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(iii) Barnes integral representation. vl
CHAPTER L

By u51ng these expre331ons, the hypergeometrlc function has been

generallzed to many new fuuctlons In 1880 Appell 1ntroduced four ?: The Hypergeometrlc-Functiqn: F(x ’ﬂ’ ¥ %)

functlons of two varlables as generallzatlon of the hypergeometrlc
1. The hypergeometric series and hypergeometrlc functlon _We start

functlon. Appell called these functlons _the hypergeometrlc func-
w1th the power serles
tions of two varlables. They satlsfy‘systems of partlal dlfferen—

2 (a, w(f, W)
Z (Xa m)(l: m) x

tial equatlons. The functlons and the systems of dlfferentlal i, (1.1)
: C i ’ ' m=0

equatlons are very 81mllar to the quCtlon F«, B> x,x) and 1ts “which is called the hypergeométric SEries; where o s f and ¥

different1a1 uatlon. ) . ' o
eq ' . are complex parameters and the notation (a, k) . denotes the factorial

The systems of dlfferentlal equatlons satxsf1ed by the hyper- |
i function:

' eometrlc functlons of two var1ab1es are essentially systems of : '
& € v 5y (a, k) = a(atl) ---(atk-1) for k=1,2, -+ ,

completely 1ntegrab1e total dlfferentlal equations. . Recently the o o

: (@, 0) =1 for a#0; |
foundatlon of the theo of anal tlc functlons of several couplex , o : ' . h
IY v - in particular, (1, k) = k!. Suppose that Y#0, -1, -2, ...
varlables has been completed Such a theory should be utilized to : « A T . ‘ ‘ :
Then series (1.1) is always meaﬁingful

establish a eneral theo of total dlff renti 1 equations as well '
g £y erential eq Remark 1. Series (1 1) is symmetrlc with respect to o and f .

'as art1a1 dlff T t1 1 ti th 1 domain. 4s a :
: p erentia equa tons in < cemp £ fopain. . as - Remark 2. 'If one of o and P is equal to zero or a negat1ve

*matter of fact, such a: new study of total dlfferentlal equatxons
integer, then series (1.1) is reduced to a polynomlal

in the complex domaln has Just begun. It seems to me that we are N
' Remark 3. Since

, . ;r | e, k). = ,-ﬂiﬂ‘l ‘for a #0,-1,:2, -
period from Rlemann to Fuchs, ' L B - re)

passing through the stage qulte s1m11ar to that tran31t10nal

"series (1.1) can be written as-

L) & LemP(fm) o
PEIT(R) 2o TGm) (T

if «, P #0, -1, -2, ‘”f». N
The ratio of the m-th coefficient to the (m-1)-th coefficient

of (1 1) is




(2+m-1) (B +m-1)
(¥+m-1)m

and we have ‘ : .

(o<+m -1) (B+m-1)
o e = L

m-»»o

Thus we ‘obtain the followmg theorem

THEOREM 1. 1 The radlus of convergence of the serles (1 1) 15

one if nelther o nor

p is equal to 0, -1 ~2, "

DEFINITION 1.1: The functlon deflned by (L.1) and its analytic

continuatlon is called the hypergeometrlc functlon and it is denoted

bY F(ot {3 Y,X)

In general, the functlon F(at /3 X, x) is an 1nf1n1te1y many

valued functlon w:.th s:mgularltles at x = 0, 1 ~and @ only.

Therefore the analytlc continuation of (1. 1) lnto the domain

- {1, oo) determmes a branch of F(«, Bs ¥ x) ‘which is holomor-

Aphic there. However, other branches of F have,‘J.n general

branch-points at x = 0 In this sectlon and thereafter we keep

t the notatlon F(o(, [3 3', x) to denote the branch def:x.ned dlrectly .

by serles (1 1) unless otherw:.se stated

A ser:.es of the form

(1.2 )‘ Geom)

Z(l) a _(x 1)

m=0

x-1
Z( He
- m-O : m ‘
- is called a Newton series or a factorial series of the second kind.:
It is known that if (1.2) converges at a point x = x, and if X,
is not a positive integer, then

(a)- 'the series (1.2) converges for ‘Re X > Re Xg»

/ . !

"x#o -1,

: (b) . the series (1.2) converges uniformly for Re x >DRe x -FS

0

- and for Iarg(x -xb)l < ’-ZE-S » where §  is an arbitfary positive
]
constant, . / g
- x
L , 0
xo"‘S"///’ g :
|~ i
g b
L~ Lo o
P S 1
[ — .

(c) the seﬁes (1..2') tepresents a functionholomcrphic in. Re x » Re x0

The serles (1 1) can be cons1dered as a Newton serles with respect

to 1 o and 1 p In fact (1 1) is rewritten as
£ m_ (gwa oy e e
‘mz__(,)c = Ty a.m (1- o(-l)(l ot -2) (1- & -m)
and
&y (e | i teg.
tﬁ(-l)mm(l-p‘l)a-ﬁ-n (1'(}. m) .

Since (1.1) is convergent for any o( and 6 provided [x| <1 and

2 ey the functlon F 1s holomorphlc with respect to

3 and @ for |¢l<w and |P|<‘°-

A series of the form

, o ‘m! a ‘
i (1.3)- 2__:6 x()d‘l)"'(xhn)

S is called a factorial serieg or a factor1a1 serles of the first kind.

