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N
Introduction

Mapping Class Group (MCG)

the group of isotopy classes of the orientation preserving homeomorphisms
of an oriented surface.

(w/ some variants)

A fundamental problem is its linearity.

@ A group is linear < it admits a faithful finite dimensional linear
representation over ~ field.

@ A linear representation is faithful < it is injenctive as a
homomophism into the corresponding linear transformation group.

In particular, a group is said to be K-linear if it admits a faithful finite
dimensional linear representation over a field K.



|
The purpose of this talk is

@ to make a (personally biased) review on known results on the linearity
problem on MCG of surfaces,

@ to derive two types of new linearity conditions for MCG of surface,
one for closed surface and one for 1-punctured surface (NOT to claim
the solution of the problem, unfortunately),



Introduction Mapping Class Group and its linearity problem

Notation

Y, : aclosed oriented surrface of genus g
Y, + : apairof Xz and a fixed base point * € ¥,

Yz ¢ aconnected compact oriented surface of genus g with
n > 0 boundary components

M, : MCG of ¥,

Mg + MCG of X4,
(homeo and isotopy are assumed to fix *)

Mg.n + MCG of X, ,
(homeo and isotopy are assumed to fix
the boundary pointwise)
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Introduction Known results

Known results

Classical. My = My, = SL(2,7Z).

Therefore, M7 and My , are Q-linear.

For the genus 2 case:

Korkmaz ['00], Bigelow—Budney ['01]
Mo is linear.

Proof. the combination of:
@ Artin’s braid group B, is linear (Bigelow ['01], Krammer ['02])
e the relation of B, with MCG of n + 1st punctured S?,

o relation between M5 and MCG of 6th punctured 52 (Birman—Hilden

theory)

O

7/35



Introduction Known results

All the other cases are unknown.

The linearity of Mg for g > 3 and also the linearity of M, , for g > 2
seem to remain open.
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Lawrence representation of B,

D? : a 2-disk

P, : a set of fixed n points in Int(D?)
D, = (D?, P,)

B, : MCG of D,

Cm(D,) : the configuration space of m points in D? . P, (unordered)
B, acts naturally on HY(Cn(Dy); Z).

Lawrence['90].

Z (m=1);

H'(Cm(Dy); Z)r = {Z ®Z (m=2)

Take the mth homology of the covering of Cp,(Dy,) corresponding to the
invariant part, to obtain

a linear representation p(™ of B, over
Z[tE!] (m =1) or Z[t*, ¢*] (m > 2).



Lawrence representation of B, (2)

o p1) is the Burau representation
faithful for n = 3 (Magnus—Peluso ['69])

o p?) is faithful for n > 4 (Krammer['00,'02], Bigelow['01])

What if one replaces D, with ¥, 17
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Non-existence of Lawrence rep for >, ;

For g > 1, one can use a presentation of the braid group of ¥z 1
(Bellingeri ['04]) to obtain as an Mg 1-module,

o~ ) H1(Zg 1 Z) (m=1);
Hi(Cm(Xg,1), Z) & {Hl(zz,l? Z)®Z/2Z (m>?2)

where the action on Z/27Z is trivial.

Therefore, one can not expect to derive information much more than the
Mg 1-action on the mth homology itself:

pm : Mg1 — GL(Hn(Cm(Xg1); Z)).
On the other hand, the kernel of the latter representation is given by:
Moriyamal['07]

{Ker pm}m>1 coincides with the Johnson filtration. }
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Some Diffcty n higher genera
Some other related topics (c.f. THA%E)

e Comparison with Aut (Fp)
@ Lattice in top. group VS Linearity

o Classification of low degree rep.'s over C
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Visualization

Motivation for Visualization

@ Linearity problem seems quite subtle, as observed above.

o If an ad-hoc way is good enough, the problem might be solved even
today by somebody.

@ However, any systematic approach seems missing.

