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Chapter 3 MONODROMY REPRESENTATIONS

3,1, Local Canonical set.

A matrix solution X(t} offi@@_system
{(t-B)x' = Ax

is a local cenonical set when it is 2 fundamental set of solutions and when X(t)
i8 continued analyticelly around some particular regular singularity t=i, X(t) is

transformed linearly:
Hi) - X(t)Ckk

with 8 diegonal matrix Cip.

The abeve definition is somewhat resirictive when we admit of logarithmic
solutions into our system. In general, Chk be in Jordan canonical form. But in
this chapter, too, we assume the conditions (1)={v) of the preceding chapler, so

that there is no logerithmic solution and the matrices A has diagonal blocks at

each singular point.

Let us fix = particular fundamental set of solutions X(t) of {3.1). Then for
any path starting from a fixed point A and ending st the same point in pl-3

where 'S is the union of Sﬂ[?\l,Kg,..,, ,?\dg and [ i= =]:
§={ 7\1!"'-)7\d:°‘° ]

%(t) is trensformed into another fundamental set X*(t)
() -> xx(t) = X(t)C { CeGL(d,C) )

which induces a representation of the fundamental group ﬁl(E—g) into GL(d,C).
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We call this representation, the monodromy representation of the‘soiutions of
(35.1) with respect to the fundamental set X(t).-Clearly, this representation
into & subgroup of'GL(d,Cj is completely determined by computing ithe generators
at every Ais«e-+.shic, sigce the group is finitely generated by transformations
M at £=hk and their produ;t MiMp, ... Myq,3if the domain should properly cﬁosen

by intreducing cuts, becomes the inverse of the gensrator at infinity.

Although we can not give a logical explanation as to how we come to choose
our particular fundamental set, the sole subtlety of the present investigation lies
in the choice of X(i) ms the set defined in the preceding chapter whose wronskian

has an explicit representation with the choice of induced local canonical sets .
Let X(t) be the set of solutions in the matrix form:
() = [ xt),eeenins , xg(t) ] : (1.1)

where for each k=1,2,...,d, the column vactor xk(t) is the sclution with the
gpecified singular behavier:
®xk

5 (8) = (8 5 g (m)( Ay

M=

Lo

) (1.2)
(cf. eq.(2.1) of the preceding chapter).
Let D be‘the gimply connected domain obtained by joining the vertices Al,.
R W by simple arecs counterclockwise. Here we assume that these arcs enclose
a bounded demain D by renumbering the vertices Kl,....,kd, if necessary,
AL And we count multiple roote only once
ks ' for & class, See the figure,for an

example, with d=9 A1=A2=A5=Rhgﬁ5=15=K7

and Ag=Ag, and with the label L(S)=432,
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As one particular local solution is continued snalyticslly in D near to another
gingular point, say x (1) continued to t7A; (kj%kk), x (1) is expressed as a
lineer combination of the set of singular solutions and one d¢efinite holomorphic

solution:

xk(t} = 2 tk!P }Cp(t) + X}:ﬁ(})(t) (1.5)

?\pukj
We define ihe local canonical set of solutioms to be the matrix:
Xj(t) = [ XI(t)s"'Jx;;ll(t)’b-lc,xj(t),uo-o,Xj_Fm(t), ...... ,Xa‘_(‘t) ] (1.4)
4nere for the sske of simplicity, we omitted the trivial index J of xﬁ(j)(t) in
(1,3) for we are concerned with the local solution at the singular point t=k3=..

