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A-Hypergeometric Functions

1.1 A-hypergeometric equations

Let A be a d xn matrix with integer entries. We denote by a; the i-th column
vector of A. We suppose that a;’s generate the lattice Z¢, in other words, we
have Y% | Za; = Z%. Let B = (B1,...,B4) € C? be a vector of parameters.
The ring of differential operators

C<x1, ey Ty, 01, ... 78n>, TjT; = T;T4, 818] = 8]'81', 81-95]- = SUjai + (5@'

is denoted by D or by D,,. The action of 2797 to a function f(x) is defined
olal

by $paq.f:$pm.

Definition 1 [18] We call the following system of differential equations an

A-hypergeometric system or a GKZ hypergeometric system:

(Ei—ﬁi)of:(), where Ei—ﬁi:Zaijmjaj—ﬁi, (i=1,...,d)
j=1

O,ef=0, wherel, = H o — H 9.

J
{i | 1<i<n,u; >0} {j11<j<n,u;<0}
with u € Z™ running over all v such that Au = 0,u # 0.

We denote by I4 the affine toric ideal generated by [J,, for all u € Z™ such
that Au =01in S, = C[d1,...,0y]. The left ideal in D generated by E; — f3;,
i=1,...,dand I4 is denoted by H4 () and is called the A-hypergeometric
ideal. The quotient left D-module D/H 4(3) is denoted by M 4(3) and called
the A-hypergeometric D-module.

Several invariants of the D-module can be described in terms of the set of
points {a1,...,a,} like the theory of toric varieties. We also denote the set
of points by A in this chapter; the symbol A stands for a matrix or a set of
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points. When the meaning of A is clear in the context, we do not say which
it means. NoA and ZA mean ) ;" ; Noa; and ) ;" | Za; respectively.

Although the A-hypergeometric system can be defined for any matrix A,
there are nice classes of matrices A (or sets of points a;). And solutions of the
associated A-hypergeometric systems are deserved to be special functions.
Let us introduce some of them. Take integers k and k&’ satisfying 1 < k < k'.
Put e; = (1,0,...,0)7 € ZF1! ey = (0,1,0,...,0)7 € ZF1 ... and
¢, = (1,0,...,007 € ZV+1 e}, = (0,1,0,...,00T € ZF'+1 ... Let A(k, k)
be a (k+k"+1) x (k+1)(k'+1) matrix of which columns consist of p(e; ©e)
where p is the projection to the first k + &’ + 1 coordinates (the projection
which removes the last coordinate). A(1,1), A(1,2), A(2,2) are given in
Table 1.1.

The columns of A(k,k') generate ZFt¥'*1 and they lie on the hyper-
plane Zfill y; = 1 in RFF+1 Since the convex hull of ey, ..., epp; is
the simplex A and that of €f,..., e}, is the simplex Ay, we call this
A-hypergeometric system Ay X Ap-hypergeometric system or the hyper-
geometric system E'(k + 1,k + k' + 2). The latter naming comes from a
relation of this system with the hypergeometric system E(k,n) (Section
1.4). For this hypergeometric system, we often denote the variable x, by
xij where p = (i — 1)k’ + (j — 1) 4+ 1. This double index notation is con-
vinient. We also regard a vector of length (k + 1)(k’ + 1) as a matrix un-
der this double index notation. For example, for a vector e, the condition
A(k,k")e = [ means that the row sums and the column sums of e ex-
pressed in terms of the (k + 1) x (k' 4+ 1) matrix are (031,...,0k+1) and
(Brs2s- - Brrw1s iy Bi — SSEF Y B;) respectively.

The ideal T4 for A = A(k, k') is generated by

DigOjp — 0ip0jg, 1 < i < j<k+1,1<p<q<k +1.

More precisely, it is the reduced Grobner basis with respect to the graded
reverse lexicographic order >~ with 011 > 012 > -+ = 01 > O21 > -+~
[48, Prop 5.4]. For any A, generators of I4 can be obtained by a Grobner
basis computation [48, Alg. 4.5]. Generators of 14 is called the Markov basis
in algebraic statistics. There are theoretical and computational efforts to
find explicit Markov basis. We have a database of Markov bases for several
matrix A ([1] or [23]).

The matrix A(1, k') stands for the Lauricella function Fp of k” variables
(see Example 2 for the correspondence). In particular, when k¥’ = 1, it stands
for the Gauss hypergeometric function. Let us give matrices A for other
Lauricella functions (see Chapter 2 on these functions). Let eg, €1, ..., em,
be the standard basis of Z?" 1. Put A = {eg, e1, ..., €am, €0+e1—emi1,e0+
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T11 T12 T2  T9o 11 X122 X13 X21 X222 23
1 1 1 0 0 0
L0 0 o o o 1 1 1
A(1,1) = 0 0 1 1 |,A(1,2)=
T 1 o 0 1 0 0
o0 1 o0 0 1 0
111 0 0 0 0 0 O
000 1 1 10 00
A(2,2)=]0 0 0 0 0 0 1 1 1
1 001 00 1 00
01 00 1 00 1 0
1 00 00 1 1
01 000 1 O (1) (1) 8 _01 81 8
A(Fa,2)=10 0 1.0 0 0 1|, AFD=|5 0 1 0 o0 -1
000 1 0 -1 0 111 1 1 1
000 01 0 -1
A(0134):(0 1 3 4>,As: 02 3 0 2 3),AP)=|y | o o -1
0 00 1 1 1 00 1 -1 -2