R

1t is known that if (1 3) converges at xz = x4 then

' (a') (1.3) converges for Re x> Re X possibly except at x = 0, -1,

2, e




(b') (1.3) converges uniformly for Re x > Re \x0+§ R !x-k'ul > 5',
k=0, -1, -2, ++- and for larg(x~x0)l < T‘ZTE-S . lx-kvl,)g .
k

=0, -1, -2 °", where § is an arbltrary positive constant,
(c') (1. 3) represents a function meromorphlc in the domaln Re x
>Re X poss1b1y mth simple poles at x =0, -1, -2, et

v-The series (1.1):5 omitted by the constant term can be considered

. as a factorial serjes: in ¥ . Therefore the function F is a

functlon meromorph:.c w1.th respect to Y possibly with simple poles

at X = 0 —1 -2 **+ . Thus we obtaln the follom.ng theorem.
T THEOREM 1.2; The functlon F(o( ’ {; Y, x) 15 a functlon which

is holomorphic 1n ﬁ '( and X, 1n the domaln _

TCiK € X (€= {0 -1, })xD ® = {x 1x|<1})

‘and whose poles are at ¥y=0, -1, -2, . and are all simple.

Remark 4 As for the convergence of (1.1) on |x| =1, it is

known that (1. 1) is

absolutely convergent if Re(Y-&- 6) > o,

condltlonally convergent except at X = 1 ; 1f OZRe(X o( f{) > -1

and
divergent if -1

ZRe(X-o(-‘%) .

Exercise 1. Prove Theorem 1. 2 d1rect1y wu:hout using the

prOpertles of Newton series and factor1a1 series.

Hlnt ' Consider the serles F(o( ﬁ 3’, x)/ f‘(y) and us1ng
the formulas -

k00 (k-1) 'k?

D atk) ~ a
Fara ~ ¢ &™),

show that

o

{ M(«+m) C(B+m) x>
I‘(«)F((a>r(ar+m)r"(1+m) ’

w=0,1, 2, }
is bounded.

References: Milne-Thompson, The calculus of finite differences,
271-321,

and .

Norlund, Legons sur les séries d'interpolation, 1926, 99-227.
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2‘. Contiguous functions. In this section, we shall start with " s
. : % -1 m
the following theorem. _ (2’4> C F(e-1, p’ ¥, x) m§=:0 «+m-1 Amx °
THEOREM 2.1: F and its derivative satisfy the following From (2.1) and (2.2)"8 ‘éérive
relations 0 _—
R xF' («, 6: v X)'*'“F(Of,ﬁ,)’, x) ”Z. (ﬂI"O()AmX .
KE' (%, By Yo X)+ &F (, f, ¥, X) = «F(RHL, B0, %) , o | L e
ix(l-x)F "(s 5 ¥%) + (Y -%-f)F (o, §,¥,%) = (¥ =a)F (-1 B X,X) | This formula together with (2.3) yields the first relation of the
VAT 6 fo3,) + Y (F--PF (o fova) = (o) (-DF x, pr+10), . theorem. o R N
XF* (“ﬂ Y, x)+ (F-1)F («, p B': x) = (8 1)F(°“3 ¥- 1,X) ' 4 Now let us prove the second relation. From (2.2) we derive
: ' w1
Remark 1. We can derive two formulas from the first and the x(l-x)F (o, {3 Y, x ) = (1-x) f- “‘A x = Z. A x -ﬁ%om

second by interchanging « and f - (See Remark 1 in §1.) o
: : . : ‘m

=LMx -Z_.(m-l)A X -

Proof:; | Let us put m=0 . m=l

(kG (B, m)
= W w

to write F- as | | o | - (e (Bonel) | (Ftwela “1,2,y
| o fa1 Cra ) (L))~ Gra-D) (o o @ =120

By t{h_evdefinition we have .

A
m

(2.1) F(X, x) = A x : S
S ' B Y %) n%——()' - and we make the conventlon A .1 =0 Then
Cléérly we have : em
. " Z (m-l)A .t x 2__ (m-l)A 1=
' ' m=1 m—-O
2.2) . XF(O((3 )’,x)—Z_,mAx . R
- : m=0 : and we get
Next from the definition of the hypergeometric series we derive i . R TR (¥+m i')( _
: N : - ' : T o | ~ - ™ 1)m) M
. ot () N B . Cx(x)F' (o, B, ¥, X) n%:o( ST ) 8
= m ) m = Ktm o M) St e
F+1, 8, Y,x) = . x = x . 3 _ . S L -
6:7 612;,6 G e * 7 227 G m . © ' On the other hand,

Hence . m m+1 ‘.
. o0 v i (¥ -~ {BX)F’(M F Y,x) = Z‘_ (y o()A ’ZﬁAmx

m=0
‘ -Z(x o()Ax ZJ/;A_"x"“

In a similar manner, we obtain
. m"O L m=0" 7.




L
;

g .

&

‘18

3

§

§ il
s i8

- 10 -~

Therefore

B(¥+m-1)m m
(ettn-1) (f+u-1) A -

- poF(, 6,7, 3) = 5. (y-a-
w=0

Hence -

R S

T s B 1 )+ (0 )R, %)

e e, (@l g (¥+m-1)m
2 [ e e )

i,:s!-x“d -1) on

= n%—:o ,)H.m-]_ Amx ey

This result together w1th (2 4) ylelds the second relat].on of the
theorem. We can prove the other relata.ons in the same way.
Remark 2. The identities in Theorem 2.1 can be written a's“
follows:
-«+1 d «”” ey o :
dx F(ﬂ(’ p’x, x)) = O(F(0(+l,p,7,x) o;:
Y+ot+1 - +1 ¥- o( -Y+oi+

Q- )" g ( =) T* P;-‘(o(,p,r,x))
= (x «)F(oz 1, p,r,x) »

o-g+1 d_
m x)’ i ((1 x) ”“""‘F( B x,x>)

.= (Y K)(r p)F(doﬂ ¥+1 X),

x--rfz, 4 (

o F(o(,p x,x>) = Q- DF G, p r-1,x) .

" Om the rlght-hand members of the ‘formulas in Theorem 2.1 there

'-appear functions obta:.ned from F(o( B ¥, x) by increasing

or decreasing one of the parameters by unity.