So, we tried to rephrase the linearity problem for MCG in terms of proper
MCG geometry/topology,

in the hope to find new interesting problems, and further hopefully a clue
to the linearity problem itself.
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Visualization

Compact surface case: Setting

Y5 n : the compact connected oriented surface of genus g > 1
and n > 0 boundary components.

Mg.n : MCG of X, , (id on 0)
S = Sg 5 : the set of isotopy classes of essential (unoriented) simple
closed curves (SCC) on X,

Here, essential means: not homotopic to a point nor parallel to any
boudary component.

Note: M, , naturally acts on S.

14/35



Visualization

Dehn twist

For C € S, tc denotes the (right-handed) Dehn twist € Mg 4:

Definition

We define a set mapping

L:8 = Mgp byC):=tcfor CeS.

Fact
@ L is injective.

o FOF f S Mg,nr f- tC . f_l = tf(C)v i,
(F(C)) = f-u(C)- FL.

y
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Our starting point:

Lemma (K.)
For any group homomorphism ¢ : Mg , — G,
Kero C Z(Mgn) <<  @ouis injective

where Z denotes the center of the group.

Proof.
o fotc -t =tqc) (f € Mgp)
o Ker(Mg ,— Aut(S)) = Z(Mg.n)
@ The action on S can detect S. O

v

By making use of this lemma, we can "visualize” the linearity of Mg ,, up
to center.

To explain this, we introduce the following.
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Module of curves

K|[S] : the vector space over K with basis S
Definition (K.)

A module of curves (of type S) is defnied as the pair of
e an M, ,-module M (over K),

® an M, ,-equivariant surjective homomorphism p : K[S] — M.

If pis clear, we will simply refer to M as a module of curves.
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case of closed surface
Module of curves (2)

We say a module of curves is of finite dimension if its dimension over K is
finite.

e A module of curves is nothing but K[S] divided by skein type
relations, i.e., some formal finite sums of finite numbers of SCCs.

@ There is only one example of finite dimensional module of curves
given, in terms of skein type relations (Luo['97]).

N.B. Not all Mg ,-modules admit the structure of module of curves. E.g.,

any M-equivariant homomorphism K[S] — Hi(Xgz; K) must be zero, if
char(K) # 2.
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Any linear rep. of M, , induces a module of curves.

V: a finite dimensional vector space over K
p: Mg, — GL(V): a given linear representation

End (V) is naturally an Mg ,-module by
£.X = p(F)Xp(F)™t (f € Mg, X € End(V)).

Definition
Let M, := Spanny(p o «(S)) C End (V).

fu(poU(C)) = p(F)p(te)p(F) ™ = plfcf 1)
= p(t,c(c)) = poy(f(C))

M, is pr(served under the M, ,-action )

M, receives a structure of fin. dim. module of curves with

py: K[S] = M,, p,(C):=poC).




AWEIEIPEGIN  case of closed surface

Visualization for closed surface

The construction of the module of curves associated to a linear
representation, together with the Starting Lemma, implies:

Theorem (K.)

Let g > 1 and n> 0. Then Mg , admits a finite dimensional linear
representation over K with kernel C Z(Myg n) if and only if it has a finite
dimensional module of curves p : K[S] — M such that p|s is an injection.

Since Z(Myg n) =1 for g > 3 and n =0, we have
Corollary (K.)

For g > 3, Mg is K-linear if and only if it admits a finite dimensional
module of curves p : K[S] — M such that p|s is injective.
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Some problems

For a module of curves
p: K[S] = M,

@ When does M have finite dimensions over K?

@ When is Ker p finitely generated as an Mg ,-module?
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Visualization case of once-punctured surface

once-punctured surface: Setting

Y, : the closed oriented surface of genus g > 2, with a fixed

based point * € ¥,
Y g« : the pair of X, and the based point *

M, : the MCG of ¥,

Mg @ the MCG of X, .
(All homeo.s" & isotopies are assumed to fix *.)