Suppose that a; € Z™. For A1 = (a1,...,an,), --- , Ag = (a@ny,_,+1,.--,an,), we define
A(Ar,..., Ay) by

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 0 0
0 0 0 0 1 1
ai Any  Gny+1 Any Ang_1+1 Any,
Table 1.1 A
€2 — €m+42y...,€0 + €m — €2, }. Then A is a (2m + 1) x (3m + 1) matrix,

which stands for the Lauricella function F4 of m variables [38]. They lie on
the hyperplane yo + y1 + - - + y2m = 1 in R?™*1. We denote the matrix by
A(Fa,m). The associated toric ideal 14 is generated by dy0; — Opm+jO02m+;,
Jj = 1,...,m. Here, we use the variables ug,uy,...,us, as independent
variables instead of z1,...,z,. When m = 2, it is the Appell function Fs;
the matrix is given in Table 1.1.

Let e1,...,emyt1,emta be the standard basis of Zmt2 Put A = {e1 +
€m+2,€2 + em+42,. .. emy1 + emy2, —€1 + emy2, —€2 + emy2,..., —€my1 +
em+2}. Then A is an (m+2) x 2(m+ 1) matrix, which stands for the Lauri-
cella function F of m variables [38]. They lie on the hyperplane z,, 12 =1
in R™*2. We denote the matrix by A(Fg, m). Note that the lattice gen-
erated by the columns of A(F¢,m) is a proper sublattice of Z™*2. Then,
we need to regard the sublattice as Z™T2. The associated toric ideal I4 is



6 A-Hypergeometric Functions

generated by 9;0—; — Om+10_(m41), J = 1,...,m. Here, we use the variables
ULy oy U1, U—1y - - - U_(py1) 38 independent variables. When m = 2, it is
the Appell function Fy; the matrix is given in Table 1.1. The notion of bi-
nomial D-modules is proposed and studied in [14]. Binomial D-modules are
generalizations of A-hypergeometric equations and they fit to study Appell-
Horn equations and their generalizations to several variables in algebraic
methods.

A-hypergeometric systems associated to smooth fano polytopes have im-
portance in studies of period maps for K3 and Calabi-Yau varieties (see,
e.g., [26], [27], [47] and their references). For example, the matrix A(Py) [34]
appears in this context.

Let us discuss on integral representations of solutions of A-hypergeometric
equations. Consider Ay, ..., Ay in Table 1.1 and define £ polynomials f;(z,t) =
Z;an,lﬂ z;t%. Take complex numbers aj, v = (71,...,7m). We consider

the integral
k
baio) = [ [[Henmedn - d,
C .
7j=1

where C' is a twisted m-cycle defined for H§:1 fi(x,t)*t7. The function

O (v, v; x) satisfies the A-hypergeometric system H 4 () for A = A(A1,..., An)
and 8 = (a1,...,00,—71 — 1,...,—ym — 1T
respect to the variable ¢, we call the function ® hypergeometric function

. When f; are linear with

for hyperplane arrangements. Note that when A; = ... = Ay = Ay,
A(Aq, ..., Ax) = A(k,K). As to studies on these hypergeometric functions
in terms of twisted cohomology groups, see [4], [5], [3], [36].

For general A, the integral

O(v;z) = /Cexp (Z xit%') tVdty - - - dtyg

=1

satisfies H4(3) with 3 = (=1 — 1,..., —yq — 1)T for a “suitable” d-cycle
formally. However, a homological study of such cycles is not performed in a
full general form.

1.2 Some definitions from combinatorics, polytopes and Grébner
basis

The matrix A is said to be pointed when a1, ..., a, lie in a single open half-
space. For example, A = (—1,1) is not pointed and all A’s in Table 1.1 are



1.2 Some definitions from combinatorics, polytopes and Grobner basis 7

pointed. The set of points A is called normal, when A satisfies (3 R>oax) N
7" = Z Zzoak.

For a facet o of the cone pos(A) = R>pA, F, is a linear function on
RA = R? uniquely determined by the conditions:

1. Fo(ZA) = Z, 2. Fy(a;) > 0foralli=1,...,n, 3. F,(a;) = 0 for all
a; € 0.
We call F,, the primitive integral support function of o.

For Ay, x Ay embedded in RFTUx RF 1 = {(z1, ..., Zpy1; 01, - Yrs1) s
the support functions are x; and y;. When we project the points to RFHT x
R*', the primitive integral support functions are z; (i = 1,...,k+ 1), and
yj j=1,...,K), and 1 — Z;?:lyj.

