曲面の写像類群の 線型性問題の視覚化について On visualization of the linearity problem for mapping class groups of surfaces

笠原 泰

高知工科大学

8 July 2016

p.160, l.17, 「 $m \ge 1$ に対し」→ 「 $m \ge 2$ に対し」 p.163, l.9, $H_1(\Sigma_g; \mathbb{Z}) \rightarrow H_1(\Sigma_g; K)$ p.164, l.8, "Nilsen" → "Nielsen" p.166, l.7, 「群が満たすべき」→ 「有限生成群が満たすべき」

p.166, l.12, 「 $X_{\operatorname{GL}(n,K)}$ 」 \rightarrow 「 $X_{\operatorname{GL}(n,\mathbb{C})}$ 」 (2箇所とも)

Outline

Introduction

- Mapping Class Group and its linearity problem
- Known results
- Some Difficulty in higher genera

Visualization

- case of closed surface
- case of once-punctured surface
 - some consequences

Introduction

Mapping Class Group (MCG)

the group of isotopy classes of the orientation preserving homeomorphisms of an oriented surface.

(w/ some variants)

A fundamental problem is its linearity.

- A group is <u>linear</u> ⇔ it admits a faithful finite dimensional linear representation over [∃] field.
- A linear representation is <u>faithful</u> ⇔ it is injenctive as a homomophism into the corresponding linear transformation group.

In particular, a group is said to be K-linear if it admits a faithful finite dimensional linear representation over a field K.

The purpose of this talk is

- to make a (personally biased) review on known results on the linearity problem on MCG of surfaces,
- to derive two types of new linearity conditions for MCG of surface, one for closed surface and one for 1-punctured surface (NOT to claim the solution of the problem, unfortunately),

Notation

- $\Sigma_g\,$: a closed oriented surrface of genus g
- $\Sigma_{g,*}$: a pair of Σ_g and a fixed base point $*\in \Sigma_g$
- $\Sigma_{g,n}$: a connected compact oriented surface of genus g with $n \ge 0$ boundary components

$$\mathcal{M}_g$$
 : MCG of Σ_g

- $\mathcal{M}_{g,*} : \mathsf{MCG} \text{ of } \Sigma_{g,*} \\ (\mathsf{homeo} \text{ and isotopy are assumed to fix }*)$
- $\begin{aligned} \mathcal{M}_{g,n} &: \text{MCG of } \Sigma_{g,n} \\ & \text{(homeo and isotopy are assumed to fix} \\ & \text{the boundary pointwise)} \end{aligned}$

Known results

```
Classical. \mathcal{M}_1 \cong \mathcal{M}_{1,*} \cong \mathrm{SL}(2,\mathbb{Z}).
```

Therefore, \mathcal{M}_1 and $\mathcal{M}_{1,*}$ are \mathbb{Q} -linear.

For the genus 2 case:

```
Korkmaz ['00], Bigelow–Budney ['01] \mathcal{M}_2 is linear.
```

Proof. the combination of:

- Artin's braid group B_n is linear (Bigelow ['01], Krammer ['02])
- the relation of B_n with MCG of n + 1st punctured S^2 ,
- relation between \mathcal{M}_2 and MCG of 6th punctured S^2 (Birman–Hilden theory)

All the other cases are unknown.

The linearity of \mathcal{M}_g for $g \geq 3$ and also the linearity of $\mathcal{M}_{g,*}$ for $g \geq 2$ seem to remain open.

Lawrence representation of B_n

 $\begin{array}{l} D^2 : \text{ a } 2\text{-disk} \\ P_n : \text{ a set of fixed } n \text{ points in } \operatorname{Int}(D^2) \\ D_n := (D^2, P_n) \\ B_n : \operatorname{MCG of } D_n \\ \mathcal{C}_m(D_n) : \text{ the configuration space of } m \text{ points in } D^2 \smallsetminus P_n \text{ (unordered)} \\ B_n \text{ acts naturally on } H^1(\mathcal{C}_m(D_n); \mathbb{Z}). \end{array}$

Lawrence['90].

