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Introduction

The subject of our interest is the topology of algebraic plane curves
(see [8, 12] for basic results). They are geometric objects de�ned
from polynomial equations. More precisely, an algebraic plane curve
is the zeros locus of a homogenous polynomial C[X0, X1, X2]. Ab-
stractly, such a curve is de�ned by its combinatorics. Let Irr(C) =
{(C1, d1), . . . , (Cn, dn)} be the set of algebraic plane curves Ci de�ned
by the irreducible factors of the homogenous polynomial de�ning C with
their degrees di; let also Sing(C) = {(P1,Σ1), . . . , (Pk,Σk)} be the set
singular points of C with their local topological types Σi. Finally, the
combinatorics of a curve C is the data of Irr(C), Sing(C) and the rela-
tions between the local branches of Σi and the irreducible components
of C.
The question of the embedding determination of an algebraic plane

curve in CP2 is not as easy. The embedding type, also called the
topological type (or shortly the topology) of an algebraic plane curve
C, is de�ned as the homeomorphism type of the pair (CP2, C). That is
two curves C and D have the same topology if and only if there exists
a homeomorphism φ : CP2 → CP2 such that φ(C) = D. The topology
is oriented if φ preserves the global orientation of CP2 and the local
orientation around the meridians of C and D. In the same way, the
topology is ordered if the homeomorphism φ preserves �xed orders on
the irreducible components of C and D. In the case of an embedded
curve, the combinatorics admits an equivalent de�nition with a more
topological aspect. It can be de�ned as the homeomorphism type of
(Tub(C), C), where Tub(C) is a tubular neighbourhood of the curve
(see [2]).
From these de�nitions, it is clear that the topological type determines

the combinatorics of a curve. It is then natural to consider the inverse
question: Is the topology determined by the combinatorics? The an-
swer is known since the 30's, and it is negative. Indeed, in [21, 22, 23]
Zariski constructs an explicit example of two curves with the same



combinatorics and di�erent topologies. We will describe explicitly this
example in the next section. Such examples of two curves with the same
combinatorics and di�erent topologies are called Zariski pair (see [2]).
The question is then: how to detect Zariski pair?
To di�erentiate topologies, several topological invariants were intro-

duced, each one able to distinguish di�erent kinds of �pathology�. The
most classical case of Zariski pair is the one detected by the Alexan-
der polynomial, see Degtyarev [10], Libgober [16] or Akyol [1] for a
classi�cation of sextics such examples. Other examples with di�erent
�pathology� are known. Degtyarev [9, 11] and Shimada [19] construct
Zariski pairs of sextics using the theory of K3-surfaces obtained from
double branched covers of the curves. Studying some properties of
double Galois cover Artal-Tokunaga [5] or Bannai [6] construct another
kind of Zariski pair. In [11] Degtyarev constructs an example of Zariski
pair with isomorphic fundamental group of the complement. Recently
in [20], Shirane proves that Shimada's curves (see [18]) form k-plets
of Zariski using the splitting numbers. We can conclude this non-
exhaustive list with the Zariski pair constructed by Artal-Carmona-
Cogolludo in [3] with homeomorphic complement but di�erent braid
monodromies.
We introduce here a new topological invariant: the linking set, it is

�rst de�ned in [14] by Meilhan and the author. It is inspired by the
linking numbers of knots theory, and generalized the I-invariant intro-
duced by Artal-Florens-Guerville in [4]. The idea is to consider γ an
embedded oriented S1 in the curve C (called a cycle) and to look its
homology class in the complement of the sub-curve Ccγ of C composed
of all the irreducible components which not intersect the S1 embedded.
Unfortunately, this class is not invariant. We should then consider a
quotient of H1(CP

2\Ccγ) by a sub-group Indγ(C) deleting all the remain-
ing indeterminacies. The linking set lksC(γ) is then de�ne as the set of
the classes in this quotient of all the cycles combinatorially equivalent
to γ. It is an invariant of the oriented and ordered topology. In the
particular case where the cycle γ is contained in a single irreducible
component, we can remove the oriented hypothesis.
We apply this new invariant to the case of the curve introduced by

Artal in [2] formed by a smooth cubic and three tangent lines in its
in�exion points, and also to its generalization the k-Artal curves in-
troduced in [7] composed of a smooth cubic and k tangent lines in its
in�exion points. We then prove that there exists Zariski pair of k-Artal
curve for k = 3, 4, 5, 6. These pairs are geometrically distinguished by
the number of alignments in the set of the k in�exion points considered