----’lj+m‘ Every sclution with an asterist (*) 4s en holomorphic solution, end

. solution without it is = singular solution with the specified behavior.by Ki.z).
‘% Srample. With d=9,Aj=Ap=hs=Aj, As=Ag=A7, and Ag=hg, we have four sets of solutions
R4) = g8, kg8, (1), w5 1), (), 37 (8, gl 2908 ]

k(e [ g(8),xp08),x3(8),u(8), x5(8), x3(4), x5(4) xg(8) , x3(%) ]

()= L 18D, K308 1508, () X541 mgl 1) g (40, 50 5(4)

Rg(t)= [ (6, x5(8),x3(4), K (£), x5 6), mg( 1), x5 (8) mgl 0,55 6) ]

Naturally, by our convention, the holomorchic sclution xf(t) in X5(t) and

xz(t) in XB(t) are solutions defined in different neighborhoods, and are not the

same solutions.
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Proposition 1,1,

The zet Xj(t) is & local canorical set in ithe sensse,
Xj(8) > Xj(4)0; o (1.5)

ag Xj(t) is continued analytically around the singular”point t=Aj-counterclockwiae,

where Cj iz 8 disgonsl matrix of the form:

I{a*) O(m*,m) O(m*,m**)
o; = Omam Ey o(mmtr) | (memtraTied) (1.6)

O(m**,m*) O(m**, m) I(m**)

where I{p) is en identity matrix of size p, O(p,q) is a null matrix of the size

p by q and where Ej is the diagonal metrix:

®J
ej+l (¢]
Ej = (1.7)
o] .
® jom
with
ep = EXP(gniap,p) (p=j1j+ls" ':j+m) | (1'8)
m = multiplicity of the eigenvalue Aj of the matrix B (1.9).

Proof. Trivial.

Remark. Xj(t} is a fundamental set of solutlons, for the linear relsiion

with the fundemental set is given by:
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O(m*,m*)  O(m*,m)  O{m*,m**)
)j (1.10)
)

X(t) = Xj(t){ I+ { T* O{m,m)  T**

LO(m**, m*)  O(m**,m) Ofm** m**

where T* and T** are the matrices of the respective sizes m by m* and m by m**
with elements tp ¢ such that Ap=hj; and Aq£hj in the expression {1,3),

We abbreviate eq.(1.10) as,
X(t) = M()Ty = X)L I + P; ] ' (1.11)

The matrix Tj has the determinant 1 because it is an identity matrix plus an idem-

potent matrix. We can write down the inverse Tj immediately as follows,

T =
i

-1 2 _ o3
[ 1+Pj] " =1-Ps Pj-Ps+ ...

T* 0(m,m) THx
O(m**,m*) Q(m**,m) o(m**,m**)

O(m*,m*) O{m*,m) O(m*,m**)
I -Ps5=1-~ ( (l.12)},
When we refer io the condition (iii) of the preceding chapter, and ,in
particular, the blockwise partition of the matrix A, we see that sum of the
‘all Tj,counting only once for a class of identical eigenvalues Aj=Ay, we can

build up a matrix of connection coefficientis:

k|
01,11%1,2 L
T2 1192,2 Ty r (1.13)
O,: R BN R R ) .
Tr,l Tr,2’ ........ Or,r

in the next section, we will show that if we can compute all the elements of

this matirix, then we cen determine the monodromy representation,
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3,2. Generators.

Theorem 1.
. : -
The generstors of the monodromy representation with respect to the fundamental

set X(t) are given by:

O(m*,m*) VO(m*,m) O(m*, m**)

Mj =1 4 (Ej"I)T* Ej“I (Ej—I)T** (j“l:zs--'rr) (2-1)
O(m**,m*) O(m**,m) O(m**,m**)
where
m* P m1+._'+mj_.1’ m** = mj+1 oty mr , nm = mj _ (2'2)

and where Ej is the diasgonal metrix of the size g by my

Ey= diagf exp(Zniam*+1,m*+1), ...... , exp(2ﬂiam*+mj,m*+mj) 1(2.3).

