Non-Kähler complex structures on \mathbb{R}^4

粕谷 直彦 (青山学院大学社会情報学部)*

1. 主定理とその背景

本稿では,筆者が Antonio J. Di Scala (Politecnico di Torino), Daniele Zuddas (KIAS) とともに [1] において構成した R⁴ に微分同相な non-Kähler complex surfaces の例およ びそれらが満たす様々な性質について解説する.

はじめに、Kähler 性の定義を確認しておこう.

定義 1. (M, J)を complex manifold とする. M上に complex structure Jと両立する symplectic form ω が存在するとき, (M, J)は Kähler であるという. ただし, ω がJと 両立するとは以下の2つの条件を満たすことを言う.

(1) 任意の0でない接ベクトル $u \in TM$ に対して、 $\omega(u, Ju) > 0$ が成立 (tamedness).

(2) 任意の接ベクトル $u, v \in TM$ に対して、 $\omega(u, v) = \omega(Ju, Jv)$ が成立 (*J*-invariance).

任意の complex manifold は局所的には Kähler であるから,問題は complex structure と両立する ω が大域的に取れるかどうかである. その意味において,Kähler 性および non-Kähler 性は complex manifold の大域的な性質である(ここで言う Kähler 性は固定した Hermite 計量に関する Kähler 性のことではなく,Kähler 計量の存在と同値であることに注意されたい).実際,小平[3]–[9],宮岡[11],Siu[16]による以下の定理が知られている.

定理 2. Compact complex surface に関して, Kähler であることと first Betti number b_1 が偶数であることは同値である.

つまり、compact complex surface の場合は b_1 というトポロジーの情報のみから Kähler 性、non-Kähler性が決まってしまう。一般の次元においても、compact Kähler manifold の奇数次 Betti number b_{2j+1} は偶数である、という Hodge theory からの帰結があった。 ところが、non-compact な場合にはもはやこのような性質は成り立たない。実際、任意 の connected open orientable 4-manifold は Kähler complex structure を許容することが 知られている。さらに一般次元の場合にも、 b_1 が奇数の Stein manifolds が存在するこ とはすぐにわかる。このように、non-compact complex manifold の場合、そのトポロ ジーの情報だけでは non-Kähler 性を示すうえで役に立たない。唯一の手がかりは次の 補題である。

補題 3. ホモロジカルに自明な compact holomorphic curve を含む complex manifold は non-Kähler である.

証明は極めて容易である. Kähler manifold (M, J)内の compact complex curve Cは Jと両立する symplectic form ω に対し, $\int_{C} \omega > 0$ を満たすから,ホモロジカルに非自

^{*}e-mail: nkasuya@si.aoyama.ac.jp

明であるというだけのことである.しかし、この簡単な補題がこの話における1つの 重要な鍵となる.さて、我々の問題は次の通りである.

問題 1. \mathbb{R}^{2n} 上に non-Kähler complex structure は存在するか?

この問題はn=2の場合のみ未解決であった.これについて簡単に説明したい. まずn = 1の場合,全ての complex curve は Kähler なので答えは明らかに No である. 一方, $n \geq 3$ の場合は Calabi と Eckmann によって Yes であることが示されている. 彼らは1953年に2つの奇数次元球面の直積上の complex structure を以下のような方法 で構成した.まず、2つのHopf写像 $h_p: S^{2p+1} \to \mathbb{C}P^p, h_q: S^{2q+1} \to \mathbb{C}P^q$ の直積写像 $h_{p,q}: S^{2p+1} \times S^{2q+1} \to \mathbb{C}P^p \times \mathbb{C}P^q$ をとると、これは T^2 fiber bundle である. ここで modulus τ の elliptic curve $S(\tau)$ をとる. $\mathbb{C}P^p \times \mathbb{C}P^q$ の標準的な座標近傍系 $\{U_i \times U_j\}$ $(0 \leq i \leq p, 0 \leq j \leq q)$ に対し, $U_i \times U_j \times S(\tau)$ を貼り合せることによって $h_{p,q}$ が holomorphic T^2 fiber bundle となるような $S^{2p+1} \times S^{2q+1}$ 上の complex structure が構成 される. これが有名な Calabi-Eckmann manifold $M_{p,q}(\tau)$ である. この $M_{p,q}(\tau)$ の open subset を次のように取ることで \mathbb{R}^{2n} $(n \ge 3)$ 上の non-Kähler complex structure が得ら れるのである.まず、 $S^{2p+1} \times S^{2q+1}$ の自然な胞体分割を取り、その最大次元セルに対 応する $M_{p,q}(\tau)$ の open subset を $E_{p,q}(\tau)$ と表す. もしも p > 0, q > 0 ならば, $E_{p,q}(\tau)$ は $h_{p,q}$ のほとんどのelliptic fiber を含んでおり、しかも $\mathbb{R}^{2(p+q+1)}$ と微分同相だから、上で 示した補題 3により, non-Kähler であることが従う $(n \ge 3 \ge 0)$ 条件は, n = p+q+1, p > 0, q > 0から来ている).

