Then N(G) and B(G) are homotopy equivalent.
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The neighborhood complex of K,
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The neighborhood complex of K,

N(1) = {2,3,4}
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-
The neighborhood complex of K,

N(2) = {1,3,4}
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-
The neighborhood complex of K,

\l/

N(Ky) =~ 0A3 ~ §?

In general, N(K,) ~ A" 1 ~ §"72 (n > 1).
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|
The neighborhood complex of (5,

1
6 2
5 3

4

Cs
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|
The neighborhood complex of (5,

—

4
N(1) ={6,2}
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|
The neighborhood complex of C5,

1

4
N(Cq) ~ Stist

In general, B(Ca,) ~ N(Ca,) ~ S*U S (n>3). If n =1, one can show
N(Cy) ~ SO,
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-
The neighborhood complex of (Y, 4

Cs
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|
The neighborhood complex of (5,1

—

4 3

N(Cs) = S'. In general N(Capi1) = St (n>1).
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Theorem 6 (Babson-Kozlov '06)
Forn > 1, B(K,) ~z, S"2.

Corollary 7 (Lovasz '79)
If N(G)(~ B(Q)) is n-connected, then x(G) > n + 3.

Proof.

Suppose x(G) =m and let f: G — K,,. Then
f« : B(G) — B(Ky,) =z, S™ 2. If B(G) is n-connected, there is a

Zy-map S"Tt — B(G). Thus there is a Zy-map from S™+! to §™m—2,

the Borsuk-Ulam theorem, we have n +1 <m — 2.
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Kneser's conjecture

Let n and k be positive integers with n > 2k. Define the Kneser graph
KG,, as follows:

V(KGn,k> = {0 - {17"' ,TL} ‘ #0 = k}?

E(KGyi) ={(o,7) |ocnT =10}

o KGn1 =K,
o K Gy is a disjoint union of K».
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Kneser's conjecture

{1.2}

{4,5% {34}

<

{14} {24}

1,5
{2.3} 1o

KG9 : Peterson graph
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Kneser's conjecture

Problem 8 (Kneser's conjecture, '55)
X(KGp ) =n—2k+2 J

.

0\/ N 7 X(KGs2)=5-2-2+2=3
\ 7"‘“\ /
VN
It is easy to see x(KGp i) < n—2k+ 2. Lovasz showed that N(KG, 1)
(~ B(KGp)) is (n — 2k — 1)-connected and x(KG,, ;) =n — 2k + 2.
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In this talk, we investigate the relationship between the topology of Hom
complexes and the chromatic number.

@ A conjecture by Kozlov about “homotopy test graphs”
@ The homotopy types of Hom(T', G) do not determine x(G). Namely,

for a finite graph 7" and a graph G with x(G) > 2, there is a graph H
such that Hom(7', G) ~ Hom(T, H) but x(H) is much greater than

X(G).
e B(G) = B(H) as Zg-posets, then G = H up to isolated vertices.
Moreover, we have x(G) = x(H).
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-
Homotopy test graphs

Definition 9 (Kozlov '07)

A graph T is a homotopy test graph if the following inequality holds for

every graph G:
X(G) > conn(Hom(T, G)) + x(T)

For a space X, conn(X) is the maximal integer n such that X is
n-connected.

Example 10
Since Hom(K5, G) = B(G) ~ N(G), Lovész's result implies that

x(G) > conn(N(G))+3
= conn(Hom (K>, G)) + x(K2) + 1.

Thus Ko is a homotopy test graph.
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-
Homotopy test graphs

e K, (n>3)is a homotopy test graph (Babson-Kozlov).
@ An odd cycle C,41 (r > 3) is a homotopy test graph
(Babson-Kozlov).

@ Lovasz conjectured that every graph with at least one edge is a
homotopy test graph. But there is a graph which is not a homotopy
test graph (Hoory-Linial).

Kozlov (2007) conjectured that if x(7") = 2, then T" is a homotopy test
graph. | solved this conjecture affirmatively.

Theorem 11 (M.)
X(T') = 2 implies that T' is a homotopy test graph. J
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Here we give a proof of the theorem.

If x(T') =2, then K3 is a retract of 7. Namely, there are graph
homomorphisms ¢ : Ko — T and r : T' — K> such that ri = idg,.
Suppose that conn(Hom(7', G)) = n. Then Hom(K>3, G) is n-connected
since Hom(K3, G) is a retract of Hom(7, G). Since K is a homotopy

test graph, we have

X(G) >n + 2 = conn(Hom(7T,G)) + x(T).
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Thus one can expect that Hom(7', G) determines x(G) for some
homotopy test graph T'. Walker considered that the Zs-homotopy type of
Hom(K5, G) does not determine x(G).

G1 G2

Walker (1983) showed that B(G1) ~z, B(G2) but x(G1) # x(G2).
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Theorem 12 (M.)

Let T be a finite graph, G a graph with x(G) > 2, and n an integer. Then
there is a graph H which contains G as a subgraph and satisfies the
following properties:

(1) The inclusion Hom(T,G) — Hom(T', H) is a homotopy equivalence.
(2) x(H) >n

In case T = K>, then we can take H so that Hom(T,G) — Hom(T, H) is
a Zo-homotopy equivalence.

v

Thus the homotopy type of Hom(7T, G) or the Za-homotopy type of B(G)
does not determine x(G). Moreover, there is no homotopy invariant of
Hom(T, G) which gives an upper bound for x(G).
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.
A sketch of the proof

We give a sketch of the proof in case T' = Ko.

Definition 13

The girth g(G) of a graph G is the minimum integer n such that the
n-cycle C,, embeds into G.

