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Chapter II Study of the Canonical System,

1. Number of Paramesters,

Let d be & fixed integer, and we consider a system of Pirst order equations

for x=(x1;X2,.....,xd) of the form:
(tI-B)x'=Ax ' (1.1)

where both A and B are d by matrix with constants as their elements, and where I

denotes d by d identity matrix., We write the system (1.1) in the form:
(t-B)x' = Ax

when the existence of the identity meirix is clear from the context, we will use
this convention throughout this paper,

We sssume the following conditions,
(i) B is = disgenal matrix with eigenvalues { diagonal elements )
S = [A1sA2yvvveeshg] ' (1.2)

For the seke of definiteness we assume that these eigenvalues are ordered as in
the section 1 of the preceding chapter. Namely, identical eigenvalues are grauged
together, and these grcups sre ordered in the non-dedreasing order of the number

of elements in respective groups. We,also, use labels L(8) = M™m2 00 oMy

(ii) The eigenvalues of the matrix A is denoted by:

R=1{[p;,p0,00vee,pg] ' ' (1.3)

and we use the same ordering and label to R, We assume none of the elements in R
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ig a negative integer:
Pjﬁ [-1,-2,...y-1,.0. ] - (1.4)

and if for a pair of distinct integers ( 3,k : j#k j,k=1,2,.....,d)

PiF P implies (93~Pk Y EL tl,e2, .0 ,40,0000 ] (1.5).

Before we state the third condition for our system, we simpiify the system

under the assumptions (1),

Fropesition 1.1, The most general constant linear transformetion T which leaves

the mairix B invarisant has the fdrm:

T340 ] ...} 0
0 4Ts]... 10
T = . LR (1.6)
0 {0 l.. & ‘ '
r.J

where Ti (i=1,2,...,r) denctes a non-singular my by m; matrix, and where O'c are

null metrices of appropriate sizes.
Proof, Trivial,

(13i) When we write the matrix A blockwise ss:

Al,l .A.}_’e, ...... Al,r - .
A2,1 AE,Q’ [ A2,r
A= (1.7)
LAr’l A 2y |ennes By r
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where Aj i is & matrix:Of the size m; by m, for the label of S: L(S)=mmy, s+ Bpy
then each diagonal block Al 1’;"°!Ar,r are diagonalizable, hence we assume

PR
they are already diagonalized.. Further, we assume that none of the disgonel elements

b}

.&1’}_5&2’2,....., ad,d is an iﬁt'egér‘t \‘

aj’j ¢ [ O,i1:t2$""1in!“_‘" ] (1-8)-

Proposition 1,2. The most general constent linear trsnsformation which leaves

_the matrices B,Al,l,Ag Dyressyhp p invariant is a diagonal trensformation if
] )

. we are to fix the ordering of the diagonal elements of each block Ak’k's.

Proof. Trivial. Let D=diagldy,dp,....,dgq], then the {j,k) element of
the matriXx D™1AD beccmes 8§ k‘djnl-dk. Hence the effect of a diagonal transforma-
EH
tion results in choosing (d-1} elements not on the diagonal line arbitrary by

defining (d-1) ratios dl/dd,dg/dd,...;.,dd_g/dd.

Proposition 1.3. If A is an eigenvalue of the matrix B of multiplicity m, then
t=A is a regular singular point of the system (1.1) with (d-m) holomorphic sclutions

" and m singular solutions with characteristic exponents

aj!j’..'.’aj+r,j+r . 2 (1.9).

Proof, Since none of the exponents takes an integral value, there is nc

logarithmic solution with exponent zero..
For the sake of simplicity, we mssume 3

(iv) There is no pair of disgonal elements S and &g k with an integral

difference if they belong to the same block AP p for some p.
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Proposition 1.4. The point at infinity is an regular singular point of the

system (1.1), There is no logarithmic solution. If p is an exponent of muliiplicity

n, then there is a set of n independent solutions bélcnging to the same exponeni p,

Proof. The first statement is trivial, The second and the third statement

follow from the assumption (ii).

Lexma 1. If n=rsnk(A-pI}, then (d—n)2 elements of the matrix A are determined

from the rest of elements.

Proof. We may suppose without loss of generality, that the first n by n
principal diegonal block of the matric (A-pI) has non-zero determinant, We write

the matrix {A-pIl) in the form:

{(A-pI) = (1.10)

where P is n by n, Q is n by (d-n),R is (d—n}'by n, and where 8 is (d-n) by (d-n),

By the assumption we can find & metrix X of the size n by {d-n) such that

P = Q~ (1.11).
Similarly, we have to have
RX = S (1.12)

gince the rank of the matrix is n. Hence we have:

S = RP'EQ

which ccmpletes the proof,



Theorem 1,1. (Riemenn-Fuchs Relation) We have

d
B: « = TP (1-15)

g oo

Proof. This is nothing but the invariance of the trace of the matrix A.