$$H^1(\mathcal{C}_m(D_n);\mathbb{Z})^{B_n}\cong egin{cases} \mathbb{Z} & (m=1);\ \mathbb{Z}\oplus\mathbb{Z} & (m\geq 2) \end{cases}$$

Take the *m*th homology of the covering of $C_m(D_m)$ corresponding to the invariant part, to obtain

a linear representation
$$ho^{(m)}$$
 of B_n over
 $\mathbb{Z}[t^{\pm 1}] \ (m=1)$ or $\mathbb{Z}[t^{\pm 1}, q^{\pm 1}] \ (m \ge 2).$

Lawrence representation of B_n (2)

ρ⁽¹⁾ is the Burau representation faithful for n = 3 (Magnus-Peluso ['69]) ρ⁽²⁾ is faithful for n ≥ 4 (Krammer['00,'02], Bigelow['01])

What if one replaces D_n with $\Sigma_{g,1}$?

Non-existence of Lawrence rep for $\Sigma_{g,1}$

For $g \ge 1$, one can use a presentation of the braid group of $\Sigma_{g,1}$ (Bellingeri ['04]) to obtain as an $\mathcal{M}_{g,1}$ -module,

$$H_1(\mathcal{C}_m(\Sigma_{g,1});\mathbb{Z}) \cong egin{cases} H_1(\Sigma_{g,1};\mathbb{Z}) & (m=1); \ H_1(\Sigma_{g,1};\mathbb{Z}) \oplus \mathbb{Z}/2\mathbb{Z} & (m\geq 2) \end{cases}$$

where the action on $\mathbb{Z}/2\mathbb{Z}$ is trivial.

Therefore, one can not expect to derive information much more than the $\mathcal{M}_{g,1}$ -action on the *m*th homology itself:

$$\rho_m : \mathcal{M}_{g,1} \to \mathrm{GL}(H_m(\mathcal{C}_m(\Sigma_{g,1});\mathbb{Z})).$$

On the other hand, the kernel of the latter representation is given by: Moriyama['07]

 ${\operatorname{Ker} \rho_m}_{m\geq 1}$ coincides with the Johnson filtration.

Some other related topics (c.f. 予稿集)

- Comparison with $Aut(F_n)$
- Lattice in top. group VS Linearity
- $\bullet\,$ Classification of low degree rep.'s over $\mathbb C$

Motivation for Visualization

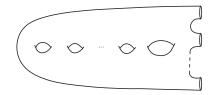
- Linearity problem seems quite subtle, as observed above.
- If an ad-hoc way is good enough, the problem might be solved even today by somebody.
- However, any systematic approach seems missing.

So, we tried to $\underline{rephrase}$ the linearity problem for MCG in terms of proper MCG geometry/topology,

in the hope to find new interesting problems, and further hopefully a clue to the linearity problem itself.

Compact surface case: Setting

 $\Sigma_{g,n}$: the compact connected oriented surface of genus $g \ge 1$ and $n \ge 0$ boundary components.



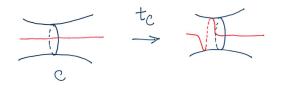
 $\mathcal{M}_{g,n} : \text{MCG of } \Sigma_{g,n} \text{ (id on } \partial) \\ \mathcal{S} = \mathcal{S}_{g,n} : \text{the set of isotopy classes of } \underbrace{\text{essential (unoriented) simple}}_{\text{closed curves (SCC) on } \Sigma_{g,n} }$

Here, <u>essential</u> means: not homotopic to a point nor parallel to any boudary component.

Note: $\mathcal{M}_{g,n}$ naturally acts on \mathcal{S} .

Dehn twist

For $C \in S$, t_C denotes the (right-handed) Dehn twist $\in \mathcal{M}_{g,n}$:



Definition

We define a set mapping

$$\iota: \mathcal{S} \to \mathcal{M}_{g,n}$$
 by $\iota(\mathcal{C}) := t_{\mathcal{C}}$ for $\mathcal{C} \in \mathcal{S}$.

Fact

• ι is injective.