-11 -

DEFINITION 2.1: The six Eunctlons obtained from F(o( B> ¥sx)

RYSE

Mby increasing or decreasmg one of the parameters by um.ty
F+1,8,¥,x), F(a- -1, 8,7, X), F(oc,13+1 x,x), F(ot B-1,4,%),
F(o(,g,x+l, x) and F(o(,ﬁ, Y- 1, X) are celled oontlgnous to
Flay §,0,%). R )

" THEOREM 2.2: The functlon F(a(, p x x) and its t:wo cont:.gu-

. ous functions are comnected by a homogeneous 11.near relatlon whose

coefficients are polynomals in o , B, x and x. For example,

(2.5) a(l-x)F(«+1, p ¥,x)+ (Y- 2°<+(°( ﬁ)X)F(cx g X,X)
S RS =0 |

(2.6) (¥ -®)(y -BIXF(k, B y+L, ) |

i + Y (F-1-Q2F <= =1))F (&, B,¥ , x)

| 5 | : - ¥ (¥-1)A-x)F(«, 8, ¥-1,%) =0 .

‘In order to prove these formulas, elimlnate F'(a, B> x x)

‘from .the correspond:.ng two identltles of Theorem 2. 1 For example,

:I.n order to derlve (2.5), elimlnate F' from the first two 1den-

- ‘tlties The number of such relatlons between F and 1ts contlguous
: funct:.ons is (g) =15, On the other ‘hand, (2 5) and (2.6) are .
1 _ .’ regarded as linear difference equetions with respect to « and
o Y 'reSpectiVely;. | | o
' COROLLARY: F(o, g, Y, X), oonsidered as a fonotion of one
‘+of ‘three parameters ' o , B> ¥ 'satisfies a linear difference

W equation of the second order whose coefficlents are polynomials.




Notice that the coefficlents 1n (2 5) are linear in «
A dlfference equatlon of a form |
(a z-i-bo)w(z+1)+ (a z-l-bl)w(z)+ (a z+b! )w(z -1) =
or in a more usual form
(2. 7) (a z+b0)w(z+2)+ (a z+b )w(z-l-1)+ (a z+b )w(z)
is called a hypergeometrlc dlfference equatlon. As to the hyper-
B geometr:.c difference equatlon, see

o Batchelder' Introductlon to the theory of 11near dlfference

| N equations |

A functlon F(o(+p ﬁ+q,7{+r,x), where p,. q, r are 1ntegers,
’.LS often called assoclated to F(«, B> ¥>x). It is known that -
every function as,s:‘ocr‘atec}i to. ‘_E_f;(._o(; (IR x) can bevvrexpressible as
a ifnear combinetion' of F and N Fr -whose coeffic'ients are rationel

functlons in ol ’ﬁ y and x. Three functions associated to

F(a( ﬁ Y, x)

are polynomlals in

are connected by a 1inear relation whose coefficients

xis’x andx

Exerclse 1 Suppose m (2 7) that L& % 0 and a:])‘. a0a2 #0

VThen show that dlfference equatlon (2 7) admlts a solutlon
w(z) F(z+d p 2 X) >

where c, d p, and X "are constants. (It is not necessary to.

assume that 1z} ¢1.).

Hint Make‘ ‘t.ransformations of forms z = E+d, w(z) = veczu(‘z).

-is _given by

_;(31) F(ocgr,x) m‘ﬁ‘%ﬁf

where the 1ntegratx.on is taken along the segment 0 g u é 1

are determined by -

- 13 -

There are many functions which

. Euler integral representation.

en‘ be defined by definite integrals. F_or;_ exa.xn_!ple,' the [ -function

& ) 1
r) ;=£ e ldn_ .
0 .

- The hypergeometric function ‘fs also defined by a definite integral.

THEOREM 3.1: If ixl<1l and Re¥ > Reg > 0, then we have

(1-u) r-¢- 1(1-1;11)
’ d ‘

. 1 ¥~ 8 -1 z
branches of many-valued functions 6 el u) and (1 xu)

Jazg(l-xw)| € |

argu = 0, arg(l-u) =0 and
‘respectfvely o -
Proof-‘v For a flxed x such that lx'i <1, we have (xul'élxll

2 | R B
<1 for 0 <1, and hence the functlon (l-xu) is expandetl

- into the series

- (o) (k- 1) "'(- —m+1) ( xu) i;."'(:« .ml‘ 'Jﬁ}‘:m |
mz—.() - K ‘.m=0'(1sm).~-

(i—xu) -

u s 1. .T‘nerefore we have

which converges unlformly in u for 0%

I =.( B- (1-u)r 8- 1(1-—xu) du -J ﬁ 1(l u)x 5 Z a. )umxmdu

“ gl 3 .L;._l(ol( o xmup"‘“’la-u)"ﬁ‘ld .
0 m=0 *7°

* Interchanging the order of the integration and the summation, we
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have’

_ = go(,m)m ﬂ+m1 l’ﬁl -
=2, Gm * f (1) :

Applytmg the defln].tion of t:he Beta-funct:lon.

e,e) = DO

Flrts) f 3 1(1 w°” 1, du  (Rex, Res>0),

we obtain

T‘(B)I_"(a'—ﬂ) (¢.m)(8.m) m

&2 (¢,m) m l"(B‘Hn)r'(r ) _ =
1= am ™ e @) & rw@m

Therefore Theorem 3. lis proved

Remark 1. The ~‘El.1_1e_r_ integ'ral ,

(NED) -V b1
IOIXeE ﬁ)j aw™ e DN

is well deflned for ' e c - {1, co) if Re )’ > Re ﬁ > 0. Th].s

implies that the hypergeomet:r:.c seri.es 1s analytlcally cont:.nuable

1nto the domaln € -1, w) The branch of F(x, 8, Y, X) thus

obtalned is called the prlnc:_pal branch.

THEOREM 3.2: The hypergeometrlc functlon has the follovnng

three fornmlas of transformatlon

il

1) %F (2, ¥-B » , ¥ x/(x-1))
(L-x) “F(X ~%, B ¥ XI(X-l))
¥ Py -u, 5- B.¥, %),

CF(ety B, ¥, X)

ft

which are valid for |jarg(l-x)| <717c'- (or. € -1, 0)), .i.e'.‘ these

formulas are valid for the principal branch.