(this number is called the type of the arrangement). In order to obtain
this result, we compute the linking set for a cycle contained in the cu-
bic. Then we prove that for any order on the irreducible components
of the k-Artal curves there is no homeomorphism of CP2 between two
k-Artal curves of di�erent types, for k = 3, 4, 5, 6. We can also apply
this invariant to the Shimada's curves [18], and prove that they form
a k-plets of Zariski with isomorphic fundamental groups. This is done
in [15] proving (in some particular case) the equivalence between the
splitting numbers and the linking set. This allows us to prove that the
linking set is not determined by the fundamental group of the com-
plement. Since the linking set is a generalization of the I-invariant
introduced in [4], it also distinguish the Zariski pair of line arrange-
ments produced by the author in [13].
The following is organized as follows. Section 1 contains some details

about the historical example of Zariski. The construction and invari-
ance theorem of the linking set are done in Section 2. We conclude in
Section 3 with the application of the linking set to the k-Artal curves.

1. Zariski example

In his historical papers [21, 22, 23], Zariski proves the following result:

Theorem 1.1 ([21]). Let C1 and C2 be two sextics with 6 cusps. Assume
that these cusps lie on a conic for C1 and are in generic position for
C2, then:

π1(CP
2 \ C1) ' Z3 ∗ Z2, and π1(CP

2 \ C2) ' Z6.

C1 C2

Figure 1. Zariski sextics with 6 cusps

He proves in [22] the existence of such curves, and then provides the
�rst example of Zariski pair. It is only in [17] that explicit equations
of such curves will be given. Let us explain how to construct them.
Consider a smooth cubic C of CP2, and let P1, P2, P3 be three of its

nine in�exion points. We assume that the three tangent lines Li of C
passing through Pi are in generic position. We consider the coordinates



of CP2 such that L1 : x = 0, L2 : y = 0 and L3 : z = 0 (see Figure 2).
Let p be the application de�ned by:

p :

{
CP2 −→ CP2

[X : Y : Z] 7−→ [X2 : Y 2 : Z2]

It is a 4 : 1 application outside of the axes. We denote by C̃ the pre-
image of the cubic C by p. It is a sextic with singular points contained
in p−1(Pi). In order to di�erentiate the coordinates in the origin and
the target of p, we will denote with capitals the coordinate in the target.
Locally around P1, the cubic C is of the form y3 = x. Since p is rami�ed
along the line L1 : x = 0 then the pre-image of C near P1 is of the form
Y 3 = X2. Furthermore p is 2 : 1 over P1, then p

−1(P1) is composed of

2 cusps. Using same arguments for P2 and P3, we obtain that C̃ has
exactly 6 cusps.

•
P1

•
P2

•
P3

C

x = 0

y = 0z = 0

Figure 2. Cubic C with P1, P2 and P3 collinear

To construct the two examples of Zarsiki (see Figure 1), we have
to consider the case where the in�exion points are collinear, and the
case where they are not. In the �rst case, consider the line L passing
through P1, P2 and P3, then p

−1(L) is a smooth conic containing the

6 cusps of C̃. In the second case, such a cubic does not exist.

Corollary 1.2. The combinatorics does not determine the fundamental
group of the complement of a curve.

Remark 1.3. The corollary is also true for the complement and the
topology of a curve.

2. Linking invariant

2.1. Recall about linking numbers. The linking numbers are clas-
sical invariants of the topology of oriented links. It can be de�ned as



follows. Let L = L1∪· · ·∪Ls an oriented link of S3 with s components.
Let us recall that H1(S

3 \ Li) is isomorphic to Z and is generated by
the meridian of Li. The linking number of Li with Lj, for i 6= j, is the
numerical value of the class [Li] in H1(S

3 \ Lj).

2.2. De�nition of the invariant. The linking set is an adaptation
of the linking number of knots theory to the case of algebraic curves.
A cycle γ of a curve C is an oriented S1 embedded in the curve, non
homologically trivial in H1(C;Z).
In order to compare two cycles, we need to de�ne what could be

comparable cycles. This is the notion of combinatorially equivalent
cycles. Let γ(t), for t ∈ [0, 1] be a parametrization of γ, with γ(0) in
the smooth part of C. The combinatorial type of γ is the sequence

Γ(γ) = (Ci1 , Pj1 , . . . , Cik , Pjk),

with Cil ∈ Irr(C) and Pjl ∈ Sing(C) for all l ∈ {1, · · · , k}, such that
there exists a set {t1, . . . , tk}, with 0 < t1 < · · · < tk < 1 satisfying:

• for all l ∈ {1, . . . , k}, γ(tl) = Pjl ,
• for all t ∈ (tl, tl+1), γ(t) is contained in Cil+1

\ (Sing(C) ∩Cil+1
)

with l ∈ {1, . . . , k − 1},
• for all t ∈ [0, t1) ∪ (tk, 1], γ(t) ∈ Ci1 .