• For
$$f \in \mathcal{M}_{g,n}$$
, $f \cdot t_C \cdot f^{-1} = t_{f(C)}$, i.e.,
 $\iota(f(C)) = f \cdot \iota(C) \cdot f^{-1}$

Our starting point:

Lemma (K.)

For any group homomorphism $\varphi:\mathcal{M}_{g,n}
ightarrow\mathsf{G}$,

$$\operatorname{\mathsf{Ker}} \varphi \subset Z(\mathcal{M}_{g,n}) \quad \Leftrightarrow \quad \varphi \circ \iota \text{ is injective}$$

where Z denotes the center of the group.

Proof.

•
$$f \cdot t_C \cdot f^{-1} = t_{f(C)} \ (f \in \mathcal{M}_{g,n})$$

• Ker
$$(\mathcal{M}_{g,n} \to \operatorname{Aut}(\mathcal{S})) = Z(\mathcal{M}_{g,n})$$

• The action on \mathcal{S} can detect \mathcal{S} .

By making use of this lemma, we can <u>"visualize"</u> the linearity of $\mathcal{M}_{g,n}$, up to center.

To explain this, we introduce the following.

Module of curves

K[S] : the vector space over K with basis S

Definition (K.)

A module of curves (of type S) is defined as the pair of

- an $\mathcal{M}_{g,n}$ -module M (over K),
- an $\mathcal{M}_{g,n}$ -equivariant surjective homomorphism $p: \mathcal{K}[\mathcal{S}] \to \mathcal{M}$.

If p is clear, we will simply refer to M as a module of curves.

Module of curves (2)

We say a module of curves is of finite dimension if its dimension over K is finite.

- A module of curves is nothing but K[S] divided by skein type relations, i.e., some formal finite sums of finite numbers of SCCs.
- There is only one example of finite dimensional module of curves given, in terms of skein type relations (Luo['97]).

<u>N.B.</u> Not all $\mathcal{M}_{g,n}$ -modules admit the structure of module of curves. <u>E.g.</u>, any \mathcal{M}_{g} -equivariant homomorphism $\mathcal{K}[\mathcal{S}] \to \mathcal{H}_{1}(\Sigma_{g}; \mathcal{K})$ must be zero, if char(\mathcal{K}) $\neq 2$.

Any linear rep. of $\mathcal{M}_{g,n}$ induces a module of curves.

V: a finite dimensional vector space over K $\rho: \mathcal{M}_{g,n} \to \mathrm{GL}(V)$: a given linear representation $\mathrm{End}(V)$ is naturally an $\mathcal{M}_{g,n}$ -module by

$$f_*X =
ho(f)X
ho(f)^{-1}$$
 $(f \in \mathcal{M}_{g,n}, X \in \operatorname{End}(V))$

Definition

Let
$$M_{\rho} := \operatorname{Spann}_{K}(\rho \circ \iota(\mathcal{S})) \subset \operatorname{End}(V).$$

$$M_{\rho} \text{ is preserved under the } \mathcal{M}_{g,n}\text{-action} \\ \begin{pmatrix} \ddots & f_{*}(\rho \circ \iota(C)) = \rho(f)\rho(t_{C})\rho(f)^{-1} = \rho(ft_{C}f^{-1}) \\ & = \rho(t_{f(C)}) = \rho \circ \iota(f(C)) \end{pmatrix}$$

 $M_{
ho}$ receives a structure of fin. dim. module of curves with

$$p_{\rho}: \mathcal{K}[\mathcal{S}] \to M_{\rho}, \quad p_{\rho}(\mathcal{C}) := \rho \circ \iota(\mathcal{C}).$$

Visualization for closed surface

The construction of the module of curves associated to a linear representation, together with the Starting Lemma, implies:

Theorem (K.)

Let $g \ge 1$ and $n \ge 0$. Then $\mathcal{M}_{g,n}$ admits a finite dimensional linear representation over K with kernel $\subset Z(\mathcal{M}_{g,n})$ if and only if it has a finite dimensional module of curves $p : K[S] \to M$ such that $p|_S$ is an injection.

Since
$$Z(\mathcal{M}_{g,n})=1$$
 for $g\geq 3$ and $n=0$, we have

Corollary (K.)