Intuitively, the girth of a graph G is large implies that G is “locally tree”.
Thus the following theorem implies that the chromatic number is not a
local invariant of graphs.

Theorem 14 (Erdds)

Let n be an integer. Then there is a finite graph G such that x(G) > n
and g(G) > n.
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-
Sketch of the proof

It is known that if the girth of G is greater than 4, then B(G) is
Zo-homotopy equivalent to a 1-dimensional Zo-complex.
Proposition 15 (M.)

Let G and H be finite graphs and ¢ : |B(G)| — |B(H)| a Zz-map. Then
there are a graph G’ and graph homomorphisms ¢ : G' — G and
f : G' — H which satisfies the following:

e ¢, : B(G') — B(G) is a Zy-homotopy equivalence.

o The diagram
B(G) —*— B(H

)
I H
B(G) —— B(H)

is commutative up to Zs-homotopy.

v
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-
Sketch of the proof

We turn to the proof of the theorem. Let G be a graph with x(G) > 2
and n an positive integer. We want to construct a graph H containing G
such that B(G) — B(H) is a Zs-homotopy equivalence and x(H) > n.

Since x(G) > 2, there is a graph homomorphism from Co,,+1 to G for
some m. Thus there is a Zy-map from S*(xz,)B(Cay11) to B(G).

Let X be a finite graph such that x(X) > n and g(X) > 4. Since
g(X) > 4, the box complex B(X) is Zz-homotopy equivalent to a
1-dimensional Zy-complex. Hence there is a Zy-map from B(X) to B(G).

Let X’ be a finite graph and graph homomorphisms ¢ : X’ — X and
f: X' — G such that poe, ~yz, f.
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.
Sketch of the proof
Let k& be a positive integer with k > 2. Define the graph I,, as follows:
VI, ={0,1,--- ,n}

E(l) ={(z,y) | [z —y| <1}

Consider “the cylinder” X’ x I, of X’. The graph H is obtained by
attaching two ends of X' x I, by e : X’ — X and f: X' — G.

e ey

1y
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.
Sketch of the proof

BH DA A=

Since X C H, we have that x(H) > x(X) > n. Moreover, one can show
that B(H) is a homotopy pushout of ¢, : B(X’) — B(X) and

f«: B(X") — B(G). Since ¢, is a Zs-homotopy equivalence, we have that
B(G) — B(H) is a Za-homotopy equivalence. O
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Poset structure of B(G)

Thus to determine the chromatic number, we must investigate more rigid

structures of the Hom complex Hom(7', G). However, in case T' = Ko, the
following theorem holds:

Theorem 16 (M.)

Let G and H be graphs having no isolated vertices. Then the following
hold:

(1) Ko x G= Ky x H iff B(G) = B(H) as posets.
(2) G = H iff B(G) = B(H) as Zy-posets.

(3) If Ko x G = Ky x H, then N(G) = N(H). On the other hand, if G
and H are stiff and N(G) = N(H), then Ky x G = Ky x H.

The graph Ky x G is called the Kronecker double covering of G.
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-
Poset structure of B(G)

@ In the previous theorem, we have that B(G) = B(H) as Za-posets,
then G = H and hence x(G) = x(H).

@ On the other hand, we use (1) to construct graphs G and H whose
neighborhood complexes and box complexes are isomorphic (as
posets), but whose chromatic numbers are different.
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Kronecker double covering

Let G and H be graphs. Define the (Kronecker) product G x H as follows:
V(Gx H)=V(G)x V(H),

E(G x H) ={((z.y),(@",y) | (x,2") € B(G), (y,y) € E(H)}.

In general, it is difficult to describe the product of graphs. However, the
Kronecker double covering K2 x G has a simple geometric description.
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Kronecker double coverings

A graph G is bipartite if x(G) < 2. Suppose that X is a connected
bipartite graph. Then an involution « of X is odd if a length of a path
joining v to a(v) is odd for some (or any) vertex of v. For an odd
involution « of X, the quotient by the Zs-action is denoted by X /a.
The Kronecker double covering K5 x G is bipartite. The involution

CKZKQXG—>K2XG, (1,1))<—><2,’U)

is an odd involution of K5 x G.

Proposition 17

Let o be an odd involution of a bipartite graph X. Then there is an
isomorphism

Ky x (X/a) = . X
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Examples of Kronecker double coverings

1
3 2
2 3
CﬁgKQXC;;

=

CyUCy = Ky x Cy
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KQXK4
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Proposition 18 (M.)

Let m and n be integers greater than 1. Then there are graphs G and H
such that x(G) =m, x(H) =n, and Ko x G 2 Ko x H.

Corollary 19 (M.)

Let m and n be integers greater than 1. Then there are graphs G and H
such that x(G) = m, x(H) = n, but B(G) = B(H) as posets and
N(G) = N(H).

v

Lovédsz (1979) asked if there is a topological invariant of the neighborhood
complex N(G) which is equivalent to the chromatic number. The above
corollary gives a negative answer to his question.
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a2

XgKQXGgKQXH

ATl o

G=X/ai, x(G) =4 H=X/ay, x(H)=3
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K2 X K4
X Qi
a2
X = K2 X G = K2 x H
K2 X K4
== H = X/OQ, =
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KQXK?)
X Qi
a2
XgKQXGgKQXH
KQXKg
G:X/a17X(G):4 H:X/OQ)X(H):3
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Summary

@ The homotopy type of Hom(7', G) does not determine x(G).

@ On the other hand, the Zy-poset structure of B(G) determines the
graph (up to isolated points) and the chromatic number.

@ However, the poset structure of B(G), or N(G) does not determine

X(G).
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Thank you very much for listening.
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