Chapter I Reduction to the Canonical Form
1. The Set of Finite Singulaf.Points.
We prepare some elementeamy propositions about the set of finite singular
?Gints of the differential equations, i.e,, the set of the roots of the leading

coefficients.

Let S be a set of finite complex numbers:

S:[ ?\}.’Ke"'."’kd] ' ) (1.1)
The number d of the elements in the set S is fixed throughout this gsection., The
members hj's are not necessarily distinct. Hence we partition the set 5 into
the equivalent classes of identical members:

S =PNJPALU LU, (1.2)

where for each j, Pj consists of mj identical complex number 8y

Pj=[ aj,&j,-oouoftu.,aj] (1‘5)
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Naturelly, we have the identity:
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j (0<my<d} | (1.4)

To givé a definite description cf the properties of the family of subsets
of 8, we assume that the partitioned classes P1,P2,.¢44..,Pp 8re so ordered

that the sequence of numbers my,DD,....,83 makes & non~decreasing sequencs:

70<m1-§-m2$""'_<.mr (1.5)



And, similarly, we assume that the members Aj,A2,....,Ag of the set § is

ordered induced from the ordering of the psrtition. Thus for an exmanmple, if

§a P\ Pp\J Ps | -~ {1,6)

P1=[ a,a J"PQ“[ b,b,b ], Pf):[ CyCye,e ]
then we understand thsat
?\l=?\2ﬂa, A33A4=A5=b, léwk75A8ﬂ’\9mC

In the following discussions, we call two subsets A and B of § are equai
to each other if they are the same sets as sets of finite complex numbers, Thus
in the sbove example the set A:[AI,R5,h8] is equal to the set B=[A2,A3,2¢1.

We find it convenient to attach a label to & subset of S so that two same sets
to have a same label, If A consists of ny-¢lements-from the set Py, np-elements
from Pp,....., and n.-elements from the set Py, then we define the label L(A)

to be the string of r numbers:
L(&) = nynp....ny (1.7)
A=[ al,...,al ]v[ 3.2,-..,&2]\‘) ----- o‘[ ar,---,ar J- (1.8)

Since A is a subset of §, we cnly admit of nurbers n1sfo,....,n, such that

0 ¢ ny < m ( §=1,2,...,r), (1.9)

consequently, if we define p=m,*l, and consider the label L(4) as an expression

of & natural number with the bage pi

T r-2
L{A)= nyp + naep ST < 9 (1-10)
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we have & one to one correspondence between the equivalent classes of subsets of S
end some subsets §* of natural numbers, The important poinit is that we introduced

‘a linear order into the family of subsets of the set S.

‘For & given positive number k less than d (=the number of elements in 8), we
generates a sequence of subsets SgsS1sseres Sy 88 follows:

/

SO = [ kl,ha,.... .,K' hj+l"""’Kk}

bE
Sl = [ h13h2’°'-- y A k—l’kd ]
32 = [ R}p + ’Kk-gskd—lsxd ]

= [ : ‘ ' W1
Sj = { Rl""’Ak"}"Kddj"'l’ ..... ?\d ] (l 1)
S,+1= 7\13 shk~j—1:kd—35 . )hd ]
Sk={7\d_k+1,_..... R S

The Rule for the generation of this sequence of subsels is that the set 5343

is obtained from the set S: by repiacing the elements Ap_

J J
(k<d,1¢j<k) and the starting set is the set consisis of the first k

with the element kd—j

elementis.

Proposition 1.1, For the sequence of subsets S5,51,....,5%, e have

L(8,) 2 L(81) 2 vvevnnns 2 L(8K) (1.12)

where the total number of equalities q in the above sequence is given by the

aum
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q= z [mj-(d-k) ] (1,13)
J
where the summation is taken over those j for thch the summends are positive.

Qorollary. q ils the number of elements in the intersection:

k
Q= /8y, (1.14)

J=0

This intersection is taken ms the intersection of finite complex numbers, not as

~ the ordered set of A.'s. : iib_

e e e

Proof. Two successive numbers L(Sj) and L(Sj+1) are the same if end only
if the iwo elements ld—j and Rk—j aere the same because S541 is obtaimed from Sj
by interchanging these two elements. This happens when these two elements belong

to the same equivalence class, say, P;.