For $g \ge 3$, \mathcal{M}_g is K-linear if and only if it admits a finite dimensional module of curves $p : K[S] \to M$ such that $p|_S$ is injective.

Some problems

For a module of curves

$$p: K[\mathcal{S}] \to M,$$

- When does *M* have finite dimensions over *K*?
- When is Ker p finitely generated as an $\mathcal{M}_{g,n}$ -module?

once-punctured surface: Setting

 Σ_g : the closed oriented surface of genus $g \geq 2$, with a fixed based point $* \in \Sigma_g$

- $\Sigma_{g,*}$: the pair of Σ_g and the based point *
- \mathcal{M}_g : the MCG of Σ_g
- $\mathcal{M}_{g,*}$: the MCG of $\Sigma_{g,*}$ (All homeo.s' & isotopies are assumed to fix *.)

Aside from S, there is another geometric object contained in $\mathcal{M}_{g,*}$ such that the natural $\mathcal{M}_{g,*}$ -action is almost effective and coincides with the conjugation action in $\mathcal{M}_{g,*}$:

Namely, the fundamental group $\pi_1(\Sigma_g, *)$. This is described by the so-called the Birman exact sequence.

Birman exact sequence

 $\begin{array}{l} \mathsf{Homeo}_+(\Sigma_g): \text{ the space of all orientation preserving homeo.s' of } \Sigma_g \\ \mathsf{ev}: \mathsf{Homeo}_+(\Sigma_g) \to \Sigma_g: \text{ the evaluation at } * \in \Sigma_g \end{array}$

- ev is a locally trivial fibration with fiber $Homeo_+(\Sigma_{g,*})$
- each connected component of $Homeo_+(\Sigma_g)$ is contractible (Hamstrom['69] & Luke–Mason ['72])

Take the lowest part of long exact sequence of homotopy groups to obtain: Birman ['69]

$$1 \to \pi_1(\Sigma_g, *) \xrightarrow{i} \mathcal{M}_{g, *} \xrightarrow{j} \mathcal{M}_g \to 1$$

Birman exact sequence (2)

$$1 \rightarrow \pi_1(\Sigma_g, *) \xrightarrow{i} \mathcal{M}_{g, *} \xrightarrow{j} \mathcal{M}_g \rightarrow 1$$

More explicitly,

i sends a loop α to the ending homeomorphisms of the isotopy of Σ_g extending the isotopy of * which corresponds to the loop α^{-1} .

j: the homomorphism of forgetting *.

The natural action of $\mathcal{M}_{g,*}$ on $\pi_1(\Sigma_g,*)$ is described, like the action on \mathcal{S} , by:

$$i(f_*\gamma) = f \cdot i(\gamma) \cdot f^{-1}.$$

We identify $i(\pi_1(\Sigma_g, *))$ with $\pi_1(\Sigma_g, *)$ via *i*.

Analogue of the Starting Lemma

Lemma (K.) For any group homomorphism $\rho : \mathcal{M}_{g,*} \to G$, ρ is injective \Leftrightarrow its restriction to $\pi_1(\Sigma_g, *)$ is injective.

<u>Proof of "</u> \Leftarrow ". Suppose ρ is injective on $\pi_1(\Sigma_g, *)$ and $f \in \text{Ker } \rho$. • For each $\gamma \in \pi_1(\Sigma_g, *)$,

$$\rho(f_*\gamma) = \rho(f\gamma f^{-1}) = \rho(\gamma).$$

- Then the assumption implies $f_*(\gamma) = \gamma$ for $\forall \gamma \in \pi_1(\Sigma_g, *)$.
- By the Dehn–Nielsen theorem, the action of $\mathcal{M}_{g,*}$ on $\pi_1(\Sigma_g,*)$ is effective, and therefore f = 1.

The next problem: when a rep. of $\pi_1(\Sigma_g, *)$ extends to $\mathcal{M}_{g,*}$? —To describe this, terms of deformation space seem appropriate.