では同様にして \mathbb{R}^4 上の non-Kähler complex structure を構成できるではないか, と 思うかもしれないが, それは不可能である. というのも $M_{0,1}(\tau)$ は Hopf surface と一致 するため, $E_{0,1}(\tau)$ は \mathbb{C}^2 の open subset だからである. 従って n = 2の場合には, 別の アプローチが必要となる.

そこで我々が注目したのが、松本幸夫氏と深谷賢治氏によって発見された S^4 から S^2 への genus-one achiral Lefschetz fibration の例である. これを Matsumoto-Fukaya fibration と呼ぶことにする. この例は4次元トポロジー論においてはよく知られたもの だが、positive singularity と negative singularity を1つずつ持つため、一見すると複素幾 何とは全く関係がないように思われる. しかし実は、その唯一の negative singularity を 含む4-ballを取り除いてしまえば、残りの部分はℝ⁴ と微分同相であり、しかも fibration のそこへの制限が holomorphic となるように complex structure を入れることができる. すると、その holomorphic fibration の regular fiber として elliptic curve が含まれるの で、補題 3より ℝ⁴ 上の non-Kähler complex structure であることが分かる. これが今 回の構成法の概要である. 即ち、主定理は以下の通りである.

定理 4. $1 < \rho_2 < \rho_1^{-1}$ を満たす任意の実数の組 (ρ_1, ρ_2) に対し,以下の条件を満たす complex manifold $E(\rho_1, \rho_2)$ および surjective holomorphic map $f: E(\rho_1, \rho_2) \to \mathbb{C}P^1$ が 存在する.

(1) $E(\rho_1, \rho_2)$ は \mathbb{R}^4 と 微分 同相.

- (2) $f^{-1}(0)$ は f の唯一つの singular fiber であり, node を1つ持った immersed holomorphic sphere である.
- (3) $f \mathcal{O}$ regular fiber は2種類あり, embedded holomorphic torus と embedded holomorphic annulus である.

勿論この定理を証明するためには complex manifold $E(\rho_1, \rho_2)$ を構成しなくてはなら ないので、トポロジカルな情報だけでは不十分である.しかし、先ほどの Matsumoto-Fukaya fibration の全空間から negative Lefschetz singularity の近傍をくりぬくという アイディアによって、ℝ⁴を2つのピースへ非自明に分解することができる.この分解 が $E(\rho_1, \rho_2)$ を貼り合せで構成するための設計図を与えてくれるのである.そしてその 2つのピースそれぞれに complex structure を入れ、互いに biholomorphic な貼り合せ領 域を指定し、biholomorphism によって解析的貼り合せを行う.その際、設計図を睨み ながら、トポロジカルには貼り合せが Matsumoto-Fukaya fibration と同じになるよう 適切に貼り合せ領域を指定しておけば、構成した complex manifold がℝ⁴ と微分同相に なるようにコントロールできるということである.その詳細については、2章・3章 で述べることとする.

4章では complex manifold $E(\rho_1, \rho_2)$ の性質および応用について詳しく述べる. その うち顕著なものをいくつか先行して紹介しておこう.

まず $(\rho_1, \rho_2) \neq (\rho'_1, \rho'_2)$ ならば, $E(\rho_1, \rho_2) \geq E(\rho'_1, \rho'_2)$ は互いに biholomorphic でない, ということが挙げられる. このことは, $E(\rho_1, \rho_2)$ 上の compact holomorphic curve の分 類を用いて証明することができる. 結果として, \mathbb{R}^4 上には非可算無限個の non-Kähler complex structure があることが分かる.

さらにこれを利用すれば、任意の connected open orientable 4-manifold は非可算無 限個の non-Kähler complex structure を許容することが分かる. 先ほども述べた通り、 Kähler complex structureの存在については知られているが、その基本的考え方は $\mathbb{C}P^2$ へのはめ込みを使って complex structure を引き戻すというものであった. これと同じ ことを行き先を $E(\rho_1, \rho_2)$ の1点 blow up にとりかえて行うのである.

