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予稿集の訂正

p.160, l.17 , 「m ≥ 1 に対し」→ 「m ≥ 2 に対し」
p.163, l.9 , H1(Σg ;Z) → H1(Σg ;K )

p.164, l.8 , “Nilsen” → “Nielsen”

p.166, l.7 , 「群が満たすべき」→ 「有限生成群が満たすべき」

p.166, l.12 , 「XGL(n,K)」 → 「XGL(n,C)」 (2箇所とも)
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Introduction

Mapping Class Group (MCG)

the group of isotopy classes of the orientation preserving homeomorphisms
of an oriented surface.

(w/ some variants)

A fundamental problem is its linearity.

A group is linear ⇔ it admits a faithful finite dimensional linear
representation over ∃ field.

A linear representation is faithful ⇔ it is injenctive as a
homomophism into the corresponding linear transformation group.

In particular, a group is said to be K -linear if it admits a faithful finite
dimensional linear representation over a field K .
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The purpose of this talk is

to make a (personally biased) review on known results on the linearity
problem on MCG of surfaces,

to derive two types of new linearity conditions for MCG of surface,
one for closed surface and one for 1-punctured surface (NOT to claim
the solution of the problem, unfortunately),
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Introduction Mapping Class Group and its linearity problem

Notation

Σg : a closed oriented surrface of genus g

Σg ,∗ : a pair of Σg and a fixed base point ∗ ∈ Σg

Σg ,n : a connected compact oriented surface of genus g with
n ≥ 0 boundary components

Mg : MCG of Σg

Mg ,∗ : MCG of Σg ,∗
(homeo and isotopy are assumed to fix ∗)

Mg ,n : MCG of Σg ,n

(homeo and isotopy are assumed to fix
the boundary pointwise)
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Introduction Known results

Known results

Classical. M1
∼= M1,∗ ∼= SL(2,Z).

Therefore, M1 and M1,∗ are Q-linear.

For the genus 2 case:

Korkmaz [’00], Bigelow–Budney [’01]

M2 is linear.

Proof. the combination of:

Artin’s braid group Bn is linear (Bigelow [’01], Krammer [’02])

the relation of Bn with MCG of n + 1st punctured S2,

relation between M2 and MCG of 6th punctured S2 (Birman–Hilden
theory)
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Introduction Known results

All the other cases are unknown.

The linearity of Mg for g ≥ 3 and also the linearity of Mg ,∗ for g ≥ 2
seem to remain open.
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Introduction Some Difficulty in higher genera

Lawrence representation of Bn

D2 : a 2-disk

Pn : a set of fixed n points in Int(D2)

Dn := (D2,Pn)

Bn : MCG of Dn

Cm(Dn) : the configuration space of m points in D2 ∖Pn (unordered)

Bn acts naturally on H1(Cm(Dn);Z).

Lawrence[’90].

H1(Cm(Dn);Z)Bn ∼=

{
Z (m = 1);

Z⊕ Z (m ≥ 2)

Take the mth homology of the covering of Cm(Dm) corresponding to the
invariant part, to obtain

a linear representation ρ(m) of Bn over
Z[t±1] (m = 1) or Z[t±1, q±1] (m ≥ 2).
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Introduction Some Difficulty in higher genera

Lawrence representation of Bn (2)

ρ(1) is the Burau representation
faithful for n = 3 (Magnus–Peluso [’69])

ρ(2) is faithful for n ≥ 4 (Krammer[’00,’02], Bigelow[’01])

What if one replaces Dn with Σg ,1?
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Introduction Some Difficulty in higher genera

Non-existence of Lawrence rep for Σg ,1

For g ≥ 1, one can use a presentation of the braid group of Σg ,1

(Bellingeri [’04]) to obtain as an Mg ,1-module,

H1(Cm(Σg ,1);Z) ∼=

{
H1(Σg ,1;Z) (m = 1);

H1(Σg ,1;Z)⊕ Z/2Z (m ≥ 2)

where the action on Z/2Z is trivial.

Therefore, one can not expect to derive information much more than the
Mg ,1-action on the mth homology itself:

ρm : Mg ,1 → GL(Hm(Cm(Σg ,1);Z)).

On the other hand, the kernel of the latter representation is given by:

Moriyama[’07]

{Ker ρm}m≥1 coincides with the Johnson filtration.
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Introduction Some Difficulty in higher genera

Some other related topics (c.f. 予稿集)

Comparison with Aut (Fn)

Lattice in top. group VS Linearity

Classification of low degree rep.’s over C
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Visualization

Motivation for Visualization

Linearity problem seems quite subtle, as observed above.