The Supporting functions for A(F4, m) are s;j, s; + Sm+1, 1 < j < m and
80 + 2 jey Sm+j» J C [1,m] where {s;} is the dual basis of {e;}. Those for
A(Fo,m) are (1/2)(sm+2 + 3 5ey 85 — 2ojgs Si)s J C [1,m+ 1] [38].

Let Z A be the lattice generated by the columns of A. Let us set the volume
of the convex hull U of the lattice base and the origin to 1. The volume of
polytopes in RA normalized with the U is called the normalized volume.
The normalized volume of the convex hull of A and the origin is denoted by
vol(A). The normalized volume of A(k, k) is known to be equal to (k:k/) For
given A, it can be evaluated by geometry software systems like polymake,
or by computer algebra systems which use a formula degree(/4) = vol(A).

Example 1 Macaulay2 [22] commands to evaluate the volume (the degree)
of A(0134). Here, o5 is 14.

loadPackage "FourTiTwo"
M=matrix "1,1,1,1; 0,1,3,4"
R=QQ[a. .d]
I=toricGroebner (M,R)
05 = ideal (b"3 - a"2%c, bxc - a*d, - a*c”2 + b"2+d, ¢c~3 - bxd"2 )
degree(I)
06 = 4

For a given weight vector w € R"™ (Weights below), consider points

{(a;,w;)} in R™1! and the convex hull of them. The projection of the convex
hull to the first d coordinates naturally induces a triangulation of the set of
points A for a generic weight w, which is called a regular triangulation [21],
[48]. We compute a regular triangulation of A; x Ag for w = (4,2,0, 10, 8,6)
by the computer algebra system Macaulay?2

il : loadPackage "FourTiTwo"
i2 : M=matrix "1,1,1,0,0,0; 0,0,0,1,1,1; 1,0,0,1,0,0; 0,1,0,0,1,0"
i3 : R=QQ[x11,x12,x13,x21,%22,x23, MonomialOrder=>{Weights=>{4,2,0,10,8,6}}]
i4 : I=toricGroebner (M,R)
04 = ideal (x13*x21 - x11*x23, x12%x21 - x11*x22, x13*x22 - x12%x23)
i5 : J=leadTerm(I)
08 = | x13x22 x13x21 x12x21 |
i6 : associatedPrimes(ideal(J))
012 = {ideal (x22, x21), ideal (x13, x12), ideal (x13, x21)}
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By taking the complements of the indices of each associated primes, we
get a regular triangulation (11,12,13,23), (11,21,22,23), (11, 12,22, 23).

1.3 A-hypergeometric series

Let us introduce A-hypergeometric series following [18] and [42, 3.4]. Let
v = (v1,...,v,) be a vector in C" and u = (uy,...,u,) a vector in Z". We
decompose u into positive and negative parts, u = uy — u_, where u4 and
u_ are non-negative vectors with disjoint support. Consider the following
two scalars in C, which can be expressed by falling factorials:

[Wue = TTiu<0 H;:ui (vi—j+1),
[u + U]U+ = Hi:ui>0 HT:l (ul + v _j + 1) = Hi:ui>0 H;lel (Ui + ])

For example, when v = (v1,v2,0,v4) and u = (-2, 2,2, —2), we have % =
vt

%. Note that when v € (C\ Z<o)", we have [u+ v],, # 0. We

set L = Ker(Z" A Z%).

Theorem 1 Suppose that v € (C\ Z<o)" and Av = 5. Then the formal
series

Gu =) [hdu-x”+“ (1.1)

uelL vt u]u+
is well-defined and is a formal solution of H4(3).

As to the proof of this theorem, see [42, Prop. 3.4.1]. We call the formal
series the A-hypergeometric series in the falling factorial form.

Let us introduce another expression of the series. We set I'(u +v + 1) =
[T, T(ui+v;+1) and when u;+v; € Zg for an i, we define 1/T'(u+v+1) =

[V]u_ 1
[v+ulu, T(v+1) for w € L and

0. Under this convention, we have +1u =
v € (C\ Z<g)". Define

1
d = Uty 1.2
v §:Fm+v+nx (12)
u€eL
Then, we have &, = ﬁqﬁv when none of v; is negative integer. We call

the formal series the A-hypergeometric series in the gamma function form.
Note that when v; is a negative integer, two series are different. For example,
if v; = —1 and u; = 1, then we have [u; +v;],;, = 0 and ¢, is not well-defined,
but I'(u; + v; + 1) = 1. When we want to express A-hypergeometric series
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in terms of the Pochhammer symbol or the falling factorial, the formulas
[(a+m) =T(a)(@)m, (e —m+1) =T(a+1)(=1)"/(=a)m

are useful.