境界の持つ性質についても述べておこう. $E(\rho_1, \rho_2)$ の境界は3次元球面に微分同相で あるが, complex manifoldの内側へ少しだけ摂動することによって, strictly pseudoconcave boundary にすることが出来る. こうしてできた新たな境界は overtwisted contact 3-sphere であることが容易に示される. つまり, $E(\rho_1, \rho_2)$ の境界の近傍を少しだけ削 ることで, overtwisted contact 3-sphere σ concave holomorphic filling を構成すること ができる. これは overtwisted contact 3-manifold σ concave holomorphic filling の初 めての例である. さらに副産物として, $E(\rho_1, \rho_2)$ はいかなる compact complex surface にも埋め込まれないということも分かる. なぜなら, overtwisted contact manifold は convex holomorphic filling を持たないからである.

このように4次元トポロジー・微分位相幾何学の立場から複素幾何や接触幾何の分野 に大きく貢献できるという点が本稿で最も伝えたいことである.それでは、その話の 根幹となる *E*(*ρ*₁, *ρ*₂)の構成を詳しく見ていこう.

2. The Matsumoto-Fukaya fibration

1980年代前半に松本幸夫氏と深谷賢治氏は以下のような構成によって S^4 から $S^2 \sim \mathcal{O}$ genus-one achiral Lefschetz fibration を発見した[10].まずHopf fibration $H: S^3 \to \mathbb{C}P^1$ とその suspension $\Sigma H: S^4 \to S^3$ を用意し、その合成 $f_{MF} := H \circ \Sigma H$ をとる。すると、 f_{MF} の regular fiber は 2-torus となり、suspension \mathcal{O} 2 つの pinched point がちょうど正 と負の Lefschetz singularity となる。この torus fibration $f_{MF}: S^4 \to S^2$ を Matsumoto-Fukaya fibration と呼ぶ。

 f_{MF} にはただ2つの singular fiber がある. 正の singularity を持つ方を F_1 , 負の singularity を持つ方を F_2 としよう. すると, S^4 は F_1 の tubular neighborhood N_1 と F_2 の tubular neighborhood N_2 の貼り合わせとして表せることが分かる. 実際, S^2 を $S^2 = D_1 \cup D_2$ (ただし, $f_{MF}(F_j) \in D_j$, $\partial D_1 = \partial D_2$) と2つの disk の和に分解したとき, $N_1 := f_{MF}^{-1}(D_1)$, $N_2 := f_{MF}^{-1}(D_2)$ と定義すれば確かにそのようになっている.

 $f_{MF} O N_j \sim O$ 制限を f_j とおこう(j = 1, 2). すると, $f_1: N_1 \rightarrow D_1$ は正の singularity を1つだけ持つ genus-one Lefschetz fibration であり, $f_2: N_2 \rightarrow D_2$ は負の singularity を1つだけ持つ genus-one achiral Lefschetz fibration である. Monodromy はそれぞれ vanishing cycle に沿った right-handed Dehn twist, left-handed Dehn twist となる. 従っ て, $\partial N_1 \geq \partial N_2$ は確かに互いに orientation reversing diffeomorphic である.

次に、 $\partial N_1 \geq \partial N_2$ はどのようなdiffeomorphism で貼り合わされているのかをはっき りさせよう. そのために Kirby diagram を見る. Matsumoto-Fukaya fibration の Kirby diagram は図1の通りであることがよく知られている(例えば[13], Figure 8.38 を参照).

 \boxtimes 1: The Matsumoto-Fukaya fibration on S^4 .

この diagram を説明しよう.まず、グレーの部分は 0-handle に 2 つの 1-handle を貼 り合わせた once punctured torus となっている.ここへ4 つの 2-handle が以下のように 貼り付けられる.まず、framing 0 の 2-handle によって、once punctured torus の穴が ふさがれて torus となる.これが torus fibration の regular fiber に相当する.さらに左 側の 1-handle を通る形で framing -1, framing 1 の 2 つの 2-handle が貼り付けられる. これらはそれぞれ正と負の Lefschetz singularity の vanishing cycle に対応する 2-handle である.最後に、右側の 1-handle を通る形で framing 1 の 2-handle が貼り付けられる. 結局この 2-handle が $\partial N_1 \ge \partial N_2$ を貼り合わせる際にどうひねっているかを表してい るのである.従って、この diagram から分かることをまとめると次のようになる.ま ず,正と負の singularity に対応した 2 つの vanishing cycle は一致している.そこでそ れが表す T^2 fiber の 1 次ホモロジーを meridian と見ることにすれば, $\partial N_1 \ge \partial N_2$ の貼 り合わせは T^2 fiber の longitude に沿った 1 回ひねり(正確には自明な貼り合わせの後 に multiplicity-1 logarithmic transformation を行うということ)である.従って,この 貼り合わせを絵で表すと図 2 のようになる.