Deformation space

G: a group fixed.

$$\begin{split} & \operatorname{Hom}(\pi_1(\Sigma_g,*),G) : \text{ the set of all homomorphisms } \pi_1(\Sigma_g,*) \to G \\ & X_G := \operatorname{Hom}(\pi_1(\Sigma_g,*),G)/G \text{ the quotient by post conjugation} \\ & \operatorname{The MCG} \, \mathcal{M}_{g,*} \text{ acts on } \operatorname{Hom}(\pi_1(\Sigma_g,*),G) \text{ by} \end{split}$$

$$f \cdot \phi = \phi \circ f^{-1}$$
 $(f \in \mathcal{M}_{g,*}, \phi \in \operatorname{Hom}(\pi_1(\Sigma_g,*),G)).$

The action of $\gamma \in \pi_1(\Sigma_g, *) \subset \mathcal{M}_{g,*}$ coincides with the conjugation by $\phi(\gamma)$; <u>i.e.</u>, the action of $\pi_1(\Sigma_g, *)$ on X_G is trivial.

 \Rightarrow

This action descends to an action of \mathcal{M}_g on X_G via the Birman exact sequence.

Deformation space (2)

For $\phi \in \text{Hom}(\pi_1(\Sigma_g, *), G)$, its representing class in X_G is denoted by $[\phi]$. Lemma (K.)

If $\phi \in \text{Hom}(\pi_1(\Sigma_g, *), G)$ extends to a homomorphism $\mathcal{M}_{g,*} \to G$, then $[\phi] \in X_G$ is a global fixed point of the \mathcal{M}_g -action on X_G .

Proof. Clear from the definitions.

The convererse of this Lemma is probably not true. (Partly because the centralizer of $\text{Im }\phi$ in *G* is not trivial.)

Nevertheless, in case of G = GL(n, K), any global fixed point of \mathcal{M}_{g} -action on $X_{GL(n,K)}$ induces a linear representation of $\mathcal{M}_{g,*}$.

A global fixed point induces a representation

For
$$\phi \in \operatorname{Hom}(\pi_1(\Sigma_g, *), \operatorname{GL}(n, K))$$
, we define
Ad $\phi : \pi_1(\Sigma_g, *) \to \operatorname{GL}(\operatorname{End}(n, K))$ by
Ad $\phi(\gamma)(M) = \phi(\gamma)M\phi(\gamma)^{-1}$ for $\gamma \in \pi_1(\Sigma_g, *)$, $M \in \operatorname{End}(n, K)$.
 $V_{\phi} := K[\phi(\pi_1(\Sigma_g, *))]$
 V_{ϕ} is clearly a $\pi_1(\Sigma_g, *)$ -submodule of $\operatorname{End}(\operatorname{GL}(n, K))$, which implies a
linear representation

$$\mathcal{A}\phi:\pi_1(\Sigma_g,*)\to \mathrm{GL}(V_\phi).$$

Lemma (K.)

If ϕ represents a global fixed point of the \mathcal{M}_{g} -action on $X_{\mathrm{GL}(n,K)}$, then the correspondence $\phi(\gamma) \mapsto \phi(f_*\gamma)$ ($\gamma \in \pi_1(\Sigma_g, *)$, $f \in \mathcal{M}_{g,*}$) defines a linear representation

$$\Psi: \mathcal{M}_{g,*} \to \mathrm{GL}(V_{\phi}),$$

which extends the representation $\mathcal{A}\phi: \pi_1(\Sigma_g, *) \to \operatorname{GL}(V_\phi)$.

Visualization for $\mathcal{M}_{g,*}$

Observe

If φ is injective, so is Ψ (since Ker A φ = {γ ∈ π₁(Σ_g, *); [γ, π₁(Σ_g, *)] ⊂ Ker φ} and π₁(Σ_g, *) is center-free, it follows from the injectivity Lemma.)
Since V_φ ⊂ End (n, K), dim_K V_φ ≤ n².

Now we have:

Theorem (K.)

```
Let g \geq 2. Then, \mathcal{M}_{g,*} is K-linear
```

 \Leftrightarrow

For some n, the action of \mathcal{M}_g on $X_{\mathrm{GL}(n,K)}$ has a global fixed point represented by a faithful representation of $\pi_1(\Sigma_g, *)$.