For a given weight vector w € Z™ and ¢ € 14, in,(¢) is the sum of the
highest w-order terms in ¢. The ideal in S,, generated by in,(¢), £ € I4 is
denoted by in,,(/4) and is called the initial ideal of I4 [48]. Let C be the
Grobner cone of 14 for a generic weight vector w. The initial ideal in,s(14)
does not change when w' runs over C' [48], [42, Chap 2|. For a series f
with a support on a translate of the dual cone C*, for which we may assume
(w,C*\{0}) > 0, the starting term of f is the sum of the lowest weight terms
in f with respect to w. If f is a solution of fe f = 0, £ € D, then the starting
term of f is a solution of in(_,,,,)(¢), which is the sum of the highest order
terms in ¢ with respect to the weight (—w,w) where —w (resp. w) stands
for x (resp. 0). This observation gives us the following method [42] to find
series solutions of H4(f3); (1) determine the initial ideal in_,, ., (Ha(8)),
(2) solve it to determine the starting terms, (3) extend the starting terms
to series solutions.

Theorem 2 For generic 3, the initial ideal in(_, .,\(HA(3)) is generated
by Ei — i, 1 <i<d and iny(14).

We note that the proof of [42, Th. 3.1.3] needs to be corrected to utilize the
homogenized Weyl algebra. We suppose that 4 is a homogeneous ideal and
take a generaic weight vector w such that in, (I4) is a monomial ideal. Let
G be the reduced Grobner basis of 4 with respect to the order <., [48]. We
consider the system of differential equations

(E;—B;)es=0, i=1,...,d, and fes=0, /{¢€in,(G) (1.3)

Let v be a solution of algebraic equations
n
Av=8, JJuvi(i—=1)-- (vi —e;+1) =0 for 0° € iny(G) (1.4)
i=1
It is called a fake exponent. We note that the fake exponents can be expressed
in terms of standard pairs of the monomial ideal in,,(14) [42, 3.2]. When §;
are generic, there are linearly independent vol(A) solutions of (1.3) of the
form s = z¥ = [[I"; 2" where v is a fake exponent and they span the
solution space over C when v runs over the fake exponents.
Theorem 3 [18], [42, Th 3.4.2] If v is a fake exponent and v € (C\ Z<o)",
then ¢y, is a formal solution of H () with the support in v+ (C* N L).
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Note that Gel’fand, Kaparanov, Zelevinsky constructed series solutions
by regular triangulations of A [18]. Our construction differs with their con-
struction, but it is related with the construction via the theorem [48, Th 8.3]
“V/iny (14) is the Stanley-Reisner ideal for the regular triangulation by w”.
The function ¢, converges when (—log |z1], ..., — log |x,|) lies in a translate
of the secondary cone attached to the regular triangulation.

For a good class of A-hypergeometric functions, more explicit form of A-
hypergeometric series is known as we will describe. For A = A(p — 1,q —
1), the stair case Grodbner basis in [48, Prop.5.4] gives series solutions. A
sequence of indexes {(1,1),...,(p,q)} is called a stair if (4,7) is an element
of the stair and is not (p, ¢), then the next element of (4, j) is either (i +1, j)
or (i,j+ 1) (see Table 1.2).

The initial ideal of I4 for the reverse lexicographic order is generated by
0i0jk, 1 <i < j<p 1< k<< q[48, Prop.5.4]. We can obtain the fake
exponents from this initial ideal by solving (1.4). It is known that there is
a one-to-one correspondence between the roots of the system of equations
and the stairs. For a given stair S, the system has a unique solution such
that v;; = 0 for (4,5) ¢ S. In other words, the support of each exponent
has the form of the stair for generic 3. In the sequel, we use e rather than
v to denote exponents. The support of the series solution standing for the
exponent e has the form

e+ L/, L, = Z Zzobg’j)
(i,4) €supp(e)
where b7 is an element of Ker A such that (i,7)-th element of b0 s 1 for

(i,7) € supp(e) and (7', j')-th element is 0 for (i, j') € supp(e) \ {(%,7)}

Example 2 We put A = A(1, N — 1) in this example. Let a, by,...,by_1,
¢ be (generic) constants. Put by =a+ 1 — ¢ and

by e —bp SNV p 0 0 0
eth) =( ' A ,
0 0 Zj:kJrl b]- —a —bk+1 —by-1 —bn
which is the fake exponent standing for the k-th stair.
k—1 N
Put m = (my,...,mg_1,Mg41,-..,MN), Mk = —Ejzl mj + Zj:kH mj,
T2 L1 N . . .
and z; = mjﬁ for 1 < j < N. Note that zy = 1. Define a series ¢(e; 2)
by
k—1 N k—1 n
[T 21 [eslm, [T grale2s]m, _ j _1\™
> e e T ()™ T (aes7)
i | Hfl m.;! ) J
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where e = e(k), ¢m = [e1k]m,/[€2k + Mk]m, when my > 0, and ¢, =
[€2k]—m,, /[€1k — Mk]—m, When my < 0, and ¢,, = 1 when mk. = 0. For 8 =
(=> bi+c—1,—a,—by,...,—by_1,c—1—a), the function 2°®) gy (e(k); 2),
1 < k < N is a solution of H4(f) and z¢ ") (e(k); z) is a solu-

tion of the Lauricella system Ep(a,(b),c). The series ¢n(e(N);z) is the
Lauricella’s Fp. The series ¢;’s have a common domain of convergence
‘Zl| << |ZN_1| < 1.

