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Setting

▶ Let K be an abstract simplicial complex over the vertex set

[m] = {1, 2, . . . ,m}.

▶ Let (X ,A) = {(Xi ,Ai )}i∈[m] be a collection of space pairs.

▶ For a subset σ ⊂ [m], we put

(X ,A)σ = Y1 × · · · × Ym, Yi =

{
Xi i ∈ σ

Ai i ̸∈ σ.

Definition
The polyhedral product associated with K and (X ,A) is defined by

ZK (X ,A) :=
∪
σ∈K

(X ,A)σ (⊂ X1 × · · · × Xm).
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Examples

Example

The moment-angle complex is the special polyhedral product

ZK := ZK (D
2, S1).

Then Tm ↷ ZK . When K = ∂P for a simplicial polytope P,

each quasitoric manifold M over P∗ = ZK/T for some T ⊂ Tm.

The equivariant topology of M is also detected by

M ×Tm/T E (Tm/T ) = ETm ×Tm ZK ≃ ZK (CP∞, ∗).

Polyhedral products appear in other constructions of toric topology.
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Example

By definition, the topology of polyhedral products is connected with
combinatorics. This connection can be best seen through algebras.

For example, if K is the flag complex of a graph Γ, then

BWΓ = ZK (RP∞, ∗)

where WΓ is the right-angled Coxeter group of Γ. Moreover,

RZK := ZK (D
1, S0) = B[WΓ,WΓ]

where RZK is called the real moment-angle complex.

Other combinatorially constructed algebras are also realized by
homotopy invariants of polyhedral products.

We study the homotopy types of polyhedral products in connection
with combinatorics and toric topology.
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Our object

Special polyhedral products

ZK (CX ,X ) and ZK (X , ∗)

are particularly important. Since there is a homotopy fibration

ZK (CΩX ,ΩX ) → ZK (X , ∗) → X1 × · · · × Xm,

they are supplementary to each other, where

(CX ,X ) = {(CXi ,Xi )}i∈[m] and (X , ∗) = {(Xi , ∗)}i∈[m].

Our object to study is the polyhrdral product

ZK (CX ,X ).
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BBCG decomposition

We start with a stable homotopy decomposition of ZK (CX ,X ).

▶ Let KI = {σ ∈ K |σ ⊂ I} for I ⊂ [m].

▶ Let |L| denote the geometric realization of a simplicial complex L.

▶ Let X̂ I =
∧

i∈I Xi for ∅ ̸= I ⊂ [m].

Theorem (Bahri-Bendersky-Cohen-Gitler ’10)

There is a homotopy equivalence

ΣZK (CX ,X ) ≃ Σ
∨

∅≠I⊂[m]

|ΣKI | ∧ X̂ I .

Remark
There is a very similar previous results due to Kamiyama and Tsukuda,
where they did not use the word “polyhedral product”.
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Problems

Our final goal is to answer:

Problem
Describe the homotopy type of ZK (CX ,X ) from BBCG decomposition.

The most naive way to attack this problem is to desuspend BBCG
decomposition, and there are previous results.

Theorem (Grbić-Theriault ’13, Iriye-Kishimoto ’13)

BBCG decomposition desuspends for dual shifted complexes.

Theorem (Grujić-Welker ’15)

BBCG decomposition of ZK (D
n, Sn−1) desuspends whenever K is dual

vertex-decomposable.

Can we generalize?
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The methods of the previous results are too ad-hoc to generalize. Then
we go back to BBCG decomposition.

What is BBCG decomposition?

The proof says nothing on unsuspended ZK (CX ,X ), so in fact, we have
not understood BBCG decomposition as a property of ZK (CX ,X ).

Then we must start from scratch, and pose:

Problem

1. Find a structure of unsuspended ZK (CX ,X ) which induces BBCG
decomposition.

2. Investigate this structure and apply it to desuspension.
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Combinatorial aspect of the problems

I explain the combinatorial aspect of our problems.

Definition
The Stanley-Reisner ring of K over a ring R is defined by

R[K ] = R[v1, . . . , vm]/(vi1 · · · vik | {i1, . . . , ik} ̸∈ K )

where |vi | = 2.

Proposition (Davis-Januszkiewicz ’91)

There is a ring isomorphism

H∗(ZK (CP∞, ∗);R) ∼= R[K ].

Then combinatorial properties of simplicial complexes can be reduced
to polyhedral products via Stanley-Reisner rings.
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This reduction is made stronger by:

Proposition (Baskakov-Buchstaber-Panov ’04)

There is a ring isomorphism

H∗(ZK ;R) ∼= Tor∗R[v1,...,vm]
(R[K ],R)

where the product of the RHS is induced from the Koszul resolution of
R over R[v1, . . . , vm].