Of course the sequence Γ(γ) is de�ned up to cyclic permutation.

De�nition 2.1. Let γ and µ be two cycles of C. They are com-
binatorially equivalent if their combinatorial types are equal, that is
Γ(γ) = Γ(µ).

We will now construct the sub-curve Ccγ of C not intersecting γ. Let
us �rst de�ne the support and the internal support of a cycle.

De�nition 2.2. The support of γ is:

Supp(γ) =
⋂
g∼γ

{C ∈ Irr(C) | C ∩ g 6= ∅} ,

its internal support is:

◦
Supp(γ) =

⋂
g∼γ

{
C ∈ Irr(C) |

◦(
C ∩ g

)
6= ∅
}
.

A cycle is minimal if it is contained in
⋃

C∈
◦

Supp(γ)

C. Since for any

cycle γ of C there exists a minimal cycle γ′ such that γ and γ′ are
homotopically equivalent, we consider in all the following only minimal
cycles. Remark that, if γ is a minimal cycle, then γ ⊂ CP2\

⋃
C/∈Supp(γ)

C.



The idea of the invariant is to consider the homology class of γ in the
complement of Ccγ =

⋃
C/∈Supp(γ)

C. Unfortunately, this class is not an

invariant, indeed there exists homotopically equivalent cycles with non-
equal homotopy classes in H1(CP

2\Ccγ). In order to delete this problem,
let us introduce the indeterminacy sub-group associated with γ.
Let P be a singular point of C, we denote bymC,b

P the meridian around
P in the local branch b of ΣP contained in the component C. Remark
that if C is not smooth at P then ΣP admits several local branch b
contained in C. See Figure 3 for an example when C is smooth in P .

•
P

< mb,C
P

C

Figure 3. The meridian mb,C
P when Br(ΣP , C) = {b}

De�nition 2.3. The indeterminacy sub-group of C associated with γ
is the sub-group of H1(CP

2 \ Ccγ) de�ned by:

Indγ(C) = 〈mb,C
P | ∀C ∈

◦
Supp(γ),∀P ∈ Sing(C) ∩ C, ∀b ∈ Br(ΣP , C)〉,

where Br(ΣP , C) is the local branch of ΣP contained in C.

Proposition 2.4. The value of mb,C
P in H1(CP

2 \ Ccγ) is determined by
the combinatorics, and we have:

mb,C
P =

∑
D/∈Supp(γ)

IP (b,D)mD,

where IP (b,D) is the multiplicity of the intersection of the local branch
b and D at the point P , and mD is the meridian of D in CP2 \ Ccγ.

We can de�ne the linking invariant:

De�nition 2.5. The linking set of a minimal cycle γ is de�ned as the
set of classes in H1(CP

2 \ Ccγ)/ Indγ(C) of the minimal cycles combina-
torially equivalent to γ. It is denoted by lksC(γ).

If there is no ambiguity on the considered curve lksC(γ)(resp. Indγ(C))
is denoted by lks(γ) (resp. Indγ).



2.3. Invariance theorem & corollaries.

Theorem 2.6 ([14]). Let C and D be two curves with the same oriented
and ordered topology. If γ and µ are two combinatorially equivalent
cycles of C and D respectively, then

(1) φ∗(lks(γ)) = lks(µ),

where φ∗ : H1(CP
2 \ Ccγ)/ Indγ(C) → H1(CP

2 \ Dcµ)/ Indµ(D) is the
isomorphism induced by the equivalence of topology.

Remark 2.7. The isomorphism φ∗ is the application sending merid-
ian on meridian respecting the orders on Irr(C) = {C1, . . . , Cn} and
Irr(D) = {D1, . . . , Dn}; and respecting the orientation of the meridian
(i.e. φ∗(mCi

) = mDi
).

Corollary 2.8.

(1) If C is a rational curve, then lks(γ) = {γ} and then Equation (1)
becomes:

φ∗(γ) = µ.

(2) If
◦

Supp(γ) = {C} then we can remove the oriented hypothesis
in Theorem 2.6.

Corollary 2.9. Let C and D be two curves with the same combina-
torics, and γ and µ be two combinatorially equivalent cycles of C and
D respectively. If for any isomorphism

φ∗ : H1(CP
2 \ Ccγ)/ Indγ(C)→ H1(CP

2 \ Dcµ)/ Indµ(D)

sending meridian on meridian and respecting their orientation, we have
φ∗(lks(γ)) 6= lks(µ), then C and D have distinct oriented topology.