Z 15 -

Proof: It should be noted that by the fnapping y = x/(k-l),-

the domaln €-[1, ) is mapped into itself in the.one-to-one

panner. Make the change of variable u = l-v. Thea Ll-u = v,

xu = l-xtxv = (1-x)(1l- ;‘_—l‘v), du'ﬂv-dv. Hence we obtain

i r -1 -p-1 -
‘F(“s 6: Y,x) = FTFS‘%F) j‘o up (1"-1)x ﬁ (1-xu) x
0 o _
- m’;—r‘%ﬁ—m L a-vf lg” (1) ™ (Loxv/ (x-1)) ™ (-av)

= (1-x)"% P(fi)l"(b’ P)f 1a- v)“’ 1(1-xv/(x 1)) dv

- (1~x) "‘F(«x op 2 x/(x 1))

his proves the flrst ldentlty of Theorem 3 2 The changes of

sariables 4
u = v/(l-xtxv) and ‘u = (li-v.)i/_'(I-xv)
will yield the second and third identities respectively.

 COROLLARY: If b‘ «. or x F is zero or a negative integer

and if ¥ #0, -1, -2, **°, then F(o( ’P x, x) is reduced to a

\'k,‘olynomial mulciplied by (l-x)r = ﬁ.‘ _
_ ‘g.;gc_»g: This corollary follows directly from the lthird identity
£ Theorem 3.2.

Consider the eeries

)

(m)(Bom) |
2 (yom) (L)

it was previously mentioned, the series (3.2) is absblﬁtel&’ con-

-1, -2,.++-, This implies




. -17 -

. 2 (a.m m
that '111;1 F(ay 85 )’ x) _exists and F(, F’x’l) z (r,m)(l,m)
’ O xX=l - . |
-L:_Mﬁ_x_).‘ e | -1. =2
= 2, = h 1 om h].c in the domaln. Re(y ct—ﬁ) > 0’,~ Y# a, 1, -2,
F(ol p Y;1) = lim F(o( p Y, x) (Y’m)(l m) is holomorp '

-1 . m-O
¥ 5, : - cee and equal to

if Re(x ot - [3))0 and Y#O -1, <2, -0, PCL)T (Y=ot = B)

It is also known that (3 2) converges um.formly in every

. s { of
compact set’ in the domaln Exercise 1. Prove that

~Re(¥-o- ~$) >0, X#O -1, -2, _j.'j .
ThlS means that F(o( p.¥, 1) is holomorphlc in «, g and y
‘in this domain On the other hand for x = 1 Reﬁ >0,

vRe(X o~ p) > 0 the Euler 1ntegra1 1s well deflned and equal to

- ar o= p 1
r(a)r<x p)f ‘1“’ '
Furthermore, ‘ R _
e L) N N e B
F(o( B> ¥> 1) F<ﬂ)r(1 ﬁ) (1-u) f du

for Re ¥>Re $ >0, Re(a‘ x - (3) > 0 This integra}ll is equal to

TOOT (g-x-8)
T -2y -6)

Hence

. o1y = DOOL(Y-2-8)
F‘“’ﬁ”’l"'r<r-a)r<x-ﬂ>

By v1rtue of the theorem of 1dent1ty in the functlon theory, t.his
relation holds for Re(Y¥-o - p) > 0, 3’# 0, -1, -2, *s+,. Thus
we obtained the .following theoruéﬁ'!,::j:”?

THEOREM 3.3: We hfaye ‘
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4. Barnes integral-repreSentationl There is another type of

integral representatlon of F(a @ Y, x) whlch is called the

Barnes 1ntegra1 representatlon We shall make a general and

introductory remark on the constructlon of such a representatron

- Let £(x) be a function deflned by a power series
f(x) ZLJ a x .
. m=0 :

Suopose that there exists.a function 'g(s) ,Satisffing the follow-
. ing conditions: | B . "

(a) g(s) 1is meromorphic in Isl<eo

(b) g(s) is holomorphic at s = 0, 1, 2, ---

() gm) =

Let us put

»

_X)s

h(s) = g(s)

31n(1ts) (
Condition (b) implies that the points- s =0, 1, 2, **- are at
‘most simple poles of h(s) and condition (c) implies that

-Res h(s) = a x® for m = 0, 1,2, --.. .~
8=m m
Therefore, if C' is a loop which surrounds the poles s = 0, 1,

2, ***, N in the positive sense and only. those poles, then we
have '
E%E J. h(s)ds = E: a X '[
c' u=0

‘ ,If C denotes the inverse loop of ¢', ye have
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—y fc h(s)ds = Z a x

m=0
’?Afﬁer,this:preliminary'remark, let us go back to the hyper-

eometric series

Feapvon = SUERES S o2,

m=0

As it was previously mentioned this series can be written in

: erms of the [ function as follows.

L) P(am) P(B4m) m
P(d)r‘(ﬁ) FCs¥m) F(1+m) ™

F(X,f,¥,x) = s

- m=0
if neither « nor 3 " nor Y is zero or a negative integer

In such a case we can naturally take as g(s) the function

| __T) I(a+s)(p+s)
gls) = FC)T () Fr+s)T(1¥s) -

Thls function g(s) is meromorphic in |s}<e® and hence conditlon
(a) is satisfied. Poles of g(s) are at

8 = «o, ~ot=1, o

BEERY NEY ERET

;.If o ; p #0, -1, -2, **+ , then none of these points is zero
ior a positive integer. This means that condition (b) is satisfied.