Aside from S, there is another geometric object contained in M, . such
that the natural Mg ,-action is atmest effective and coincides with the
conjugation action in Mg ,:

Namely, the fundamental group 71(%, *).
This is described by the so-called the Birman exact sequence.
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Birman exact sequence

Homeo, (%) : the space of all orientation preserving homeo.s' of ¥,
ev: Homeo,(X,;) — X, : the evaluation at * € ¥,

@ ev is a locally trivial fibration with fiber Homeo (>, .)

@ each connected component of Homeo, (X,) is contractible
(Hamstrom['69] & Luke-Mason ['72])

Take the lowest part of long exact sequence of homotopy groups to obtain:
Birman ['69]

1 5 m(Te %) & Mg, & Mg —1
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Birman exact sequence (2)

1 5 m(Te %) & Mg, & Mg =1

)

More explicitly,
i sends a loop « to the ending homeomorphisms of the isotopy

of ¥ extending the isotopy of * which corresponds to the

loop a1

J : the homomorphism of forgetting *.

The natural action of M, . on m1(Xg, %) is described, like the action on
S, by:

i(fr) = F i) - £ J

We identify i(m1(Xg, *)) with w1 (X, %) via /.
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Analogue of the Starting Lemma

Lemma (K.)

For any group homomorphism p : Mg, — G,
p Is injective < its restriction to w1 (Xz,*) is injective.

Proof of "<". Suppose p is injective on 71(X 4, *) and f € Ker p.
@ For each v € m1(Xg, %),

p(fy) = p(fyf 1) = p().

@ Then the assumption implies f.(y) =~ for Vy € m1(Xg, *).
@ By the Dehn—Nielsen theorem, the action of Mg , on wl(Zg,*) is
effective, and therefore f = 1.

The next problem: when a rep. of m1(Xg, *) extends to Mg .7

—To describe this, terms of deformation space seem appropriate.
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Visualization case of once-punctured surface

Deformation space

G : a group fixed.

Hom(71(X,, %), G) : the set of all homomorphisms 71 (X, %) = G
X¢ + = Hom(mi(X4, %), G)/G the quotient by post conjugation
The MCG M, . acts on Hom(7 (X, %), G) by

fop=¢oft (fe Mg, ¢ € Hom(mi(Zg,*), G)).

The action of v € 71 (X4, %) C M, coincides with the conjugation
by ¢(7); i.e., the action of m1(Xz,*) on X is trivial.
=

This action descends to an action of M, on X via the Birman exact
sequence.
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Visualization case of once-punctured surface

Deformation space (2)

For ¢ € Hom(7m1(Xg, %), G), its representing class in Xg is denoted by [¢].

Lemma (K.)

If ¢ € Hom(m1(Xg,%), G) extends to a homomorphism Mg . — G, then
[¢] € X¢ is a global fixed point of the M g-action on Xg.

Proof. Clear from the definitions. O

The convererse of this Lemma is probably not true.
(Partly because the centralizer of Im ¢ in G is not trivial.)

Nevertheless, in case of G = GL(n, K), any global fixed point of
Mg-action on Xqr,(n k) induces a linear representation of Mg ..
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Visualization case of once-punctured surface

A global fixed point induces a representation
For ¢ € Hom (m1(Xg4, *), GL(n, K)), we define
Ad ¢ m1(Xg,*) = GL(End (n, K)) by
Ad ¢(7)(M) = ¢(v)Mp(y) ™ for v € m1(Xg, %), M € End (n, K).

Vs = Klo(mi(Zg, %))l
V, is clearly a m1(Xg, *)-submodule of End (GL(n, K)), which implies a
linear representation

A¢ . ﬂl(zg, *) — GL(V¢).

Lemma (K.)