 \boxtimes 2: The gluing of N_1 and N_2 .

さてこの貼り合わせによって, $N_1 \cup N_2 = S^4$ となることが分かったから, 今度は N_2 から negative singularity の近傍 $X \cong B^4$ を取り除くことを考えよう (X は緑色の部 分). X は D_2 上の negative singularity を1つだけ持つ annulus fibration (monodromy は left-handed Dehn twist) の全空間なので, 確かに negative Lefschetz singularity の近 傍の standard model であり, B^4 と微分同相である. よって, その補集合 $N_1 \cup (N_2 \setminus X)$ は \mathbb{R}^4 と微分同相になる.

ところで、 $N_2 \setminus X$ にはもはや singularity はないので、 D_2 上の trivial annulus fibration の全空間、即ち $A \times D^2$ (A は annulus) と微分同相である. これに注意すれば、以下の 補題が得られる.

補題 5. $A \times D^2 \& N_1$ に以下のように貼り合せる. 各 $t \in \partial D^2 = -\partial D_1 \cong S^1$ に対し, $A \times \{t\}$ は各ファイバー $f_1^{-1}(t) \cong T^2$ のthickened meridian として埋め込まれ, $t \in S^1$ が 1周する間に T^2 のlongitude方向に1周する. 得られる多様体は \mathbb{R}^4 に微分同相である.

このようにして、 $\mathbb{R}^4 \ge N_1 \ge A \times D^2$ の和という形で非自明に分解することが出来た. これが $E(\rho_1, \rho_2)$ の設計図である.また、 $f: E(\rho_1, \rho_2) \to \mathbb{C}P^1$ はトポロジカルには f_{MF} を $N_1 \cup (N_2 \setminus X)$ へ制限したものである.あとはこれらを complex manifold によって実現していけばよい訳である. 最後に $N_1 \cup (N_2 \setminus X) \cong \mathbb{R}^4$ の Kirby diagram を記しておこう. それは図3のようになる. 図1と比較したとき,取り除くべき X は vanishing cycle を表す framing 1の2-handle, 3-handle, 4-handleの和に他ならないからである.

 \boxtimes 3: The map f on $S^4 \setminus X \cong \mathbb{R}^4$.

3. *E*(*ρ*₁, *ρ*₂)の構成

前章で得られた結果を踏まえ、この章では complex manifold $E(\rho_1, \rho_2)$ の構成を行う. 具体的には、補題 5で得られた2つのピース $N_1 \ge A \times D^2 \frown$ complex structure を入れ、 それぞれに貼り合せ領域を適切に指定するということを行う.

以下, 次のような記号を用いる.

$$\Delta(r) := \{ z \in \mathbb{C} \mid |z| < r \}, \quad \Delta(r_1, r_2) := \{ z \in \mathbb{C} \mid r_1 < |z| < r_2 \}.$$

また, ρ_0 , ρ_1 , ρ_2 は $0 < \rho_0 < \rho_1 < 1 < \rho_2 < \rho_1^{-1}$ という条件を満たす実数とする.

まずはそれぞれのピースに complex structure を入れる. $A \times D^2$ の方は簡単で, holomorphic annulus と holomorphic disk の直積 $\Delta(1, \rho_2) \times \Delta(\rho_0^{-1})$ を取ればよい. 一方, N_1 は genus-one Lefschetz fibration $f_1: N_1 \to D_1$ の全空間だから, これが elliptic fibration となるような complex structure を入れればよい. そのためには以下の elliptic surface 内 の I₁型 singular fiber の近傍モデルが適している. まず, $\Delta(0, \rho_1)$ 上の elliptic fibration

 $\pi: \mathbb{C}^* \times \Delta(0, \rho_1) / \mathbb{Z} \to \Delta(0, \rho_1)$

を考える.ただし、n∈Zの作用は

$$n \cdot (z, w) = (zw^n, w)$$

で与えられている.これを $\Delta(\rho_1)$ 上に延長し, singular elliptic fibration $g_1: W \to \Delta(\rho_1)$ を得る.これが小平による I₁型 singular fiber の近傍モデルである ([4]).

