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An elementary function of a variable x is a function that can be obtained
from the rational functions in x by repeatedly adjoining a finite number of nested
logarithms, exponentials, and algebraic numbers or functions. Since

√
−1 is

elementary, the trigonometric functions and their inverses are also elementary
(when they are rewritten using complex exponentials and logarithms) as well as
all the “usual” functions of calculus. For example,

sin(x + tan(x3 −
√

x3 − x + 1)) (1)

is elementary when rewritten as
√
−1
2

(et−x
√
−1 − ex

√
−1−t) where t =

1− e2
√
−1(x3−

√
x3−x+1)

1 + e2
√
−1(x3−

√
x3−x+1)

.

This tutorial describes recent algorithmic solutions to the problem of integration
in finite terms: to decide in a finite number of steps whether a given elementary
function has an elementary indefinite integral, and to compute it explicitly if it
exists. While this problem was studied extensively by Abel and Liouville dur-
ing the last century, the difficulties posed by algebraic functions caused Hardy
(1916) to state that “there is reason to suppose that no such method can be
given”. This conjecture was eventually disproved by Risch (1970), who de-
scribed an algorithm for this problem in a series of reports [12, 13, 14, 15]. In
the past 30 years, this procedure has been repeatedly improved, extended and
refined, yielding practical algorithms that are now becoming standard and are
implemented in most of the major computer algebra systems. In this tutorial, we
outline the above algorithms for various classes of elementary functions, starting
with rational functions and progressively increasing the class of functions up to
general elementary functions. Proofs of correctness of the algorithms presented
here can be found in several of the references, and are generally too long and
too detailed to be described in this tutorial.
Notations: we write x for the variable of integration, and ′ for the derivation
d/dx. Z, Q, R and C denote respectively the integers, rational, real and complex
numbers. All fields are commutative and, except when mentioned explicitly
otherwise, have characteristic 0. If K is a field, then K denotes its algebraic
closure. For a polynomial p, pp(p) denotes the primitive part of p, i.e.p divided
by the gcd of its coefficients.

1 Rational Functions

By a rational function, we mean a quotient of polynomials in the integration
variable x. This means that other functions can appear in the integrand, pro-
vided they do not involve x, hence that the coefficients of our polynomials in x
lie in an arbitrary field K satisfying: ∀a ∈ K, a′ = 0.
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1.1 The full partial-fraction algorithm

This method, which dates back to Newton, Leibniz and Bernoulli, should not be
used in practice, yet it remains the method found in most calculus texts and is
often taught. Its major drawback is the factorization of the denominator of the
integrand over the real or complex numbers. We outline it because it provides
the theoretical foundations for all the subsequent algorithms. Let f ∈ R(x) be
our integrand, and write f = P + A/D where P,A, D ∈ R[x], gcd(A,D) = 1,
and deg(A) < deg(D). Let

D = c
n∏

i=1

(x− ai)ei

m∏
j=1

(x2 + bjx + cj)fj

be the irreducible factorization of D over R, where c, the ai’s, bj ’s and cj ’s are
in R and the ei’s and fj ’s are positive integers. Computing the partial fraction
decomposition of f , we get

f = P +
n∑

i=1

ei∑
k=1

Aik

(x− ai)k
+

m∑
j=1

fj∑
k=1

Bjkx + Cjk

(x2 + bjx + cj)k

where the Aik’s, Bjk’s and Cjk’s are in R. Hence,

∫
f =

∫
P +

n∑
i=1

ei∑
k=1

∫
Aik

(x− ai)k
+

m∑
j=1

fj∑
k=1

∫
Bjkx + Cjk

(x2 + bjx + cj)k
.

Computing
∫

P poses no problem (it will for any other class of functions), and
for the other terms we have∫

Aik

(x− ai)k
=
{

Aik(x− ai)1−k/(1− k) if k > 1
Ai1 log(x− ai) if k = 1 (2)

and, noting that b2
j − 4cj < 0 since x2 + bjx + cj is irreducible in R[x],

∫
Bj1x + Cj1

(x2 + bjx + cj)
=

Bj1

2
log(x2+bjx+cj)+

2Cj1 − bjBj1√
4cj − b2

j

arctan

 2x + bj√
4cj − b2

j


and for k > 1,∫

Bjkx + Cjk

(x2 + bjx + cj)k
=

(2Cjk − bjBjk)x + bjCjk − 2cjBjk

(k − 1)(4cj − b2
j )(x2 + bjx + cj)k−1

+
∫

(2k − 3)(2Cjk − bjBjk)
(k − 1)(4cj − b2

j )(x2 + bjx + cj)k−1
.

This last formula is then used recursively until k = 1.
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An alternative is to factor D linearly over C: D =
∏q

i=1(x−αi)ei , and then
use (2) on each term of

f = P +
q∑

i=1

ei∑
j=1

Aij

(x− αi)j
. (3)

Note that this alternative is applicable to coefficients in any field K, if we factor
D linearly over its algebraic closure K, and is equivalent to expanding f into
its Laurent series at all its finite poles, since that series at x = αi ∈ K is

f =
Aiei

(x− αi)ei
+ · · ·+ Ai2

(x− αi)2
+

Ai1

(x− αi)
+ · · ·

where the Aij ’s are the same as those in (3). Thus, this approach can be
seen as expanding the integrand into series around all its poles (including ∞),
then integrating the series termwise, and then interpolating for the answer,
by summing all the polar terms, obtaining the integral of (3). In addition,
this alternative shows that any rational function f ∈ K(x) has an elementary
integral in the form∫

f = v + c1 log(u1) + · · ·+ cm log(um) (4)

where v, u1, . . . , um ∈ K(x) are rational functions, and c1, . . . , cm ∈ K are
constants. The original Risch algorithm is essentially a generalization of this
approach that searches for integrals of arbitrary elementary functions in a form
similar to (4).

1.2 The Hermite reduction

The major computational inconvenience of the full partial fraction approach is
the need to factor polynomials over R, C or K, thereby introducing algebraic
numbers even if the integrand and its integral are both in Q(x). On the other
hand, introducing algebraic numbers may be necessary, for example it is proven
in [14] that any field containing an integral of 1/(x2 + 2) must also contain

√
2.

Modern research has yielded so-called “rational” algorithms that

• compute as much of the integral as possible with all calculations being
done in K(x), and

• compute the minimal algebraic extension of K necessary to express the
integral.

The first rational algorithms for integration date back to the 19th century, when
both Hermite [6] and Ostrogradsky [11] invented methods for computing the
v of (4) entirely within K(x). We describe here only Hermite’s method, since
it is the one that has been generalized to arbitrary elementary functions. The
basic idea is that if an irreducible p ∈ K[x] appears with multiplicity k > 1 in
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the factorization of the denominator of the integrand, then (2) implies that it
appears with multiplicity k−1 in the denominator of the integral. Furthermore,
it is possible to compute the product of all such irreducibles for each k without
factoring the denominator into irreducibles by computing its squarefree factor-
ization, i.e. a factorization D = D1D

2
2 · · ·Dm

m, where each Di is squarefree and
gcd(Di, Dj) = 1 for i 6= j. A straightforward way to compute it is as follows:
let R = gcd(D,D′), then R = D2D

2
3 · · ·Dm−1

m , so D/R = D1D2 · · ·Dm and
gcd(R,D/R) = D2 · · ·Dm, which implies finally that

D1 =
D/R

gcd(R,D/R)
.

Computing recursively a squarefree factorization of R completes the one for D.
Note that [23] presents a more efficient method for this decomposition. Let now
f ∈ K(x) be our integrand, and write f = P + A/D where P,A, D ∈ K[x],
gcd(A,D) = 1, and deg(A) < deg(D). Let D = D1D

2
2 · · ·Dm

m be a squarefree
factorization of D and suppose that m ≥ 2 (otherwise D is already squarefree).
Let then V = Dm and U = D/V m. Since gcd(UV ′, V ) = 1, we can use the
extended Euclidean algorithm to find B,C ∈ K[x] such that

A

1−m
= BUV ′ + CV

and deg(B) < deg(V ). Multiplying both sides by (1−m)/(UV m) gives

A

UV m
=

(1−m)BV ′

V m
+

(1−m)C
UV m−1

so, adding and subtracting B′/V m−1 to the right hand side, we get

A

UV m
=
(

B′

V m−1
− (m− 1)BV ′

V m

)
+

(1−m)C − UB′

UV m−1

and integrating both sides yields∫
A

UV m
=

B

V m−1
+
∫

(1−m)C − UB′

UV m−1

so the integrand is reduced to one with a smaller power of V in the denominator.
This process is repeated until the denominator is squarefree, yielding g, h ∈ K(x)
such that f = g′ + h and h has a squarefree denominator.