If an ad-hoc way is good enough, the problem might be solved even
today by somebody.

However, any systematic approach seems missing.

So, we tried to rephrase the linearity problem for MCG in terms of proper
MCG geometry/topology,

in the hope to find new interesting problems, and further hopefully a clue
to the linearity problem itself.
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Visualization

Compact surface case: Setting

Σg ,n : the compact connected oriented surface of genus g ≥ 1
and n ≥ 0 boundary components.

Mg ,n : MCG of Σg ,n (id on ∂)

S = Sg ,n : the set of isotopy classes of essential (unoriented) simple
closed curves (SCC) on Σg ,n

Here, essential means: not homotopic to a point nor parallel to any
boudary component.

Note: Mg ,n naturally acts on S.
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Visualization

Dehn twist

For C ∈ S, tC denotes the (right-handed) Dehn twist ∈ Mg ,n:

Definition

We define a set mapping

ι : S → Mg ,n by ι(C ) := tC for C ∈ S.

Fact

ι is injective.

For f ∈ Mg ,n, f · tC · f −1 = tf (C), i.e.,

ι(f (C )) = f · ι(C ) · f −1.
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Visualization

Our starting point:

Lemma (K.)

For any group homomorphism φ : Mg ,n → G,

Kerφ ⊂ Z (Mg ,n) ⇔ φ ◦ ι is injective

where Z denotes the center of the group.

Proof.

f · tC · f −1 = tf (C) (f ∈ Mg ,n)

Ker (Mg ,n → Aut (S)) = Z (Mg ,n)

The action on S can detect S.

By making use of this lemma, we can ”visualize” the linearity of Mg ,n, up
to center.

To explain this, we introduce the following.
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Visualization case of closed surface

Module of curves

K [S] : the vector space over K with basis S

Definition (K.)

A module of curves (of type S) is defnied as the pair of

an Mg ,n-module M (over K ),

an Mg ,n-equivariant surjective homomorphism p : K [S] → M.

If p is clear, we will simply refer to M as a module of curves.
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Visualization case of closed surface

Module of curves (2)

We say a module of curves is of finite dimension if its dimension over K is
finite.

A module of curves is nothing but K [S] divided by skein type
relations, i.e., some formal finite sums of finite numbers of SCCs.

There is only one example of finite dimensional module of curves
given, in terms of skein type relations (Luo[’97]).

N.B. Not all Mg ,n-modules admit the structure of module of curves. E.g.,
any Mg -equivariant homomorphism K [S] → H1(Σg ;K ) must be zero, if
char(K ) ̸= 2.
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Visualization case of closed surface

Any linear rep. of Mg ,n induces a module of curves.

V : a finite dimensional vector space over K
ρ : Mg ,n → GL(V ): a given linear representation

End (V ) is naturally an Mg ,n-module by

f∗X = ρ(f )Xρ(f )−1 (f ∈ Mg ,n, X ∈ End (V )).

Definition

Let Mρ := SpannK (ρ ◦ ι(S)) ⊂ End (V ).

Mρ is preserved under the Mg ,n-action(
∵ f∗(ρ ◦ ι(C )) = ρ(f )ρ(tC )ρ(f )

−1 = ρ(ftC f
−1)

= ρ(tf (C)) = ρ ◦ ι(f (C ))

)

Mρ receives a structure of fin. dim. module of curves with

pρ : K [S] → Mρ, pρ(C ) := ρ ◦ ι(C ).
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Visualization case of closed surface

Visualization for closed surface

The construction of the module of curves associated to a linear
representation, together with the Starting Lemma, implies:

Theorem (K.)

Let g ≥ 1 and n ≥ 0. Then Mg ,n admits a finite dimensional linear
representation over K with kernel ⊂ Z (Mg ,n) if and only if it has a finite
dimensional module of curves p : K [S] → M such that p|S is an injection.

Since Z (Mg ,n) = 1 for g ≥ 3 and n = 0, we have

Corollary (K.)

For g ≥ 3, Mg is K-linear if and only if it admits a finite dimensional
module of curves p : K [S] → M such that p|S is injective.
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Visualization case of closed surface

Some problems

For a module of curves
p : K [S] → M,

When does M have finite dimensions over K?

When is Ker p finitely generated as an Mg ,n-module?
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Visualization case of once-punctured surface

once-punctured surface: Setting

Σg : the closed oriented surface of genus g ≥ 2, with a fixed
based point ∗ ∈ Σg

Σg ,∗ : the pair of Σg and the based point ∗
Mg : the MCG of Σg

Mg ,∗ : the MCG of Σg ,∗
(All homeo.s’ & isotopies are assumed to fix ∗.)