Since Py contains m; elements, the
possible number of equalities in this class is given by [ mg-(d~k}+1l 1. See

the illustretion of the situation below,

i,é-i, ----- ""’ai,‘."‘ n.,ai i (1.15)

Neturally, if m;+l is not greater than (d—k) then there is no possible chance
for an equality,hence the proposition follows.

To preve the corollary, we observe that every set Sj contains exactly k
elements from S. Thet is, we obtain Sj from S by excluding (d-k) elements.
Similarly, we can not exclude more than (d—k)‘elements from one specific class Pi.

Hence we always include in Sj at leasgt [mi—(d—k)] elemenis of the class Pi ir

this number is positive., Thus q* = % [mi~(d—k)] is the least number of elemerts
i
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in the intersection of eny family of subsetls of 8 with exactly k elements, let

. is defined by

Q* be the subset of S with the label L{Q*)=ny0p....n, where nj

) { [m;~(a-k)] (mg > (d=k) )

n
i ‘ 1,16
Q c{omg € (d=k) ). ( )
Since Q* is the least poééiﬁlé&common intersectidn of all the subsets of S with
' ' k
exactly k elements, Q¥ is appe%rantly a subset of Q m[’“\sj.
3 . j=0

To show @ is actually equal to Q*, we sssume that gome a; iz contained in

avery Sj more than {mi-(a-k)] times. But fhis is impossible because every Sj
is the union of the first (k-j)-elemenis of S and the last j-elements of S, and

in between, there are only (d~g)*elements. See the situation below.

N

| d-k
&i’.. ,&li &2,---:-;8-1,.-.’ai,ai,ano,ai,ai,-c-;ai+1,-.|.;ar, ------ ,ar :
(1.17)
k- j i

It i3 cleer that this set Sj can not contain more than [mi*(d—k)]—eiements.
Consequently, i=-th digit of the label I{Q) ¢ ny for every i, which shows that

Q is a subset of Q*. This completes the proof of the corollary,

Proposition 1.2, There ere (k-q+l) distinct numbers among

L(8,-Q),L(8;-Q) ... ves , L(8-Q) (1.18)

Proef, It is evident from the definition of the label that

L{A-B)=L{A)-L(B) (1,19}

when B is & proper subset of A. By subtracting L(Q) from the inequalities of

the prop.l.l., we see there are only q equalities among the inequalities:



L(SO”Q) > L(Sle) 2 oreeannens 2 L(Sk"Q> (1-20)

which shows there are eractly (k-q+1) distinct numbers among the sequence,

Example. Consider the set S=[A1,A2,... ..,Ag] with
A=hp=a, Az=My=As=b, Ag=A7=Ag=Ag=c

‘The set S,with d=9, is now partitioned into:
P1=[a,a],P2=[b,b,b],P5=Ec,c,c,c}

with mlmz,m2=5,m5=ﬁ. We illustrate our propositions for the cases k=8 snd 7.
(i) The cese k=8, By definition, we write down the sets Sgrseess,y S8t

5o=51=82=83 = { &,8,b,b,b,¢,c,c ]
8),=S5=8¢ = [ s,2,b,b,c,c,c,c ]

S7=8g= [ a,b,b,b,e,c,c,c )

Now we compute ny=m)-(d-k)=1l, ny=my-(d-k)=2, ﬁ5=m5-(d-k)=§. This shows L{Q)=123
and Q={a,b,b,c,c,c] which is exactly the intersection of the sets SoseeesySgl

Since g=142+3, we have k-q+l=3 distinct-memﬁers among SQmQ,.....,SsﬂQ:

80-Q=8;-Q=5;-Q=55-Q = [a,b]
84-Q=85-Q=5¢= [a,c]
§7-Q=8g-Q= [b,c]

(i1) The case k=7, We hgve (d—k)=25n1aml-2=0,n2=m2—2=1,niwm5-2u2,q=1+2a5;k-q+1m5.
We list the sets by the labels:
L(8o)=L(81)=1(8)=232, L{83)=L(84)=223, L(85)=214,1(86)=124,1( 87)=034
L(Q)=012

There are five distinct labels 22¢,211,202,112,022 for L(8;-Q).



