
D-MODULES FOR MACAULAY 2

ANTON LEYKIN

D-modules for Macaulay 2 is a collection of the most recent algorithms that deal
with various computational aspects of the theory of D-modules. This paper pro-
vides a brief guide, which gives examples of using the main functions of this pack-
age, as well as an overview of the core algorithms for D-modules and their appli-
cations.

1 Introduction

The Macaulay 2 D-modules package is an implementation of the Weyl alge-
bra and algorithms related to it in the computer algebra system Macaulay 2.
Over the last decade there were many advances made in the computational
theory of D-modules. Several newest algorithmic methods used in the analysis
of hypergeometric differential equations are described in the recent book (11).
Also we worked with a paper by Oaku and Takayama (8) providing, in par-
ticular, a detailed description of the restriction algorithm. The algorithms for
computing localization, D-homomorphisms, and global b-functions of poly-
nomials with parameters come from (10), (13), and (5) respectively. As to
the applications that we describe here, we compute polynomial and rational
solutions according to (9), local cohomology via Čech complex comes from a
paper of Walther (14).

Macaulay 2, a noncommercial computer algebra system crafted by
Grayson and Stillman, became one of the favorite tools for specialists in alge-
braic analysis. You are welcome to join the crowd by downloading the current
distribution from the web (see (4)). D-modules package comes as a part of it,
for the most recent updates and online documentation see (6). If you would
like to learn more about Macaulay 2, read a recently published book (1),
which contains a set of very interesting examples of computations in algebraic
geometry including a section by Walther featuring D-modules package.

At the end of the introduction, let us mention that there are sev-
eral other systems that are capable of handling D-modules. First on the
list is Takayama’s system Kan (12), which is a specialized system for D-
computations. There is an implementation of Weyl algebra in Maple by
Chyzak (3). It is also implemented in Singular (2), although not included
in the main package.
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2 Making Weyl algebras

Throughout this paper k is a field of characteristic 0, Rn(k) = k[x1, ..., xn]
is the ring of polynomials in n variables and An(k) = k 〈x1, ..., xn, ∂1, ..., ∂n〉
is the corresponding Weyl algebra, i.e. an associative k-algebra generated by
x’s and ∂’s with the relations ∂ixi = xi∂i + 1 for all i.

In this paper we refer to M as to a D-module if it is a finitely generated
left module over a Weyl algebra D = An.

Weyl algebras are made in Macaulay 2 by adding the option WeylAlgebra
to a polynomial ring. For instance,

i1 : D = QQ[x_1,x_2,d_1,d_2,
WeylAlgebra=>{x_1=>d_1,x_2=>d_2}]

o1 = D
o1 : PolynomialRing

makes the Weyl algebra with the commutation rules dixi = xidi+1 for i = 1, 2.
Now we may do the usual things in Macaulay 2 such as forming ideals

and computing Gröbner bases:

i2 : I = ideal(x_1*d_1+2*x_2*d_2-5, d_1^2-d_2)
2

o2 = ideal (x d + 2x d - 5, d - d )
1 1 2 2 1 2

o2 : Ideal of D
i3 : gb I
o3 = {0} | d_1^2-d_2 x_1d_1+2x_2d_2-5 x_2d_1d_2+...
o3 : GroebnerBasis

Weyl algebra construct belongs to the kernel of the system, to load the
D-modules package, however, one has to type the following:

i4 : load "D-modules.m2"

3 Making D-modules

Construction of a D-module is similar to that of a module over a polynomial
ring. For instance, it may be presented as a cokernel of a matrix with entries
in a Weyl algebra:

i5 : A = matrix {{-x_1^3+x_2, 3*d_2*x_1^2+d_1, 0, 0},
{0, 0, -x_1^2+x_2, 2*d_2*x_1+d_1}};

2 4
o5 : Matrix D <--- D
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i6 : M = cokernel A;
i7 : isHolonomic M
o7 = true
i8 : makeCyclic A

2 2 2 2
o8 = HashTable{AnnG => ideal (x d + 5x x d d + 6x d + ...

1 1 1 2 1 2 2 2
Generator => | x_2d_1 |

| 1 |
o8 : HashTable

Function isHolonomic checks whether a D-module is holonomic, more
on this in the next section. Every holonomic D-module may be presented as
a cyclic one: function makeCyclic finds such a presentation.