Aside from S, there is another geometric object contained in Mg ,∗ such
that the natural Mg ,∗-action is almost effective and coincides with the
conjugation action in Mg ,∗:

Namely, the fundamental group π1(Σg , ∗).
This is described by the so-called the Birman exact sequence.
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Visualization case of once-punctured surface

Birman exact sequence

Homeo+(Σg ) : the space of all orientation preserving homeo.s’ of Σg

ev : Homeo+(Σg ) → Σg : the evaluation at ∗ ∈ Σg

ev is a locally trivial fibration with fiber Homeo+(Σg ,∗)

each connected component of Homeo+(Σg ) is contractible
(Hamstrom[’69] & Luke–Mason [’72])

Take the lowest part of long exact sequence of homotopy groups to obtain:

Birman [’69]

1 −→ π1(Σg , ∗)
i−→ Mg ,∗

j−→ Mg −→ 1
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Visualization case of once-punctured surface

Birman exact sequence (2)

1 −→ π1(Σg , ∗)
i−→ Mg ,∗

j−→ Mg −→ 1

More explicitly,

i sends a loop α to the ending homeomorphisms of the isotopy
of Σg extending the isotopy of ∗ which corresponds to the
loop α−1.

j : the homomorphism of forgetting ∗.
The natural action of Mg ,∗ on π1(Σg , ∗) is described, like the action on
S, by:

i(f∗γ) = f · i(γ) · f −1.

We identify i(π1(Σg , ∗)) with π1(Σg , ∗) via i .
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Visualization case of once-punctured surface

Analogue of the Starting Lemma

Lemma (K.)

For any group homomorphism ρ : Mg ,∗ → G,
ρ is injective ⇔ its restriction to π1(Σg , ∗) is injective.

Proof of “⇐”. Suppose ρ is injective on π1(Σg , ∗) and f ∈ Ker ρ.

For each γ ∈ π1(Σg , ∗),

ρ(f∗γ) = ρ(f γf −1) = ρ(γ).

Then the assumption implies f∗(γ) = γ for ∀γ ∈ π1(Σg , ∗).
By the Dehn–Nielsen theorem, the action of Mg ,∗ on π1(Σg , ∗) is
effective, and therefore f = 1.

The next problem: when a rep. of π1(Σg , ∗) extends to Mg ,∗?
—To describe this, terms of deformation space seem appropriate.
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Visualization case of once-punctured surface

Deformation space

G : a group fixed.

Hom(π1(Σg , ∗),G ) : the set of all homomorphisms π1(Σg , ∗) → G

XG : = Hom(π1(Σg , ∗),G )/G the quotient by post conjugation

The MCG Mg ,∗ acts on Hom(π1(Σg , ∗),G ) by

f · ϕ = ϕ ◦ f −1 (f ∈ Mg ,∗, ϕ ∈ Hom(π1(Σg , ∗),G )).

The action of γ ∈ π1(Σg , ∗) ⊂ Mg ,∗ coincides with the conjugation
by ϕ(γ); i.e., the action of π1(Σg , ∗) on XG is trivial.

⇒
This action descends to an action of Mg on XG via the Birman exact
sequence.
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Visualization case of once-punctured surface

Deformation space (2)

For ϕ ∈ Hom(π1(Σg , ∗),G ), its representing class in XG is denoted by [ϕ].

Lemma (K.)

If ϕ ∈ Hom(π1(Σg , ∗),G ) extends to a homomorphism Mg ,∗ → G, then
[ϕ] ∈ XG is a global fixed point of the Mg -action on XG .

Proof. Clear from the definitions.

The convererse of this Lemma is probably not true.
(Partly because the centralizer of Imϕ in G is not trivial.)

Nevertheless, in case of G = GL(n,K ), any global fixed point of
Mg -action on XGL(n,K) induces a linear representation of Mg ,∗.
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Visualization case of once-punctured surface

A global fixed point induces a representation

For ϕ ∈ Hom (π1(Σg , ∗),GL(n,K )), we define
Adϕ : π1(Σg , ∗) → GL(End (n,K )) by

Adϕ(γ)(M) = ϕ(γ)Mϕ(γ)−1 for γ ∈ π1(Σg , ∗), M ∈ End (n,K ).

Vϕ := K [ϕ(π1(Σg , ∗))]
Vϕ is clearly a π1(Σg , ∗)-submodule of End (GL(n,K )), which implies a
linear representation

Aϕ : π1(Σg , ∗) → GL(Vϕ).