Let us compute the labels L(S -Q);

s -Q) = L8 ) - LW)

MiMge s . By = BIApe.e By (base p)

where

m, -0 (mg £ (d-k) )
{ ml - {mi“(d"k)] (mi ? (d"k) )

Since the numbers my &I'€ non-decreasing sequence of numbers, there is s natural

number B such that: ¥

//,r—h ﬁﬂx\

g -Q) = ml....mh(dvk)....(dﬂk) (base p).l : (1.21),

_ Y
Proposition 1,3. Let 5, - Y - be defined from the set’ S*aSrQ "
17 3 e -q

by the seme rule as (1.11), then there is = number 3 ( 04 J<k ) such that

§?~‘J “f?l 0» ?{"3:

55-Q = 8*3 P er e (1.22)
for each 1=0,1,2,....,k-q.
Proof. It is clear that each set §*; conlains exactly k-q elements, so that

the union of S*; and Q consists of exactly k elerents.

&.1 8-2 P &h &h+ l ar -
a B seenes a. & a
2 h+1
L " | TN (d-k
a2 ah B-h+ 1 N ar
8y Bpelter oy
& v e 8
h+1 ) T
* . Q
L ®r
{my @y .oun cMp MLy e m, .. ...number of elements in Pl,....,Pr).

We tabulsted the elements of 8. Those elements above the herizontal line are the
the elements of S*=85-Q, and those below are the elements of the intersection Q.
All these elements are numbered kj (3=1,2,00.0,4) vertically from sbove starting

from the left most column first and then moving to the right.



Since the set S*i consists of the first k-q-i elements of S* and the last

i elements of 8%, we can obtain the set S*; by deleting the successive
(d-k)~(k-g-i)-i = (d~k)

elements from S*. Now there are only three possibilities,
{1} AL} the deleted elements are the elements of the classes Pl"""Ph‘
(ii) All the deleted elements are the elements of the classes Pl""’Ph and
some elements of Pp,1. Since the class Py, contains more than (d-k) elements
it is= impossible that any further classes centribute some elements to S*i.
(iii) AlL the deleted elementis belong to some class Ppays ©F Phips+l-

In the first case it is evident that S*; Q consists of the first (k-i)
elements and the last i-elements of 8. Hence 5*;=S;-Q. In the second case, suppose
there are ¢ elements from the class Ppi] deleted, then we have deleted {d—k—o}—successiwg
elements from the classes from Py,....,Pu. But even if we adjoin the elements of
G to 8*, these elements are successive (d-k) elements, and consequently, there is
a£ iecast one (possibly ni) j such that S*i=8j-Q.

In the third case, after adjeining the elemenis of Q, we renumberrsoye of
the elements Aj's in the class Ph*“ so that these (d~k)} elements have successive
nurbers as their index, Then we claim that these {d-k) elements are successive
elements of §,s0 that there is some number j such that S*i=Sj~Q as a get of

complex numbers. This comecletes the proof of the proposition 1.3..

Definition. Let A be a subset of the set &, then we define = polynémial

t) by:
pr() Y

o, (1) TT (e-1) | (1.23)
AEA -

when 4 is the subset Sj(j=0,l,2,...,k) gspecified by the rule (1,11), we abbreviate

@S-(t) - @j(t) (j=0,1,.,;.,k<d ) (1.25).
J



Lemma. If the set of pelynomials E@o(t)!¢1(t)s---n;¢k(t)] is free of &

T P ~
L ey,
.th",, PO

common factor, ﬁhen the set;?é a linearlymindapandenp get,
Proof. We prove this lemmaQH& induction on k! (k<d).
For k=1, we have ¢,(t)=(t-A1), and @1(t)=(t-Ag). They are naturally linearly
independen£ 18 ApEMNG.
Suppose the statement is true for all 1,2,....,(k-1). Now we remind of the

fact that the last one ¢ (i) is obtained from P.1(%) by:
(1) =Lt Ag e 1)/ (4R ] e (V) | (1.25)

The factor in the bracket can not be 1," since in thati case (t“hz) is a common factor,

Suppose there is a non-triviel linpear relation

k .
I epj(t) =0 (1.26)
J=o

Since every polynomial ¢ (t), 91(t),...., ¢ 1{t) contains a factor (t-A1), by
setting t=Ap, we have ¢, =0. Now we claim {@O(t)/(t«ki),....,wkml(t}/(t—Kl)} can
not have a commen factor. If they have one, then from eq.{1.25), then it is a

factor of @k(t). Hence this is & linearly independent set and we have:
Comcl= ....... =°k-l = O

which comovletes the proof of the lemma,

Remark. To be more precise, we apply the induction to the seil Sm[Al].