Clearly

“for m=0, 1, 2, ++- .

g(m) = (rxw<f,m)

“f:This implies that condition‘(c) iéwsatisfiéd.
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Note that the functiord

h(s) = g(s)m‘ )° (:)(ggpy ?E?Ei?%ﬁﬁf sin7(c1:s)_ (-x)°
has its poles just at ' | '
s=-‘ot,-ot-1 e BBl 0,1, 02,
Recall a well-known formula for the [ ~function

T'(S) f'(l s) m
", From this formu].a we can derive ‘
T - sin(-ws) ~  sia(ms) ’
andhence - '
= f‘( s)

(1+s)sin (Tl:s)

Therefore we have

hGe) = L) r(«+s)r(s+s) i o) s
hes) FGOT(g) - F(r+s) | SR

. Now we shall prove the following theorem:
THEOREM 4.1: Suppose that o, f, ¥ #0, -1, -2, ***. Then

1) [ D(ars)riprs)
Bl fotox) = Tz_v;i,,rca IEE) Jy Fres)tes) Sincred

("K)? ds

PG ¢ Dtass) Pepre) P s)( )5 4
T TR )y FCy+s) %)~ ds .

for |x| <1, Jarg(l-x)|<¢m ,,.;,iwhere_'f;hé --p;aﬁtl:i" of. integration B

starts from -ie and goes to +ie in the complex s-plane, .run--

“poles s = -ot, - -1

-21 -

ning along the imaginary axis, but curving around in such a way that
the poles s = 0, 1, 2, ---. lie to the right of B, . while the

--..-p,-ﬁl c++  lie tp‘t»he left of B.

g 11

Proof The proof is dlvided into two. steps.. . :

I) If «, ﬁ ¥ #0, -1, -2, Ty then the integral:

J‘ P(«+S)P(3+s_)_r*( s).

T(rs) ()" as

is holomorphic in x for |arg(-x)| <T .
Proof of 1: L 8 be an arbltrarily small positlve number

It is sufficient to show that_ Vthis intégral‘-t:'ofiverges uniformly in

+x for ‘[a_rg(-x‘_)l €T § . In other words, for any. £ >0, we
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shall find a t, > 0 such that t. 'is independent of x and that

0 0

"we have

p oo )
J " ds l < e and
1 :

" ds

To do this, we must estimate the integrand.

<E

Recall that the asymptotlc behav1or of the ["-function ['(s)
is given by Stlrlmg s formula
Fa) A VTR o8t
which is valid as s tends to 1nf1.n1ty in the se'ctor |arg s} €
T-§. This formula implies _
lég f‘ts) =g logs‘- s - ¥logs + 0(1)
and hence
log M(ats) = slogs - s + (a-%)logs + 0(1) .
In order to estimate the integrand on the upper part of B,
let us put ‘s = it, where t is po_s:.tlve and sufficiently large.
Then - | o
log M(a+s) =1t Tog(it) =it  (x -%)1og(1t) + 01
Observing that
| 1og(it) = logt+ i% 7L,.
we obtain |
log M(+s) = -2xe + (Re & - P)log ¢ - FTIn + PI + 0(1)
= ,--;-m:# _(Reo(-%-)iogt + PI + 0(1) ,

where . PI denotes a purely imaginary quantity. Similarly, we

obtain
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log P(+s) = -3 me + (Re § ~%).log £ + PI + 0(1) ,

log I'(¥+s) '—%_—Trt+ (Rea’-'zl-)l..og €+ P + 0(1)
and ' A .
log M'(-s) = -it(logt-1%7) + it - ylog(-it) + 0(1)

= -kxt - klogt + PI + 0(1)

On the other hand,

log(-x) =g log(~x) = it(log}x}+ iarg(-x))
= ~targ(°x) + PI .
From these formulas, we can derive

T'(o‘+S)F‘(B+S)I"( s) s
- TGrs) (=)

= Re(o(-l-ﬁ ~Y¥-Llogt

- t(m+arg(-x)) + PIL + 0(1)

“and hence

[(d+s) I"(B+S) L s),
P(y+s)

- ocRe («'4.3-;«-1) (tatarg(-x),

as t tends to +o, where s = it. In the same way we obtain

F(M+S)P(B+s) r(-s), . )5
P(y+s) v

- 0(‘:Re (@+p-¥-1) e-t (m-arg‘-x? ))

as t tends to +® in case when s.= -it.

By virtue of the hypothesis: |arg(-x)l €mt-4§, we get

" wtarg(-x) 285>0

‘Therefore the quantity

: tke (o(+{3¥f;1) é‘-t (targ(-x))

‘ecays exponentially as t tends to +%, From this fact it is

~easily concluded that, for any € >0, there exists a th>0 such




- 24 -

" that

<& and <E .

-it
f " ds
~ie :

1) 1If Ky By ¥ #0, -1, -2, ---, then:

‘ .'ioo S
J' " ds
Wity
This completes the proof of I).

<L L) [ ek C(pts) _(-m) s
F(“ ﬁ X x) 2mi I"(p)l"(ot p (r+s) P'(l+s) sin(ws) (=x)"ds

for |x| <1, ]arg(-x)|<7l:.

Proof: Let N be a positlve integer which is sufficiently
iarge. Consider the closed path B +CN . where BN is the arc
of B 1in the strip between Im § = N+% and I_m‘s_ = - (N+%) and
CN is'a semi-circle defined by s - (N+ %)eie;. le|js 3.