Remark 2.10. If we also assume that the support (or the internal sup-
port) of γ and µ is a singleton, then we can remove the condition
oriented in the conclusion of the previous corollary.

3. k-Artal curves

In [2], Artal introduces a Zariski pair where the curves are composed
of a smooth cubic and three tangent lines in in�exion points. He proves
that a di�erence of geometry (of the considered in�exion points) implies
a di�erence of topology. Here, we will generalized this result to the case
of the curves k-Artal.

De�nition 3.1. A curve k-Artal is an algebraic curve composed of a
smooth cubic C and k lines L1, . . . , Lk tangent in the in�exion points
of C.



It is of Type l if there is exactly l subset composed of three collinear
points in {Pi = Li ∩ C | i = 1, · · · , k}.

Remark 3.2.

(1) For the 3-Artal case, the Zarsiki pair studied by Artal is formed
by a curve of Type 0 and one of Type 1.

(2) This Zariski pair is related with the historical example of Zariski
(see Section 1) by Figure 2. Indeed, the 3-Artal curve is the
cubic C with the 3 axes, and the geometric di�erence between
Type 0 and Type 1 induces the geometric di�erence between
the sextics with the six cusps along (or not) a conic.

Theorem 3.3 ([7]). Let k ∈ {3, . . . , 6}, there exist k-Artal curves C
and D of di�erent Type such that they form a Zariski pair.

To prove this theorem, we will compute their linking set (in a partic-
ular case) and then apply Corollary 2.9. To compute the linking set in
each case, we will compute it in the case of the cubic with nine tangent
lines and then consider restrictions to obtain the case with less than
nine tangent lines. We denote by C9 the 9-Artal curve. It is known that
the in�exion points of a smooth cubic have a the structure of (F3)

2.
We assume that the points Pi = Li ∩ C are as in Figure 4.

•

•

•

•

•

•

•

•

•

P7

P5

P6

P2

P1

P3

P8

P4

P9

Figure 4. Representation of the in�exion points of C
as (F3)2

Let γ be a cycle contained in the smooth cubic C. It is clear that
γ is minimal and that:

Supp(γ) =
◦

Supp(γ) = {C} .

The set of cycles combinatorially equivalent to γ is the set of cycles
contained in C. Homologically this set is equal to H1(C;Z) \ {0}. Let
g1 and g2 be two cycles generating H1(C;Z). In the case where C is
de�ned by x3 − xz2 − y2z = 0 it has been proved in [14], that there is



g1 and g2 such that:
(2)
[g1] = mL2 −mL3 −mL6 +mL7 +mL8 −mL9 in H1(CP

2 \ C9),
[g2] = −mL4 +mL5 +mL6 +mL7 −mL8 −mL9 in H1(CP

2 \ C9).

Consider the case k = 3, let I1 be the set {1, 2, 3} and I2 be {1, 2, 4}.
We denote by Ci the curve C ∪

( ⋃
j∈Ii

Lj
)
. By Figure 4, C1 is of Type 1

and C2 of Type 0. We have that (Ci)cγ =
⋃
j∈Ii

Lj. Using restrictions of

Equation (2), we have that:

[g1]1 = mL2 −mL3 , and [g2]1 = 0 in H1(CP
2 \ (C1)cγ),

[g1]2 = mL2 and [g2]2 = −mL4 in H1(CP
2 \ (C2)cγ).

To compute the linking set, we need �rst to determine the indetermi-
nacy sub-group of γ. Since it is combinatorial, then they are isomorphic
for C1 and C2. In the case of the 3-Artal curves and a cycle γ contain
in the cubic, the singular points contained in the cubic are the Pj,
for j ∈ Ii. These singular points are of type A5. This implies that
IPj

(C,Ll) = 3δj,l, and then:

H1(CP
2 \ (Ci)cγ)/ Indγ(Ci) ' 〈mLj

for j ∈ Ii | 3mLj
,
∑
j∈Ii

mLj
〉 ' (Z3)

2.

We denote by lksi(γ) the linking set of γ in Ci, for i = 1, 2. We have
then:

lks1(γ) = {mL2 −ml3 ,−mL2 +ml3} ,
lks2(γ) = {mL2 ,mL4 ,−mL2 ,−mL4 ,mL2 +mL4 ,

mL2 −mL4 ,−mL2 +mL4 ,−mL2 −mL4} .