One can find the module D/I generated by a polynomial (rational func-
tion): here I is the annihilator ideal of the polynomial (rational function).

i9 : f = x_1^2-x_2^3;
i10 : PolyAnn f

3 2 3 2 2
o10 = ideal (- x d + x d - 2x , - x d + x d + 3x , ...

2 1 1 1 1 2 2 1 2 2
o10 : Ideal of D
i11 : g = 2*x_1*x_2;
i12 : RatAnn(g,f)

2 1 3 2 2 2
o12 = ideal (x d + -*x d + -, x d - x d - 6x x d + ...

1 1 3 2 2 3 2 2 1 2 1 2 1
o12 : Ideal of D

Also there are two functions gkz and AppellF1 that cook up ideals repre-
senting GKZ (Gelfand-Kapranov-Zelevinsky) systems and Appell F1 system
respectively, which are discussed in (11).

4 Basic invariants

Let us now compute some basic invariants associated to a D-module D/I.
First, we compute the dimension of I from the line i2 of the previous section
and verify that I is indeed holonomic.

i13 : Ddim I
o13 = 2

Next, we compute its characteristic ideal, which is the initial ideal with
respect to the differential order filtration.
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i14 : charIdeal I
2

o14 = ideal (d , x d + 2x d )
1 1 1 2 2

o14 : Ideal of QQ [x , x , d , d ]
1 2 1 2

Note that the initial ideal lives in a polynomial ring. Now, we may com-
pute its singular locus, which is the projection of the characteristic variety
minus the zero section on the cotangent bundle onto the base space.

i15 : singLocus I
o15 = ideal x

2
o15 : Ideal of D

Finally, we compute the holonomic rank of the system, which tells us
what the dimension of the space of solutions of the system is.

i16 : Drank I
o16 = 2

5 Main tools

In (8), Oaku and Takayama develop fundamental algorithms for functors in
the category of D-modules. There are four main tools which are heavily
utilized – b-functions, localization, resolutions, and restriction. Using them,
one gets algorithms for Tor, Ext, local cohomology, deRham cohomology, and
other functors.

5.1 b-functions

Given a weight vector w = (−u, u) corresponding to a Gröbner deformation,
we are able compute the b-function of D/I in the direction u as follows:

i17 : u = {1,3};
i18 : bFunction(I, u)
o18 = $s - 5
o18 : QQ [$s]

These types of b-functions with respect to the appropriate weight vec-
tors are also used in Oaku’s algorithm to compute global b-functions, a.k.a.
Bernstein-Sato polynomials.
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i19 : f = x_1^2+x_2^2;
i20 : globalBFunction f

2
o20 = $s + 2$s + 1
o20 : QQ [$s]

The function paramBpoly computes the list of possible global b-functions
of a polymonial with parametric coefficients together with the corresponding
conditions on the parameters.

i2 : D = QQ[a,b,c][x,y,dx,dy,WeylAlgebra=>{x=>dx,y=>dy}];
i3 : bList = paramBpoly(a*x^2+b*x*y+c*y^2,"quadratic");
i4 : bList/factorBFunction

2 1
o4 = {($s + 1) , ($s + -)($s + 1)}

2
o4 : List

Here we also use factorBFunction to factor the polynomials in the out-
put. Factoring a b-function is a simple business due to the fact that the
roots of a b-function are rational: this is why a separate function for this is
provided.

If we consider a specification of parameters as a point of Proj Q[a, b, c]
then it is proved in (5) the set corresponding to a global b-function in our list
is constructible. The file named quadratic.tex, which is generated by this
script, contains:

• b(s) = (s + 1)2 for V (0) \ V (b2 − 4 ∗ a ∗ c)

• b(s) = (s + 1) ∗ (s + 1/2) for V (b2 − 4 ∗ a ∗ c)

5.2 Localization

There is a function that computes the localization of a D-module by inverting
a polynomial. We show how to compute Q[x, y, (x2 − y3)−1]:

i2 : D = QQ[x,y,dx,dy, WeylAlgebra=>{x=>dx,y=>dy}];
i3 : M = cokernel matrix{{dx,dy}};
i4 : f = x^2-y^3;
i5 : Dlocalize(M, f)
o5 = cokernel | xdx+2/3ydy+4 y2dx+2/3xdy y3dy-x2dy+6y2 |

1
o5 : D-module, quotient of D
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When calling Dlocalize, several variants of localization algorithm could
be specified by adding a strategy option Dlocalize(M,f,Strategy=>OTW) to
apply the algorithm from (10), or Dlocalize(M,f,Strategy=>Oaku) which is
good for f -saturated modules and appears in (14). The latter usually works
faster than the former.

