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§1, Introduction
The first author has beeéen developing the theory conéerning

linear systems of ordinary differential equations of the form
(tI - B)dx/dt = Ax,

where t is a complex variable, x is a complex'column vector, A and
B are constant square matrices and I is the identity matrix ([31).
Hypergeometric differentisl equations such as Gauss' Hypergeometric
e@uation, Jordan-Pochhammer equation, the generalized hypergeomet-
ric equation and Kummer's confluent hypergeometric equation can

be réduced to systems of this form, We note ﬁhat the form of this
system is invariant under differentiation in t, namely, by the
substitution y(t) = dx(t)/dt, the system is transformed to

(tI - Bldy/dt = (A - I)y. The purpose of this note is to make a
global study of the generalized hypergeometric differential

equation by reducing it to a system of this form.

#) This work was partially supported by Grant-in-Aid for
Sclentific Research 454034 '
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The generallized hypergeometric function n ne l(al,. . n’sl’

CeeesB 1,t) is defined by the series

(al,m).‘ ....... (an,m)

LM
m=0 (Bl,m)..;( ne 1,m)(l m)

‘which is convergent for |t| <1, where (a;m) denotes the factorial

function
(a,m) = ala+l)....(atm-1) = I'(a+tm)/T(a).
In the case n=2, 1t reduces to Gauss' hypergeometric function. The

funetion u(t) = nFre- l(al,...,a 38qs00sBy 13 t) satisfles the

jinear differential equation
[t@+a ). e . (8Fay) - §(5+8, ;-1)...(848-1)] ult) =
§ = td/dt,

which is called the generalized hypergeometric differential
equation ([1]).

Set

xT(t) = u(e),
2(5) = (6 +8, - 1) x(8),
() = (5 +8, 1 - 1) XTHE)

and denote by x(t) the column vector t(xl(t),...,xn(t)). Then the
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generalized hypergeometric differential equation 1s transformed

to the syétem

(E) (tI - B)dx/dt = Ax,
where
B = diag{0,....,0,1]
and A is an n'by n constant matrix. For the sake of simplicity,

we suppose the minor matrix (aij)lsj‘kin—l of A = is
]

(255)3¢4 ,k¢n
similar to a diagonal matrix. Then we can suppose without loss of

generality that A is of the form

al- . O ?1
A=l vt :

t .

. 0 an-12%n-1

bl"”"’bn—l’ a,

We investigaﬁe in this note system (E) where B = diagl0,....,0,1]
and A 1s of the forn.

Let us denote by py,....,P the characterixt;é roots of the

n
matrix A. Then system (E) is of Fuchsian type with regular

singular points at t=0,1,« whose charactéristic exponents are

al,.'..’an—l’ 0, at tmo
[0 2 ¢ I a5 at t=1
—pl,..-...-..,—pn, at tmm'

In Section 2, we give some preliminary propositions
concerning local solutlons. In Sectlon 3, we prove an important
1@entity which states a global structure of solutions of (E). We
call the identity a generalized Gauss' formula because we can

easily derive from it the well known Gauss! formula



img ) oap < F(@sB5Y38) = TGO Gr-a-8)/[T - {y-58) 3.

' In Section 4, the monodromy'group of system (E) is computed. We
maké use of the fundamental%relations of wl(Pl(C)wio,l,w}) as
Riemann did in computing the group of Gauss' hypergeometric
differential equation ([41). Howevef, the relations are not
gufficient to eliminate all undetermined constants in the case
n»2, namely, some global information is necessary. We use the
ijdentity given in 83 as such one.

We remark last that the monodromy group of the generalized
nypergeometrilc differential equation was first compuﬁed by A.H.M.
Levelt ([21).



§2. Local sclutlons

In this section, we shall study the local solutlons of
(E)! (tI - B)dx/dt = (A + pI)x

at t = 0, 1. Here B and A are the same matrices as in (E),u is a

parameter, We denote by D0 and Dl_the open disks

D‘0 = {teC ; |t]|<1}, D; = {teC ; t=1]<1},

é
A"
and by €y 1sj<n, the constant vector t(0,..,0,1,0,...,0).