1.3 The Rothstein–Trager and Lazard–Rioboo–Trager al-
gorithms

Following the Hermite reduction, we only have to integrate fractions of the form
f = A/D with deg(A) < deg(D) and D squarefree. It follows from (2) that∫

f =
n∑

i=1

ai log(x− αi)
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where the αi’s are the zeros of D in K, and the ai’s are the residues of f at
the αi’s. The problem is then to compute those residues without splitting D.
Rothstein [18] and Trager [19] independently proved that the ai’s are exactly
the zeroes of

R = resultantx(D,A− tD′) ∈ K[t] (5)

and that the splitting field of R over K is indeed the minimal algebraic extension
of K necessary to express the integral in the form (4). The integral is then given
by ∫

A

D
=

m∑
i=1

∑
a|Ri(a)=0

a log(gcd(D,A− aD′)) (6)

where R =
∏m

i=1 Rei
i is the irreducible factorization of R over K. Note that

this algorithm requires factoring R into irreducibles over K, and computing
greatest common divisors in (K[t]/(Ri))[x], hence computing with algebraic
numbers. Trager and Lazard & Rioboo [7] independently discovered that those
computations can be avoided, if one uses the subresultant PRS algorithm to
compute the resultant of (5): let ((R0, R1, . . . , Rk 6= 0, 0, . . .) be the subresultant
PRS with respect to x of D and A− tD′ and R = Q1Q

2
2 . . . Qm

m be a squarefree
factorization of their resultant. Then,∑

a|Qi(a)=0

a log(gcd(D,A− aD′)) =


∑

a|Qi(a)=0 a log(D) if i = deg(D)∑
a|Qi(a)=0 a log(ppx(Rki)(a, x)) where deg(Rki) = i, 1 ≤ ki ≤ n

if i < deg(D)

Evaluating ppx(Rki
) at t = a where a is a root of Qi is equivalent to reducing

each coefficient with respect to x of ppx(Rki
) modulo Qi, hence computing

in the algebraic extension K[t]/(Qi). Even this step can be avoided: it is in
fact sufficient to ensure that Qi and the leading coefficient with respect to
x of Rki do not have a nontrivial common factor, which implies then that
the remainder by Qi is nonzero, see [10] for details and other alternatives for
computing ppx(Rki

)(a, x).

2 Algebraic Functions

By an algebraic function, we mean an element of a finitely generated algebraic
extension E of the rational function field K(x). This includes nested radicals
and implicit algebraic functions, not all of which can be expressed by radicals.
It turns out that the algorithms we used for rational functions can be extended
to algebraic functions, but with several difficulties, the first one being to define
the proper analogues of polynomials, numerators and denominators. Since E
is algebraic over K(x), for any α ∈ E, there exists a polynomial p ∈ K[x][y]
such that p(x, α) = 0. We say that α ∈ E is integral over K[x] if there is a
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polynomial p ∈ K[x][y], monic in y, such that p(x, α) = 0. Integral elements
are analogous to polynomials in that their value is defined for any x ∈ K (unlike
non-integral elements, which must have at least one pole in K). The set

OK[x] = {α ∈ E such that α is integral over K[x]}

is called the integral closure of K[x] in E. It is a ring and a finitely gener-
ated K[x]-module. Let α ∈ E∗ be any element and p =

∑m
i=0 aiy

i ∈ K[x][y]
be such that p(x, α) = 0 and am 6= 0. Then, q(x, amy) = 0 where q =
ym +

∑m−1
i=0 aia

m−i−1
m yi is monic in y, so amy ∈ OK[x]. We need a canoni-

cal representation for algebraic functions similar to quotients of polynomials for
rational functions. Expressions as quotients of integral functions are not unique,
for example

√
x/x = x/

√
x. However, E is a finite-dimensional vector space over

K(x), so let n = [E : K(x)] and w = (w1, . . . , wn) be any basis for E over K(x).
By the above remark, there are a1, . . . , an ∈ K(x)∗ such that aiwi ∈ OK[x] for
each i. Since (a1w1, . . . , anwn) is also a basis for E over K(x), we can assume
without loss of generality that the basis w is composed of integral elements.
Any α ∈ E can be written uniquely as α =

∑n
i=1 fiwi for f1, . . . , fn ∈ K(x),

and putting the fi’s over a monic common denominator D ∈ K[x], we get an
expression

α =
A1w1 + . . . + Anwn

D

where A1, . . . , An ∈ K[x] and gcd(D,A1, . . . , An) = 1. We call
∑n

i=1 Aiwi ∈
OK[x] and D ∈ K[x] respectively the numerator and denominator of α with
respect to w. They are defined uniquely once the basis w is fixed.

2.1 The Hermite reduction

Now that we have numerators and denominators for algebraic functions, we can
attempt to generalize the Hermite reduction of the previous section, so let f ∈ E
be our integrand, w = (w1, . . . , wn) ∈ OK[x]

n be a basis for E over K(x) and
let
∑m

i=1 Aiwi ∈ OK[x] and D ∈ K[x] be the numerator and denominator of f
with respect to w, Let D = D1D

2
2 · · ·Dm

m be a squarefree factorization of D and
suppose that m ≥ 2. Let then V = Dm and U = D/V m, and we ask whether we
can compute B =

∑n
i=1 Biwi ∈ OK[x] and h ∈ E such that deg(Bi) < deg(V )

for each i, ∫ ∑n
i=1 Aiwi

UV m
=

B

V m−1
+
∫

h (7)

and the denominator of h with respect to w has no factor of order m or higher.
This turns out to reduce to solving the following linear system

f1S1 + . . . + fnSn = A1w1 + . . . + Anwn (8)

for f1, . . . , fn ∈ K(x), where

Si = UV m
( wi

V m−1

)′
for 1 ≤ i ≤ n . (9)
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Indeed, suppose that (8) has a solution f1, . . . , fn ∈ K(x), and write fi = Ti/Q,
where Q,T1, . . . , Tn ∈ K[x] and gcd(Q,T1, . . . , Tn) = 1. Suppose further that
gcd(Q, V ) = 1. Then, we can use the extended Euclidean algorithm to find
A,R ∈ K[x] such that AV + RQ = 1, and Euclidean division to find Qi, Bi ∈
K[x] such that deg(Bi) < deg(V ) when Bi 6= 0 and RTi = V Qi + Bi for each i.
We then have

h = f −
(∑n

i=1 Biwi

V m−1

)′
=

∑n
i=1 Aiwi

UV m
−
∑n

i=1 B′
iwi

V m−1
−

n∑
i=1

(RTi − V Qi)
( wi

V m−1

)′
=

∑n
i=1 Aiwi

UV m
−

R
∑n

i=1 TiSi

UV m
+ V

n∑
i=1

Qi

( wi

V m−1

)′
−
∑n

i=1 B′
iwi

V m−1

=
(1−RQ)

∑n
i=1 Aiwi

UV m
+
∑n

i=1 Qiw
′
i

V m−2
− (m− 1)V ′

∑n
i=1 Qiwi

V m−1
−
∑n

i=1 B′
iwi

V m−1

=
∑n

i=1 AAiwi

UV m−1
−
∑n

i=1((m− 1)V ′Qi + B′
i)wi

V m−1
+
∑n

i=1 Qiw
′
i

V m−2
.

Hence, if in addition the denominator of h has no factor of order m or higher,
then B =

∑n
i=1 Biwi ∈ OK[x] and h solve (7) and we have reduced the integrand.

Unfortunately, it can happen that the denominator of h has a factor of order
m or higher, or that (8) has no solution in K(x) whose denominator is coprime
with V , as the following example shows.

Example 1 Let E = K(x)[y]/(y4 +(x2 +x)y−x2) with basis w = (1, y, y2, y3)
over K(x) and consider the integrand

f =
y3

x2
=

w4

x2
∈ E .

We have D = x2, so U = 1, V = x and m = 2. Then, S1 = x2(1/x)′ = −1,

S2 = x2
(y

x

)′
=

24(1−x2)y3+32x(1−x)y2−(9x4+45x3+209x2+63x+18)y−18x(x3+x2−x−1)

27x4 + 108x3 + 418x2 + 108x + 27
,

S3 = x2

(
y2

x

)′
=

64x(1−x)y3+9(x4+2x3−2x−1)y2+12x(x3+x2−x−1)y+48x2(1−x2)

27x4 + 108x3 + 418x2 + 108x + 27

and

S4 = x2

(
y3

x

)′
=

(27x4+81x3+209x2+27x)y3+18x(x3+x2−x−1)y2+24x2(x2−1)y+96x3(1−x)

27x4 + 108x3 + 418x2 + 108x + 27

so (8) becomes

M


f1

f2

f3

f4

 =


0
0
0
1

 (10)
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where

M =


−1 −18x(x3+x2−x−1)

F
48x2(1−x2)

F
96x3(1−x)

F

0 −(9x4+45x3+209x2+63x+18)
F

12x(x3+x2−x−1)
F

24x2(x2−1)
F

0 32x(1−x)
F

9(x4+2x3−2x−1)
F

18x(x3+x2−x−1)
F

0 24(1−x2)
F

64x(1−x)
F

(27x4+81x3+209x2+27x)
F


and F = 27x4 +108x3 +418x2 +108x+27. The system (10) admits the unique
solution f1 = f2 = 0, f3 = −2 and f4 = (x + 1)/x, whose denominator is not
coprime with V , so the Hermite reduction is not applicable.