Now we try to determine = system of the form (1.1) by giving 3 sets

S = [A1,A2yeveevyNg]  with,label L(8)=mmp...m, (1.14)
E = {31,1,a2,2,b0-00,ad’d ] 7 (1'15)
R=1[py,poseesennypg b with label L(R)#nlng...ns _ (1.16)

by counting how meny elements of the matrix A is determined from them, Evidently,
4 has d2 elements, By Prop.1.2.,, (d~1) elements can be chosen arbitrary by a
diagonel transformetion, Each block of the size m; determine (mj)2 elements

J

( mj disgonal elements from the set E, and mj2—mj zeros on off diagonal position).

If p is an eigenvalue of multiplicity np of A, then we have

renk(A-pI) = d-m, | (1.17),

hence, by lLemms 1, determine (nk)g elements, And finelly, there is one condition

(1.15) known by the name Riemann-Fuchs relation,

Definition 1,1, Two partitions my+me+ + oo mp = d, and njtnpot saeen tng= d

of & positive integer d are paired partitioned if

]
(ap? s fz(“k)e (1.18)

&2"‘"d+2=’.‘

[ o L T

J

holds.



~11-6-

Definition 1,2, Given a system of first ordsr equations of the form (1,1)

with assumptions (1),(ii),(1ii), and (iv), the number of sccessary perameters is

defined to be the difference

. r
N= d%d+2 - 3mj®- 3?2 (1.19)
| j=1 7 kel

Thecrem 1.2, A triple of sets [8,E,R] determine a system of equations of

the form (1.1) under the conditions (i),(i1),(1ii) and (iv), if N=0.

Proof, Trivial from the definition of the number of accessary parameters,

Exampls 1,1, For d=2, 1(8)=11,L(R)=11 E=[a] 1,83 o] and R=[ry,r].
N = 4-242-(1+1)~(1+1)=0

In this case we specify the off-diagonal element 32,1“1 ( or a1,2=l) and determin%

a),2 (or 52,1) so that

- = - oy mep } = = - - 2
det(A-pI) = (a1 ) - »)(8p p-p)-21 0 = [8y 135 o-8) ol-[ap 1+ap plF + p
=(p1-p){po-r) .
The invariance of the trace relation appears as the coefficient of the p. %e heve

"1,2 7 %1,1%2,2 7 P17

As-is seen from this example, since the diagonal transformetion leaves the

exponents of the system, we should rather say that the product of the form
Sk %k,
is determined if we let the (d-1) degree of freedom left for = diagonal trensforma-

tion. This remark has an important meaning when we deal with an hermitien invariang

of the group.
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2. Bxtended Gsuss' Formula,

Proposition 2,1, Under the conditions (i) = (iv) of the preceding section,

the system of equations (1,1) has d singular solutiens of the form:

o0

| 8, .. -
() = (E2) % T g m)(An)®  (k=1,2,....,4) S (2.1)
m=o
convergent in @ disk of radius R with center at t=Ay, where R is the minimum °

distance from t=Ay to the nearest singular point Aj (Aj%Ak)a

Proof. Since each finite singular point Ay of (1.1) is & regular singular
point, the convergence is trivial. There is no logarithmic solution because we

ggsumed by (1ii) and (iv) that there is no integrel difference among the

characteristic exponents:

O’O,.!I- ,O,ap’p,.l.."ap_{.m}.’p,’.mj’o,.llll ,O
where mj is the size of the block to which the eigenvalue A of the matrix B

belongs.

For the sake of simplicity, we assume the following condition:

(v) if Kj is not equal to Ay, then we have

PNl > A 5f 0 (2.2)

The condition is refered as "the pentagonsl condition" because when the inequalities
are replaced by equalities -then the set of singularities § are at the:éix vertices
of & reguler hexagon with center at the origin. This condition can be relsxed

when there 1s no triple of ditinet singularities [Ai,Kj,kk} lies on a straight

tine. (See M.Hukuhara [ 4] R.Schafke [16] or K.Okubo [ 23] ).
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Propositién 2,2, Under the condition {v) there is a simply connected compact

domain D in which all the solutions (2.1) are convergent.