Proposition 1. Given 1<£j<n-1, suppose aJ F el =2=Uyuee
and aj'- a, % -1,-2,..., for any k ¥ J, lsken-1, Then (E)' has a

unique solution xJ(t,u) of the form
a,tu - '
- m
(2.1) g 9 Imoo & ()t
convergent in DO and satisfying
2.2 , = E..
(2.2) gj(o n) €5
Procf. It 1s known that every formal power series sc¢lution
converges at a regular singular point. Therefore, we have only to
prove the proposition formally. Let us find a recursion formula to

determine gj(m,u),mzo. By subétituting (2.1) in (E)' and identifying

the coefficlents of like powers of t, we have
{2.3) (aj+u+m+l)BgJ(m+l,u) = (aj+m—A)gJ(m,u), mx0,
or by denoting the k-~th component of gj(m,u) by g?(m,u),

(2.4) (a -2 tm)gh (m,u) = e gl (m,u), 15k <n-1,
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-1 k
(aj+p+m+l}g?(m+1,p) = _Ea'ﬂl bkgj (m,u) + (aj-an+m)g?(m,}i):

for m20. It 1ls easy to see that, under the assumptions‘in the
proposition, gj(m,u), mzorﬁa}e successively and uniquely

determined by the initial condition (2.2) and the equations (2.4).

In a simllar way, we get
Proposition 2. Suppose a, % -1mu,—27u,.L..' Then (E)' has a
unique solution x _(t,u) of the form

L . m
(2.5) (t -~ 1) Zmno gn(m,u) (t - 1)

convergent in D1 and satisfying
(2.6) gn(O,u) = e,

Proof.. We only note that gn(m,u),mzﬂ, are determined by (2.6)

and

(2.7) (an+u+m+l)(B-I)gn(m+l,u) = (an+m-A)gn{m,u), m20.

Next we shall study the existence of solutions at t=0 and t=1
corresponding to the characteristic exponent u.
Proposition 3. Suppose u ¥ -1,=2,...,and aa.‘j % 0,1,2,..., for

any 1£jsn-1. Then (E)' has a unique solutlon xﬁ(t,u) of the form
TR m

(2.8) t Zm=o gn(m,u) t

convergent 1n DO such that

(2.9) g™ (0,u) = 1,

where gin(o,u) denotes the n-th component of gﬁ(o,u). The other

components of gi(O,u) must be

-6 -



(2310) ggk(o,u) = —c, /2, _ 18k$n~1,
Proof'. By observing the formulas
(2.11) (—ak+m)g*k(m,u) = ckg*n(B,u), l8ksn-1,
(u+m+l)g*n(m+1 W) = =IP27 beeX(m,u) + (-a_m)g¥(m,u)
we can easlly show the proposition.

Proposition 4. Suppose p # -1,-2,.... and a, +0,1,2,... Then

(E)' has unique solutions x¥(t,u), 1sjs$n-1, of the form

J
(2.12) (e-1)% I 75 g§(m,u)(tm1)m, 1sj<n-1,
convergent in Dl such that
(2.13) g} Kig,u) = S sk 1sj ,ksn-1,

where %k is Kronecker's delta. In particular, g?(O,u) must be

(2.14) g} (0,u) = t(O,...,0,1,0,...,0,mbj/an) 1<jsn~1.

These n-1 solutions are linearly independent.

Proof. g;(m,u),mzo, 1¢jan-1, are determined by
(2.15) (wrmr1)g} (m+1,0) ==(-atm)gt(m,u) + oy g™ (m,u), ke
(-a +m)g§n(m u) = Ek...o kg (mau)-

The linear independence of the solutions follows from (2.14).



§3. Generalized Gauss' formula

We shall first prove-&hfprmula given in the following Theorem 1
and next show how to derive Gauss' formula from it.

We first note

Proposition 5 (Fuchs' relationj.

n _ n
ly=1 85 = Ig=1 Ppc

Proof. Since Pise-+sPp are the characterlstlc roots of A,

the relation follows from ﬁhe invariance of the trace of A.

Let us assume aj--ak = il, i2,....,for any'J ¥ k? 1 ,k¢n~1,

; aj 4 -1, =2, +...., for any 1sj4n Then from.Prdpositions 1

. and 3, system (E) has unique solutions xl(t),...,xn_l(t) in Dy and
xn(t) in D, of the form

i
ct
jiv]