The above problem was first solved by Trager [20], who proved that if w is an
integral basis, i.e. its elements generate OK[x] over K[x], then the system (8)
always has a unique solution in K(x) when m > 1, and that solution always
has a denominator coprime with V . Furthermore, the denominator of each w′

i

must be squarefree, implying that the denominator of h is a factor of FUV m−1

where F ∈ K[x] is squarefree and coprime with UV . He also described an
algorithm for computing an integral basis, a necessary preprocessing for his
Hermite reduction. The main problem with that approach is that computing
the integral basis, whether by the method of [20] or the local alternative [21],
can be in general more expensive than the rest of the reduction process. We
describe here the lazy Hermite reduction [5], which avoids the precomputation
of an integral basis. It is based on the observation that if m > 1 and (8) does
not have a solution allowing us to perform the reduction, then either

• the Si’s are linearly dependent over K(x), or

• (8) has a unique solution in K(x) whose denominator has a nontrivial
common factor with V , or

• the denominator of some wi is not squarefree.

In all of the above cases, we can replace our basis w by a new one, also made
up of integral elements, so that the K[x]-module generated by the new basis
strictly contains the one generated by w:

Theorem 1 ([5]) Suppose that m ≥ 2 and that {S1, . . . , Sn} as given by (9)
are linearly dependent over K(x), and let T1, . . . , Tn ∈ K[x] be not all 0 and
such that

∑n
i=1 TiSi = 0. Then,

w0 =
U

V

n∑
i=1

Tiwi ∈ OK[x] .

Furthermore, if gcd(T1, . . . , Tn) = 1, then w0 /∈ K[x]w1 + · · ·+ K[x]wn.

Theorem 2 ([5]) Suppose that m ≥ 2 and that {S1, . . . , Sn} as given by (9)
are linearly independent over K(x), and let Q,T1, . . . , Tn ∈ K[x] be such that

n∑
i=1

Aiwi =
1
Q

n∑
i=1

TiSi .
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Then,

w0 =
U(V/ gcd(V,Q))

gcd(V,Q)

n∑
i=1

Tiwi ∈ OK[x] .

Furthermore, if gcd(Q, T1, . . . , Tn) = 1 and deg(gcd(V,Q)) ≥ 1, then w0 /∈
K[x]w1 + · · ·+ K[x]wn.

Theorem 3 ([5]) Suppose that the denominator F of some wi is not square-
free, and let F = F1F

2
2 · · ·F k

k be its squarefree factorization. Then,

w0 = F1 · · ·Fkw′
i ∈ OK[x] \ (K[x]w1 + · · ·+ K[x]wn) .

The lazy Hermite reduction proceeds by solving the system (8) in K(x). Either
the reduction will succeed, or one of the above theorems produces an element
w0 ∈ OK[x] \ (K[x]w1 + · · · + K[x]wn). Let then

∑n
i=1 Ciwi and F be the

numerator and denominator of w0 with respect to w. Using Hermitian row
reduction, we can zero out the last row of

F
F

. . .
F

C1 C2 · · · Cn


obtaining a matrix of the form

C1,1 C1,2 · · · C1,n

C2,1 C2,2 · · · C2,n

...
...

...
Cn,1 Cn,2 · · · Cn,n

0 0 · · · 0


with Cij ∈ K[x]. Let wi = (

∑n
j=1 Cijwj)/F for 1 ≤ i ≤ n. Then, w =

(w1, . . . , wn) is a basis for E over K and

K[x]w1 + · · ·+ K[x]wn = K[x]w1 + · · ·+ K[x]wn + K[x]w0

is a submodule of OK[x], which strictly contains K[x]w1 + · · ·+K[x]wn, since it
contains w0. Any stricly increasing chain of submodules of OK[x] must stabilize
after a finite number of steps, which means that this process produces a basis
for which either the Hermite reduction can be carried out, or for which f has a
squarefree denominator.

Example 2 Continuing example 1 for which the Hermite reduction failed, The-
orem 2 implies that

w0 =
1
x

(−2xw3 + (x + 1)w4) =
(
−2xy2 + (x + 1)y3

)
x ∈ OK[x] .
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Performing a Hermitian row reduction on
x

x
x

x
0 0 −2x x + 1


yields 

x
x

x
1

0 0 0 0


so the new basis is w = (1, y, y2, y3/x), and the denominator of f with respect
to w is x, which is squarefree.

2.2 Simple radical extensions

The integration algorithm becomes easier when E is a simple radical extension
of K(x),i.e. E = K(x)[y]/(yn − a) for some a ∈ K(x). Write a = A/D where
A,D ∈ K[x], and let ADn−1 = A1A

2
2 · · ·Ak

k be a squarefree factorization of
ADn−1. Writing i = nqi + ri for 1 ≤ i ≤ k, where 0 ≤ ri < n, let F =
Aq1

1 · · ·Aqk

k , H = Ar1
1 · · ·Ark

k and z = yD/F . Then,

zn =
(

y
D

F

)n

=
ynDn

Fn
=

ADn−1

F
= Ar1

1 . . . Ark

k = H .

Since ri < n for each i, the squarefree factorization of H is of the form H =
H1H

2
2 · · ·Hm

m with m < n. An integral basis is then w = (w1, . . . , wn) where

wi =
zi−1∏m

j=1 H
b(i−1)j/nc
j

for 1 ≤ i ≤ n (11)

and the Hermite reduction with respect to the above basis is always guaranteed
to succeed. Furthermore, when using that basis, the system (8) becomes diag-
onal and its solution can be written explicitly: writing Di =

∏m
j=1 H

bij/nc
j we

have

Si = UV m
( wi

V m−1

)′
= UV m

(
zi−1

Di−1V m−1

)′
= UV m

(
i− 1

n

H ′

H
− Di−1

′

Di−1
− (m− 1)

V ′

V

)(
zi−1

Di−1V m−1

)
= U

(
V

(
i− 1

n

H ′

H
− Di−1

′

Di−1

)
− (m− 1)V ′

)
wi

14



so the unique solution of (8) in K(x) is

fi =
Ai

U
(
V
(

i−1
n

H′

H − Di−1
′

Di−1

)
− (m− 1)V ′

) for 1 ≤ i ≤ n (12)

and it can be shown that the denominator of each fi is coprime with V when
m ≥ 2.

Example 3 Consider ∫
(2x8 + 1)

√
x8 + 1

x17 + 2x9 + x
dx .

The integrand is

f =
(2x8 + 1)y

x17 + 2x9 + x
∈ E = Q(x)[y]/(y2 − x8 − 1)

so H = x8 + 1 which is squarefree, implying that the integral basis (11) is
(w1, w2) = (1, y). The squarefree factorization of x17 + 2x9 + x is x(x8 + 1)2 so
U = x, V = x8 + 1, m = 2, and the solution (12) of (8) is

f1 = 0, f2 =
2x8 + 1

x
(
(x8 + 1) 1

2
8x7

x8+1 − 8x7
) = − (2x8 + 1)/4

x8
.

We have Q = x8, so V − Q = 1, A = 1, R = −1 and RQf2 = V/2 − 1/4,
implying that

B = −y

4
and h = f −

(
B

V

)′
=

y

x(x8 + 1)

solve (7),i.e.∫
(2x8 + 1)

√
x8 + 1

x17 + 2x9 + x
dx = −

√
x8 + 1

4(x8 + 1)
+
∫ √

x8 + 1
x(x8 + 1)

dx

and the remaining integrand has a squarefree denominator.

