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Chepter & HEDUCIBILITY

5.1, Definitions.

A system of linear ordinary differential equetions of the first order

with rational functions of t as coefficients:

[Na =R

dxj/ét - a3, 1{t)x, (3=1,2,.00.,4) (1.1)-

k=l

ig said to be reducible iff there is a non-singular trensformation:
d
x=T(t)y ¢ x5{(t) = & 75 k(t)yk (1.2)
k=1

det(T(t)) £ © (1.3)

such that the transformed system:
- -1 '
dy/dt = B(t)y = [T 1(t)A(i)T(t)*T (L)1 (%) ly (1.4)
nag the reducible coefficient matrix B(t), where,of course, we assumed that

all the elements Tj,k(t) (J,k=1,2,...,4) of the transformetion matrix T(t) are

rational funciions of t,
A matrix B(t) of size d by d is e reducible matrix when it is considereq
ag & linear trensformation
- d
B(t): ¢* -> ¢ (1.5)
it has an invarient proper subspace Vi

Bty < v (L.6)

 for all %,
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For an exemple, if we can take this invariant subspace V as the linear
subspace of the first p { 1{p<{d ) components of the vector y, then the matrix B(t)
necessarily has the form:
By,1(%t) | - 0

B, 1(8) | By 5(1)

B(t) = (1.7)

where the respective sizes of the blocks Bl’l(t),ﬁg,l(t) and Bg,g(t} are

p by p, p by (d-p) and {d-p) by (d-p} respectively.

Similarly, if there is & non-singular constant matrix C such that the

transformed matrix O"IB(t)C has a off disgonal block with all the elements zéro:

Bl_’}_{t) | o]

c“ls(t}c = {
Bp,1(t) | By o(t)

(18)

then B{t) is reducible,

Let 8={A1,A2;++. ,Ap,] be the set of poles of ithe matrix A(t). Let X(t) ve
gome fundamental set of solutions of the system (5,1). Let be a closed
circuit in E1~S, and let X(t)M(T) be the resulis of analytic continuation of (1)
along § . We call the representation of the fundamental gfoup RI{EI—S) in

GL(d,C) defined by:
pr T => M), ( piG-ny(pl-g) -> cL(d,c) ) ‘ (L9)

the moncdromy representation of (5,1) with respect to the furdemental set X{t),
as in the preceding chapter,
Alinear representation of a group G is reducible if there is a proper

non-trivial invariant subspace for all the elements.
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Iheorem.1,

If the system (5.1) is reducible, then every monodromy representation isg

reducible,

Corollary.
If a monodromy representation is irreducible for‘(5.1), then (5.1) is

irreducible { = not reducible ),

Proof of the theorem. By a non~singular rationsl transformation (5.2),

we get & new system of the form:

v1' o= By a(e)

N | (1.10),
Y2 = Bg’z(t)yl + Bg,g(t)

We have a non-trivial set of solutions for which y1=0 identically, that is R

we have a fundamental set of solutions of the form:

0
Y{t) = ( ) (1.11)
1,2

If T; 4(t) be a matrix of the size P by p, Yo 1(t) be (d-p) by p, and Yg,g(t) be
) 1 L.

21

(d=p) by (d-p), then it is clear that the representation with respect to this gey

has the form:

€11 0
p(T) = ( __Jm_,f__mﬁ ) | (1.12)
€2,1 1 %2,2
Henceany proper non-trivial vector space contained in the subspace whose first

p components are zero is invariant.
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Remark. Although the converse to the theorem seeme to be known ag & pure
existence theorem, my intension was Lo give & constructive proof for it. The

following theorem is a very pédr angwer for my intension which cen only ‘be applied

to the classical second order equations.

. Theorem 2. If & monodromy representaiion of the system (5.1) has a -

(d-1)~dimensional invarient subspace, and if 1% is a fuchsiamn system, then the
system it 'self is reducible,

Procf, We may assume that the invarient subspace V is the set of vectors
whose d-th component is zero. Let the group be generated by E1282r7 s e 8p
with respect to the definite fundamental set of solutions

t) = [ x(2),xa(t),vennneyxglt) ] { xj(t) is a vertical vector) (1.13).

By the particular choice of the invariant subspace V, the generators have the

form:
G1’1 0
' 0
g. = . (1.1)4‘)
=l
9)
gd’l,.......,gd,d__l, exp(-»2nicj)

j is the

negative value of a characteristic root at the singular point tzhj, which can

where G1 ; is & matrix of the size (d-1) by (d4-1), end the constant ¢
)

be uniquely determined up to an integral difference,
By a simple observation, we see the vector solution xg{t) is trensformed

into Xé(t)'exp(“zﬁicj) by the circuit around the singular point t=As. Hence the

column vegtor
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y(t) = (t-Ap) Teeveres (t=Ap) Txg{t) = r{t)xg(t) (5.15)
is single-valued in the entire complex plane. OUn the other hend we sssumed the
gystem to be fuchsian, that is, y(t) is a rational function with at most poles
on 8=[A];e«+ +esAr, @], We can easily compute the system of first order equationg
satisfied by the rational vector y{t) as follows:

dy/dt = (d/dt][r(t)xg(t)] = r'(t)xg(t) + r{t)A(t)xq(t)

= e (e)/e()-T + AY) Ty(t) (1.16),

Let R(t) be a & by d.non*singular rational metrix whose d-th column vectlor

is y(t). Then the.dnth column vector of the matrix:
dR/dt =A(t)R{(t) -r'(2)/r{t) R(t)
ie identically zero, Multiply Rnl(t) from the left, and we see that the matrix:
T(t) = R(t)T[aR(1)/at - ACIR(E) = (r*()/r(£)IA(1)] (1.17)
has zero d-th column vector. Consequently, the matrix
B(t) = R(t) M (dR(t)/dt - ACt)R(t) ) (1.18)

has the d~th column vector

ba(4) = 10,0, e 5 (£)/r(1)) (1.19)
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That is the matrix B(t) has an inveriant non-trivial (d-1)-dimensional subspace

V! whése d-th component is zaro., The sctual transformetion matrix which carries

the system (5.1) to (5.4) inéih%s case is given by R(t). We only specified the

d-th column vector of R(t}, and the rest of (d-1) columns can be chosen erbitrarily

so that R(t) is non-singuler: e.g.,

R(t) = y(t) (1.20)

3t

¢0... O

is & possible choice. This completes the proof of theorem 2,.
We can not give no more general results of the above type, but for
gsome specific examples, we can give certain criterions for the reducibility or

the irreducibility of the given system.