(3.1) x, (%) I Ypoo &y (mt™, gy (0) = ey, 1898n-1,

a. o _
x (6) = (6-1) " [ 7o g (m)(e-1)", g (0) = €

b4

Let D be the simply connected domain in C - {0,1}

D=DygnDy = {£eC e]<1, [t-1]<1},

then we have

Theorem 1. Suppose aJ.--ak $ +1, #2,..,, for any J % k,

—

1%] ,ksn-1 and aj, Py $# -1, -2,..., for any 1s8j,ksn . Then we
have the identilty
(3.2) det (xy(£),...,x_(£))

n-1

=7 & a
= £ 97 (oo P o T (e v /I DT (ot )]
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which iélvalid for teD. Here we take the branches of x{t),...,
xn(t) in D determined by arg t = 0, arg(t-1) = 7, for O<t<l.
Proof. It 1is sufficient to show (3.2) in a nonempty simply
connected compact subset D' of D. |
For any integer u20, from Propositions 1 and 3 and from

the assumptions aJ—ak = t1, #2,..., J % k, 15j,k¢<n~1l, a, % ~1,

J
~2,.0.5 18380, there exist unique solutions xl(t,u),...,xn(t,y)

of (E)' in D such that xq(,u)yevn,x, 4 (t,u) are of the form (2.1)
with (2.2) at £=0 and x _(t,u) 1s of the form (2.5) with (2.6) at

t= 1. 3et

X(t;ﬂ) (Xl(t,u),-...,xn(t,u))

det X(t,u).

w(t:ﬂ)

We shall first obtain & relation between w(t,u) and w(t,0).
Let u be a positive integer. Then yJ(t,u) = dxj(t,u)/dt, 1$j<n,

are solutlions of
(¢ - B)dy/dt = (A + u - 1)y

and they are of the form

a.tu-1
j M

i

t

y5(E,u) Emzo(a3+u+m)g3(m,n)tm, 1£j4n-1,

aptu-1 © m
Ypltsu) = (t-1) Lo lafeimde, (myu) (6-1)7,

Hence, by the uniqueness stated in Propositions 1 and 3, we have
yj(t,u) = (aj+p)xj(t,u—1), 1sj<n.

These relations are written by



(t—B)X(t,url)diag[él+u,...,an+u] = (A+p)X(t,p).

Hence, noting the assumption Pl ¥ «1,-2,... (1€ksn), we get the

equation
w(t,u) = w(t,p-l)tn“l(t—l)njzl(aj+p)(nk21(pk+u)

for $£&€D!' and positive integer u. Therefore, by using the equation

p times, we obtailn
(3.3) B w(t,n) = w(t,oﬁt”(n'l)(t-l)“nkﬁlr(pk+1)njﬁlr(ad§p+1)
x[njﬁlr(aj+1)nkﬁlr(pk+u+1)3“1
We.shall next investigaﬁe the asymptotic behablior of w(t,pj

as u>0 tends to =, The coefflcients gj(m,u),m20,1535n, are

‘determined by (2.2),(2.3) for 1sjsan-1l, and by (2.6),(2.7) for j=n.
Let us substltute by

g4 (m,u)
= hj(m,u)F(aj+p+l)F(aj+m+l)/[Y(aj+n+m+l)r(aj+1)], 1sjsn.
Then h, (m,u),1¢jsn, are transformed to
(aj+m+1)BhJ(m+l;u) = (a3+m~A)h3(ﬁ,u), 1¢jsn~1,
(an+m41)(B-I)hn(m+1,u) = (an+mmA)hn(m,u)

with

hj(O,u) = g lsjsn.,

J'.‘F
Therefore, from the uniqueness properties in Propositions 1,3, it
follows that |

v
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by (m,p) = gy (m), ~ m20, 14jen,
hence
(3.4) gj(m,u)= gJ(m)I'(aj‘*u‘i'l)l"(aj+m+l)/[1’(aj+u+m+l)1'(aj+l)].

Now we estimate Zmzlgj(m,u)tm, 1¢j4n-1 and Zmzlgn(m,u)(t—l)m.

We can easily verify the inequalities

T(a3+u+l}r(aj+m+l)
‘r(aj+u+m+1)r(aj+f7

(3.5) < 2(Jay | +1)u7L, 1sjsn,

for any m21, p22(|é |+1)>0, since the left side of (3.5) is

a +m l! a +-1

aj+2,
+m+p | |

3 +27]

+IF
aj H

Let & @ be the norm defined by gy = max{{gl],.;.,[gn[}; Then
it follows from (3.4),(3.5) that

i Em_lgj(m Wty < 2(|a f+1)u” lzm_lﬂg (m Je ™, 1sjsn-1,
u Zmzlgn(m,u)(t-l)mu < 2(]anl+1)u“1zm:1u g, (m)l [t-1|™,

for téD',}kzmaxlsjin{2(lajl+l)}. Since D' 1s a compact sub;et of
D, Ipeibe;mi]t|™, 1gjsn-1 ana Ime1 08, () [t-11™ are uniformily
convertent on D' and hence they are bounded on D'. Therefore, we haw_'

a,+u
x,(E,u) = ¢ J {ey + 0(1/W)}, 1$j<n-1,

K
xn(t,u) (tfl) 1 {e, + 0(1/u)}

for teD', which implies

(3.6)  wlt,u) = EJ =130 et o).
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Here O denotes Landau's symbol.