Proef,
When we continue the fundamental set X(t) analytically around the j-th

regular singular point t=A with multiplicity my, We have the following diagram,

S X(4) S — (1 )My
I il ' (2.4)

-1
Xj(t)Tj —— Xj(t)chj = Xj(t)Tj(Tj CjTj)

We only have to compute Mj=Tj_leTj from the expressions (1.6),(1.10) and

(1,12). The expression (2,1) is a direct consequence of an easy computation,
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Remarlk, The number of unknown constanis contained in the generator Mj is
equel to mj(dumj) since the disgonal matrix (Ej~1) in the middle is known from
ihe diagonal elements (al,ls~"--vhﬁad,d)' Consequently, to determine the

gonodromy group which is a free group”gen@rated by Mjse++es,Mr, We have to know

2 :
J o _ (2.5)

m

r
z
= 1

cm:) = 42 -
mj(d mj) d )
1 i

4 e

3

conatants tp e But if we were to be content with a group isomorphic with this

H) .
group G*, we mey use a diagonal matrix D to use another fundamental set of solutions
%(t)D. This fundamental set consists of solutions x3{t),....,%3q(t) multiplied

py some constant multipliers, end hence the corresponding local canonical set

is sgein a local canonical set:
X(4)D ——-> X(t)D(DflmjD) plen - o3 (2.6)
yhich introduces more {d-1) degree of freedom.

Theorem 2, (Riemann-Fuchs)

The eigenvalues of the matrix M, defined by the product:

M e M1M2vu-oo-Mr

- (2.7)
srere T is the number of distinct classes of eigenvalues 8=[A1,Ap,....,Ag], are

fk = exp(ERipk) (kzl,E,.....,d)

%ﬂwre Pk'S are the elgenvalues of the matrix A,
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Proof. From the ccﬁstruction of our domain [, the successive product of
the paths encircling th; distinct singularities hl;:...,kd, is the inverse of
the path encircliﬁg the singularity t= = in the négative sense, This is the
only one topological property of the set m1~§ we use, I we were to deal with
problems.on Riemann surfaces, we have to consider other fundamental relations,

At the singular point i= o, we have a set of singular solutlions:

8

h(s)ths

o}

k Pk
x (L) = t
g

(kﬂlséﬂ'-,d) - (2‘8)

[

which are linearly independent and free of logarithmic terms under the condition

{ii) of ihe preceding chepter II, Hence, the mairix solution
X lt) = [ x7(2),x7(2),. 0000, x5(t) ] (2.9)
has the circuit matrix

oq . .
M = diag{ exp(2aipy),.......,exp(2nip4) ]

at t= oo, While any iwo fundsmental set has a definite connection ma€rix if we
specify the domain properly, so we define fw be the connection matrix across
the simple arc connecting Ay and A) as a part of the boundary of the simply connecteq

domain D, then we have

w], 2@

X 1)=X()T° e > X (£) (T )0 o x(t)upMpe oM, (2.10)

Since eigenvalues are invariants of linear automorphisms, we complete the proof,
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é_ﬁ, Decomposition into generalized reflections,

According to Shephard,G.O.,([E%}) a reflection in a unitary space is a
linear transformation whose mairix $as all bul 61:38 of ‘f;i'xe eigenvalues one, and the
remeining eigenvalue equal to a primitive Toqt af unity. For tﬁe seke of convenience,
4e slightly overgeneralize this concept and call a linear transformation G, a
generaliied reflection if all but one eigenvalueé of the matrix are one and ihe

remaining eigenvalue is equal to
exp(2nia) = e (3.1)
for scme resl number &,

Theorem 3. Every generator of our monod romy representation is a product of

.generalized reflections.

Proof, We prove the theorem only for the first generator Mj, bscause by
a suitable permutation of dependent variables, we may bring the generator in

question into the type of Mp,i.e.,

Ml = Id+ ( ) (5'2)
0 @2 ‘ :

. where I4 and I, are identity matrices of reapective dimensions & and m, E is

. g disgonal matrix of size m of the form:

£ = ex O\ | (3.3)

and where T is a matrix of the size m by (d¢-m). We denote by tj y the (§,k) element
. H

of ths matrix T,
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Now we define & set of generalized reflections by

10 ...l . O
01 0
Q e, O i, 4.
e ey Qv by e by 4y .
Gj N 1 . (3‘=1!2="- y) {(3.4)
i

10

0 (ieeenn v c1

411 the disgonal elements are one except for the j~th element which is ej=exp(2niaj ﬂ

1 4
411 the off-diagonal elements are zero except for the j-th row whose last (d-m)
¢lements are those of the j-th row vector of the matrix T.