Proof. Each solution converges in an open disc, and -the origin is in the
intersection of these discs. Hence the set of t for which all the solutions
converge is ncn-emply and open,

We introduce a parsmeter W into (1.1) by:

(+-B)x' = (A+p)x | (2.3)

The motivation for introducing such s perameter is manyfold., Gauss called the

series:
Fla,b,ouix) = £ _(Balbln o (2.4)
n=0 {c+u)n(1l)y
contiguous to the series:
- :
Fla,b,cix) = 3 (&)n(bn
neo  (e)p(1)n (2.5)
when 1 is an integer.
Tke soc-celled Jordan-Pochhammer equation:
] = o(e)u ™ ougr (£)elpmDe(pen)p/z @0 (1wl P e
SR D (e DR ()w(FR o 20 (2.6)

where Q(t) and R(t) are polynomials such that ome of Q(t) and iR(t) is of degree

n, while the other hes degree (nwl), is obtained from = simple first order
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equation:‘
2] = Qt)z' - R(t)z = 0 (2.7)

by applying the Euler trensformation ( Riemann-Licuville generalized differentiation)l
5‘

Tt
D1l 2] aﬂf' (t=)H " a(t)2 -R(t) Jds /[ (-3) (2.8)
) o
gince we may epply Leibnitz's Rule to a product of two functions when one of them
13 a polynomial.

The following two propositions and a corellary appears in K.Okubo [ 9 ],

Proposition 2,3, (Truesdell's F-equation) Let X(t,u) be a2 solution matrix

of the systenm {2.3), then for scme solution matrix X{t,u-1) of

(£-B)x' = (A+p-1)x , (2.9),
ye have
[a/atIE(t,p) = X(t,p-1) | (2.10)

Propesition 2.4, (Invariance under Euler's transfaormation)

We have

- | .
’ew) - [ (om0 ags 0000 (2.11)
C .
ror some path of integration G such that

[ (s-t)* (s-B)X(s,0) Jp = O (2.12).
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Corollary. If for some W, system (2.9) is integrable, then we have integral

representation of the solution matrix.

In a series of papers T,0sler investigated a family of functions which
can be obtained from the known-special functions by'applying Leibnitz Rule to
infinite series. The above propositions together with the main theorem of the
first chapter guérantee that the functions defined as & set of sclutions of
fuchsian equations are invarient under generalized derivatives and that the
product of two such functions satisfies s fuchsisn equation since the product has
finitely many regular singular points in the entire complex plane, Although we
do not treat products of solutions of fuchsian equations, we can say, that
the study of the class of functions invariant under generalized derivative has
a fruitful reslizstion in the class of funciions defined as sclutions of fuchsian

equations. (ef. [ ¢J,(10],[11),(15],[2c] }.

~ Theorem 2,1,{Fundamental Theorem)

Under the assumations (i)-(v), the set of solutions defined by (2.1} is
s fundamental set of solutions in & simply connected compact domein D mentioned
in Prop.2.2., and we have the Wronskisan:

d +1)
w(t) = det i: xl(t)axz(t),---..,}{d(‘t) ] = T-r (t“Rk)ak’k T-] (ak,k
ket T7 Cape +1)

Proof,

The following proof is an exact reproduction of the proof given in
K.Okubo ([ 91} and T.Sasai ([ 15]) except for the fact that we sssumed arbitrary

multiplicity to the eigenvalue of the matrix B.
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Let B be an integer and we define solutions:

K(t,“) = [Xl(t,ﬁ),xg{t,ﬂ),

.....  xg(4,0)] (2.14)
where Xk(t,p) (k=1,2,...,d4) are &efined:by
Bkt T '
x (ty1) = (t-r) 8T g (s,m)(t-0)° (2.15)
. 8=0
with
gk(osu) = ( 0,0,...,1,0,. vy 0 ) = & (2'16)

The restriction {2.16) about the constant multiplicity of a singulér solution

is important in the derivation of the formula (2.1%). Now if we transform the
coefficient vector g (s,u) by

1”(ak kts+l)
gk(S,U) = hk(S,u) :

- (2an)
T’(ak’kﬂ,l.-i's*'l) . |

then by direct computation we know that the vectors hk(s,u) satisfy the receurrsnce
relation:

(BNl 5+ 1,1) = (o AV hye(s, 1) + shy(s, 1)

(2.18)
with

b (0,u) = & (2.19)

We observe that the relation (2,18} has coefficents independent of p ang
the starting velue hk(O,u) is, 'also, independent of p., That is, the seriesg

solution (2,15) is actually an inverse factorial series in the parameter u:

St = () M Lo ()T (o yree 1) (600 1 /T (o, i s#e1)
5=0
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= (t»lk)ak'k+p ;Iw(s,t)/'r’(ak’k+p+s+1) (2.20).
8=0
By the well known theorem for inverse factorial series ([ J,[ J) if t is fixed
or in a compact set D and if the series is convergent for some y,, then the
series (2,20) is uniformly convergent in the domain Re(n) 2> uotl of the complex
p-plane, Thus the series is not only convergent but is an asymptotic expansion in
the complex parameter u, :and we have for large values of u:

8‘1{,1{‘”"' .