The following theorem is the main result of this sectiomn.
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Theorem 1, For Q defined by eq.(l.i#),wQ(t) is the greatest common factor of }
the polynomials {mj(t):j=0,1,2,...,k}. And the sequence [ wj(t)/®q(t)=j=0,l,2,..,k}§
contains (k-q+1) distinci polynomiasls end they are linearly independent.
Proof. From Prop.l.3., we can select (k-q+1) distinct polynomials from
the set {@j(t)/¢Q(t):j=O,1,2,...,k].They are linearly independent by the precedingi

lemma,
Example, Lei us consider the set

&= [a,a,8,8,b,b,b,b,c,e,c,c,¢,c,0,c] , d=16 ,

ogt)=(t=-0) (1v)¥(1-0)® | mjempet,ms=8

We take up the special case k=11, then since d-k=5, we hsve n1=4,n2=4, and n5=5; q=3,
From the set S*=3-Q = Ea,a,&,a,b,b,b,b,c,c,c,c,c],wa construct a sequence of poly~-
nomials of order (k-g+1)=9 by deleting [(n1+n2+n3)—(k-q)]u(é»k)a5 successive element@

We list the corresponding polynomials wj(t)/wQ(t) (3=0,..,9)

(t-e)*(1-0)" (4-0)(£-5)3(t-0), (£-0)H(£-5)2(£-c)?, (t-8)(£-b)(1-0), (toa)(t-0)?.
(t-2)7(t-c)?, (t-2)2(t-b)(t-c)?, (t-a)(t-b)2(t-c)?, and (t-b)3(t-c)?.

Their labels form a non-increasing sequence of natursl numbers base §;

440,431,422 415 404 305,215, 125,035,

'To show the liresr independence of these 9 polynomizls, we substitute t=a in the

linesr relation:
9 .
jzocjfwj(t)/wq(t)l =0

and we have c9m0. Since the rest of the polynomials have (t-a) as a common factor,

we list the labels of the quotient fwj(t)/$Q{t)]/(t»a):

540,331,322,304,205,115,025
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It is clear, that these are the labels of the sequence of polynomials obtained

from the set:
8! = [a,a,a,b,b,b,b,c,éfc,c,c}

by deleting 5 successive elemenﬁs.‘Note that the label of the set §'
L{(8') = 345

satisfy the condition {1.5). We apply the same argument inductively, each time .
showing that the coefficient of the lamst term is zero in the linear combinations

of the polynomials which are expressed in labels as follows:

4ho, 431,422,413 4ok, 305,215,125,035
340,331,%22,313,304,205,115,025
249,251,222,215,204,105,015
140,131,122,113,104,005

40, 31, 22, 13, 4

30, 21, 12, 3

20, 11, 2 .

lo, 1

Naturally, ithe last peir corresponds to [ (twa),(tnb).] and they are linearly

independent,

Finally, just for the sake of completeness, we list the labels of the originai

gubsets Sgrseees 35171
4&5,&45,4&5,h45,454,&25,416,407,508,218,128,058

There are 3 equalities emong the &4 labels in the left most position.



2. Beduciion Process,

Proposition 2,1, If the following d-th order-linesr ordinary differential equa‘hlgn§
is fuchsisn, namely every singular point is a regular singuler point, with one

at infinity:

-

d [ '
L{x) = I ck(t)[d/dt}g‘kx =0 (2.1}
k=0 ‘

where all the coefficients Co(t)scl(t)s-—--‘:cd(t) are polynomials in t, then

we have!
deg(Cye(t)) < deg(Cp_1(t)) - 1 | (2.2)
m(Ck?k) < m{Cp.1,A) - 1 | (2.3)

where by m{f,\) we meen the multiplicity of the root A of the given polynomial f£(1t),

Proof. The condition (2.2) is the well-known condition that the singular point
gt infinity is regular, Similerly, the inequality (2.3) is the condition that

the finite point A is s regular singular point of eq. (2,1).