We claim that:

My = G3Gp r Gy (3.5)

We prove our claim by induction on m. For m=1, M is trivially =a generalized reflectie

Let us assuze (3.5) to be true for m-1, and we write:

€1 G tl,}. ..... tl,é—m
o
52 .
e, (5.6)
Gl 2 Gm‘“‘l = em"'l O tm_l,l ....... té_‘m
10 ......
Cl oo O
0 .
1
We multiply thie matrix to the matrix:
(o I . 0 0
Gy = 1 * : (3.7)
0, (Em 1) tm Ty e m,d-m
10 f; ...... 0
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from the left,noting that the m-th row of the first matrix hes only zero elements

3

except for the m~th, snd that ihZ second term of the second malrix has né non-zero

elements in the last (d-m) rows. This completes thé proof of Theorem 3.

- Remark. The theorem has an important impiication when all ths disgonal
elements a1,1'°--'--ad,d of ihe matrix A are rational and if our generators has
a positive definite hermitian invariani, Because in such & case, we have a
unitary group generated by reflections of .finite periods, There is a classification
of 2ll finite subgroups ( Shephard,Todd [18] ) end we can prove that the soluticns
of our equatlon are elgebraic functions, genralizing the famous results of H.Schwarz

( [17], see Bannai-Takano £19] 3.
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lemma 1.
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Let Cj be a d by d>matrix whose elements are all zero except the j-th row:

C °1,2 °1,5 eas cl,d
O Q 02’5 Cg,d

U = 4 % 3 9 S s RN
O 0 e ' ¢3-1,4
Q Q ¢}
¢y 0 0 0 . 0

lllllllllllll

4.1 Cd,2 ?dsﬁ sens cd,d
Then the following identity holds:

Lmee N TG ] creeer [ 1Gg ] = [ I-U 1T Il )

Proof.

We firsi show the following auxiliasry identity for k=0,1,....,(d-1).

(4.1)

(4.2)

(4.3)

{4.4)
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[ 3 05 -~UlGCuy =0 (4.5)

Since the non-zero elements of Cx+1 mppears only on the (k+1)~th row, we are
only concerned with the (k+1)-th column of the matrix [ 2351 C4-U 1. By definition,
the first k-rows of this mairix is equal to the first k rows of the lower triangulsr

patrixz L, and the rest of (d-k) rows are those of -U,

cl,l 0 0 ..., . o] o o]
k Cz’l 02’2 O R O G O \',
[2o-Ud=| (4.6)
J=1 '

ck’l ck’2,o--- ck,k 0 O ...... 0

0 o ... C 0 _Ck+1,k+2 ) Mck*‘l,d_

O 0 ... 00 0 .. -oupg

0 0 o C 0. oo 0

Hence the (k+1)-th column vector of the matrix is & null vector showing (4.5).

Now we prove by induction:

k
[1-UJ{1+C1)(I+Co0 +»» [I#C ) = I+ [ 3 C5-U] (8.7)
j=1
For k=1, we have
[I-U3(I+C¢y] = I - UGy *+ Cp ~ U w (4.8)

where the mstrix UCy 1s a null metrix because the uppef triangular mstrix U has
only zeros on ﬁhe first column, and the matrix Cj has non—ze;o elements only on the
first row. Hence the identity (4.7) is true for k=1.

To complete our induction, we multiply the matrix [ I+Cpe1 ] on the both sides

of eq.(4.7), and write down ihe right hand side of it as follows:
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k ‘ k+1 k
[ I+ _Elcj U MO =T % Cy = U+ [ zzcj = U I Cerr (4.9)
i j= i

Again, the lasi term is a null matrix because of our identity (4;5). Finally, we

have for k=d:

[ I-U J[I+C 2(I+Co]  [I+Cy4]l = I + (4.10)

[ ot =
Q
1
Lo
1l
=t
+
[

1

which completes the proof of our lemme, because [ I-U ] is always invertible,
Now let us write

(ej - 1)tj,k (k#3)
e - { (4.11)

(e5 - 1) (k=3)

and &pply our decomposition theorfem into generalized reflections %o Mi,eoeo, My, reming.

ing of the fact that
tj,k = for ?\j ™y }\k (j_"'12),

then we obtein the following prlicit representation thecrem for the generator M,

of eq.(2.7]).