このWと直積 $\Delta(1,\rho_2) \times \Delta(\rho_0^{-1})$ を複素解析的に貼り合せることによって, $E(\rho_1,\rho_2)$ を構成する. 直積の方からは $\Delta(1,\rho_2) \times \Delta(\rho_1^{-1},\rho_0^{-1})$ を貼り合せ領域として取ってくる. Wの方からは $\Delta(1,\rho_2) \times \Delta(\rho_0,\rho_1)$ と biholomorphic な貼り合せ領域を以下のようにして取る. 多価正則関数 $\varphi: \Delta(\rho_0,\rho_1) \to \mathbb{C}^*$ を

$$\varphi(w) = \exp\left(\frac{1}{4\pi i}(\log w)^2 - \frac{1}{2}\log w\right)$$

によって定める. すると,

$$\varphi(re^{i(\theta+2\pi)}) = re^{i\theta}\varphi(re^{i(\theta)}) = w\varphi(w) \tag{1}$$

を満たすので、 φ は1 \in Z の C* への作用と両立し、 π の holomorphic section を定める. そこで、この φ を用いて

$$Y := \{ (z\varphi(w), w) \in \mathbb{C}^* \times \Delta(\rho_0, \rho_1) \mid z \in \Delta(1, \rho_2) \}$$

とすれば、YはZの作用で不変であり、V := Y/Zは φ の定める holomorphic section に 沿った $\Delta(1, \rho_2) \times \Delta(\rho_0, \rho_1)$ と biholomorphic な領域となる. このVがW内の貼り合せ 領域である. 貼り合せ領域同士の biholomorphism *j*は

$$j: V \cong \Delta(1,\rho_2) \times \Delta(\rho_0,\rho_1) \to \Delta(1,\rho_2) \times \Delta(\rho_1^{-1},\rho_0^{-1}); \ (z,w) \mapsto (z,w^{-1})$$

によって与える. あとは

$$E(\rho_1, \rho_2) := W \cup_j \left(\Delta(1, \rho_2) \times \Delta(\rho_0^{-1}) \right)$$

と定義すればよい.

これがℝ⁴に微分同相であることは以下のように示される.貼り合せ領域*V*は $\Delta(1,\rho_2)$ をfiberとする φ によって自明化された直積だから、 φ が満たす条件(1)に注目すれば、 *w*が0のまわりを1周するたびに $\Delta(1,\rho_2)$ はelliptic curveのlongitude 方向へ1周回って いることが分かる.というのも(1)から、 φ の値は*w*の偏角を2π増やすと*w*の積によっ て変化するが、それは $\Delta(1,\rho_2)$ がelliptic curve ℂ*/ℤの中で次の基本領域へ移動するこ とに対応するからである(ただし、ℂ*の偏角方向がmeridian、動径方向がlongitudeに 対応していることに注意せよ).従って、*W* と $\Delta(1,\rho_2) \times \Delta(\rho_0^{-1})$ の貼り合わせはトポ ロジカルには補題 5のものと一致しており、 $E(\rho_1,\rho_2)$ はℝ⁴に微分同相である.

最後に f を構成する必要があるが、これは単に $\Delta(\rho_1), \Delta(\rho_0^{-1}) \sim 0$ 射影をとればよ い. 即ち、W上では $g_1, \Delta(1, \rho_2) \times \Delta(\rho_0^{-1})$ 上では 2nd factor ~ 0 射影として定義する. $\Delta(\rho_1) \ge \Delta(\rho_0^{-1})$ は貼り合せ領域の biholomorphism

$$\Delta(\rho_0, \rho_1) \to \Delta(\rho_1^{-1}, \rho_0^{-1}); \ w \mapsto w^{-1}$$

によって貼り合わさって $\mathbb{C}P^1$ をなすから, $f: E(\rho_1, \rho_2) \to \mathbb{C}P^1$ が定義されるのである.

このようにして構成された $E(\rho_1, \rho_2)$ およびfが主定理の条件を満たしていることは もはや明らかであろう.

4. *E*(*ρ*₁, *ρ*₂) **の**性質および応用

最後に、これまでに明らかとなっている $E(\rho_1, \rho_2)$ と f の性質([1], [2] を参照) につい て述べる.まず以下のように、compact holomorphic curve を容易に分類することがで きる.

補題 6. $E(\rho_1, \rho_2)$ 内の compact holomorphic curve は f の compact fiber である.