Example 3 The function

m
—a b b CUm+1U2m+j Um+mU2m+m
HU ||um+J a,01,...,0m,C1y...,Cm; geeey
, Uoul UoUm
(1.6)

is a solution of H 4, m)(8), BT = (—a,~by,...,~bm,c1—1,...,cm—1) when
fa is a solution of the Lauricella’s F4(a, (b), (c)). Any classical solution of
H A(r,,m)(B) can be expressed as (1.6).

Example 4 The function

u_ H u’ (a b, c Cm; U1 Umt—m >
m+1 —m s Uy Cly e e o5 Cmyy PN
Um+1U—(m+1) Um+1U—(m+41)

(1.7)
is a solution of H 4(r, m)(83), BT = (1—cy,...,1—cpm, b—a, Z;n:1 cj—a—b—m)
when f. is a solution of the Lauricella’s Ec(a, b, (¢)). Any classical solution
of Hy(r.,m)(B) can be expressed as (1.7).

Example 5 Series solutions for A(2,2) and 7 = (a1, a2, a3, v1,72) (E'(3,6))
have attracted special interests [31], [46]. We present a set of series solutions
of this system. When we express an exponent as a 3 X 3 matrix under the
double index notation, «; is the i-th row sum and ~; is the j-th column sum.
Hypergeometric series associated to the exponent e(7) is written as

ey () = 220 > M ", u_ZbJ (1.8)

2y )

For other series solutions, see [46] and its references. An interesting series
solution of E’(3,6), which is not obtained with the method in this section,
is studied in [33] in terms of arithmetic and geometric means.

In case of non-generic parameters, we have series solutions containing log-
arithmic functions. We can construct vol(A) linearly independent solutions

)
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stair e : exponent
koK ok YroY2 a1 — 71— 02
0 0 = e(l)y=(0 0 a2
0 0 = 0 0 a3
x % 0 Y1 ai —7 0
0 * =x e(2)=10 —ar+7m+72 art+az—71—72
0 0 = 0 0 a3
* % 0 71 a1 — 71 0
0 *= 0 e(3)=10 a2 0
0 x =% 0 —a1—ax+m+v2 artaztaz—v—72
* 0 0 a1 0 0
Xk ok ed)=|-a1+m 72 artaz—71-—72
0 0 = 0 0 as
* 0 aq 0 0
* x 0 e(5)=[—a1+m a1 +az2 —7 0
0 * =x 0 —al—o2+71+7v2 o toaztaz—71—72
* 0 0 ai 0 0
* 0 0 e(6) = o2 0 0
* ok ok —oa1—oa2+71 Y2 a1t oztaz—y1— 2

Table 1.2 Exponents

when 4 is homogeneous by introducing a purturbation parameter € in pa-
rameters and expand the series solution in terms of € [42, 3.5, Th 3.5.1]. We
will explain the procedure by an example.

Example 6 We consider the case of o; = ~; = 1/2 for E’(3,6) (Table 1.2).
The system with this parameter has a special importance in the algebraic
geometry ([31], [51]). Let us construct a set of series solutions for this case.
The exponenents e(1) and e(6) are not degenerated and give two linearly
independent solutions. The exponents e(i), i = 2,...,5 are degenerated:
e(2) = e(3) = e(4) = e(5) = diag(1/2,1/2,1/2). We will construct four
linearly independent solutions for the degenerated exponent. We set «y
1/2+3e,00 = 1/2+ 26,03 = 1/2 46,91 = 1/2+¢e,7 = 1/2+ 26,73

1/2+3e. We put y; = 2, Then, we have the following series containing
the parameter €.

be(2y = 2P fa(e 1, y2, Y3, y4),
be(zy = z°P (1 — 2elogya + 262 (logya)? + O(e%)) f3(e; y1ya, Y2, Ya, y3/ya),
be(ay = 2°P (1 — 2elogyz + 262 (log y2)? + O(e®)) fale; Y2, y2y2, Y3 /Y2, ya),
e(z) = 23 (1 — 2clog(yaya) + 262 (log(y2ya))® + O(*)) f5(&3 y2, y1y2ya, ya, y3/ (y2va)),
where fi(e; 21, 22, 23,24) = ZmeNg %zm, u = Z?:l mjbg(i). We ex-
pand f; in € as fi(o)+5fi(1)+52fi(2)+0(52). We note that all ¢(;), i = 2,3,4,5
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stair bl b2 b3 b2
* % % -1 0 1 0 -1 1 -1 0 1 0 -1 1
0 0 = 1 0 -1 0o 1 -1 0 0 O 0 o0 0
0 0 = 0o 0 © 0 0 0 1 0 -1 0o 1 -1
* % 0 0 -1 1 -1 1 0 -1 1 0 0 o0 0
0 * = 0o 1 -1 1 -1 0 0o -1 1 0 -1 1
0 0 = 0 0 0 0 0 o0 1 0o -1 0o 1 -1
* 0 0 -1 1 -1 1 0 0 0 0 -1 1 0
0 % 0 0 0 0 1 -1 0 0 -1 1 0 0 o0
0 * = 0 1 -1 0 0 0 0 1 -1 1 -1 0
* 0 0 -1 1 0 -1 0 1 0 0 O 0 0 0
x k% 1 -1 0 1 0 -1 -1 0 1 0o -1 1
0 0 0 0 o0 0 0 O 1 0 -1 0o 1 -1
* 0 0 -1 1 0 -1 0 1 0 0 0 0 0 0
* x 0 1 -1 0 1 -1 0 0 -1 1 -1 1 0
0 * = 0 0 0 0 1 -1 0o 1 -1 1 -1 0
* 0 0 -1 1 0 -1 0 1 0 0 o0 0 0 0
* 0 0 0 0 0 0o 0 O -1 1 0 -1 0 1
* ok ok 1 -1 0 1 0 -1 1 -1 0 1 0 -1