5.2, An Irreduciblility Theorem.

A directed finite graph is a pair (V,F) where V is a finite set of points

called vertices:
V=[V‘1,,...,VI-J k (2.1)
and F is a set of multivalued functions defined on V into V:

Fr V>V,

A directed arc u is defined by a pair of vertices (v,v') such that v' is in F(v):

u=f[ (v,v'}): V‘BF(Q} ] ' (2.2}
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A path P is & string of arcs u3=(vj,vj‘) such that vj+l=vj’:
P = £ (Vjvvj'): Vj-&l:leeF(vj} j=3~,---,P ] (2.5).

A graph 1s strongly connected if there is atleast one path P connecting any two
given vertices,
An ed jecency matrix of a graph (V,F) is a matrix whose (j,k) element is

either zero or one asccording to

Vi Z F(vj) or v, E F(Vj)_

A finite directed graph detérmines its matrix of ad jacency uniquely: and converse1y7

. . [
e square matrix determines an equivalent class of directed graphs if all of its
elements are either zeroc or one, The equivalence is defined by certain permutationg .

of vertices and identifying arcs connecting the same pair of points,

The following theorem gives a practical method of determining a given group

generated finitely by generalized reflections is irreducible or not.

Theorem 3. Llet G be a subgroup G of GL{(d,C) generated by d generalized

reflections:

{I+Cj= =1,2,...,4d]

where Cj is & matrix of the size d by d whose row vectors are all pull vectars

except for the j-th row (cj,l' ...... "Cj,d)'

And let (V,F) be one graph defined by the matrix Q whose (j,k) the element

is zero or one according to

cj,k = O or cj,i( # o] (2’4)‘
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Then when det{U+L)=det{ Z Cy ) £ 0, the group G is irreducible if the graph
=1
(V,F) is strongly connected.

Proof., Suppose V is an invariant linear subspace of ot

under the

transformations of G. This is equivalent that

V(I;gj) Cy for 3=1,2,...,d (2.5).

We will show that all the row vectors:

vy2 ey ey oy g) B2 (2.6)

are contained in V, and by the assumption, we can-show that are linearly

independent and span the whole space Cd
If V is non-trivial, then there must be a vector v which has at lsast one

of the component non-zero, Let this component be the j-th compenent and let u

be ite value. Then since both v and v(I+Cj) are contained in V, we have
vy = (3/w)0 v(14C3) -v ] (2.7)

contained in V., Then by the sirong connectivity of the greph {V,F), there is

8 sequence of numbers pj,Po,...,Pg Such that there is a path
[(Vpr’vp;, )31"=1,2,...,S ] ‘ (2.8)
sush that for any number k {(k£j, k=1,2,....,d) we have

v' = Vk

Psg (2.9)

The sequence of paths (2.8) is equivalent to the sequence of transfofmations

of the type (2.7}, and we may interprete vertices as vectors (2,6),
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That is, eny other vector vy is obtained as a linear combinations of the transformeq
H

(2.10)

.....

v {(180p1 ) (TeCpp) ==+ (100, )

Consequently, we have all of the vectors Visereny Vg cocntained in the yectdr

space V if VG is contained in V., This completes the preof,

The irreducibility criterion cen be applied directly for d=2 without any

modifications. We have two generators:

My = 1+ (eg-1) ( 6 o ) (2.11)
( 1) 0] Q )

My = I+ (g9~

! ! (q . (2.12)

where we have

‘ 2,1
ey = @xp(znlaa,g) ( g
61 - exp(aﬁiﬂl’l) (2.1&}
pa = [egre;-f1-51/(eg=1)(e1-1) = sin(p)-a) 1)n-sin(py-a) {)w/K
(K = sin(al’1ﬂ)sin(ag’gn)sin(al,1~a2’2)n )
and
2
det(Mpiy) = (e-1)(e3-1)(1-pa) = (eo-1)(e1-1) TT sin(me;)/sin(naj, ;)
=

ceenes (2.15)
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For the computations (2.11)-(2,15) we refer pp.17-19 of Chap.IV.

PréEosition. The éystemﬁ

Rl -G f"'i&l 1 5.1 2
(- ( ) axfar = (LD
0 }\2 8.2 1 8.2 2

3 ¥

) x
is irreducible if

(1) & 1,82,2,P1,Pp are not integers,

\ , .

(ii) Pj e,k Tor §,k=1,2 eare not integers.

The above conditions for more general systems cen be stated without
any difficulty by modifying the argumenis used in the proof of Theorem 3,

‘There are two well known partition pairs:

dal+ls ,,,,, +1 =(d=-1)+1" (Genralized Hypergeometric equation or

Jorden Pochhammsr equation)

2d = d+d = d+(d-1)+1 (Goursat-Sasai equation for d=2 ).

We refer the erticlss 'T,Kimura,[ 7] ,K.Qicubo [10] end T,Sasai [15] for further

informations,
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