2.3 Liouville’s Theorem

Up to this point, the algorithms we have presented never fail, yet it can happen
that an algebraic function does not have an elementary integral, for example∫

xdx√
1− x3

which is not an elementary function of x. So we need a way to recognize such
functions before completing the integration algorithm. Liouville was the first
to state and prove a precise theorem from Laplace’s observation that we can
restrict the elementary integration problem by allowing only new logarithms
to appear linearly in the integral, all the other terms appearing in the integral
being already in the integrand.
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Theorem 4 (Liouville [8, 9]) Let E be an algebraic extension of the rational
function field K(x), and f ∈ E. If f has an elementary integral, then there
exist v ∈ E, constants c1, . . . , ck ∈ K and u1, . . . , uk ∈ E(c1, . . . , ck)∗ such that

f = v′ + c1
u′1
u1

+ · · ·+ ck
u′k
uk

. (13)

The above is a restriction to algebraic functions of the strong Liouville Theorem,
whose proof can be found in [4, 14]. An elegant and elementary algebraic proof
of a slightly weaker version can be found in [17]. As a consequence, we can look
for an integral in the form (4), Liouville’s Theorem guaranteeing that there is
no elementary integral if we cannot find one in that form. Note that the above
theorem does not say that every integral must have the above form, and in fact
that form is not always the most convenient one, for example∫

dx

1 + x2
= arctan(x) =

√
−1
2

log
(√

−1 + x√
−1− x

)
.

2.4 The integral part

Following the Hermite reduction, we can assume that we have a basis w =
(w1, . . . , wn) of E over K(x) made of integral elements such that our integrand
is of the form f =

∑n
i=1 Aiwi/D where D ∈ K[x] is squarefree. Given Liouville’s

Theorem, we now have to solve equation (13) for v, u1, . . . , uk and the constants
c1, . . . , ck. Since D is squarefree, it can be shown that v ∈ OK[x] for any
solution, and in fact v corresponds to the polynomial part of the integral of
rational functions. It is however more difficult to compute than the integral
of polynomials, so Trager [20] gave a change of variable that guarantees that
either v′ = 0 or f has no elementary integral. In order to describe it, we need
to define the analogue for algebraic functions of having a nontrivial polynomial
part: we say that α ∈ E is integral at infinity if there is a polynomial p =∑m

i=1 aiy
i ∈ K[x][y] such that p(x, α) = 0 and deg(am) ≥ deg(ai) for each i.

Note that a rational function A/D ∈ K(x) is integral at infinity if and only if
deg(A) ≤ deg(D) since it is a zero of Dy − A. When α ∈ E is not integral at
infinity, we say that it has a pole at infinity. Let

O∞ = {α ∈ E such that α is integral at infinity} .

A set (b1, . . . , bn) ∈ En is called normal at infinity if there are r1, . . . , rn ∈
K(x) such that every α ∈ O∞ can be written as α =

∑n
i=1 Biribi/C where

C,B1, . . . , Bn ∈ K[x] and deg(C) ≥ deg(Bi) for each i. We say that the dif-
ferential αdx is integral at infinity if αx1+1/r ∈ O∞ where r is the smallest
ramification index at infinity. Trager [20] described an algorithm that converts
an arbitrary integral basis w1, . . . , wn into one that is also normal at infinity, so
the first part of his integration algorithm is as follows:

1. Pick any basis b = (b1, . . . , bn) of E over K(x) that is composed of integral
elements.
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2. Pick an integer N ∈ Z that is not zero of the denominator of f with respect
to b, nor of the discriminant of E over K(x), and perform the change of
variable x = N + 1/z, dx = −dz/z2 on the integrand.

3. Compute an integral basis w for E over K(z) and make it normal at
infinity.

4. Perform the Hermite reduction on f using w, this yields g, h ∈ E such
that

∫
fdz = g +

∫
hdz and h has a squarefree denominator with respect

to w.

5. If hz2 has a pole at infinity, then
∫

fdz and
∫

hdz are not elementary
functions.

6. Otherwise,
∫

hdz is elementary if and only if there are constants c1, . . . , ck ∈
K and u1, . . . , uk ∈ E(c1, . . . , ck)∗ such that

h =
c1

u1

du1

dz
+ · · ·+ ck

uk

duk

dz
(14)

The condition that N is not a zero of the denominator of f with respect to
b implies that the fdz is integral at infinity after the change of variable, and
Trager proved that if hdz is not integral at infinity after the Hermite reduction,
then

∫
hdz and

∫
fdz are not elementary functions. The condition that N is

not a zero of the discriminant of E over K(x) implies that the ramification
indices at infinity are all equal to 1 after the change of variable, hence that hdz
is integral at infinity if and only if hz2 ∈ O∞. That second condition on N can
be disregarded, in which case we must replace hz2 in step 5 by hz1+1/r where r
is the smallest ramification index at infinity. Note that hz2 ∈ O∞ implies that
hz1+1/r ∈ O∞, but not conversely. Finally, we remark that for simple radical
extensions, the integral basis (11) is already normal at infinity.

Alternatively, we can use the lazy Hermite reduction in the above algorithm:
in step 3, we pick any basis made of integral elements, then perform the lazy
Hermite reduction in step 4. If h ∈ K(z) after the Hermite reduction, then we
can complete the integral without computing an integral basis. Otherwise, we
compute an integral basis and make it normal at infinity between steps 4 and
5. This lazy variant can compute

∫
fdx whenever it is an element of E without

computing an integral basis.

2.5 The logarithmic part

Following the previous sections, we are left with solving equation (14) for the
constants c1, . . . , ck and for u1, . . . , uk. We must make at this point the following
additional assumptions:

• we have an integral primitive element for E over K(z), i.e. y ∈ OK[z] such
that E = K(z)(y),
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• [E : K(z)] = [E : K(z)], i.e. the minimal polynomial for y over K[z] is
absolutely irreducible, and

• we have an integral basis w = (w1, . . . , wn) for E over K(z), and w is
normal at infinity.

A primitive element can be computed by considering linear combinations of the
generators of E over K(x) with random coefficients in K(x), and Trager [20]
describes an absolute factorization algorithm, so the above assumptions can be
ensured, although those steps can be computationally very expensive, except
in the case of simple radical extensions. Before describing the second part of
Trager’s integration algorithm, we need to define some concepts from the theory
of algebraic curves. Given a finite algebraic extension E = K(z)(y) of K(z),
a place P of E is a proper local subring of E containing K, and a divisor is
a formal sum

∑
nP P with finite support, where the nP ’s are integers and the

P ’s are places. Let P be a place, then its maximal ideal µP is principal, so let
p ∈ E be a generator of µP . The order at P is the function νP : E∗ → Z which
maps f ∈ E∗ to the largest k ∈ Z such that f ∈ pkP . Given f ∈ E∗, the divisor
of f is (f) =

∑
νP (f)P where the sum is taken over all the places. It has finite

support since νP (f) 6= 0 if and only if P is a pole or zero of f . Finally, we say
that a divisor δ =

∑
nP P is principal if δ = (f) for some f ∈ E∗. Note that

if δ is principal, then
∑

nP = 0, but the converse is not generally true, except
if E = K(z). Trager’s algorithm proceeds essentially by constructing candidate
divisors for the ui’s of (14):

1. Let
∑n

i=1 Aiwi be the numerator of h with respect to w, and D be its
(squarefree) denominator.

2. Write
∑n

i=1 Aiwi = G/H, where G ∈ K[z, y] and H ∈ K[z].

3. Let F ∈ K[z, y] be the (monic) minimum polynomial for y over K(z), t
be a new indeterminate and compute

R(t) = resultantz

(
ppt

(
resultanty

(
G− tH

dD

dz
, F

))
, D

)
∈ K[t] .

4. Let α1, . . . , αs ∈ K be the distinct nonzero roots of R, (q1, . . . , qk) be a
basis for the vector space that they generate over Q, write αi = ri1q1+· · ·+
rikqk for each i, where rij ∈ Q and let m > 0 be a common denominator
for all the rij ’s.

5. For 1 ≤ j ≤ k, let δj =
∑s

i=1 mrij

∑
l rlPl where rl is the ramification

index of Pl and Pl runs over all the places at which hdz has residue rlαi.

6. If there are nonzero integers n1, . . . , nk such that njδj is principal for each
j, then let

u = h− 1
m

k∑
j=1

qj

njuj

duj

dz
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where uj ∈ E(α1, . . . , αs)∗ is such that njδj = (uj). If u = 0, then∫
hdz =

∑k
j=1 qj log(uj)/(mnj), otherwise if either u 6= 0 or there is no

such integer nj for at least one j, then hdz has no elementary integral.