As it was explained at the beginning of this section, we have

1 ry) i r<«+s)r'(fs+s)r"( s) (-x)S

I T TR Jy T (+s) de -

(~x)s ds

G gt e teea

1 ‘ P(X) r(d+s) M(B+s) (-5)
o P(«)r(@) I‘(zr+s)
¥ '?» 2 N::‘ Py
: o( -
mZ"O (X’m) (l m)

By utilizing the result I), we can show that the first integral

approaches the Barnes mtegral

1 _ P f T‘(oc+s)l"(5+s)r‘( -3) (?X)Sd’
Ini F ) PR ry+s)

a8 N tends to +60 . Therefore all we have to do is to show that

Jars(-x) | < .
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he second integral tends to zero as N- tends to ' +ooif [x)<l,

This step i.é_ left to the readers as Exercise 1.
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. 5. .Hypergeometric differential equation. :We shall derive a dif-

ferential equation satisfied by the hypergeometric function. Let

us consider the differential operator:

A =xd/dx .
it is easiiy seen that, for a power series zzk a = , Wwe have
,J-(gia x) = Lmax=2_,maxm.
=0 " w=0 w=1
Therefore, we obtain
m
A -1F(x, B, 7, %) = fz,omcmx DAy
o= (ot m)(B,m) —m
= (1) (Lw-) *

& (4w (B 1) ml
2 Gomm *

x 2~ ‘“*“"(F*’“‘)(x,mx%,rﬁ 3

x (Fro) (HHBIF (o, B, ¥, %) -

[}

" This means that

=E(°<,p,¥,X)

is a solution of the differential equétion

AWy -1y - xGhx) FHp)y = |
THEOREM 5.1: y = F(o(,/g,y, x) satisfies the differential

equation

- 927 -

(5.1) ,x(1-x>§2y/a5<?...+' [_a'r- iﬁp%li)x]»dy/ax capy =0

1(5.2) a?y /dx® +(1 ——é——-—‘“ tl-y )d /dx+——-L1)y 0.
The equatlonb(S.l) is derlved by rewriting the “differéntial
‘equation : T :

,J<49+ar -y - x(~‘+«)(49+,6>y
Div1d1ng (5.1) by x(l-x),a we obtaln (5 2)
DEFINTTION 5 1 The differentlal equatlon (5.1) or (5.2) is

\

called the hypergeometrlc (or Gauss or Euler-Gauss) differential
‘equation. " R

This equation has been subjects of many mafhematical works .
Furthermore, a considerable”pait of these waks-were donevalong
‘the development of  the cléSsicaiiéha1§§is‘éhd‘Sﬁmﬁea ﬁﬁTtéﬂfhé
general theory of linearlordinary differential édﬁétiéhsﬁih the
complex domain. ‘ | o |

The hypergeometric differentiaibedﬁation is suscéptible of

several changes of var1ab1es, independent or dependent First s

consider a change of varlable B

y = x?afx)"z ,

where f' and ¢ ‘are complex consténts.

By .this- transformation,
the hypergeometric differential equation (5.2) is taken to an

equation




- 28 =~

| (5.4")

(5.3) dlafax’ +[2f:’ p et frl-f ]F‘l“z:/dx_::_:!'
[ + -1 ,6"(6'+a(+ﬂ zr) ﬂo‘+oa+@+1 “¥)te(p +¥ )+
+ x(x 1)
o X (x-l)
=0.
In féct, we have
1 _ 9 _ g
dy/dx = xf(1-x) [dz/dx+( L) 2]
and S S o §
dzy/dx2 = xS’ (1'--x)°—[d2_‘z/dx2 +,2(-£-’+ ;q_-i-> dz/dx
L, 2pe, s(s-1) -
R Gt =R 3 L O

Inserting these into (5.2), we obtain (5.3).

f =0

=0

or  1-¥y,
¥-x-f.

(5.3) becomes a hypergeomepric_difﬁerential equation again.

ot

words, the transformations ..

(5.4) y = (l-x)r-d-ﬁz s : - - ?
(5.5) y=xtT

and |

(5-55 y = (1 x)y oa-p,

take (5.3) respectively to

(5.4") dzz/dx2.+({—+ 'i:1+1)dz/dx+-(-t;-{%%‘)—'ﬁ—2- z2=0,
5.5 d%z/dx +(2 L °‘+£+11 ?f)d Jdx +(o<+1xa;})<g{3)+1 D,
and

(5.5

4 (5.6")

In particular, if we ta@f

. In other},‘

This transformation takes the points x
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6"y als/dx? +"(2;3" ";‘ 13”1 )d Jax+12020-8) -

x(x-1)
hé;e:three eﬁuaﬁihhs havé.soluhions o
F(¥-«%, ¥-f, 7, %),
F(x+1-7, f+1-7 ,";_z.%a' , %)
‘F(i-u,_l-ﬂ, Z-X}_x)v
respectively. Therefore the eqﬁation.(S.Z) has the‘following four

solutions:

F(“ ﬂ Y, x) >

a-x)“"F(ar «; ¥ (3 Ys 0,
RL S

F(x+1-7 , g+1 ¥,2- ¥ x)

y
y
y"
v =x"Ya-x ""‘/’Faa -, zx,x)

Note that, as we showed in Theorem 3 2, the hypergeometrlc functlon

C¥

3 F(x, @ ¥, x) has three dlfferent expreSSLOns

il

T, ¥ ®) = A0 K, ¥, T x D)

(I'X) ﬁF(X‘X 3 (3: X: X/(X‘].))

L]

-0 br (-, v, s ®)

Let us consider next the.change of the independent variable
| § = l-x . |

=0, 1, o to.the points

=1, 0, 80 respectively, and the transformed equation is

7 d’y/ag? +'( g_(?éﬁy -

X+p+1-¥

i

+ g_l‘) dy/d’; +
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which has a solution F(.‘o(',"/J o<+5+1 b' §) Hence the equation (5. -x-“F(o(,o(+1-X, x+1-p, I./‘x)",

“has a solution F(x , (3, oL+ B +1- b’. 5 L=x) " If we make the change of x,ﬁ'l(l_x)x-d-(}F(l-@’ ¥Bs oL+l-p‘, /%) ,

variable

< Pr(pr1-v, B, Lo, L/x)

y=§<1 ;)z’,"

| . V(1) Pr (-, -, fHLa; 1/%)
where f=0 or x-«;p and &= 0 or 1- 3’, we obtain the fol- ‘

Among linear fractional transformations:
lowing four solutions of (5 2)°

F(, ﬂ a(+(3+1 X -x)
1 -¥

~g = ax+b
cx+d ’
fbnly the following six transformations:.