If this is the case, there exists a faithful K-linear rep. of $\mathcal{M}_{g,*}$ of dimensions at most n^2 .

Some consequences

Fixed points in low dimensions:

- Korkmaz ['11] has shown: for $g \ge 3$, there exsit no faithful \mathbb{C} -linear representation of $\mathcal{M}_{g,*}$ of dimension $\le 3g 3$.
- this result implies via our theorem that there are no global fixed points in $X_{GL(n,\mathbb{C})}$ represented by a faithful representation with

$$n \leq \sqrt{3g-3}$$
.

Some consequences (2)

Dynamical Properties of \mathcal{M}_{g} -action on $X_{\mathrm{GL}(n,K)}$:

- Recent studies have revealed that the action is a complicated mixture of properly discontinuous & ergodic actions (under suitable topology and measure).
- Our theorem states that the faithful finite-dim rep. can exits only in the extremely opposite to the properly discontinuous part.
- On the other hand, even the full ergodicity of the action is not enough to imply the non-lineariy. (can't prohibit a single global fixed point represented by a faithful rep. of π₁(Σ_g, *).)

Some consequences (3)

A consequence of the fixed point Lemma:

- A well-known source of a faithful (projective) linear representation of $\pi_1(\Sigma_g, *)$ is a hyperbolic structure on Σ_g . (Take the holonomy representation to obtain $\phi : \pi_1(\Sigma_g, *) \to \mathsf{PSL}(2, \mathbb{R}).$)
- the stablizer of $[\phi] \in X_{\mathsf{PSL}(2,\mathbb{R})}$ is nothing but the orientation preserving isometry group of the hyperbolic structure, and therefore, a finite subgroup of \mathcal{M}_g .
- And therefore, by the fixed point Lemma, such a representation cannot extend to $\mathcal{M}_{g,*} \to \mathsf{PSL}(2,\mathbb{R}).$

A comparison with the preceding results

The visualization theorem for $\mathcal{M}_{g,*}$ seems new. However, we can point out:

- A finitely generated linear group must be residually finite; (<u>i.e.</u>, any non-identity element can be excluded by a finite index normal subgroup.)
- the residually finiteness of $\mathcal{M}_{g,*}$ was established by Baumslag ['63].

• the residually finiteness of \mathcal{M}_g was established by Grossman ['74/'75]. Afterwards, Bass–Lubotky ['83]: the residually finiteness of \mathcal{M}_g follows roughly from that of $\mathcal{M}_{g,*}$ together with the fact:

only mapping class of \mathcal{M}_g which fixes all points in $X_{\mathrm{GL}(n,\mathbb{C})}$ represented by irreducible representations with n varying is the identity.

This seems to form a contrast with our visualization.

A problem

There is a Birman exact sequence for $Aut(F_n)$:

$$1 \to F_n \xrightarrow{i} \operatorname{Aut}(F_n) \xrightarrow{j} \operatorname{Out}(F_n) \to 1$$

The visualization theorem remains true with the same proof.

On the other hand, while $\operatorname{Aut}(F_2)$ is \mathbb{C} -linear (Krammer ['00]), $\operatorname{Aut}(F_n)$ is not linear for $n \geq 3$ (Formanek–Procesi ['92]) In particular, the visualization theorem implies:

If $n \ge 3$, there are no global fixed points in Hom F_n , GL(m, K)/GL(m, K) represented by a faithful representation.

Problem

Give a direct proof of this fact.

Summary

• \mathcal{M}_g is K-linear if and only if there exists a finite dimensional module of curves

$$p: K[\mathcal{S}] o M$$

such that $p|_{\mathcal{S}}$ is injective.

(When is a module of curves finite dimensional, or has) a finite MCG-generators, in general?

• $\mathcal{M}_{g,*}$ is K-linear if and only if the \mathcal{M}_g -action on $X_{\mathrm{GL}(n,K)}$ has a global fixed point represented by a faithful representation of $\pi_1(\Sigma_g, *)$ for some n.

(Find an alternate direct proof for the analogous results corresponding to $Aut(F_n)$.)