Note that this algorithm expresses the integral, when it is elementary, with the
smallest possible number of logarithms. Steps 3 to 6 requires computing in
the splitting field K0 of R over K, but it can be proven that, as in the case
of rational functions, K0 is the minimal algebraic extension of K necessary to
express the integral in the form (4). Trager [20] describes a representation of
divisors as fractional ideals and gives algorithms for the arithmetic of divisors
and for testing whether a given divisor is principal. In order to determine
whether there exists an integer N such that Nδ is principal, we need to reduce
the algebraic extension to one over a finite field Fpq for some “good” prime
p ∈ Z. Over Fpq , it is known that for every divisor δ =

∑
nP P such that∑

nP = 0, Mδ is principal for some integer 1 ≤ M ≤ (1 +
√

pq)2g, where g is
the genus of the curve [22], so we compute such an M by testing M = 1, 2, 3, . . .
until we find it. It can then be shown that for almost all primes p, if Mδ is not
principal in characteristic 0, then Nδ is not principal for any integer N 6= 0.
Since we can test whether the prime p is “good” by testing whether the image in
Fpq of the discriminant of the discriminant of the minimal polynomial for y over
K[z] is 0, this yields a complete algorithm. In the special case of hyperelliptic
extensions, i.e. simple radical extensions of degree 2, Bertrand [1] describes a
simpler representation of divisors for which the arithmetic and principality test
are more efficient than the general methods.

Example 4 Continuing example 3, we were left with the integrand
√

x8 + 1
x(x8 + 1)

=
w2

x(x8 + 1)
∈ E = Q(x)[y]/(y2 − x8 − 1)

where (w1, w2) = (1, y) is an integral basis normal at infinity, and the denomi-
nator D = x(x8 + 1) of the integrand is squarefree. Its numerator is w2 = y, so
the resultant of step 3 is

resultantx(ppt(resultanty(y − t(9x8 + 1), y2 − x8 − 1)), x(x8 + 1)) = ct16(t2 − 1)

where c is a large nonzero integer. Its nonzero roots are ±1, and the integrand
has residue 1 at the place P corresponding to the point (x, y) = (0, 1) and −1 at
the place Q corresponding to the point (x, y) = (0,−1), so the divisor δ1 of step
5 is δ1 = P −Q. It turns out that δ1, 2δ1 and 3δ1 are not principal, but that

4δ1 =
(

x4

1 + y

)
and

w2

x(x8 + 1)
− 1

4
(x4/(1 + y))′

x4/(1 + y)
= 0

which implies that ∫ √
x8 + 1

x(x8 + 1)
dx =

1
4

log
(

x4

1 +
√

x8 + 1

)
.
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Example 5 Consider ∫
xdx√
1− x3

.

The integrand is

f =
xy

1− x3
∈ E = Q(x)[y]/(y2 + x3 − 1)

where (w1, w2) = (1, y) is an integral basis normal at infinity, and the denomi-
nator D = 1− x3 of the integrand is squarefree. Its numerator is xw2 = xy, so
the resultant of step 3 is

resultantx(ppt(resultanty(xy + 3tx2, y2 + x3 − 1)), 1− x3) = 729t6

whose only root is 0. Since f 6= 0, we conclude from step 6 that
∫

fdx is not an
elementary function.

Example 6 ∫
dx

x
√

1− x3
.

The integrand is

f =
y

x− x4
∈ E = Q(x)[y]/(y2 + x3 − 1)

where (w1, w2) = (1, y) is an integral basis normal at infinity, and the denom-
inator D = x − x4 of the integrand is squarefree. Its numerator is w2 = y, so
the resultant of step 3 is

resultantx(ppt(resultanty(y + t(4x3 − 1), y2 + x3 − 1)), x− x4) = 729t6(t2 − 1) .

Its nonzero roots are ±1, and the integrand has residue 1 at the place P corre-
sponding to the point (x, y) = (0, 1) and −1 at the place Q corresponding to the
point (x, y) = (0,−1), so the divisor δ1 of step 5 is δ1 = P − Q. It turns out
that δ1 and 2δ1 are not principal, but that

3δ1 =
(

y − 1
y + 1

)
and

y

x− x4
− 1

3
((y − 1)/(y + 1))′

(y − 1)/(y + 1)
= 0

which implies that ∫
dx

x
√

1− x3
=

1
3

log

(√
1− x3 − 1√
1− x3 + 1

)
.

3 Elementary Functions

Let f be an arbitrary elementary function. In order to generalize the algorithms
of the previous sections, we need to build an algebraic model in which f behaves
in some sense like a rational or algebraic function. For that purpose, we need
to formally define differential fields and elementary functions.
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3.1 Differential algebra

A differential field (K,′ ) is a field K with a given map a → a′ from K into
K, satisfying (a + b)′ = a′ + b′ and (ab)′ = a′b + ab′. Such a map is called a
derivation on K. An element a ∈ K which satisfies a′ = 0 is called a constant,
and the set Const(K) = {a ∈ K such that a′ = 0} of all the constants of K is
a subfield of K.
A differential field (E,′ ) is a differential extension of (K,′ ) if K ⊆ E and the
derivation on E extends the one on K. In that case, an element t ∈ E is a
monomial over K if t is transcendental over K and t′ ∈ K[t], which implies that
both K[t] and K(t) are closed under ′. An element t ∈ E is elementary over K,
if either

• t′ = b′/b for some b ∈ K∗, in which case we say that t is a logarithm over
K, and write t = log(b), or

• t′ = b′t some b ∈ K∗, in which case we say that t is an exponential over
K, and write t = eb, or

• t is algebraic over K.

A differential extension (E,′ ) of (K,′ ) is elementary over K, if there exist
t1, . . . , tm in E such that E = K(t1, . . . , tm) and each ti is elementary over
K(t1, . . . , ti−1). We say that f ∈ K has an elementary integral over K if there
exists an elementary extension (F,′ ) of (K,′ ) and g ∈ F such that g′ = f . An
elementary function of the variable x is an element of an elementary extension
of the rational function field (C(x), d/dx), where C = Const(C(x)).
Elementary extensions are useful for modeling any function as a rational or
algebraic function of one main variable over the other terms present in the
function: given an elementary integrand f(x)dx, the integration algorithm first
constructs a field C containing all the constants appearing in f , then the ratio-
nal function field (C(x), d/dx), then an elementary tower E = C(x)(t1, . . . , tk)
containing f . Note that such a tower is not unique, and in addition, adjoining
a logarithm could in fact adjoin only a new constant, and an exponential could
in fact be algebraic, for example Q(x)(log(x), log(2x)) = Q(log(2))(x)(log(x))
and Q(x)(elog(x)/2) = Q(x)(

√
x). There are however algorithms that detect all

such occurences and modify the tower accordingly [16], so we can assume that
all the logarithms and exponentials appearing in E are monomials, and that
Const(E) = C. Let now k0 be the largest index such that tk0 is transcendental
over K = C(x)(t1, . . . , tk0−1) and t = tk0 . Then E is a finitely generated alge-
braic extension of K(t), and in the special case k0 = k, E = K(t). Thus, f ∈ E
can be seen as a univariate rational or algebraic function over K, the major
difference with the pure rational or algebraic cases being that K is not constant
with respect to the derivation. It turns out that the algorithms of the previous
sections can be generalized to such towers, new methods being required only for
the polynomial (or integral) part. We note that Liouville’s Theorem remains
valid when E is an arbitrary differential field, so the integration algorithms work
by attempting to solve equation (13) as previously.
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Example 7 The function (1) is the element f = (t− t−1)
√
−1/2 of E = K(t)

where K = Q(
√
−1)(x)(t1, t2) with

t1 =
√

x3 − x + 1, t2 = e2
√
−1(x3−t1), and t = e((1−t2)/(1+t2))−x

√
−1

which is transcendental over K. Alternatively, it can also be written as the
element f = 2θ/(1 + θ2) of F = K(θ) where K == Q(x)(θ1, θ2) with

θ1 =
√

x3 − x + 1, θ2 = tan(x3 − θ1), and θ = tan
(

x + θ2

2

)
which is a transcendental monomial over K. It turns out that both towers can
be used in order to integrate f .

The algorithms of the previous sections relied extensively on squarefree factor-
ization and on the concept of squarefree polynomials. The appropriate analogue
in monomial extensions is the notion of normal polynomials: let t be a mono-
mial over K, we say that p ∈ K[t] is normal (with respect to ′) if gcd(p, p′) = 1,
and that p is special if gcd(p, p′) = p,i.e. p | p′ in K[t]. For p ∈ K[t] squarefree,
let ps = gcd(p, p′) and pn = p/ps. Then, p = pspn while ps is special and pn is
normal. Therefore, squarefree factorization can be used to write any q ∈ K[t]
as a product q = qsqn, where gcd(qs, qn) = 1, qs is special and all the squarefree
factors of qn are normal. We call qs the special part of q and qn its normal part.

3.2 The Hermite reduction

The Hermite reductions we presented for rational and algebraic functions work
in exactly the same way algebraic extensions of monomial extensions of K,
as long as we apply them only to the normal part of the denominator of the
integrand. Thus, if D is the denominator of the integrand, we let S be the
special part of D, D1D

2
2 · · ·Dm

m be a squarefree factorization of the normal part
of D, V = Dm, U = D/V m and the rational and algebraic Hermite reductions
proceed normally, eventually yielding an integrand whose denominator has a
squarefree normal part.