Remark. Naturelly, we use the convention m(f,A)=0 if P(A)£0. We are only

concerned with the case where m(f,A) is a natural number,

Given & single d-th order differential equation (2,1) with

deg(Co(t)) = 4 | (2.4)

]

we will transform the equation into a system of d first order equations of the

form:
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J
: (‘E"Kj)[dy‘}'/dt] = kzl aj,k Y yj.;_l (J=1,2,...,d-1) ,
(2.5)

(t-Ag)ldyg/dt] =

-
O s I = ¥
[

&d* Tk

where, of course, we define the dependent variables yy,¥z,...+s¥d recursively as:

¥y1 = *
(2.6)
. k
Vel = (E-Ne)ldyie/dt] - 21 & p Vp (k=1,2,...:.,d)
p:
and where 8j ) (1 ¢k <€ j) are constants to be determined sc that
, s

Y4+1 7 0 ‘ . (2.7)

2N .
holds, The set of numbers {kl,lg,.....,kd] = § is the set of roots of the polynomial

Ca(t} ( deg(C,(%t}) = d ) arranged in the order described as in the preceding section.

Lemma 2. If we write yy,¥2,...,yd4+; in the form:
- § b (%) <=1 (2.8)
kT2 %k _ ,
J =
then the coefficients by j(t) { 3§, k¥1,2, ..... ,d ) satisfy:
’ *

k
bk+1,j(t) = (t-Ag)by, 5-1(8) + (t-Ne)[d/dtdby (%) ‘pEjak‘pbp,j(t) - (2.9)

byt 1, kr1lt) = 9gt) ( 8=[A1,A2, e e Aed ) (2.10)

and
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bk+1,1(t) = det e | ._(_l)k (2.11)

Procf. By induction on k. For k=1, we have yp=(t-Ap)x' -8y 1X. That is,
ba,g(t) = (t-Ay), bg,l(t) = -8y 3 ( bl’l(t)=1 )

The equalities (2,10) and {2.11) are trivially satisfied, The right hand side of
eq.(2.9) has only the firsi term well-defined meening for Jj=2, end it has only
the +third term well-defined for j=1. Thus eq.(2.9) is true for k=1,

Then we substitute eq.{2.8) into the right hend side of eq.(2.6), We have

k+l ; k
-1 .
Yier1 = (M) 2 bk’julx(J ) +_21 b! j L 3-1)
= J:
k p
- 2 = L 2 b, oL 371) ]
p=1 k,P J""'l p!J

where b'k,j denotes (d/dt)bk’j(t},
Since the derivative of order k appears only in the first summation with

j=k+1, we have:

bray 1 () = (EM) B (8] = (EN) (AN p) oo (t-A1) = 9g(t)

which shows (2,10},
Now for j=1 to k, we pick up the coefficients of x(J“l), snd interchanging
the order of summation as:

k  k

[T hee
1
et}
oy

k
z



we obtain {2.9) for j#l. For j=1, we have bl,lmi and by 1 = 8] 1. Suppose

by 1 is in&ependent of t for k=1 up %to k, then we have:
b

k :
bk"'}.’l(t) = - E. ak,pbp,i . ' (2.12}

independent of t.
Now, if we write down (2,12) for k=l to k+l, we have
\
bpy t 811 =0
b3, 1t ®2,2%2,1 * 8y 1 = 0

P I RN B N NI

‘ (2.13)
+ _1D o = 0
bkyl ak"lsk'l k-1,1 ¥ ak-l,l

bk‘i“l + &k,kbk,}- + N 2 + S‘k,gbz,l + &k’l = O'

If we use the vector matrix notation , .then we can write (2.13) in the following

. formt

— — N ‘ e J—
&1,1 1 1 —T Z
82,1 %2,2 1 52,1
e - (2.14)
1 B-1,1 0
ak’l &k,z ak,k ‘ L hk,l i ‘ k:bkq.l’l

We solve this equation as if we knew the vector on the right hand side, and the
vector {1’b2,1"""’bk—1 1’bk,1) as unknown., We are interested only in the
L]

pirst component, that is, by Cramer's rule,

.3, %z 2 833 1
1 = det
det A

o %-1,2 8.2 3 1
| “Prel,1 %,2 8%,k |
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o (-1)byyq,1 / dot A (2.15)

where A is the matrix on the left hand side of eq.(2.14), This completes the proof

“of lemma 2.