It is clear (using an argument of cardinality) that for any isomor-
phism

φ∗ : H1(CP
2 \ (C1)cγ)/ Indγ(C1)→ H1(CP

2 \ (C2)cγ)/ Indγ(C2)
sending meridian on meridian and respecting the orientation, we have
φ∗(lks1(γ)) 6= lks2(γ). Using Corollary 2.9 and Remark 2.10, the curves
C1 and C2 form a Zariski pair; then case k = 3 of Theorem 3.3 is proved.

Remark 3.4. With similar arguments, we can prove Theorem 3.3 for
k = 4, 5, 6.

References

[1] Aysegül Akyol. Classical zariski pairs with nodes, 2008.
[2] Enrique Artal-Bartolo. Sur les couples de Zariski. J. Algebraic Geom.,

3(2):223�247, 1994.



[3] Enrique Artal Bartolo, Jorge Carmona Ruber, and José Ignacio Cogol-
ludo Agustín. Braid monodromy and topology of plane curves. Duke Math.
J., 118(2):261�278, 2003.

[4] Enrique Artal Bartolo, Vincent Florens, and Benoît Guerville-Ballé. A topo-
logical invariant of line arrangements. Annali della Scuola Normale di Pisa -
Classe di Scienze, 2016.

[5] Enrique Artal Bartolo and Hiro-o Tokunaga. Zariski k-plets of rational curve
arrangements and dihedral covers. Topology Appl., 142(1-3):227�233, 2004.

[6] Shinzo Bannai. A note on splitting curves of plane quartics and multi-sections
of rational elliptic surfaces. Topology Appl., 202:428�439, 2016.

[7] Shinzo Bannai, Benoît Guerville-Ballé, Taketo Shirane, and Hiroo Tokunaga.
On the topology of arrangements of a cubic and its in�ectional tangents. In
preparation.

[8] Egbert Brieskorn and Horst Knörrer. Plane algebraic curves. Modern
Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 1986. Translated
from the German original by John Stillwell, [2012] reprint of the 1986 edition.

[9] Alex Degtyarev. On deformations of singular plane sextics. J. Algebraic Geom.,
17(1):101�135, 2008.

[10] Alex Degtyarev. Classical Zariski pairs. J. Singul., 2:51�55, 2010.
[11] Alex Degtyarev. On the Artal-Carmona-Cogolludo construction. J. Knot The-

ory Rami�cations, 23(5):1450028, 35, 2014.
[12] William Fulton. Algebraic curves. Advanced Book Classics. Addison-Wesley

Publishing Company, Advanced Book Program, Redwood City, CA, 1989. An
introduction to algebraic geometry, Notes written with the collaboration of
Richard Weiss, Reprint of 1969 original.

[13] Benoît Guerville-Ballé. An arithmetic Zariski 4�tuple of twelve lines. Geom.
Topol., 20(1):537�553, 2016.

[14] Benoît Guerville-Ballé and Jean-Baptiste Meilhan. A linking invariant for al-
gebraic curves. Available at arXiv:1602.04916.

[15] Benoît Guerville-Ballé and Taketo Shirane. Equivalence between splitting num-
ber and linking invariant. In preparation.

[16] Anatoly Libgober. Alexander polynomial of plane algebraic curves and cyclic
multiple planes. Duke Math. J., 49(4):833�851, 1982.

[17] Mutsuo Oka. Some plane curves whose complements have non-abelian funda-
mental groups. Math. Ann., 218(1):55�65, 1975.

[18] Ichiro Shimada. Equisingular families of plane curves with many connected
components. Vietnam J. Math., 31(2):193�205, 2003.

[19] Ichiro Shimada. Lattice Zariski k-ples of plane sextic curves and Z-splitting
curves for double plane sextics. Michigan Math. J., 59(3):621�665, 2010.

[20] Taketo Shirane. A note on splitting numbers for galois covers and π1-equivalent
zariski k-plets. Available at arXiv:1601.03792.

[21] Oscar Zariski. On the Problem of Existence of Algebraic Functions of Two
Variables Possessing a Given Branch Curve. Amer. J. Math., 51(2):305�328,
1929.

[22] Oscar Zariski. On the irregularity of cyclic multiple planes. Ann. of Math. (2),
32(3):485�511, 1931.

[23] Oscar Zariski. On the Poincaré Group of Rational Plane Curves. Amer. J.
Math., 58(3):607�619, 1936.


	Introduction
	1. Zariski example
	2. Linking invariant
	2.1. Recall about linking numbers
	2.2. Definition of the invariant
	2.3. Invariance theorem & corollaries

	3. k-Artal curves
	References