Hochster proved that there is an R-module isomorphism

Tor∗R[v1,...,vm]
(R[K ],R) ∼=

⊕
I⊂[m]

H̃∗(KI ;R).

One can easily see the implication:

BBCG decomposition ⇒ Hochster decomposition
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What about ring structure?

Hochster described the product of Tor∗R[v1,...,vm]
(R[K ],R) through the

above decomposition.

But this is not very useful. For example, even the following easiest case
is not well understood still.

Definition
K is called Golod over R if all products and (higher) Massey products
in Tor∗R[v1,...,vm]

(R[K ],R) are trivial.

Golodness has been studied since 60’s, and several important simplicial
complexes are known to be Golod.

We return to our problem. If BBCG decomposition desuspends, then
ZK (CX ,X ) is a suspension, implying:

desuspension of BBCG decomposition ⇒ Golodness
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Fat wedge filtration

▶ The k-th fat wedge of X = {Xi}i∈[m] is defined by

T k(X ) = {(x1, . . . , xm) ∈ X1 × · · · × Xm |
at least m − k of xi is a base point}.

Then there is a filtration

∗ = T 0(X ) ⊂ T 1(X ) ⊂ · · · ⊂ Tm(X ) = X1 × · · · × Xm.

Definition
Put

Z i
K (CX ,X ) = ZK (CX ,X ) ∩ T i (CX ).

Then there is a filtration

∗ = Z 0
K (CX ,X ) ⊂ Z 1

K (CX ,X ) ⊂ · · · ⊂ Zm
K (CX ,X ) = ZK (CX ,X )

which we call the fat wedge filtration (FWF) of ZK (CX ,X ).
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FWF of RZK

ZK (CX ,X ) is defined by on-off of the cone parameters and RZK can
be regarded as the space of the cone parameters.

So we first investigate the FWF of RZK and then apply its properties
to the FWF of ZK (CX ,X ).

▶ Put RZ i
K = Z i

K (D
1, S0).

There is a piecewise linear embedding

ic : |Sd∆[m]| → (D1)m.

-ic

Figure: the case m = 3
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Since K is a subcomplex of ∆[m], we get an embedding

|SdK | → (D1)m.

Lemma
This embedding yields a relative homeomorphism

φK : (|Cone(SdK )|, |SdK |) → (RZK ,RZm−1
K ).

By definition, the map φK : |SdK | → RZm−1
K is explicitly given in a

completely combinatorial way.

Since

RZ i
K =

∪
I⊂[m], |I |=i

RZKI
and RZ i−1

K =
∪

I⊂, |I |=i

RZ i−1
KI

,

we deduce the following.

Theorem
RZ i

K is RZ i−1
K with cones attached by the maps

φKI
: |SdKI | → RZ i−1

KI
⊂ RZ i−1

K (I ⊂ [m], |I | = i)
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FWF of ZK (CX ,X )

By assigning RZK to cone parameters, we get a map

RZ i−1
K × T i−1(X ) → Z i−1

K (CX ,X ).

Then by composing with the map

φKI
× : |SdKI | × T i−1(X ) → RZ i−1

K × T i−1(X )

for I ⊂ [m] with |I | = i , we obtain:

Theorem
There is a relative homeomorphism⨿

I⊂[m], |I |=i

ΦKI
:

⨿
I⊂[m], |I |=i

(|Cone(SdKI )|, |SdKI |)×(
∏
i∈I

Xi ,T
i−1(X I ))

→ (Z i
K (CX ,X ),Z i−1

K (CX ,X ))

where X I = {Xi}i∈I .
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FWF of ZK

▶ Put Z i
K = Z i

K (D
2, S1).

The FWF of ZK (CX ,X ) is not a cone decomposition in general. But
we can prove the FWF of ZK is a cone decomposition as follows.

We can construct a map

φ̄KI
: |SdKI | ∗ S |I |−1 → Z

|I |−1
KI

for I ⊂ [m] by combining φKI
and higher Whitehead products.

Theorem
Z i
K is Z i−1

K with cones attached by

φ̄KI
: |SdKI | ∗ S i−1 → Z i−1

KI
⊂ Z i−1

K

for all I ⊂ [m] with |I | = i .
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Recovering BBCG decomposition

By James’ retractile argument, the FWF of ZK (CX ,X ) splits after a
suspension such that

ΣZK (CX ,X ) ≃ Σ
m∨
i=1

Z i
K (CX ,X )/Z i−1

K (CX ,X )

= Σ
m∨
i=1

∨
I⊂[m], |I |=i

|ΣKI | ∧ X̂ I

which is BBCG decomposition. So the FWF is the desired structure.
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Desuspension of BBCG decomposition

We say that the FWF of RZK (resp. ZK ) is trivial if φKI
(resp. φ̄KI

)
are null homotopic for all ∅ ̸= I ⊂ [m].