Proof. $i: C \to E(\rho_1, \rho_2)$ を compact holomorphic curve とする. 即ち, Cは compact Riemann surface, iは holomorphic immersion とする. このとき, 合成 $f \circ i: C \to \mathbb{C}P^1$ が constant map であることを示せばよい. $f \circ i$ は compact Riemann surface の間の holomorphic map であるから, branched covering map か constant map のいずれかであ る. ところが, この写像は $C \to E(\rho_1, \rho_2) \to \mathbb{C}P^1$ と contractible space $E(\rho_1, \rho_2) \cong \mathbb{R}^4$ を経由しているため null-homotopic であり, branched covering map とはなり得ない. よって, $f \circ i$ は constant map である.

つまり, compact holomorphic curve は $f^{-1}(w)$ ($w \in \Delta(\rho_1)$) のみである. $w \neq 0$ な らば, $f^{-1}(w)$ は modulus が $\frac{1}{2\pi i} \log w$ の elliptic curve である. この分類を踏まえると, ℝ⁴上に非可算無限個の non-Kähler complex structure が存在することが証明できる.

定理 7. $(\rho_1, \rho_2) \neq (\rho'_1, \rho'_2)$ ならば, $E(\rho_1, \rho_2) \ge E(\rho'_1, \rho'_2)$ は互いに biholomorphic でない.

Proof. 対偶を示す. 即ち, biholomorphism $\Phi: E(\rho_1, \rho_2) \to E(\rho'_1, \rho'_2)$ が存在すると仮 定して, $\rho_1 = \rho'_1, \rho_2 = \rho'_2$ であることを示す. Φ は compact curve を compact curve に 写すから, $\Phi(W) = W'$ となる. さらに, elliptic curve は同じ modulus の elliptic curve に写るから, Φ はW上 fiberwise biholomorphism であり, base map $\Delta(\rho_1) \to \Delta(\rho'_1)$ は identity である. よって, $\rho_1 = \rho'_1$ である. さらに analytic continuation により, Φ は $E(\rho_1, \rho_2)$ 全体で fiberwise biholomorphism であることが分かる. 従って, annulus fiber $\Delta(1, \rho_2)$ は annulus fiber $\Delta(1, \rho'_2)$ と biholomorphic となり, $\rho_2 = \rho'_2$ である.

次に、Picard group Pic($E(\rho_1, \rho_2)$)が非可算であることを示す. ここで、 $\mathcal{O}_{\mathbb{C}P^1}(k)$ は $\mathbb{C}P^1$ 上の first Chern class k の holomorphic line bundle, L_k はその f による引き戻し $(E(\rho_1, \rho_2)$ 上に誘導される line bundle) とする. また f による line bundle の引き戻し によって定まる Picard group の間の homomorphism を f^* で表す.

定理 8. f^* : Pic($\mathbb{C}P^1$) \rightarrow Pic($E(\rho_1, \rho_2)$)はinjective であり, Pic($E(\rho_1, \rho_2)$)は非自明な complex vector space である.

Proof. L_k が自明であることを仮定して、 $\mathcal{O}_{\mathbb{C}P^1}(k)$ が自明であることを示せばよい. L_k の nonvanishing holomorphic section τ をとる. 一方、 $\mathcal{O}_{\mathbb{C}P^1}(k)$ も $\Delta(\rho_1)$ 、 $\Delta(\rho_0^{-1})$ それぞれの上では自明なので、 σ_1, σ_2 という部分的な nonvanishing holomorphic section がとれる. これらを f で引き戻せば、 $W_1 := W \pm \mathcal{O}$ nonvanishing section $f^*(\sigma_1) \ge W_2 := \Delta(1, \rho_2) \times \Delta(\rho_0^{-1}) \pm \mathcal{O}$ nonvanishing section $f^*(\sigma_2)$ を得る. 従って、 $W_j \pm \mathcal{O}$ holomorphic function τ_j (j = 1, 2) が

$$\tau|_{W_j} = \tau_j f^*(\sigma_j)$$

によって定まる. ところが $W_1 = W$ は compact fibers で foliate されているから, τ_1 は fiberwise constant である, つまり $\Delta(\rho_1)$ 上の holomorphic function u_1 が存在して, $\tau_1 = f^*(u_1)$ となる. 共通部分 $V = W_1 \cap W_2$ においては

$$f^*(u_1\sigma_1) = \tau_2 f^*(\sigma_2)$$

が成り立つから、 τ_2 もV上においてはやはり fiberwise constant である. ここで analytic continuation を用いれば、 τ_2 は W_2 全体で fiberwise constant、即ち $\Delta(\rho_0^{-1})$ 上の holomorphic function u_2 が存在して、 $\tau_2 = f^*(u_2)$ となる. すると、 $u_1\sigma_1 \ge u_2\sigma_2$ は $\mathcal{O}_{\mathbb{C}P^1}(k)$ の nonvanishing holomorphic section を定めるから、 $\mathcal{O}_{\mathbb{C}P^1}(k)$ は自明となる. これで f^* の injectivity が示された.