Theorem 2.1. The coefficient bj+1,k+1(t) for j>k, j=1,2,... ,d, is a polynomhﬁ

of degree k., If we define the set § and its family of subsets Sgseev.n Sy by,
S= {Kl,k2, ----- n,kk, . ,KJJ
S, = [Al,KQ, ...... ’kkl
(2.16)
S}' tkl:RE: skk l’Kj]

oooooooooo

and the associated polynomials of order k, @o(t),----,¢k(t) by.

P (t) = l ] (t*h) ( B= O,l,...,k) (2-17)
P AeS, - :

then we have:

(t) = ¥(t) -

o
1 K

P51l 2 5-pteriop Pt ¥ (2.18)

°
where ¥W{t) is a polynomial of order k whose coefficients dependent on those a, .

y
for which

(r-s) 2 (3-k) . (2.18)

hold.

Proof. For the sake of convenience, we call (3-k) the index of the coefficienth

roof | f
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83,1 Then the diagonsl elements & 1 of the matrix A all have the index zero.

b s .

For our specific matrix A in (2,11), all the elements with index {+1) has numerical

value equal to one. We prove ¢q.(2.18) by induction on the index (j-k).
L %, /

For { j~k}=0, we have S=85,=S5j. By eg.(2.10), we have:
been,ge1(8) = 9g(t)

the right hand side of this equation does not depend on any 21,1 veee a8 g
Suépose now the induction hypothesis is satisfied for (jwk)=0,l,...,(q#1),

and we try to show eq.(2.18) for (j-k}=q. This we do by induction on k.

For k=0, we have |

----------

bj+1,l(t)=bq+l,1(t) = det Aq S

Every element appearing in this matrix A, eXcept 241 has index less than {gq-2).
¥

q

Hence, we have

b = (-0 e 1A {2.20)

q:l“lsl
where ¥, is a constant ( a polynomial of degree O ) depending only on those &y 4

)
with index less than (g-1).

By lemme 2, we have

- J
by eerl®) = (t~xj)bj,k(§) + (AR () —p§k+1 aj obpir1(t) (2.21)

This is nothing but eq,(2.9) with the index pair (k+1,j) replaced by ( j+1,k+1).

In the last summetion, we have { j-p) ¢ (j-k-1)=q-1, and (p-k=-1} ¢ (3=k-1)=g-1.



~18~
We pick up terms with coefficients having indices less than (q-1) and growp
them together under the name ¥(t). The rest of terms on the righ%, namely, those

with coefficients of index (g-1) are:

k-1
(oAl = 2 2 5lop,kepm ot T = oy a1 By e (8)
ok | |
T pEo 2j-p,let1-p Pplt) (2.22)

because bk+1,k+1(t) = ¢g(t) by eq.(2.10), and

(t-A)9* () = (t=A,) | | (t-A)
JTP S AES*,

where, by the induction hypothesis, we have: ' 5

S* » [AI,AE’.'-.'.’Ak’.'..?\j—}_]
S*or- {Al,)\z,---.-u,?lk_lj
S*lz [Kl,-...,)\k_a,i\j_l}

nnnnnnnnnnnnn

There is no contribution of index (g-1) from the gecond ierm (t~kj)b'j,k+1(t) becausy
bj,k+l(t) contains terms &5-1-p,k+1-p (p=0,1,2,..,k) as terms of the highest index

but the index is {q-2). This completes the proof of Theorem 2.
Example, Consider Su{kl,KQ,R5], d=3, Then, we have by lemma 2. and Thesorem 2.1,

Y1=%, y2=(takl)x‘—a1’lx, y§=(t—k1)(t~K2)x"*{Wl(t)—a2’2(t—ll)mal,1(t—l2)]x'
+(a1’132,2~aa’1)x
+ [ho(t) ~a3 3(t-A1)(t-Ag)-ap o(t-A1)(t-A3)

—alglﬁt“?\g)(t-%)}x" + fﬁg(t)*%’g(t“?\l)-%,1(t“7\5)}><' - det(4z)x

vy = (A1) (tA2) (tag)xt D)
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%, Struecture of the Coefficients of Fuchsisn Equetions.