Thaorem 4,

We have

M::o = Ml.Mz ...... MI‘ = [ 1-U ]—1[ I+ L] ) (4‘15)
and

det{ M, - £I ] = det{ [U+L] -(f-1)I ) (4.14),
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Proof, 'We only have to show (hllﬁ).

det[ [I—U]_I{E+L]—f1 ]

1

qét[I-U]“ldeti T+L-£{ I-U] ]

#

det{ I+L+U -fI l. (4.15)

This completes the proof.

Remark. The number of unknown constants in the matrix I+U+L is

r
N' = & -2 m-2‘ (4.16)
by eq.(2.9). We call this matrix tihe indicatrix" of our criginal system (1,1).

Theorem 5, If the number of accessory paraméters is zero, then we can
determine the generstors with respect to a fundamental set X(t)D, where D is a

some non-gingular diagonal matrix,

Proof. The number of accessory parameters N is given by eq.(1.19) of Chap.II:

‘ r
N- d2-d+2 - T m 2 - I n? (4.17)
: J
J=1 k=1
where rank(AwpI) = d—-nk , or np is the multiplicity of the eigenvalue p of A
without mon-trivial subdiagonal elements in the Jordan canonical form of A. Then
py the behavior of the local cancnical seit st { = o9, fk=eXP(2ni#) has the same

S
multiplicity in eq.(4,14). Then, by lemma 1 of Chap.II, we have 2 n 2 conditions,

k=1
But by Riemann-Fuchs theorem, we have
. d ) 5 V
€18 e e eq = exp(2ni Elaj’j) = exp(2ni T p) = f1fp....Tq (4.18)
j= k=1

Consequently, we are left with

4%~ 3 m32 - (3 m2-1) = M{d-1)
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constenta. A constant multiple of our singular sclution_xk(t) is & solution,
And if we multiply some nonsingular diasgenal matrix D from the right, we again
have a fundamental set of solutions with prescribed singular behavior, since
every solution is multiplied'by-a certain constant. This muitiplication by D
will give us (d-1) degree of freedom, and hence the number of undetermined constents
becomes exactly the number N of accessory parameters.
In this way we have a monodromy representation unique up to an sutomorphism

by a disgonal traensformation, This completes the proof of our main assertion, Theorem 5,
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3,5. Quadratic Invariant. ' '

The conclusion of this seé&ion is not;yet, gatisfaclory. We believe ihat
the very strong assumption we had to impose can be removed someday, We briefly
gummarise what we have done in seciions 5.1.;5.4.. ]

1, ¥e found en intrinsically important fundamental set of solutions X(t).

2. Local Canonical set Xj(t) were found for every t=A; leaving possibly the

least number of connection ;oefficients in‘X(t)jo(t)Tj ( ef.{1.11)).

5. Generstors My for the representation with respect to X(t) were described

in terms of Tj. {ef. (2.1) ).

k, Generators Mj (j=1,2,...,r) are decomposed into generslized reflections

(ef.(3.5) ).
%, From the topological property of El—s, we showed the possibility of

determining Tj within the equivslence by disgonal transformations.

We urge the reader to remind of the similarity of the step 5, with the step
we determined the matirix A from given setsjof singularities S and cheracteristic
exponents [31,1"°f"!ad,dzpl’FZ"""Pd]’ ¢f, Theorem 1.2., in Chap.Il..
A disgonal trensformation was introduced in the proof in the later step beceuse
it is the most general trsnsformation which leaves given seis invariant, But in
our step 5. of this chapter, there is no such intrinsic reason for the introductiocn
of & diagenel traﬁsforma£ion, we only kncw thet a diagonal transformstion of X(t) |
:'a invarient,