Example 8 Consider ∫
x− tan(x)

tan(x)2
dx .

The integrand is

f =
x− t

t2
∈ K(t) where K = Q(x) and t′ = t2 + 1 .

Its denominator is D = t2, and gcd(t, t′) = 1 implying that t is normal, so
m = 2, V = t, U = D/t2 = 1, and the extended Euclidean algorithm yields

A

1−m
= t− x = −x(t2 + 1) + (xt + 1)t = −xUV ′ + (xt + 1)V

22



implying that ∫
x− tan(x)

tan(x)2
dx = − x

tan(x)
−
∫

xdx

and the remaining integrand has a squarefree denominator.

Example 9 Consider∫
log(x)2 + 2x log(x) + x2 + (x + 1)

√
x + log(x)

x log(x)2 + 2x2 log(x) + x3
dx .

The integrand is

f =
t2 + 2xt + x2 + (x + 1)y

xt2 + 2x2t + x3
∈ E = K(t)[y]/(y2 − x− t)

where K = Q(x) and t = log(x). The denominator of f with respect to the basis
w = (1, y) is D = xt2 + 2x2t + x3 whose squarefree factorization is x(t + x)2.
Both x and t + x are normal, so m = 2, V = t + x, U = D/V 2 = x, and the
solution (12) of (8) is

f1 =
t2 + 2xt + x2

x(−(t′ + 1))
= − t2 + 2xt + x2

x + 1
, f2 =

x + 1

x
(
(t + x) 1

2
t′+1
t+x − (t′ + 1)

) = −2 .

We have Q = 1, so 0V + 1Q = 1, A = 0, R = 1, RQf1 = f1 = −V 2/(x + 1)
and RQf2 = f2 = 0V − 2, so B = −2y and

h = f −
(

B

V

)′
=

1
x

implying that∫
log(x)2 + 2x log(x) + x2 + (x + 1)

√
x + log(x)

x log(x)2 + 2x2 log(x) + x3
dx = − 2√

x + log(x)
+
∫

dx

x

and the remaining integrand has a squarefree denominator.

3.3 The polynomial reduction

In the transcendental case E = K(t) and when t is a monomial satisfying
degt(t′) ≥ 2, then it is possible to reduce the degree of the polynomial part of the
integrand until it is smaller than degt(t′). In the case when t = tan(b) for some
b ∈ K, then it is possible either to prove that the integral is not elementary, or
to reduce the polynomial part of the integrand to be in K. Let f ∈ K(t) be our
integrand and write f = P + A/D where P,A, D ∈ K[t] and deg(A) < deg(D).
Write P =

∑e
i=0 pit

i and t′ =
∑d

i=0 cit
i where p0, . . . , pe, c0, . . . , cd ∈ K, d ≥ 2,

pe 6= 0 and cd 6= 0. It is easy to verify that if e ≥ d, then

P =
(

ae

(e− d + 1)cd
te−d+1

)′
+ P (15)
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where P ∈ K[t] is such that P = 0 or degt(P ) < e. Repeating the above
transformation we obtain Q,R ∈ K[t] such that R = 0 or degt(R) < d and
P = Q′ + R. Write then R =

∑d−1
i=0 rit

i where r0, . . . , rd−1 ∈ K. Again, it is
easy to verify that for any special S ∈ K[t] with degt(S) > 0, we have

R =
1

degt(S)
rd−1

cd

S′

S
+ R

where R ∈ K[t] is such that R = 0 or degt(R) < e− 1. Furthermore, it can be
proven [4] that if R + A/D has an elementary integral over K(t), then rd−1/cd

is a constant, which implies that∫
R =

1
degt(S)

rd−1

cd
log(S) +

∫ (
R +

A

D

)
so we are left with an integrand whose polynomial part has degree at most
degt(t′)− 2. In the case t = tan(b) for b ∈ K, then t′ = b′t2 + b′, so R ∈ K.

Example 10 Consider ∫
(1 + x tan(x) + tan(x)2)dx .

The integrand is

f = 1 + xt + t2 ∈ K(t) where K = Q(x) and t′ = t2 + 1 .

Using (15), we get P = f − t′ = f − (t2 + 1) = xt so∫
(1 + x tan(x) + tan(x)2)dx = tan(x) +

∫
x tan(x)dx

ans since x′ 6= 0, the above criterion implies that the remaining integral is not
an elementary function.

3.4 The residue criterion

Similarly to the Hermite reduction, the Rothstein–Trager and Lazard–Rioboo–
Trager algorithms are easy to generalize to the transcendental case E = K(t) for
arbitrary monomials t: let f ∈ K(t) be our integrand and write f = P +A/D+
B/S where P,A, D, B, S ∈ K[t], deg(A) < deg(D), S is special and, following
the Hermite reduction, D is normal. Let then z be a new indeterminate, κ :
K[z] → K[z] be given by κ

(∑
i aiz

i
)

=
∑

i a′iz
i,

R = resultantt(D,A− zD′) ∈ K[z]

be the Rothstein–Trager resultant, R = R1R
2
2 . . . Rk

k be its squarefree factoriza-
tion, Qi = gcdz(Ri, κ(Ri)) for each i, and

g =
k∑

i=1

∑
a|Qi(a)=0

a log(gcd t(D,A− aD′)) .
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Note that the the roots of each Qi must all be constants, and that the arguments
of the logarithms can be obtained directly from the subresultant PRS of D and
A− zD′ as in the rational function case. It can then be proven [4] that

• f − g′ is always “simpler” than f ,

• the splitting field of Q1 . . . Qk over K is the minimal algebraic extension
of K needed in order to express

∫
f in the form (4),

• if f has an elementary integral over K(t), then R | κ(R) in K[z] and the
denominator of f − g′ is special.

Thus, while in the pure rational function case the remaining integrand is a
polynomial, in this case the remaining integrand has a special denominator.
In that case we have additionally that if its integral is elementary, then (13)
has a solution such that v ∈ K(t) has a special denominator, and each ui ∈
K(c1, . . . , ck)[t] is special.

Example 11 Consider ∫
2 log(x)2 − log(x)− x2

log(x)3 − x2 log(x)
dx .

The integrand is

f =
2t2 − t− x2

t3 − x2t
∈ K(t) where K = Q(x) and t = log(x) .

Its denominator is D = t3 − x2t, which is normal, and the resultant is

R = resultantt

(
(t3 − x2t,

2x− 3z

x
t2 + (2xz − 1)t + x(z − x)

)
= 4x3(1− x2)

(
z3 − xz2 − 1

4
z +

x

4

)
which is squarefree in K[z]. We have

κ(R) = −x2(4(5x2 + 3)z3 + 8x(3x2 − 2)z2 + (5x2 − 3)z − 2x(3x2 − 2))

so

Q1 = gcd z(R, κR) = x2

(
z2 − 1

4

)
and

gcd t

(
t3 + x2t,

2x− 3a

x
t2 + (2xa− 1)t + x(a− x)

)
= t + 2ax

where a2 − 1/4 = 0, whence

g =
∑

a|a2−1/4=0

a log(t + 2ax) =
1
2

log(t + x)− 1
2

log(t− x) .
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Computing f − g′ we find∫
2 log(x)2 − log(x)− x2

log(x)3 − x2 log(x)
dx =

1
2

log
(

log(x) + x

log(x)− x

)
+
∫

dx

log(x)

and since degz(Q1) < degz(R), it follows that the remaining integral is not an
elementary function (it is in fact the logarithmic integral Li(x)).

In the most general case, when E = K(t)(y) is algebraic over K(t) and y
is integral over K[t], the criterion part of the above result remains valid: let
w = (w1, . . . , wn) be an integral basis for E over K(t) and write the integrand
f ∈ E as f =

∑n
i=1 Aiwi/D+

∑n
i=1 Biwi/S where S is special and, following the

Hermite reduction, D is normal. Write
∑n

i=1 Aiwi = G/H, where G ∈ K[t, y]
and H ∈ K[t], let F ∈ K[t, y] be the (monic) minimum polynomial for y over
K(t), z be a new indeterminate and compute

R(z) = resultantt(ppz(resultanty(G− tHD′, F )), D) ∈ K[t] . (16)

It can then be proven [2] that if f has an elementary integral over E, then
R | κ(R) in K[z].