If ¢ represents a global fixed point of the Mg-action on Xq1,(, k), then
the correspondence ¢() — ¢(fiy) (v € m1(Xg, %), f € Mg ) defines a
linear representation

v ./\/lg,* — GL(V¢),

which extends the representation A¢ : m1(¥Xg,*) = GL(V;).
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Visualization case of once-punctured surface

Visualization for M, ,

Observe

e If ¢ is injective, so is W (since

Ker-A¢ {’7 S 71'1( ) [7a 7Tl(zgv )] C Ker ¢}
and (X4, *) is center-free, it follows from the injectivity Lemma.)

e Since V,, C End (n, K), dimk V,, < n°.

Now we have:

Theorem (K.)

Let g > 2. Then, Mg . is K-linear

=

For some n, the action of Mg on Xqy(n,k) has a global fixed point
represented by a faithful representation of (X4, *).

If this is the case, there exists a faithful K-linear rep. of Mg . of
dimensions at most n?.
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Some consequences

Fixed points in low dimensions:

e Korkmaz ['11] has shown: for g > 3, there exsit no faithful C-linear
representation of Mg , of dimension < 3g — 3.

@ this result implies via our theorem that there are no global fixed
points in Xgr,(n,c) represented by a faithful representation with

n<4/3g—3.
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case of once-punciured surface
Some consequences (2)

Dynamical Properties of Mg-action on Xq(n k)

@ Recent studies have revealed that the action is a complicated mixture
of properly discontinuous & ergodic actions (under suitable topology
and measure).

@ Our theorem states that the faithful finite-dim rep. can exits only in
the extremely opposite to the properly discontinuous part.

@ On the other hand, even the full ergodicity of the action is not
enough to imply the non-lineariy. (can’t prohibit a single global fixed
point represented by a faithful rep. of m1(X,,*).)
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Visualization case of once-punctured surface

Some consequences (3)

A consequence of the fixed point Lemma:

@ A well-known source of a faithful (projective) linear representation of
m1(Xg, *) is a hyperbolic structure on X,.

(Take the holonomy representation to obtain
¢ m(Xg,*) = PSL(2,R).)

o the stablizer of [¢] € Xpsi (o) is nothing but the orientation
preserving isometry group of the hyperbolic structure, and therefore, a
finite subgroup of M,.

@ And therefore, by the fixed point Lemma, such a representation
cannot extend to M, . — PSL(2,R).
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Visualization case of once-punctured surface

A comparison with the preceding results

The visualization theorem for M, . seems new.
However, we can point out:

@ A finitely generated linear group must be residually finite; (i.e., any
non-identity element can be excluded by a finite index normal
subgroup.)

o the residually finiteness of M, . was established by Baumslag ['63].

o the residually finiteness of M was established by Grossman ['74/'75].

Afterwards, Bass—Lubotky ['83]: the residually finiteness of M, follows
roughly from that of M, , together with the fact:

only mapping class of Mg which fixes all points in Xgy,(n,c)
represented by irreducible representations with n varying is the
identity.

This seems to form a contrast with our visualization.
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A problem

There is a Birman exact sequence for Aut (F,):

1 - F, & Aut (F,) ER Out(F,) —1

The visualization theorem remains true with the same proof.

On the other hand, while Aut (F,) is C-linear (Krammer ['00]),
Aut (Fp,) is not linear for n > 3 (Formanek—Procesi ['92])
In particular, the visualization theorem implies:
If n > 3, there are no global fixed points in
Hom F,, GL(m, K)/GL(m, K) represented by a faithful
representation.

Problem
Give a direct proof of this fact. J
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Summary

@ M, is K-linear if and only if there exists a finite dimensional module
of curves

p:K[S]—-M

such that p|s is injective.

When is a module of curves finite dimensional, or has
a finite MCG-generators, in general?

® Mg . is K-linear if and only if the M-action on Xgr,(s,k) has a
global fixed point represented by a faithful representation of m1(Xg, )
for some n.

Find an alternate direct proof for the analogous re-
sults corresponding to Aut (F,).

35/35



	Introduction
	Mapping Class Group and its linearity problem
	Known results
	Some Difficulty in higher genera

	Visualization
	case of closed surface
	case of once-punctured surface