Theorem
If the FWF of RZK is trivial, then BBCG decomposition of ZK (CX ,X )
desuspends.

The converse of this theorem is still open, but as for ZK , we have:

Theorem
The following conditions are equivalent:

1. the FWF of ZK is trivial;

2. ZK is a co-H-space;

3. there is a homotopy equivalence

ZK ≃
∨

∅≠I⊂[m]

Σ|I |+1|KI |.
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Sequentially Cohen-Macaulayness
We now apply our results for specific simplicial complexes.

We must choose K from Golod complexes for desuspending BBCG
decomposition.

Which Golod complex do we choose?

Golodness has been studied in connection with Cohen-Macaulayness.
Recall that an algebra A over a field is called Cohen-Macaulay (CM) if

dimA = depthA.

K is called CM over k if so is k[K ].

Recall that the Alexander dual of K is defined by

K∨ = {σ ⊂ [m] | [m]− σ ̸∈ K}.

Theorem (Stanley ’96)

If K is dual CM over k, that is, the Alexander dual of K is CM over k,
then K is Golod over k.
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There is a generalization of CMness.

Definition
K is sequentially Cohen-Macaulay (SCM) over a field k if a subcomplex
of K generated by i-dimensional faces is CM over k for each i .

Theorem (Stanley ’96)

If K is dual SCM over k, then K is Golod over k.

There are subclasses of SCM complexes with the implications:

shifted ⇒ vertex-decomposable ⇒ shellable ⇒ SCM

Since the previous results on desuspension of BBCG decomposition are
on dual shifted and vertex-decomposable complexes,

we choose dual SCM complexes.
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Property of φK

How do we show φKI
≃ ∗?

Since φK is defined combinatorially, there are properties of φK related
directly with combinatorial properties of K . For example, we have:

▶ A subset σ ⊂ [m] is called a minimal non-face of K if σ ̸∈ K and
σ − v ∈ K for any v ∈ σ.

▶ Let K̂ be the simplicial complex obtained from K by adding all
minimal non-faces.

Lemma
The map φK factors as

|SdK | incl−−→ |Sd K̂ | → RZm−1
K .

So one way to apply the above criterion is to find a simplicial complex
L such that

K ⊂ L ⊂ K̂ and |L| ≃ ∗.
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Shellable complex
▶ A facet of K is a maximal face of K .

Definition
A simplicial complex K is shellable if its facets can be arranged in order
F1, . . . ,Ft , a shelling, such that the subcomplex

⟨Fk⟩ ∩ ⟨F1, . . . ,Fk−1⟩

is pure and (dimFk − 1)-dimensional for k = 2, . . . , t.

Lemma

1. If K is dual shellable, there are facets F1, . . . ,Fr such that

|K ∪ F1 ∪ · · · ∪ Fr | ≃ ∗.

2. If K is dual shellabe, so is KI for any ∅ ̸= I ⊂ [m].

Theorem
If K is dual shellable, the FWF of RZK is trivial, implying that BBCG
decomposition desuspends.
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Homology fillable complex

Definition
A simplicial complex K is homology fillability if

1. for each prime p, there are facets F1, . . . ,Fr such that

H̃∗(K ∪ · · · ∪ Fr ;Z/p) = 0,

2. K̂ is simply connected.

Theorem
If every component of K is homology fillable, then φK ≃ ∗.

Lemma
If K is dual SCM over Z, then components of KI are homology fillable
for all ∅ ̸= I ⊂ [m].

Theorem
If K is dual SCM over Z, then the FWF of RZK is trivial, implying that
BBCG decomposition desuspends.
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Further problems

Problem
Is it true that if RZK is a suspension, then its FWF is trivial?

This is the converse problem of our criterion, and its difficulty comes
from the non-triviality of π1(RZK ).

A deduction of this problem has been made, which only shows that the
difficulty resembles Ganea conjecture. So it helps nothing now.

Definition
K is k-neighborly whenever σ ∈ K for any σ ⊂ [m] with |σ| = k + 1.

By analyzing the homotopy fiber of φK , we can prove:

Theorem
If K is ⌈dimK

2 ⌉-neighborly, then the FWF of RZK is trivial.
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This theorem is applied to give a characterization of Golodness of
triangulated surfaces. Recently, this characterization is algebraically
generalized by Kätthan.

Problem
Find a class of simplicial complexes for which neighborliness and
Golodness are equivalent.

The pinch map
ZK (CX ,X ) → ZK (ΣX , ∗)

is the (higher) Whitehead product if K is the boundary of a simplex.

When K is dual shifted, this map is shown to be iterated (higher)
Whitehead product.

Problem
Describe this map when BBCG decomposition desuspends.
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