5.3 Resolutions

To compute resolutions for D-modules, use the usual Macaulay 2 command
res:

i6 : I = gkz(matrix{{1,1,1},{0,1,3}}, {2,3})
3 2

o6 = ideal (D - D D , x D + x D + x D - 2, x D + ...
2 1 3 1 1 2 2 3 3 2 2

o6 : Ideal of QQ [x , x , x , D , D , D , WeylAlgebra => ...
1 2 3 1 2 3

i7 : D = ring I;
i8 : res I

1 3 11 9
o8 = D <-- D <-- D <-- D <-- 0

0 1 2 3 4
o8 : ChainComplex

To find a resolution by Schreyer method, we use the special command
Dres:

i9 : Dres I
1 8 16 12 3

o9 = D <-- D <-- D <-- D <-- D <-- 0
0 1 2 3 4 5

o9 : ChainComplex

Finally, we may compute V -strict resolutions, which are resolutions that
respect a weight vector w = (u,−u) associated to a Gröbner deformation.
These resolutions are compatible with b-functions and thus become especially
useful.

i10 : w = {1,3,5,-1,-3,-5};
i11 : Dres(I, w, Strategy => Vhomogenize)

1 5 8 5 1
o11 = D <-- D <-- D <-- D <-- D <-- 0

0 1 2 3 4 5
o11 : ChainComplex
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5.4 Restriction

Armed with b-functions and V -strict resolutions, we get an algorithm to com-
pute the restriction functors, which are the Tor groups of a left D-module with
the right D-module D/{x1, . . . , xd} ·D. The following computes the derived
restriction to the origin.

i12 : w = {1,3,5};
i13 : Drestrict(I, w, Strategy => Vhomogenize)

1
o13 = HashTable{0 => QQ }

2
1 => QQ

1
2 => QQ
3 => 0

o13 : HashTable

By changing the weight vector, we may compute derived restriction to a sub-
space such as {x1 = 0}.

i14 : w = {1,0,0};
i15 : Drestrict(I, w, Strategy => Vhomogenize)
o15 = HashTable{0 => cokernel | x_3D_3-1/2 0 ...

| 0 x_3D_3-1 ...
1 => 0

o15 : HashTable

6 Applications

6.1 Solving holonomic systems

Polynomial solutions of I can be computed by duality or by Gröbner defor-
mations.

i16 : PolySols I
o16 = {x x }

1 3
o16 : List

More generally, the vector space HomD(D
I , N) corresponds to the N -

valued solutions of I.

i17 : D = QQ[z,Dz, WeylAlgebra=>{z=>Dz}];
i18 : M = cokernel matrix{{(Dz-1)^2}};
i19 : N = cokernel matrix{{Dz*(Dz-1)}};
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i20 : DHom(M,N)
o20 = {| zDz-2Dz |, | Dz |}
o20 : List
i21 : DHom(N,M)
o21 = {| -zDz+z-2Dz+3 |, | -Dz+1 |}
o21 : List

6.2 Local cohomology

One of the first algorithmic applications of D-modules to algebraic geometry
was computing local cohomology. Let I be an ideal of Rn = k[x1, ..., xn]
and let M be an Rn-module, then the i-th local cohomology group Hi

I(M) is
defined as the i-th derived functor of the functor

ΓY (M) = lim
→

HomRn
(Rn/Im; M),

where the inductive limit is taken as m tends to infinity. We may generalize
the definition by letting M be a D-module. D-structure proves to be useful,
since whenever M is holonomic, so is Hi

I(M) for every i. Hence, we can pass
from viewing local cohomology groups as generally infinite Rn-modules to
computing them as holonomic D-modules, which have finite description.