x(tn) 22 (t-h) ik (B ->e) (2.21)

where ey is ithe unit vector whose components are all zero but the k-th,

On the other hend the solution x.(t,n) has a derivative starting with’
By tp-1
[a/atTx, (£,0) = (o o) (amng) ™75 g 0 (2.22):

Cur assumptions (i)-(iv) guzrantee +that this is the particular solution:

1 =1

T ogeln-l,8)(eny)? (2.23)

B=Q

TR TR
(b i-1) = (t-ny) KK

multiplied by the factor (ak’k+p). In this way, we have:
[a/dt] X(t,p) = X(t,p=1)(D+p) | (2.24)

where D is the disgonal matrix whose k-th diagenal element is 8, -
' ’

If we write the wronskian of the solution matrix (2.14) as w(t,p), then we have

det (t~B)Xf(t,u) ] = det[ (£=B)X(t,p-1) ] = det[ (a+w)X(t,p) ] (2.25)

from which it esasily follows that:
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g |
a(tyw) (6T T (e ™ T (pray 1+ 1T (py*1)
le=1

. (2.26)
‘Tw(ﬂ+9k+l)T1(ﬂk,k+1)

fow from the:asymptotic expansion (2,21) for large positive integer u, we have

the left hend side of the sbove identity is,
k=1

d . ‘
W(t,u) “'r*r-(t"hk)u+akk det[ 31’821651'--’6 ].(l + 0(1/3) } (2-27)

Now we combine (2.26) and (2.27) together and let n tends to positive infinity

reminding of the facti:

T {a+n) ‘Re(a-b)
T (orm) = n . 1+ 0(1/n) ) (as n -» = ) (2.28)

which yields fundamental identity {2,13), This completes the prcbf of Th.2.1..

Corollary, The identity holds throughout the domain obtained from the
entirs complex plane by removing simple arcs joining the infinity and each singular

?oints.

Proof, w(t,o) is a solution of the following differential equation:

d
w'/w = Tracel (t-B) A ] = 3 ak’k/(t“lk) (2.29)
k=1 -

Since the dommin defined in the corollary is & simply conmnected domain in pl-s

we can continue w(t,0) analytically by monodromy theorem,
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Example(Classical Gauss Formula),

Consider the system {2.18) with (A1,A2) = (0,1) =t dimension d=2,

0 0 g7 1+s-a - _ ‘
( e B e (230)

82 a;,178782,2

¥

"with the initiel condition

1

hy(0) = ( ) (2.31)
Q

If we write the vector hl(s) componentwise as

1
(o) -
h,(s) = (2.32)
1
n2(s)
then we have a recurrence relation for hl(s):
1 1
{‘(s+l)h (s+1) = [(s+alluall)(s+all-a22)~a12agl]h (s)
1 (2.33)
h(0) = 1
Since the coefficient on the right hand side of {2.33) is
det[(s+taji)-4] = {s+a11-pl)(s+a11~p2) {2.34)

we can easily derive the expression:

bl(s) =‘(all“Pl)S(all"Pg)s/(l)s

where (p)g = p(p+1) -+ (p+s=1) =TT (p+s)/T(p).
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1f we sett
aj17f1 = @
&llupz.—; b (2‘§5)
aytl =c¢

then clearly, the first component of the soiution‘xl(t) at t=0 becomes

a1] < g log @
t T on(s)/ (e *l)g t7 =1 2
§=0 8=0

(a) (b)), /(1)gle)g t°

c

- %7 (e, b,0rt) ' (2.28)

mhe second component of the solution xl(t) venishes in the order 0(t°) end we will
dencte it by €(t).
For the second solution x%(t) defined locally nsar i=1l, we first compute the

exponent agy from (2.35):
8yp = Pq + Py~ a11 = ¢~l-a-b, (2.37)

Now we write the gecond solution componeniwise as

- celoay  9(0)(t-1)
x (1) = (t-1) C (2.38)
t

where both ¢{t) and ¥(t) ers holomerphic at t=1, and we specifically have.

W(1) =1

by definition (2,16).
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Let us compute ihe wronskian w(t):det[xl(t),x2(t)] near the singular’

point t=1:
a-1 g=li-g~b '

w(t) = 157N (e-1) [W(£)F(a,b,cit)-(t-1)0(1)8(t)] (2.39)

The solution xl(t) may have the representation:
xl(t) = c1x(t) +eoH(t)

where H(t) is an holomorphic sclution at t=1. But when we assume

Re(c~1l-a-b) > O ' (2.40)
we have H(t) es the significan part, and we have det[xy,c1xp*H] = det{x),H] .
Consequently, by letting t tend to 1, and by comparing (2,%9) with the fundamental
identity (2.13) we have

F(a,b,c:1) =77(C)T7(C—&-b)/,T7{C“E)T7(G-b) (2.41),

Other summation formulae will sppesr in the last chapter.