F(d+l 8' p+1 b’ ot+ﬁ+l -, 1-X), 5.9) ﬁg_-_- X, E: 1-x, "g= 1/x, E=;1/(1-x), ‘_:_’5"-= (x-l)/x,,_‘"§= x/(x-1)
(1-x)‘ *By(y-u, ¥- B, ¥l-a-f,1%) , | |

p the set {0 1, bo} onto 1tse1f These s:.x transformatlons form

" ”F(l-a 16, T4l (3 1-x) .
a group under the compos:.t:.on of functlons Thz.s group is generated

" Finally cons:Lder the comblnatlon of changes of the independent

».

y two transformations g = 1-% \, and § = l/x. To each of:,v these six

variable and the dependent varlable _ _ ;
: ' ransformations of the independent variable combined with:a suitable
X = 1/5 § Z . o

ange of the dependent variable there. corresponds a hypergeometric

Then the equatlon (5 2) is taken 1nto an equatlon

5.8)  d%z/dE +(x+1§rs ol'gﬁf-l ‘)@/d‘c‘, +_e¢éi(~§_1__-_l§)_z_= 0,

i

(]
;

!

)
11

H

Ep
,,
H
[
il
v
‘

il
7 I
1l
1
I
£ 18
it
‘v
P |
i
;

‘.

differential equation. Thus‘ we obtain six hypergeometric’ differential

juations, each of which has four expressions of solutions.

which has a solutlon

" THEOREM 5.2: Assume that ¥, ¥-«-p, o(-(B are not integers.

&= F(x ,o+1-%, °<+1'“(3 » §). en the hypergeometric differential equation (5.1) has twenty four

Moreover the equation (3.8) has three other solutions: ?pressio'ns of solutions which are written in the form

P, 6 :
x N (s B YR

here fi’ G'i, oli, ﬁi and Xi are linear in « ,[3 and Y,

- g)f‘““’r(l-g, ¥-f,%+1-8,%),
I Ll JU TS ISR B R RPN S W
gf’ (L~ §)y“ﬂF(1 &y ¥-os B+Ll<ot, ¥).

Xy is one of the six transformations (5.9).
- Going back to the orlginal varlables, we obta:.n the - -following four - '

Y

The twenty four ‘expressions of ‘solutions are called Kummer's
- solutions of (5. 2) '

lutions. We supposed that ¥ # 0, -1, -2, --- for F(«,f,¥, x).
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are not integers guarantees

Y, x;q-ﬁ;.d;p'“

that the third parameter in each of the tﬁenty four expressions

The condition that

satisfies the corresponding condition.
It can be shown that any one.of Kummer's solutions is essen-

‘tially equal to one of the following six solutions:
o f(d,ﬁ.»x,X) |
{ xR (a1 y, B+l-yi2-¥,x)
P, B, ak pHiey 1wy, o
{ (1-x) ¥ %P y-g',‘"y_-,;,_ x+1-u;'g, 1—x)
B _;ﬁf]@, u4’-17x‘, Qfl-p ),
{ xPr(p, pHi-y, pHl-«, 1/x).

--Exercise 1.  Find all-solﬁtiohs of Kummer., =~ '
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" Monodromy representation.

The hypergeometric function satis-
fies “the hypergeometric differential-equationﬁ'

a2 /dx +(5—+—ﬁ—-——+ F1-¥ )d /dx+--ﬁ-

(6’.1)" D -0 .
The_coeffrciente are elmple_rat;ohal tonctions,yhose poles are just
et x=0 and 1. The point at'rnfinitybis a éero'oﬁkghehooef-
ficients, but solutiohs of (6.1) are not necessarily holomorphic
at X =00 . Therefore we must study the equatlon (6.1) in the
nelghborhood of x = 0 . To_oo this,;we'make the change of in-
" dependent variable | |

.x=1/f

nd we shall investlgate the transformed equatlon around E= 0.

The equatlon (6 1) is taken to

+ « |
dylat +1°‘f’ “*E“f’ d/d§ ———-L y = 0.
E(E 1>
Clearly § is a pole of the coeff1c1ents of thls equatlon

hus we have found that the hypergeometric dlfferentlal equatlon

{6.1) has three 51ngu1ar1t1es at x =0, 1, w in the extended

complex plane ¢ V {03} or the Riemann sphere S.

Let x be any p01nt # 0 1 ® . The general theory of

linear dlfferent1a1 equatlons guarantees that ~every solution of

(6 1) is holomorphlc at x0 and that every solutlon of (6 1) can
Eanalytlcally contlnued along any path which does not pass through
_he points x =

0, 1 and ® . Therefore slngularities of solutions
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of (6.1) are only at x =0, 1 and ®. Since the domain D -

We shall’state five propositions concefning the relation ~ .

§-40, 1, ©»;=0€-40, 1 is not simély.éonnected solutions of . _
{ > } 10, }:. TR o i : : Proofs of these propositions will be left to readers as Exercise
, Exercise.

6.1) are not necessarily single-valued. This means that x = 0
(6.1) Ot necessarlly singresvainef-. T ’ PROPOSITION 6.1: The relation

~ 18 an equivalence-relation.

1 and & are in general branch-points of solutions. This fact L , : -
e et us denote by [u] the equivalence-class containing u

' {s one of the reasons why the gfdup:tﬁeofy is useful in the study
and by T (D, x;) the set of all equivalence-classes: i.e

°

of linear diffefehtiallequaﬁions;

. e . _ . TEI(D, xo) =l [~ (the quotiem: set of £ by ~ ).
" 'Let us keep Xg fixed, and consider the set of all loops " We sh . - .
. ~ , | | | e shall next define a multiplication in 'ni(D, %), under which
starting and terminating at xo in the domain D. Such a loop 1. (D o ' : 0
. 1Ds xo) becomes a group. To do this, let u and v be two

can'be;fepféseﬁted by a continuous map u from the unit interval 1 . . _
‘ oops in o . Define the product' u-v in this order by

1 = [0, 1] into D satisfying u(0) = u(l) = xoi‘ Let ué‘put“ ' .
u(2t)  for 0Stsh,
u-v(t) ={

={u; u:l—D, continuous and u(0) = u(l) = x,}- P 4
L =1 o v(2t-1) for ¥ Sts1.