There are two algorithms available in the D-modules package: one due to
Oaku and Takayama (uses restriction), another due to Walther (utilizes the
Čech complex).

i2 : D = QQ[x_1..x_6, dx_1..dx_6,
WeylAlgebra => toList(1..6)/(i->x_i=>dx_i)];

i3 : I = minors(2, matrix{{x_1, x_2, x_3}, {x_4, x_5, x_6}})
o3 = ideal (- x x + x x , - x x + x x , - x x + x x )

2 4 1 5 3 4 1 6 3 5 2 6
o3 : Ideal of D
i4 : H = localCohom ({0,1,3}, I,

D^1/ideal{dx_1,dx_2,dx_3,dx_4,dx_5,dx_6})
o4 = HashTable{0 => subquotient ({0} | dx_6 dx_5 dx_4 ...

1 => subquotient ({0} | 0 dx_5 0 ...
{0} | 0 0 dx_4 ...
{0} | -dx_6 0 0 ...

3 => cokernel {0} | x_2^2x_4^2-2x_1x_2x_...
o4 : HashTable
i5 : pruneLocalCohom H
o5 = HashTable{0 => 0 ...
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1 => 0
3 => {0} | x_4dx_4+x_5dx_5+x_6dx_6+6 ...

o5 : HashTable

In practice Walther’s approach (option Strategy=>Walther) shows to be
faster than the Oaku-Takayama method (option Strategy=>OaTa).

6.3 DeRham cohomology

Another exciting application of D-modules is for computing the deRham co-
homology groups. Using the integration and localization functors, Oaku and
Takayama showed how to compute these groups for the complement of an
affine complex hypersurface. In (15) Walther generalized this algorithm to
complements of affine complex varieties, and also showed how to compute the
cup product structures.

We have implemented an algorithm for the hypersurface case:

i6 : R = QQ[y,z];
i7 : f = y^2-z^3;
i8 : deRham f

1
o8 = HashTable{0 => QQ }

1
1 => QQ
2 => 0

o8 : HashTable

7 Example: rank jumps in A-hypergeometric systems

In this section we shall give a practical example of employing the D-modules
package. This example is borrowed from the work of Matusevich (7).

For an integer d × n matrix A = (aij) with the first row entries equal
to 1 and a vector β ∈ Cd we define the GKZ(Gelfand-Karpanov-Zelevinsky)
A-hypergeometric system with parameter β to be the D-ideal HA(β) generated
by

∂u − ∂v, where u, v ∈ Nn such that A · u = A · v, (1)
n∑

j=1

aijxj∂j − βi, i = 1, ..., d. (2)

The commutative ideal of C[∂1, ..., ∂n] generated by operators (1) is denoted
by IA and referred to as underlying toric ideal.
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It is a fact that if IA is Cohen-Macaulay then the D-rank of HA(β) is
equal to vol(A), the normalized volume of the convex hull of A viewed as an
n-point configuration in Zd.

However, if IA is non-Cohen-Macaulay, it is possible that rank(HA(β)) >
vol(A). For codimension 2 case it was proved that the exceptional set of
parameters β for which the inequality holds is a nonempty constructible set.

Example. Using Macaulay 2, for

A =




1 1 1 1 1
1 0 −1 0 3
0 1 −2 0 3


 , β =




3
3
2




we are going to show that β is an exceptional parameter for A.

i2 : A = matrix{{1,1,1,1,1},
{1,0,-1,0,3},
{0,1,-2,0,3}};

3 5
o2 : Matrix ZZ <--- ZZ
i3 : b = {3,3,2};
i4 : H = gkz(A,b)

2 3 2
o4 = ideal (D D - D D D , D D - D D D , ...

1 2 3 4 5 1 4 2 3 5
o4 : Ideal of QQ [x , x , x , x , x , D , ...

1 2 3 4 5 1
i5 : time Drank H

-- used 89.75 seconds
o6 = 10

Here we used function gkz to construct the GKZ A-hypergeometric sys-
tem with parameter β, and then computed the D-rank of the resulting D-
ideal. (Operator time put in front of any Macaulay 2 command prints out
the computation time.)

The rank is 10, however, an easy computation shows that the normalized
volume of A is only 9. Thus, we conclude that the system experiences a rank
jump of 1 for the parameter β.
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