よく知られている通り Pic($\mathbb{C}P^1$) = Zなので, Pic($E(\rho_1, \rho_2)$) はZを含む. さらに, sheaf cohomology \mathcal{O} long exact sequence を見れば,

$$\operatorname{Pic}(E(\rho_1, \rho_2)) = H^1(E(\rho_1, \rho_2), \mathcal{O}^*) \cong H^1(E(\rho_1, \rho_2), \mathcal{O})$$

であることが分かる. $H^1(E(\rho_1, \rho_2), \mathcal{O})$ は complex vector space だから, $Pic(E(\rho_1, \rho_2))$ も complex vector space と見なせ、しかも Z を含むので非自明である.

同じような議論により、 $E(\rho_1, \rho_2)$ 上の holomorphic vector bundle $L_{k_1} \oplus L_{k_2} \oplus \cdots \oplus L_{k_n}$ $(k_1 \leq k_2 \leq \cdots \leq k_n)$ は全て異なることが分かる. さらにその全空間をとれば \mathbb{R}^{2n+4} 上の互いに biholomorphic でない non-Kähler complex structure が得られる. これら が Calabiと Eckmann によって構成された complex structure と異なることは compact holomorphic curve の分類を見れば明らかである ([2], Theorem 4).

さて次に,以下の定理を証明しよう.

定理 9. 任意の connected open orientable 4-manifold M^4 は非可算無限個の non-Kähler complex structure を許容する.

これを証明するためには次のPhillipsの定理[15]が重要となる.

定理 10. Mをopen manifoldとする. このとき微分をとる写像

 $d: \operatorname{Sub}(M, V) \to \operatorname{Epi}(TM, TV); f \mapsto df$

は弱ホモトピー同値である. ただし, Sub(M, V)はMから $V \sim O$ submersion 全体の 空間, Epi(TM, TV)はTMから $TV \sim O$ surjective homomorphism 全体の空間である.

これを用いると例えば、*M* が parallelizable ならば *M* から \mathbb{R}^n ($n \leq \dim M$) への submersion が存在する、ということが分かる.従って、 M^4 が parallelizable open 4manifold (open spin 4-manifold と言っても同値) ならば \mathbb{C}^2 への immersion $g: M^4 \rightarrow \mathbb{C}^2$ が存在することが分かる.この g を使って \mathbb{C}^2 の complex structure を引き戻せば、 M^4 に Kähler complex structure を入れることができる. M^4 が一般の connected open orientable 4-manifold である場合は、行き先を $\mathbb{C}P^2$ に変更すれば同様の議論ができる. 尚、 M^4 上の alomost complex structure の存在は Teichner-Vogt [17] および Gompf [12] によって示されている.このことを踏まえて、定理 9 を証明する.

Proof. M^4 が spin の場合 (つまり paralleizable な場合) のみ証明を与えることとする. 定理 10 より, M^4 から $E(\rho_1, \rho_2) \cong \mathbb{R}^4 \sim \mathcal{O}$ immersion $h: M^4 \to E(\rho_1, \rho_2)$ が存在する. ここで以下のようにして, $h(M^4)$ が elliptic curve を含むように rescaling しておけ ば、引き戻しによって得られる M^4 上の complex structure は non-Kähler となる. hは immersion だから、十分小さい 4-ball $B \subset M^4$ をとれば、その上で embedding となる. ここで、 $\rho'_1 < \rho_1, \rho'_2 < \rho_2$ を満たす $E(\rho'_1, \rho'_2)$ をとると、 $E(\rho'_1, \rho'_2) \subset E(\rho_1, \rho_2)$ となって、 \mathbb{R}^4 内に open 4-ball が埋め込まれた形となる. $h(B) \subset E(\rho_1, \rho_2)$ も \mathbb{R}^4 内の open 4-ball だ から、h(B)を $E(\rho'_1, \rho'_2)$ へ写す \mathbb{R}^4 の diffeomorphism が存在する. この diffeomorphism との合成をとって rescaling することにより、元々 $h(B) = E(\rho'_1, \rho'_2)$ であるとしてよい. この hによって $E(\rho_1, \rho_2)$ の complex structure を引き戻して M^4 上に complex structure を入れると、そこには $E(\rho'_1, \rho'_2)$ が holomorphic に埋め込まれている. よって、 M^4 は non-Kähler complex structure を許容する. $(\rho_1, \rho_2) \geq (\rho'_1, \rho'_2)$ を変えることで含まれる elliptic curveの modulus をコントロールできるから、非可算無限個存在することもす ぐにわかる. また、 M^4 が non-spinの場合には、 $E(\rho_1, \rho_2)$ の代わりにその1点blow up を用いれば同様の議論を行うことができる.