Proposition 3.1, For a factored monic polynomial:

@t} =.Tmn((t-h) o (st=d)

W1
s (3.1)

the k-th order derivative w(k)<t) is the sum,
o¥e)y =2 TT (e ’ _ (3.2)

AeT

where T runs for ell possible subset of the set S with (d-k) elements, possibly

with some repetitions.

Proof. For k=1, we have

d
S1ES I T NI O SR
k=1 Ae[S-[A1] (3.3)

We can repeat the same computation to the terms in summaiion any number of times.

Hence the propositicn folleows,

Proposition 3.2, Every polynomial y(t) appeared in Theorem 2.1., is a

linear combination of polynomials @A(t) whers A's are scme finite subszels of

L)

Prcef, Since the proof of Theorem 2.1, depends on the recurrence formulae
(2.9) and (2.10), we examine the operetions involved therein. The firet term

in (2,9) is & multiplication by {t-A,). That is:

o, () = 9y(t) ( 8= AUDNG ).



— D

where A is & subset of [A1,Ap,..... »Ak-1]. The second term contains the multiplication

by (t-Ak)'&Hd g differentiation, By ihe preceding proposition, we have
[a/dtle (1) = T @p(t) ( BCA ),
A -3 P

The third term is & lineasr combinstion of polynomials,

Now consider the set of all linear combinaticdns of the form:

L =Lt @ = % cp tpAp(t) Ap C.[?\l,?\g, ...... JAe] €8 ]
Then this set is invariant under the operations
(1) multiplication by (t—hk) when all the A, are subsets of {ll,..;.,xk_lj.
{11) differentistion
(1ii) by tsking a linear combination ,
Now the proof is compleite with the formula (2.10) when we observe that all

the coefficients bj k(t) (k>j,k=1,2,...,4) are the elements of respective sel L.
, :

Prepesition 3.5, If t=A is a finite régular gingular point of the d-th

order linesr differential equation:

() (d-1)

L{x] = C(t)x "7 + ¢{t)x P e +0q.1(t)x" + Ca(t)x = 0 (3.4)

where the leading coefficient C {%) is given by:

y

il

Co(t) wS(t) : ' | (3.5)
8 [ AL,A2,..... JAg J (3.6}

i

then we have:

n(CA) 2 m(CoA) ~k (3.7)
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Proof. This follows immediately from the inequality (2,3) of lemma 2,

Corolla y. Let the sets S5,,31, ..... y S (k<d) be the subsets of ihe zeros of
. i k 3 )
co(t} defined by (1,11}, And Te% Q= Sj , then Cd_k(t) is divigible by @Q(t).
. v i=0

Proof. The inequality (3.7) implieé:
m{CqprA) 2 m{(Cp,A)-(d~k)

-{ d~k
Consequently, Cq_(t) is divisible by (t-2)" (d-k) ( m=m(C,y,A) ), and by eq.(1,16)

Ca-k(t) is divisible by G(t).

Theorem %.1. Every fuchsian equation of order d of the type (3.4) cen be

transformed into a system of first order eguations of the form:
(+I-B){dy/dt]) = Ay (z.8)

where A is a matrix of the type:

R 0 e o
&2,1 32’2 A . o
ad'l 1 ------ &&"1,6\"’}* 1
83,1 4,2 vrcer ®d,d-1  %,d

and B is & diagonal matrix with the roots of Cy,{%t) on the diasgoral, end where

y is & d-dimensional vector defined recursively by (2.6).