Table 1.3 Bases of Ker A

gives the same series when ¢ = 0, which implies fi(o), 1= 2,3,4,5 are the
same series. Therefore, we have

be(3) — be(2) = elw1122w33) /2 (—245" logya + 57 — £§7) + O(€?),

Be(a) — be(2) = e(@r1220m33) /2 (=215 logyz + £V — f§7) + O(e?),

be(5) = Pe(2) = e(@r1a22w33) /2 (25" log(yaya) + 1V — f5V) + O(€?).
The colefﬁents of € are solutions. Let us find the fourth solution. We have
lime—0 2 f2345 = 0, fasa5 = (De(5) — Pe(2)) = (Pe(3) = Pe2)) — (Pea) — Pe(2))-

Therefore, the series fosss starts with €2 and the coefficients €2 of fo345 is
the fourth solution. It is

(@1122033) /% (2(log y2) (log ya) 3 — 2 1<>g(z/2y4)f§1> + f§2>

—21og(y2) 5 + £ — 210g(ya) £V + £2 + £52)).

Example 7 Let = (1,2) and A = A(0134). We set w = (0,1,2,0). Then,
the Grobner basis of 4 with respect to this order is

0203 — D104, D103 — 0304, D3 — D20y, O3 — a0

Therefore, fake exponents are v(!) = (1/2,0,0,1/2), v® = (1/4,1,0,1/4),
B = (1/4,0,1,—1/4), v® = (-1,2,0,0). o1, #? and ¢®) are convergent
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series solutions, but ¢(* = 0. By examining in(_ywy(1a), we can find two
more solutions: x3/x1, 3 /x4, [11], [49].

Series solutions with logarithms are constructed for a class of non-generic
B’s to apply for the mirror symmetry [26], [27], [47]. For non-homogeneous
14, series solutions are divergent in most cases, but there are a class of
series solutions which are convergent. They are studied in [35] and [15]. The
Gevrey order of divergent series solutions is studied in [44], [16]. The notion
of fully supported series solutions is introduced in [25]. Rational solutions
of Hs(f) are studied in [12]. Algebraic solutions of it are studied in [7].

1.4 E(k,n)

We fix two numbers k and n satisfying n > 2k > 4. Let a; be generic
parameters satisfying Z _, oj = n—k. The hypergeometric function of type
E(k,n) is defined by the integral

(a; 2) /H Zums@ )Y dsy - - - dsg,

]17,1

where we put s; = 1 and w is a k x n matrix and C' is a bounded (k — 1)-
cell in the hyperplane arrangement defined by H?=1 Zle uijs; = 0 in the
(s2,...,sk)-space [17].

The hypergeometric function of type F(k,n) is quasi-invariant under the
action of complex torus (C*)™ and the general linear group GL(k) = GL(k,C).
In fact, we have, for h = diag(h,...,h,) € (C*)" and g € GL(k),

(a; uh) Hha] U(a;u), U(a;gu) =g U(a;u).

It follows from the quasi-invariant property and the integral representation
that the function W(a;u) satisfies a system of first order equations and a
system of second order equations respectively.

Theorem 4 [17] The function f = V(a;u) satisfies

k n
o 0
E Upp—— —oap | =0, p=1,...,n, g Uip——+ 05 | F=0, 4.,7=1,...,k,
(i—l v Auip ) p=1 " dujp v

9?2 9?
( - )f:O7 i?j:l7"‘7k7p7q:]'?"'7n

OuipOujqg  OuigOujy

We call this system of equations E(k,n).
When we restrict the hypergeometric system E(k,n) to u;; = 6;; for
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1<i<k,1<j <k, we obtain the A-hypergeometric system associated to
Alk—1l,n—k—1and f=(—a1 —1,...,—ax — L,apt1—1,...,ap_1 — 1).
We denoted it by E’(k,n). Here, u; j+r stands for the variable z;; in Section
1.1.

If ¥(a;u) is a solution of E(k,n), then ¥(a®;u®), s € &, is also a solu-
tion. This &,, symmetry leads us Kummer type relations [50]. The confluent
E(k,n) is geometrically studied and a general framework to derive Kummer
type relations are given (see [30] and its references).