最後に, $E(\rho_1, \rho_2)$ の境界の性質について述べる.

定理 11. 境界 $\partial E(\rho_1, \rho_2)$ のカラー近傍 A であって、 $\partial (E(\rho_1, \rho_2) \setminus A)$ が strictly pseudoconcave boundary となるものが存在する. このとき、新たな境界は negative overtwisted contact 3-sphere となる.

即ち, $E(\rho_1, \rho_2)$ の境界のカラー近傍Aを削ることにより, overtwisted contact 3-sphere の concave holomorphic filling が得られるということである. この contact structure は negative Hopf band に対応する negative contact structure, 言い換えると, S^3 上の standard contact structure を Hopf fiber に沿って half Lutz twist したものに negative orientation を入れたものである. このことは, $E(\rho_1, \rho_2)$ を構成する過程で取り除いた X が negative Lefschetz singularity の近傍の standard model であったことを考えれば, 自然なことに感じられるだろう.

証明の際には、strictly pseudoconcavityのみを示せば十分である. というのも、strictly pseudoconcave boundary には complex tangency によって negative contact structure が 誘導される、というのは一般論であるし、さらに d_3 -invariant を見れば contact structure のホモトピー類が決まってしまうからである。従って、 $E(\rho_1, \rho_2)$ 内に境界の S^3 を内側 に摂動した形の concave hypersurface を作ればよい。その構成については本予稿では省 略し、トポロジーシンポジウムの講演において詳しく述べることとしたい。

参考文献

- [1] A. J. Di Scala, N. Kasuya and D. Zuddas, Non-Kähler complex structures on \mathbb{R}^4 , arXiv:1501.06097 (2015).
- [2] A. J. Di Scala, N. Kasuya and D. Zuddas, Non-Kähler complex structures on \mathbb{R}^4 II, arXiv:1511.08471 (2015).
- [3] K. Kodaira, On Compact Complex Analytic Surfaces: I, Ann. of Math. 71 (1960), 111– 152.
- [4] K. Kodaira, On Compact Analytic Surfaces: II, Ann. of Math. 77 (1963), 563-626.
- [5] K. Kodaira, On Compact Analytic Surfaces: III, Ann. of Math. 78 (1963), 1-40.

- [6] K. Kodaira, On the structures of compact complex analytic surfaces: I, Amer. J. Math. 86 (1964), 751–798.
- [7] K. Kodaira, On the structures of compact complex analytic surfaces: II, Amer. J. Math. 88 (1966), 682–721.
- [8] K. Kodaira, On the structures of compact complex analytic surfaces: III, Amer. J. Math. 90 (1968), 55–83.
- [9] K. Kodaira, On the structures of compact complex analytic surfaces: IV, Amer. J. Math. 90 (1968), 1048–1066.
- [10] Y. Matsumoto, On 4-manifolds fibered by tori, Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), no. 7, 298–301.
- [11] Y. Miyaoka, Kähler metrics on elliptic surfaces, Proc. Japan Acad. Ser. A Math. Sci. 50 (1974), 533–536.
- [12] R. E. Gompf, Spin^c-structures and homotopy equivalences, Geom. Topol. 1 (1997), 41– 50.
- [13] R. E. Gompf and A. I. Stipcitz, 4-manifolds and Kirby calculus, Graduate Studies in Mathematics 20, American Mathematical Society (1999).
- [14] A. Phillips, Submersions of open manifolds, Topology 6 (1967), 171–206.
- [15] Y. T. Siu, Every K3 surface is Kähler, Inv. Math. 73 (1983), 139–150.
- [16] P. Teichner and E. Vogt, All oriented 4-manifolds have spin^c-structures, preprint (1994).