Example 12 Consider ∫
log(1 + ex)(1/3)

1 + log(1 + ex)
dx . (17)

The integrand is

f = f =
y

t + 1
∈ E = K(t)[y]/(y3 − t)

where K = Q(x)(t1), t1 = ex and t = log(1+t1). Its denominator with respect to
the integral basis w = (1, y, y2) is D = t + 1, which is normal, and the resultant
is

R = resultantt(ppz(resultanty(y−zt1/(1+t1), y3−t)), t+1) = − t31
(1 + t1)3

z3−1 .

We have

κ(R) = − 3t31
(1 + t1)4

z3

which is coprime with R in K[z], implying that the integral (17) is not an ele-
mentary function.

3.5 The transcendental logarithmic case

Suppose now that t = log(b) for some b ∈ K∗, and that E = K(t). Then, every
special polynomial must be in K, so, following the residue criterion, we must
look for a solution v ∈ K[t], u1, . . . , uk ∈ K(c1, . . . , cn)∗ of (13). Furthermore,
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the integrand f is also in K[t], so write f =
∑d

i=0 fit
i where f0, . . . , fd ∈ K and

fd 6= 0. We must have degt(v) ≤ d + 1, so writing v =
∑d+1

i=0 vit
i, we get

∫
fdt

d + . . . f1t + f0 = vd+1t
d+1 + . . . + v1t + v0 +

k∑
i=1

ci log(ui) .

If d = 0, then the above is simply an integration problem for f0 ∈ K, which
can be solved recursively. Otherwise, differentiating both sides and equating
the coefficients of td, we get vd+1

′ = 0 and

fd = vd
′ + (d + 1)vd+1

b′

b
. (18)

Since fd ∈ K, we can recursively apply the integration algorithm to fd, either
proving that (18) has no solution, in which case f has no elementary integral,
or obtaining the constant vd+1, and vd up to an additive constant (in fact, we
apply recursively a specialized version of the integration algorithm to equations
of the form (18), see [4] for details). Write then vd = vd + cd where vd ∈ K is
known and cd ∈ Const(K) is undetermined. Equating the coefficients of td−1

yields

fd−1 − dvd
b′

b
= vd−1

′ + dcd
b′

b

which is an equation of the form (18), so we again recursively compute cd and
vd−1 up to an additive constant. We repeat this process until either one of
the recursive integrations fails, in which case f has no elementary integral, or
we reduce our integrand to an element of K, which is then integrated recur-
sively. The algorithm of this section can also be applied to real arc-tangent
extensions,i.e. K(t) where t is a monomial satisfying t′ = b′/(1 + b2) for some
b ∈ K.

3.6 The transcendental exponential case

Suppose now that t = eb for some b ∈ K, and that E = K(t). Then, every
nonzero special polynomial must be of the form atm for a ∈ K∗ and m ∈ N.
Since

(atm)′

atm
=

a′

a
+ m

t′

t
=

a′

a
+ mb′ ,

we must then look for a solution v ∈ K[t, t−1], u1, . . . , uk ∈ K(c1, . . . , cn)∗

of (13). Furthermore, the integrand f is also in K[t, t−1], so write f =
∑d

i=e fit
i

where fe, . . . , fd ∈ K and e, d ∈ Z. Since (atm)′ = (a′ + mb′)tm for any m ∈ Z,
we must have v = Mb +

∑d
i=e vit

i for some integer M , hence

∫ d∑
i=e

fit
i = Mb +

d∑
i=e

vit
i +

k∑
i=1

ci log(ui) .
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Differentiating both sides and equating the coefficients of each power of td, we
get

f0 = (v0 + Mb)′ +
k∑

i=1

ci
u′i
ui

,

which is simply an integration problem for f0 ∈ K, and

fi = v′i + ib′vi for e ≤ i ≤ d, i 6= 0 .

The above problem is called a Risch differential equation over K. Although
solving it seems more complicated than solving g′ = f , it is actually simpler
than an integration problem because we look for the solutions vi in K only
rather than in an extension of K. Bronstein [2, 3, 4] and Risch [12, 13, 14]
describe algorithms for solving this type of equation when K is an elementary
extension of the rational function field.

3.7 The transcendental tangent case

Suppose now that t = tan(b) for some b ∈ K,i.e. t′ = b′(1 + t2), that
√
−1 /∈ K

and that E = K(t). Then, every nonzero special polynomial must be of the
form a(t2 + 1)m for a ∈ K∗ and m ∈ N. Since

(a(t2 + 1)m)′

a(t2 + 1)m
=

a′

a
+ m

(t2 + 1)′

t2 + 1
=

a′

a
+ 2mb′t

we must look for v = V/(t2 + 1)m where V ∈ K[t], m1, . . . ,mk ∈ N, constants
c1, . . . , ck ∈ K and u1, . . . , uk ∈ K(c1, . . . , ck)∗ such that

f = v′ + 2b′t
k∑

i=1

cimi +
k∑

i=1

ci
u′i
ui

.

Furthermore, the integrand f ∈ K(t) following the residue criterion must be of
the form f = A/(t2 + 1)M where A ∈ K[t] and M ≥ 0. If M > 0, it can be
shown that m = M and that(

c′

d′

)
+
(

0 −2mb′

2mb′ 0

)(
c
d

)
=
(

a
b

)
(19)

where at+b and ct+d are the remainders modulo t2+1 of A and V respectively.
The above is a coupled differential system, which can be solved by methods
similar to the ones used for Risch differential equations [4]. If it has no solution,
then the integral is not elementary, otherwise we reduce the integrand to h ∈
K[t], at which point the polynomial reduction either proves that its integral is
not elementary, or reduce the integrand to an element of K, which is integrated
recursively.
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Example 13 Consider ∫
sin(x)

x
dx .

The integrand is

f =
2t/x

t2 + 1
∈ K(t) where K = Q(x) and t = tan

(x

2

)
.

Its denominator is D = t2 + 1, which is special, and the system (19) becomes(
c′

d′

)
+
(

0 −1
1 0

)(
c
d

)
=
(

2/x
0

)
which has no solution in Q(x), implying that the integral is not an elementary
function.

3.8 The algebraic logarithmic case

The transcendental logarithmic case method also generalizes to the case when
E = K(t)(y) is algebraic over K(t), t = log(b) for b ∈ K∗ and y is integral over
K[t]: following the residue criterion, we can assume that R | κ(R) where R is
given by (16), hence that all its roots in K are constants. The polynomial part
of the integrand is replaced by a family of at most [E : K(t)] Puiseux expansions
at infinity, each of the form

a−mθ−m + . . . + a−1θ
−1 +

∑
i≥0

aiθ
i (20)

where θr = t−1 for some positive integer r. Applying the integration algorithm
recursively to ar ∈ K, we can test whether there exist ρ ∈ Const(K) and v ∈ K
such that

ar = v′ + ρ
b′

b
.

If there are no such v and c for at least one of the series, then the integral
is not elementary, otherwise ρ is uniquely determined by ar, so let ρ1, . . . , ρq

where q ≤ [E : K(t)] be the distinct constants we obtain, α1, . . . , αs ∈ K be
the distinct nonzero roots of R, and (q1, . . . , qk) be a basis for the vector space
generated by the ρi’s and αi’s over Q. Write αi = ri1q1 + · · · + rikqk and
ρi = si1q1 + · · ·+sikqk for each i, where rij , sij ∈ Q and let m > 0 be a common
denominator for all the rij ’s and sij ’s. For 1 ≤ j ≤ k, let

δj =
s∑

i=1

mrij

∑
l

rlPl −
q∑

i=1

msij

∑
l

slQl

where rl is the ramification index of Pl, sl is the ramification index of Ql, Pl

runs over all the finite places at which hdz has residue rlαi and Ql runs over all
the infinite places at which ρ = ρi. As in the pure algebraic case, if there is a
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j for which Nδj is not principal for any nonzero integer N , then the integral is
not elementary, otherwise, let n1, . . . , nk be nonzero integers such that njδj is
principal for each j, and

h = f − 1
m

k∑
j=1

qj

nj

u′j
uj

where f is the integrand and uj ∈ E(α1, . . . , αs, ρ1, . . . , ρq)∗ is such that njδj =
(uj). If the integral of h is elementary, then (13) must have a solution with
v ∈ OK[x] and u1, . . . , uk ∈ K, so we must solve

h =
∑n

i=1 Aiwi

D
=

n∑
i=1

v′iwi +
n∑

i=1

viw
′
i +

k∑
i=1

ci
u′i
ui

(21)

for v1, . . . , vn ∈ K[t], constants c1, . . . , cn ∈ K and u1, . . . , uk ∈ K
∗

where
w = (w1, . . . , wn) is an integral basis for E over K(t).