By combining (3.3) and (3.6), we have

e 1,

(3.7 W(t g) = tzj =1 j(t 1) n(1 + 0(1/u))
3 1r(a +1)rtk lr(pk+u+1)

n. n oyl -1
“[kalr(pk+l)nj=lr(aa p+l)]

’ ' tue of Fuchs' relation
for teD', uzmaxlﬁjsn{2(1a3{+l)}. By vir 1

(Proposition 5) and Stirling's formula, it holds that
I +1) = 1.
Hm e 4150 m . lF(pk+u+l)/ﬂJ =1 (aj u+l)
Therefore, by taking the limit as u goes to += in (3.7),‘we cbtain

the identity (3.2) for teD', which completes the proof of Theorem 1.

"Corollary(Gauss’' formula). Assume that v, y~a~B, vy-a, Y-8 % 0,

-1,-2,.... and Re(y-a-B)>0. Then we have
(3.8) limtal,0<t<lF(a’B’Y;t) = T(y)T{y~a-B)/[T(y-c)T(y-B)].

Proof. By definition

Fla,B,y3t) = ;F(aB3y;t) = zmi0§$,$§§§ gg o

Consider system (E) in the case where

: Y-1, @
A= -B ] .Y"'C""'B"'l

The characteristic roots of A are

y-a-l, y-8~1., Then the assumptions

in Theorem 1 are satisfied. Let xl(t) aﬁd x2(t) be the solutions
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stated in Theorem 1, namely,

x (8) = €Y7 Zog (m)tT,  gi(0) = ey,

x,(8) = (6-1)770BN] 2 g (m) (5-1)7, £,(0) = ey,
then,we have
(3.10) Get(xy (8),%,(8)) = & "1 (g-1)Y @

X T(y )T (y=a-8)/[T(r=a)T (y~8)]

for t&€D, where arg t = 0, arg(t-1) = 7 for o<t<l. We can verify
that the first component of'gl(m) is  (a,m)(8,m)/[{y,m)(1,m)],
that 1s, the flrst component of xl(t) is tY—lF(q,B,Y;t).

There exists a solution xi(t) and a constant ¢ such that
= *
xl(t) xl(t) + cxz(t), teD.
From (3.10), we have
(3.11) det(xi(t),x (¢)) = det(xl(t),xz(t))

= o Bl (p a8 ) /LT (=) T -8 ) 1.

Since the first component of xz(t) is (t—lj*"a_BO(l) and the second
component of x,(t) is (£~ "% B-1(1 4 0(1)), we can derive from

(3.11) that the first component of xi(t) is
THIT(y-aB8)/[Tlr-a)Ty-B)] + O(it’1|l”€)-

Here € 1s a constant 0%e<l, which is equal to 0 if x§(t) has no

logarithmic term, Therefore we have

£ "1F (a8 v 5t)
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= T )T (y-a-B ) /[T (y-a)T(y-8)1 + 0(|e-111"%) + (£-1)Y "% Po(1).

py taking the limit as t»@;, 0<t<l, we obtain (3.8).
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§4, Monodromy group

In this section, we shall calculate the monodromy group of
‘System (E). Let us fix a base point ty in D. Let zo(or zl) be a
closed curve in C_n {0,1},beginning and ending at tmto, encireling
only the point t=0(or t=1) once in the positive direction. Let Y(t)
denote a branch in D of a fundamental matrix of system (E). If we
continue Y(t) analytically along the curve 13, then we have a
different branch in D which can be written as Y(t)Nj where NJE
Gi1(n,C). We call No(or Nl) the circult matrix of ¥(t) arcund t=0
(or t=l). The subgroup of GL(n,C) generated by N, and N1 is called

the monodromy group of (E) with respect to ¥(%).