We shall introduce énvequivaleﬁce-reiation ~  in o by defining

.« Clearly u-v is a loop in « which is composed of u and v

U~ 1f‘and only if there exists a mapping F from IxI into in this order.

b such that

PROPOSITION 6.2: u':v'~ u.v if u ~u' and v ~v'.

(1) F is continuous,

By virtue of Proposition 6.2, we can define a multiplication

(2) F(t, 0) =u(t) for tel, in T,®, x;) by . |
(3) F(t, 1) =v(t) for t el, _ N ,
o [ul vl = [u-v] .

"and '
PROPOSITION 6.3: Let us denote by e the constant map

4) F(0, s) = F(},'S)Aé xd ﬁgg s €1.

v L , e:I—D, e() =x, for t eI.
The condition (4) implies that fs(t) = F(t, s) for any fixed Then‘ ‘ :

s €1 is a loop belonging to o£°. On the other hand, the condi- :
e'u~u and wu-e~u for every u in L .

tions (2) and (3) mean that fo =y and f1 =v respectively.
Thereforé'we.cah sa§ that u~v if and only if u can be deforme
[el{u]l = [ulle] = [u] .

continuously to v in D. .
This proposition means that [e] is a unit-element in
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(D, xo) with respect to the mltiplicatio[\deflned above:

' -1 .
PROPOSITION 6.4: Let us denote by u = . the lnverse loop of

| u'l I —D, u-l‘(t)_=‘n(1-t)‘ for t e L.
The‘nh
-’_u-]fﬁl_l've ‘and u-u-lrnee .

Hence R N
N fwlltul = Calle™] = fel.
This prop‘o‘s::‘,t‘ion'qxveens that y

| et e
PROPOSITION 6.5 (lul v [w] = [u]l(lvliw]).
'l‘he_se five propositions prove that 7, (D, xo)__. is a group. "

This group is called the fundamental group of D with the base

point xq

Let us go back to, the hypergeometrlc differential equation
(6. l) et "¢ " and \}’ be llnearly independent, -golutions> of (6r.1)
- which are defined in a neighbo;hood'_ U,.;of' _XO' This weans that

{g> ¢} is a fundamental system of solutions in U. Assume that

u el

and’ \%l w111 be changed 1nto other solutions defined- in U,

and continue ¢ and- \{* _analytically along u. Then ¢

since’

? and \{/ are not ne,ces}sax_"l_.‘],}{:__,:\_'sllng«le-valued. Let (f .and . \f be

the analytic continuations of (f and \!f along u _ respectively.:

and .} are linear. ._,_i'nduepen_d_ent, the solutions ¢ and.

Since Cf

} are expressible as_linear forms in. g and- ¥ :

it follows that cp and \{f are also llnearly independent

~1f there were a linear relatlon cl? +c2Y

se-for, A € GL(2, €)).

‘continuations of Cf '
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Fomagtbyo, L Lo

\ -“_;\.}: = cg +d1[/

which .can be written as

= A ,
¥ Y.J
where
| a b
A= |
c d
'is a two-by-two matrix, and ? and

\‘, _'» ‘are column vectors.
From the hypothes:.s that ‘f an,d \{* are llnearly J.ndependent
In fact

o, then this relation

would hold for Cf and \]1 because of the permanence of functional

47 relations for analyt:.c functlons. Hence A must be non- sxngular

It is well knowu t:hat GL(2 €) (the set of

";""all non- s:.ngular two-by t:wo matrlces with complex entries) is a

group under the usual multiplication of matrices. Moreover it
follows from the general theory of analytlc continuations that, lf
u' ~u and if

?' and W' denote respectively the analytic

‘§' =§ and

\r . This means that the matrlx A is determmed by [u]

and- “! along u ,  then

ather than u. The matrix A does not depend on the ch01ce of
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representatives of [u]. Thus we .can define a map epresentation of (6.1) with respect to a fundamental system

P . ﬁl(D, xo) — GL(2, ©), f([u]) =A. (f, \}'} The image f(TEl(D, xo')’) is called.the monodromy group

Let. v be another loop in & . If <f and \" are continued

- ?]
sonet B[w !

where B = f([v]) € GL(2, €). Consider the product - u-v and

ith respect to {¢,y I

analytically along v, then ~ .. The following theorem will be proved in Section 17 (Cﬁaptef

- THEOREM 6.1: - Suppose that none of a, {3 ’ Y- and X-ﬂ '
8 an integer. Then there exists a fundamental sysvt:‘et‘!i”"‘cf (6.-‘1)

denote by (}7 and t? the analytici continuations of (f and \.’/ uch that the monod_:qmy group with respect to this.system is gener-

along u-v respectively. We have,;yi:hen, ‘ated by

Tiee 'cr? S, = p(uD) = pCLulivD).

Since? ~and ? are the amalytic continuations of § and ¥

1 o | 1 1o 2
) and . EE S
0 e‘27'3i @e+p-¥)

T N

_(l_e-Z’mﬁ )' e‘-21l:ix
and there exists a fundamental system of (6.1) such thatu’:thé""

" along v, and since

” - . -

‘monodromy group with respect to this system is generated by

T1a and B = p(IvD), N 1 e T (g i (¥-0)y
] “’J L\t . ) . and- - -
‘we have o ) : ' 1-e'27u(x'°‘) 1 0 g~27d (4%8-1_)
13} (3} [9] |
~|=a = AB .
and hence : |
| C =AB ,

- or ‘ o
f (Lullvl) = p(lul) pCIvD) -
Therefore » f i‘sAa hgmomorphism:of tbg group T[l(D’vXO) into the

group GL(2, €). In other words, f is a representation of

! 2 . ) .
7y (D, x5) on €. The representation § is called the monodromy