Proof, From the defirition (2.6), all we have to show is the existence of

142+, ,..+d = d(d+1)/2 elemente of the matrix A suck that:
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Yi+1 © L{x] : (3.9)

By eq.{2.8), we write:

i oo

?d+1(t) = %’d+1,j(t)x(j) | | (3.10)

JF0

where bd+i,j(t) (j=0,1,....,d) are given by {2,18) es:

-1
bd+1,j(t) = Yt} - I 8d-p, j-p ‘Pp(‘t) (3.11)
p=0
and where by eq.(2,10):
bd+1,d+i(t) = @S(t) = Colt) (3.12)

We determine a. e inductively with respect to the index j-k.

Js
Let us put j=d in (3.11), We iry tc determine 8], 1s e 84,4 from the equation:
d-1
ci(t) = ¥(t) - 3 adup,d—pwp(t) (3.14)
p:o R .

where C;{t) is divisible by mQ(t), the maximal common facior of ¢,. ceaPy_yy Y
Corollary to the proposition 3.3,, while ¥(t) is & linear ccmbination of polynomisls.
wé*(t) of crdér (d~1) where S* is a subset of S with (d-1) elements independent
of aj,k.‘Hence, ¥(t) is, also, divisible by ¢g(t). Let the order of ®q be q.
Then the order c¢f {Cl(t)—W(t)]/wQ(t) is equal to {d-~l-q) and it contains {d=-q)
preassigned constants. But by theorem 1, there are (d-q) lireerly independent
polynomials among the set [ @p(t)/wq(t): p=0,1,....,(d-1) ]. Hence we cen determine
SUSFREREY 284 4 50 that eq.(3.14) is setisfied,

To determine the conetants [ admp,j_Pz p=0,1,2,...,(d-3) ] from
j-1
Cd-j(8) = Beuy 5(1) = W(2) - pi; 283-p, j-p Pplt) (3.15)
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where ¢O(t),....,wj_l(t) corresponding to the setls

Sj—l = £K5uj+1,.... s A ]

snd where Y(t) is a linear combination of polynomials of the type @S*(t) for some
g* S with (j-1) elements whose coefficients depend on those 8r.g with indices
(r-s) less than (d-j). Similarly, We'ﬁavg‘both y{1) and Cd_j(t} divisible by
@Q(t) for Q= . Sp. The degree of the polynomial (Cd"j(t)ﬁﬁ(t))/wq(t) is (j-1-q)
and hence ccntains j-q constants, buit this is exactly the number of linearly
independent polynomials of degree (j~1):¢o(t);¢1{t),... "ijl(t)' We choose

(i=-q) polyncmials which .are linearly independenti and let

' =. | .16
®a-p,jp 79 (5.16)

if wp(t) is not chosen, and determine other constants aéup,j”p‘s so thet the

following equation is satisfied;

[ Cq-j(0)-Wt) Vog(t) = 2 ey, 5 9,(1) (3.17)
(ag-p, 3-pho)
Of course, it is not necessary to have the right hand side of eq.(3.16)
always equel to be zero, we may assign eny convenient vslue if there is any.
Ir sny case, we have a unique set of constants from eq.(3.17) for a given

numerical velue on the right hand side of eq.{3.16). This completes the proof,

Corclliary. Every single linear ordinary differential equation of fuchsian type

is equivalent to & system of first order equations of the type (3%.8),
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Prcof. By & fractional linear trensformation of the independent variable t,
we may assume that the given equation has a regular singular point at infinity

so that the conditicn’(2.2) 1s satisfied when certain polynomial is multiplied,

1. co(t)x(d)+cl(t)x(d“l} oo tCy{t)x = 0 deg(Cq) > 0, deg(C,)=d+k,
2. Co(t)x(d)"' e +Cd(‘t)xw0 deg(cd)zo,deg(Co)=d_
5 o (sl e 0 (1)) g deg(Cy)=0,deg(C, )=k.

Then ebove three cases exhaust the possibility. The preceding theorem desls with

the case 2 only. For the first case we chenge the dependent variable x by

x= z(k)

similarly, for the third case, we use

x(d_k) =z

to reduce the equstion to ths secord case, This completes the proof of the coro-

llary.

Remark, The classical problem of "ome accessary parsmeter” occurs for the
type 1, with d=2 k=1, bur reduction process brings such an equation to & system
of three first order equations. This process is an introduction cf sppearent
excesg order,in contrast toc the introduction of eappearent singular points by

classical snalysists,