Set
ey = exp(2w#§§aj), 1<jsn,
£, = exp(zﬁifipk), lsksn,

then, we have
Theorem 2., Assume that none of aj(lsjsn),_aj—ak(j#k,lsj,ksn~1h
aj—pk(ISJzn—l, lsksn) are integers and none of pk(lsksn) are

negatlive integers. Then the group generated by

O



1s the monodromy group of system (E). Here

- n '
dJ - —Hk=1(fk"ej)/[?J(ej“l)‘en-l)nk#Jslsksn_l(ek-ej)]

n . .
= -»Hk___lsin(pk-aj Jn/[sin aymsina vl ., ,l.Sksnmlsin(ak‘aJ wl,

lsjsn~1.
Proof. Let xl(t),...,xn(t) be-solutions stated in Theorem 1.
Then, under our assumptions, det(xl(t),...,xn(t)) ¥ 0. We shall

first compute the circuit matrices of the fundamental matrix X(t)

= (xl(t),-o«,xn(t))o

Let El""’gn—l be constants and x¥(t) be a solution of (E)
such that

x (t) = Z?;i £yx;(8) + xE(t),  teD.

We canverify by Proposition 3 that xé(t) is holomorphic at t=0.

Let ny be a constant and\x?(t) be a solution of (E) such that
' o gk -1,
xj(t) xj(t) + njxn(t), teD, l<jgn-1

From Proposition &, xg(t) is holomorphic at t=1, Set

Xo(td = (xq(8),evnvni,x 5 (8),x8(E)),

¥ %
X(8) = (xF(E) v xE o (8),x (8)),
then the above relations are written by

X(t) = X5(6)0,, X(t) = X, ()¢,

where
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N O J . 0
o - t . Cl" O ',
O 18,1 1
1 ’ ”1""“"”n-1’1 .

Since X(t) is a fundamental matrix, Xo(t) and Xl(t) are also

fundamental matrices.
From the local expressions (3.1) of xl(t),...{xn“l(t) at t=0Q

and from the holomorphy of xg(t) at t=0, the circult matrix E, of

0

1}

Xo(t) around t=0 is of the form

E0'= diagley, ... e 1].

n-1"

Similarly, it follows that the circult matrix El of cht) around

t=1 18 of the form

Therefore, the curcuit matrices Mo and M., of X(t) around t=0 and

1
t=1 are
‘el O El(el—l)
M. = CIlEC. = . : |
0 0 7070 .. o
O ®n-12%n-1(8p1-1)
1
. O
M, = cTlE.C, = T
1 1 7171 C) "
nl(enml),....,nn_l(en—l), e,
next
We shall determine the values of dj=£jnj, 1€jén~1.,
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Since MgM, is the inverse circuit matrix of X(t) around t==, the
characteristic¢ roots of (Mo%l)"l are the characteristic multipliers
of system (E) around t=e«, Og'the other hand, since Pysesesh are
the characteristlc roots of thé matrix A, the characteristic
multipliers of system (E) around t== are £71 = exp(-ew/:ipl),..,

1
f;l = exp(~2w¢:ipn). Thus we have the identity in A

det (MM, - 3) = LD (£, - A).

By direct computation we have that the components rjk’ lsj,ksn
of the matrix MOMl are A

t

Tig = ajkej + Ejnk(ej—l)(enul), 1¢) ,k<n-1

rJn == Ej (-ej_.l)e‘n’ ‘ lﬁjﬁn—l
rnk = nk(enhl)’ . lskin-1
I‘nn = en.
Hence
det(MOMl -A) = el—l . C) El(elml)l
€q-1"" Sn-1(eqo1~1)2
nl(en'—l),..q--,.,ﬂ_n_l(en-l), en—x

= M1 (e=h) = (e 1IN -1 4 (e -1)T

=1 (ep—l)‘)l.

ptq,lspsn-1
Thus we obtain

n Il-—
(4.1) qul(e S SIS CRE SIS M CHEIDL SISO CIEE SP R
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_ g D
= Ty (e ~ 2

By putting the special value A = ej, 1s3jsn-1 in (4.1), we immediatEh '

have

R |
(11.2) dj - mnl"-':l(fk-ej )/£eJ (ej"'l) (en“l)ﬁk#j ,lfukﬁn"l(ek-ej )]

]

n ' ‘
“Hk--ls’in(pk"aj Yw/[sin a‘j ¥ sin a,m Hkﬂ ,1£ksn—-lsj‘n(ak"33 ).‘%_‘
1$jsn-1. The second equation in (u.2)'is shown by Fuchs' relation
(proposition 5) and the identity |

(2/=1)~L(exp(n/=18) - exp(-m/=18))= sin &

We note that -dj = 5513 4 0, lsjsn-l under the assumption that
none of aj—pk, lsjsn-1, 1lsksn are Integers.

| Finally,set

¥(t) = X(t)diag[il,.,...,En_l,ll.

Then the circuit matrices Ny and N, of Y(t) around t=0 and t=1 are

of the form given in the theorem, Thus we have completed the proor

of Theorem 2.
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