1.5 Contiguity relations
1.5.1 Contiguity relations
We note the relation in the Weyl algebra D

Zazj@j —Bi | Ok = O Zaijej — B — air)

j=1 j=1

Since J commutes with [J,,, we can see that if f is a solution of H4 (8 —ax),
then Oy e f is a solution of H4(0).

We consider the ideal By which is the intersection of C[sy, ..., sq] and the
left ideal generated by O and H4(s) in D[sy, ..., sq]. When A is normal and
14 is homogeneous, this ideal can be expressed in terms of primitive support
functions.

Theorem 5 [37] The ideal By, is the principal ideal generated by

Fo(ak)*l
II II @& -o.
ceS =0

where S is a set of the facets of the convex hull of A for which Fy(ay) > 0
holds.

It follows from the theorem that if 5 & V(By), then there exists an oper-
ator Qi € D such that Q0 = 1 modH 4(3). The operators 0 and Q) give
contiguity relations for A-hypergeometric series.

The symmetry algebra introduced in [39] gives contiguity relations of A-
hypergeometric system in a general framework. The ideal By is a special
case of the b-ideal introduced in the paper.
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1.5.2 Contiguity relations for E'(k,n)

We give a contiguity relation for E'(k,n) following [43]. We use the variable
u;; instead of x;; as in Section 1.4. Put

n k
Xpa = —Uqp — Z Uag Zuipﬁiq. (1.9)

q:k+1 =1

Let p(a;u) be a solution of the system E’(k,n) with the set of parameters
a.

Theorem 6 [43]. We have Ogpp(a;u) = @(a + 14 — 1p;u), Xpap(osu) =
ol —1g+ 1piu) and XpaOap — (ap — 1)ag € Ha(S)

Introducing extra variables to hypergeometric series in several variables
was done in the pioneering work of [29] to study contiguity relations. Conti-
guity relations for the Lauricella functions F4, Fip, and F¢ are derived with
this idea and by utilizing the b-ideal By for them in [38].

1.5.3 Isomorphism among M4(()’s

We gave contiguity operators 9 and Q. If they exist, they give an isomor-
phism 0y : Mu(6 — ar) — Ma(PB).

The question if Ma(3) and Ma(f') are isomorphic or not as left D-
modules is a fundamental question. It was studied in [42, §4.4, §4.5] and
a final answer was given in [39]. Let 7 be a face of pos(A). Define

E-(B)={Ae C(ANT)/Z(ANT)|B-A€NoA+Z(ANT)}  (1.10)

Theorem 7 [39], [40, Th. 8.4.4] The left D-modules Ma(3) and Ma((3")
are isomorphic if and only if E-(8) = E;(3') for all faces T of pos(A).

The condition can be rewrited to a condition on the primitive integral
supporting function when A is normal.

Theorem 8 [39, Th 5.2] Assume A is normal and 14 is homogeneous. The
left D-module M4 () is isomorphic to Ma((3') if and only if 5 — ' € ZA
and

{o |0 is a facet and F,(8) € No} = {0 |0 is a facet and F,(3") € Ng}.
(1.11)
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1.6 Properties of A-hypergeometric equations
1.6.1 Rank formula and the Fuler-Koszul complex

The holonomic rank H () is the dimension of R/(RH4(J)) as the vec-
tor space over the field of rational functions C(x1,...,z,). Here, R is the
ring of differential operators with rational function coefficients. The rank of
H,4(pB) is equal to the normalized volume of A for generic § and we have
the inequality rank H4(3) > vol(A), [2], [18], [42]. More precise discussion
requires the Euler-Koszul complex [24], [6].

We assume that A is pointed in the subsection. For 9V € S,, = C[04, ..., dy],
we define the A-multidegree of 9V by —Av € Z¢. We denote it by deg(d%).
Its i-th component is denoted by deg;(9"). This multidegree is naturally ex-
tended to the Weyl algebra D as deg(z"0") = Au—Av. Put E; = Z?Zl a;;0;.
The multidegree of E; is 0. The identity 0"E; = E;0° — deg;(0V)0" =
(E; — deg;(0")) 0V is fundamental.

Let S be the ring C[0, ..., 0,] /14 which is isomorphic to C[t*, ..., t%] =
C[NyA]. We denote D,, ®g, Sa ~ D,,/(DnIa) by D4. We consider the com-
plex

n
1 dn—l
«

K.:OﬂDgg)ﬂpg)ﬁ... ng—ﬂﬁpgﬁ&o_

For A-homogeneous a ® b € D 4, we define (FE; — ;) o (a ®b) = (E; — 3; —
d

deg;(a ® b))a ® b. We denote the basis of D) by e;, .4, 1 < i3 < -+ <
ir < d. The boundary map dj, is defined by
D(Z) > (a®b)ei,...i, — Z (E;,—Bi.)o(a®b) (1) eg, iwngin € D(’“il).
A B eeeylk 15 2 {i1sesie )\ 45} A
i5€{i1,e ik}
(1.12)
The complex is called the Euler-Koszul complex over D 4.