Lemma (K.)

If ϕ represents a global fixed point of the Mg -action on XGL(n,K), then
the correspondence ϕ(γ) 7→ ϕ(f∗γ) (γ ∈ π1(Σg , ∗), f ∈ Mg ,∗) defines a
linear representation

Ψ : Mg ,∗ → GL(Vϕ),

which extends the representation Aϕ : π1(Σg , ∗) → GL(Vϕ).
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Visualization case of once-punctured surface

Visualization for Mg ,∗

Observe

If ϕ is injective, so is Ψ (since
KerAϕ = {γ ∈ π1(Σg , ∗) ; [γ, π1(Σg , ∗)] ⊂ Ker ϕ}

and π1(Σg , ∗) is center-free, it follows from the injectivity Lemma.)

Since Vϕ ⊂ End (n,K ), dimK Vϕ ≤ n2.

Now we have:

Theorem (K.)

Let g ≥ 2. Then, Mg ,∗ is K-linear
⇔
For some n, the action of Mg on XGL(n,K) has a global fixed point
represented by a faithful representation of π1(Σg , ∗).

If this is the case, there exists a faithful K-linear rep. of Mg ,∗ of
dimensions at most n2.
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Visualization case of once-punctured surface

Some consequences

Fixed points in low dimensions:

Korkmaz [’11] has shown: for g ≥ 3, there exsit no faithful C-linear
representation of Mg ,∗ of dimension ≤ 3g − 3.

this result implies via our theorem that there are no global fixed
points in XGL(n,C) represented by a faithful representation with

n ≤
√
3g − 3.
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Visualization case of once-punctured surface

Some consequences (2)

Dynamical Properties of Mg -action on XGL(n,K):

Recent studies have revealed that the action is a complicated mixture
of properly discontinuous & ergodic actions (under suitable topology
and measure).

Our theorem states that the faithful finite-dim rep. can exits only in
the extremely opposite to the properly discontinuous part.

On the other hand, even the full ergodicity of the action is not
enough to imply the non-lineariy. (can’t prohibit a single global fixed
point represented by a faithful rep. of π1(Σg , ∗).)
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Visualization case of once-punctured surface

Some consequences (3)

A consequence of the fixed point Lemma:

A well-known source of a faithful (projective) linear representation of
π1(Σg , ∗) is a hyperbolic structure on Σg .
(Take the holonomy representation to obtain
ϕ : π1(Σg , ∗) → PSL(2,R).)
the stablizer of [ϕ] ∈ XPSL(2,R) is nothing but the orientation
preserving isometry group of the hyperbolic structure, and therefore, a
finite subgroup of Mg .

And therefore, by the fixed point Lemma, such a representation
cannot extend to Mg ,∗ → PSL(2,R).
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Visualization case of once-punctured surface

A comparison with the preceding results

The visualization theorem for Mg ,∗ seems new.
However, we can point out:

A finitely generated linear group must be residually finite; (i.e., any
non-identity element can be excluded by a finite index normal
subgroup.)

the residually finiteness of Mg ,∗ was established by Baumslag [’63].

the residually finiteness of Mg was established by Grossman [’74/’75].

Afterwards, Bass–Lubotky [’83]: the residually finiteness of Mg follows
roughly from that of Mg ,∗ together with the fact:

only mapping class of Mg which fixes all points in XGL(n,C)
represented by irreducible representations with n varying is the
identity.

This seems to form a contrast with our visualization.
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Visualization case of once-punctured surface

A problem

There is a Birman exact sequence for Aut (Fn):

1 −→ Fn
i−→ Aut (Fn)

j−→ Out (Fn) −→ 1

The visualization theorem remains true with the same proof.

On the other hand, while Aut (F2) is C-linear (Krammer [’00]),
Aut (Fn) is not linear for n ≥ 3 (Formanek–Procesi [’92])
In particular, the visualization theorem implies:

If n ≥ 3, there are no global fixed points in
HomFn,GL(m,K )/GL(m,K ) represented by a faithful
representation.

Problem

Give a direct proof of this fact.
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Summary

Summary

Mg is K -linear if and only if there exists a finite dimensional module
of curves

p : K [S] → M

such that p|S is injective.(
When is a module of curves finite dimensional, or has
a finite MCG-generators, in general?

)

Mg ,∗ is K -linear if and only if the Mg -action on XGL(n,K) has a
global fixed point represented by a faithful representation of π1(Σg , ∗)
for some n.(

Find an alternate direct proof for the analogous re-
sults corresponding to Aut (Fn).

)
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