J :
The heart of the snalysis of H,Schwarz's study of hypergecmetric differential

and sccompanying Xj(t)‘s leaves the form of Mj's end T

equation is the classification of the universal covering surfaces of solutions

into three types: conformal to an cpen disk,complex plane,or El. An interpretation
in our lsngusge, i.e., & representation in GL(2,C), is given in our expository

note ( Okubo,K.[22] ) in which the clessificetion is done by constructing a

quedraetic hermitian invariant for the representation.
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Theorem . Let H be the inverse of the mairix:

i 1,2 tl,3 .......... tl,d
2’1 1 t2,5 -----------
t t 1 ts = HY (5.1)
371 J"?' J,d
ta,1 M,z eeee Yy oy tg,4-1 1 |
’ (_3‘{{/)5) xa‘;}‘/&@'a T_Jv:t-(a
) zrpmo. e

where tj,k (j,k=1,2,...,d) are the connection coefficients determined by (1.3).
If the fcllowinglconditions holde, then H defines = Hermitian invariant,
(1) E exists .

(ii) H is hermitian .

Proof, Let us write an element x of Cd ag a horizontal vector:
(5.2)

We write the ccmplex‘conjugate of the transpcse of x by x*. Similaerly, we express
by H* the transposed complex conjugate of H, by ej* the complex conjugate of ihe

pumber ejmexp(zniaj,j) and so on. We have, by definition:

and

g e.f=e:*e: =1 (5.4),

H defines a quadrastic form:

HE{x) = xHx* (5.5}
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%which is an invariant of our representstion if for any element g of the group G
_generatEd by the generators Mi,Mo,....,Mp, if the following identity holds:

H(x) = H(x-g) = xgHg*x = xHx* | | (5.6).

By our decomposition thecrem 3., it is sufficient to show that for e11

generalized reflections:

0 0... 0 ... ¢
I T S P T g
Gj"‘I*(ej“l ) Bt ) =I+(ejv1)Qj
0 0 P & o
ccccccc LI B I . (5v7)
6] O he e 0 '
we have:
H = Gj'H ¢y * §=1,2,.0..,d ) ) (5.8).

Let us compute the right hand side of the identity (5.8).

s o]
i}

EI+(ej "']-)Qj ]H[ I+(@j* “I)Qj*:}

H +‘(@j —l)QjH + (ej*"l)HQj* + (Ej'l)(ej*’l)QjHQj* (5.9)

gince H is defined as the inverse of the maltrix whose k-th row is identicsl with
that of Qj, end since H=H*, we have
QjH =\HQ3* = (Q3H)* = Ej 3 (5.10)

g

Mo

where Ej 5 is the matrix with sll the ¢lements zero tut 1 on the j~th diagonal,
¥ .

,'Similarly, hence the sole non-zero elements on the j-th row of Qj* ig 1, we have

H=H4+ [(ejv1)+(ej*—1)+(ejw1)(ej*wi)}Ej,j = H | (5.11),
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In computing the number in bracket we used the relation (5.,4) to eliminate

the coefficient of the matrix Ej,j- This completes the procf of Theorem &,

The first condition H*l exists can be removed if we examine the relation

with the metrix [U+L] with the definition (4.13). Namely, we have
it - [E-107{UsL) ( E-diag(e1,62,+++,%4) ) | (5.12).

On the other hand, we have from (4,14), we see that eigenvalues of ithe matrix

[U+L) is given by: fy-1 m'exP(EKin)“l (i=1,2,...,d). Consequently, we heve
-1 d
det{ [E-I117T[U+L] ) = T T [f£,,~11/[ep-1] (5.13).
ksl .

Tus the condition (i) of the theorem ig removed under the assumptions made in the

foregoing chapters. ( & ;'S and pj's ere not integers )},
1

If we can use the arbitreriness of {d-1) parameters by a diasgonal transformations
properly, we can consiruct H so that it is hermitisn. This is true for the case of
classical hypergeomeiric functions and genralized hypergeometric funciions, But
withoul assuming some symmetry for thé matrix A, it might be impossible to remove

the condition (ii) of the theorem.