The Euler-Koszul complex on D4 by E; — G;, i = 1,...,d is well-defined,
because we have (E; — ;) o (a ® O,) = (a0 (E; — 5;)) @ 1 = (a(E; — B; —
deg,; (0%+))0,)®1 = 0. The homology group H;(E—3; Sa) = H;(kerd;/Imd;_1)
of the Euler-Koszul complex has a natural A grading by the A-multidegree.
The 0-th homology group is nothing but M 4(3). This leads us to more func-
torial object to study A-hypergeometric system, which is the Euler-Koszul
homology for toric modules [24]. We fix E' — 3 and replace Sy by (A-)toric
modules. We only present an example of toric modules. Let A be A(0134)
and A be its saturation. Note that n = 4 and the multigrading is defined by

- 1 11 11
A. WemaysupposeA-(O 13 4 2>and S;i = Ds/1;. Then, we
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have a short exact sequence
0_’D4®S4 Sa —>D4®S4 SA%D4®54 SA/SA — 0

All modules are A-graded and toric modules. C'= Dy® S ; /S has the sup-
port only at the degree (1,2). We have Ho(E — 3; D4 ® S ;) ~ Ds/x5D5 @p,
M;(B) ~ M;(B) and Ho(E — 3;C) =0 (resp. = Dy ® [05]) when 3 # (1,2)
(resp. 5 =(1,2)).

Theorem 9 [2/] Put m = (0y,...,0,), which is a mazimal ideal in S, =
Cl01,...,0n].

1. If k equals the smallest homological degree © for which —f is a quasi degree
of H.,(S4), then the Euler-Koszul homology Ha_x(E — 3;S4) is non-zero
rank and H; = 0 fori > d—k. Here, vy is called the quasi degree when v is
contained in the Zariski closure of the non-zero degrees of the homology
group.

2. Hi (Sa) =0 holds for 0 <i < d, if and only if Sa is Cohen-Macaulay.

3. The rank of Ha(f3) equals to the normalized volume of A if and only if 3
is not a quasi-degree of H: (Sa).

Put £4 = > a;. The degree —a + €4 part of the local cohomology group
is Hpy'(S4)—a+e, = Homg (Extfgn (S4,Sn)a; C).

Example 8 We consider the case A = A(0134), e4 = (4,8)7. Construct
A-graded resolution of R/I4 by Schreyer’s method. Then, we have Ext* = 0
and Ext3 = C at the degree (5,10), which implies that Hi3 # 0 at the
degree —(1,2). In fact, the rank of the system is 5 when 8 = (1,2) and it is
4 when 8 # (1,2).

1.6.2 Characteristic varieity and principal A-determinant

Let I be aleft ideal in D. The initial ideal in(g 1)(I) is the ideal in C[x1, ..., Zn, &1, - - -, &0l
generated by the principal symbols of I. The ideal is called the character-

istic ideal of I, and the zero set of the ideal in C2?" is called the char-

acteristic variety of D/I and is denoted by Ch(D/I). The projection of
Ch(D/I)\V (&1, ..., &) to C™ = {x} is called the singular locus of D/I and

is denoted by Sing(D/I) (see, e.g., [42, p.36]).

Theorem 10 [18/, [20]

1. If Hi(gr(o,1) o) = 0, then the characteristic ideal of Ha(f3) is generated
by Ax& and I'y = I4|p—¢. Here, we denote by Ax€ the ideal generated by

Z?:l aijacjfj, (Z = 1, ces ,d).
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2. If 14 is Cohen-Macaulay, then the first homology above vanishes.

Characteristic varieties and micro-characteristic varieties of M4 () are com-
binatorially studied in [18], [44].

Let E 4 be the pricipal A-determinant [21]. The projection of V' ({Ax¢, I'y))\
V(&i,...,&) to C™ is expressed as V(Ey4).

Theorem 11 [21, p.300] The principal A-determinant for A(k, k') (k < k')
is the product of the determiants of all pxp minors of the matriz (x;;) where
1<p<k.

Example 9 For A = A(1,k" — 1), we have
2 K
=TT 11
i=1j=1  1<j<j’<k’

The variety V(E4) is the singular locus of H4(53).

T1j :)31]'/
T25 Tyt

1.6.3 Reducibility and monodromy groups

We consider the set U; (ZA + 7) where the union is taken over all linear
subspaces 7 of C¢ that form a boundary component of pos(A). The set is
called the resonant parameters and is denoted by Res(A).

Let R be the ring of differential operators with rational function coeffi-

cients. We consider the left R-module C(x1, ..., z,)®p, Ma(5) = R/(RHAa(B)).

If this module has a non-zero proper R-submodule, it is called reducible.

Theorem 12 [8] When 14 is homogeneous and A is not a pyramid, C(x1, ...
My (B) is reducible if and only if 3 & Res(A).

An analog of this theorem holds without the homogeneous condition. See
[45].

The irreducible quotients as D-modules of M4 () are combinatorially
discussed in [41].

The global monodromy groups are calculated for some interesting A’s. See
[31], [32], [51] for the case of A(2,2). See [34] for some of 3-dimensional Fano
polytopes related to families of K3 surfaces. Recently, a general method to
compute a subgroup of monodromy groups is proposed [9].
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