If E is a simple radical extension of K(t), and we use the basis (11) and the
notation of that section, then w1 = 1 and

w′
i =

(
i− 1

n

H ′

H
−

D′
i−1

Di−1

)
wi for 1 ≤ i ≤ n . (22)

This implies that (21) becomes

A1

D
= v′1 +

k∑
i=1

ci
u′i
ui

(23)

which is simply an integration problem for A1/D ∈ K(t), and

Ai

D
= v′i +

(
i− 1

n

H ′

H
−

D′
i−1

Di−1

)
vi for 1 < i ≤ n (24)

which are Risch differential equations over K(t).

Example 14 Consider∫
(x2 + 2x + 1)

√
x + log(x) + (3x + 1) log(x) + 3x2 + x

(x log(x) + x2)
√

x + log(x) + x2 log(x) + x3
dx .

The integrand is

f =
((3x + 1)t− x3 + x2)y − (2x2 − x− 1)t− 2x3 + x2 + x

xt2 − (x3 − 2x2)t− x4 + x3
∈ E = K(t)[y]/(F )

where F = y2 − x− t, K = Q(x) and t = log(x). Its denominator with respect
to the integral basis w = (1, y) is D = xt2 − (x3 − 2x2)t − x4 + x3, which is
normal, and the resultant is

R = resultantt(ppz(resultanty(((3x + 1)t− x3 + x2)y
−(2x2 − x− 1)t− 2x3 + x2 + x− zD′, F )), D)

= x12(2x + 1)2(x + 1)2(x− 1)2z3(z − 2)

30



We have

κ(R) =
36x3 + 16x2 − 28x− 12
x(2x + 1)(x + 1)(x− 1)

R

so R | κ(R) in K[z]. Its only nonzero root is 2, and the integrand has residue
2 at the place P corresponding to the point (t, y) = (x2 − x,−x). There is only
one place Q at infinity of ramification index 2, and the coefficient of t−1 in the
Puiseux expansion of f at Q is

a2 = 1− 2x +
1
x

= (x− x2)′ +
x′

x

which implies that the corresponding ρ is 1. Therefore, the divisor for the logand
is δ = 2P − 2Q. It turns out that δ = (u) where u = (x + y)2 ∈ E∗, so the new
integrand is

h = f − u′

u
= f − 2

(x + y)′

x + y
=

(x + 1)y
xt + x2

.

We have y2 = t + x, which is squarefree, so (23) becomes

0 = v′1 +
k∑

i=1

ci
u′i
ui

whose solution is v1 = k = 0, and (24) becomes

x + 1
xt + x2

= v′2 +
x + 1

2xt + 2x2
v2

whose solution is v2 = 2, implying that h = 2y′, hence that∫
(x2 + x + 1)

√
x + log(x) + (3x + 1) log(x) + 3x2 + x

(x log(x) + x2)
√

x + log(x) + x2 log(x) + x3
dx =

2
√

x + log(x) + 2 log(x +
√

x + log(x)) .

In the general case when E is not a radical extension of K(t), (21) is
solved by bounding degt(vi) and comparing the Puiseux expansions at infin-
ity of

∑n
i=1 viwi with those of the form (20) of h, see [2, 12] for details.

3.9 The algebraic exponential case

The transcendental exponential case method also generalizes to the case when
E = K(t)(y) is algebraic over K(t), t = eb for b ∈ K and y is integral over K[t]:
following the residue criterion, we can assume that R | κ(R) where R is given
by (16), hence that all its roots in K are constants. The denominator of the
integrand must be of the form D = tmU where gcd(U, t) = 1, U is squarefree,
and m ≥ 0.

If m > 0, E is a simple radical extension of K(t), and we use the basis (11),
then it is possible to reduce the power of t appearing in D by a process similar
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to the Hermite reduction: writing the integrand f =
∑n

i=1 Aiwi/(tmU), we ask
whether we can compute b1, . . . , bn ∈ K and C1, . . . , Cn ∈ K[t] such that∫ ∑n

i=1 Aiwi

tmU
=
∑n

i=1 biwi

tm
+
∫ ∑n

i=1 Ciwi

tm−1U
.

Differentiating both sides and multiplying through by tm we get∑n
i=1 Aiwi

U
=

n∑
i=1

b′iwi +
n∑

i=1

biw
′
i −mb′

n∑
i=1

biwi +
t
∑n

i=1 Ciwi

U
.

Using (22) and equating the coefficients of wi on both sides, we get

Ai

U
= b′i + (ωi −mb′)bi +

tCi

U
for 1 ≤ i ≤ n (25)

where

ωi =
i− 1

n

H ′

H
−

D′
i−1

Di−1
∈ K(t) .

Since t′/t = b′ ∈ K, it follows that the denominator of ωi is not divisible by t
in K[t], hence, evaluating (25) at t = 0, we get

Ai(0)
U(0)

= b′i + (ωi(0)−mb′)bi for 1 ≤ i ≤ n (26)

which are Risch differential equations over K(t). If any of them has no solution
in K(t), then the integral is not elementary, otherwise we repeat this process
until the denominator of the integrand is normal. We then perform the change
of variable t = t−1, which is also exponential over K since t

′ = −b′t, and repeat
the above process in order to eliminate the power of t from the denominator of
the integrand. It can be shown that after this process, any solution of (13) must
have v ∈ K.

Example 15 Consider∫
3(x + ex)(1/3) + (2x2 + 3x)ex + 5x2

x(x + ex)(1/3)
dx .

The integrand is

f =
((2x2 + 3x)t + 5x2)y2 + 3t + 3x

xt + x2
∈ E = K(t)[y]/(y3 − t− x)

where K = Q(x) and t = ex. Its denominator with respect to the integral basis
w = (1, y, y2) is D = xt + x2, which is normal, and the resultant is

R = resultantt(ppz(resultanty(((2x2 + 3x)t + 5x2)y2 + 3t + 3x− zD′,

y3 − t− x)), D) = x8(1− x)3z3 .
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We have
κ(R) =

11x− 8
x(x− 1)

R

so R | κ(R) in K[z], its only root being 0. Since D is not divisible by t, let
t = t−1 and z = ty. We have t

′ = −t and z3 − t
2 − xt

3 = 0, so the integral
basis (11) is

w = (w1, w2, w3) =
(

1, z,
z2

t

)
.

Writing f in terms of that basis gives

f =
3xt

2 + 3t + (5x2t + 2x2 + 3x)w3

x2t
2 + xt

whose denominator D = t(x + x2t) is divisible by t. We have H = t
2(1 + xt),

so D0 = D1 = 1 and D2 = t, implying that

ω1 = 0, ω2 =
(1− 3x)t− 2

3xt + 3
, and ω3 =

(2− 3x)t− 1
3xt + 3

.

Therefore the equations (26) become

0 = b′1 + b1, 0 = b′2 +
1
3
b2, and 2x + 3 = b′3 +

2
3
b3

whose solutions are b1 = b2 = 0 and b3 = 3x, implying that the new integrand is

h = f −
(

3xw3

t

)′
=

3
x

hence that∫
3(x + ex)(1/3) + (2x2 + 3x)ex + 5x2

x(x + ex)(1/3)
dx = 3x(x + ex)(2/3) + 3

∫
dx

x
.

In the general case when E is not a radical extension of K(t), following the
Hermite reduction, any solution of (13) must have v =

∑n
i=1 viwi/tm where

v1, . . . , vm ∈ K[t]. We can compute v by bounding degt(vi) and comparing the
Puiseux expansions at t = 0 and at infinity of

∑n
i=1 viwi/tm with those of the

form (20) of the integrand, see [2, 12] for details.
Once we are reduced to solving (13) for v ∈ K, constants c1, . . . , ck ∈ K

and u1, . . . , uk ∈ E(c1, . . . , ck)∗, constants ρ1, . . . , ρs ∈ K can be determined at
all the places above t = 0 and at infinity in a manner similar to the algebraic
logarithmic case, at which point the algorithm proceeds by constructing the
divisors δj and the uj ’s as in that case. Again, the details are quite technical
and can be found in [2, 12, 13].

33



References

[1] L. Bertrand. Computing a hyperelliptic integral using arithmetic in the
jacobian of the curve. Applicable Algebra in Engineering, Communication
and Computing, 6:275–298, 1995.

[2] M. Bronstein. On the integration of elementary functions. Journal of
Symbolic Computation, 9(2):117–173, February 1990.

[3] M. Bronstein. The Risch differential equation on an algebraic curve. In
S. Watt, editor, Proceedings of ISSAC’91, pages 241–246. ACM Press, 1991.

[4] M. Bronstein. Symbolic Integration I – Transcendental Functions. Springer,
Heidelberg, 1997. 2nd Ed., 2004.

[5] M. Bronstein. The lazy Hermite reduction. Rapport de Recherche RR–
3562, INRIA, 1998.
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