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. . . . . .

A function f (x1, . . . , xd) is called a holonomic function when f
satisfies

ri∑
k=0

aik(x1, . . . , xd)∂
k
i • f = 0, aik ∈ C[x1, . . . , xd ], i = 1, . . . , d ,

where ∂k
i • f = ∂k f

∂xki
.

R = C(x1, . . . , xd)⟨∂1, . . . , ∂d⟩

where we denote by C(x1, . . . , xd) the field of rational functions in
x1, . . . , xd . The ring R is an associative non-commutative ring and
the commuting relations are ∂i∂j = ∂j∂i and ∂ia(x) = a(x)∂i +

∂a
∂xi

for a(x) ∈ C(x1, . . . , xd).
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. . . . . .

Let I be a left ideal in R which annihilates the holonomic function
f . Then, we have

dimC(x1,...,xd ) R/I ≤
d∏

i=1

ri , (zero-dimansional over C(x)).

Let S be the set of standard monomials of a Gröbner basis of I in
R. We may suppose that S contains 1 as the first element of S .
Since the function f is holonomic, the column vector of functions
G = (sk • f | sk ∈ S)T satisfies

∂G

∂xi
= PiG , i = 1, . . . , d . (Pfaffian system)

(p, q)-th element of Pi is the coeffcient of the normal form of ∂i sp
with respect sq.
Note that each equation can be regarded as an ordinary differential
equation with respect to xi with parameters
x1, . . . , xi−1, xi+1, . . . , xd .
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Example (d = 1).
Suppose that I is generated by (∂2

1 − x1). dimC(x1)R/I = 2 and

S = {1, ∂1}. The normal of ∂1∂1 is x1 · 1. Then, P1 =

(
0 1
x1 0

)
.

(∂2
1 − x1) • f = 0, G =

(
1 • f
∂1 • f

)
∇f = (P1G )1 = G2.
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Example (d=1).
f (x) = exp(−x + 1)

∫∞
0 exp(xt − t3)dt. The function f (x) satisfies

the differential equation (3∂2
x + 6∂x + (3− x)) • f = exp(−x + 1).

S = {1, ∂x}.

dG

dx
=

(
0 1

(−3 + x)/3 −2

)
G+

(
0

exp(−x + 1)/3

)
= P(x)G+Q(x)

Problem: minimize the function f (x).
Euler’s method. We evaluate G (0) = (g(0), g ′(0))T by a
numerical integration method; Ḡ (0) = (2.427,−1.20)T .
Use the difference scheme (h is a small number).

Gk+1 = Gk ± h(P(xk)Gk + Q(xk)), xk+1 = xk ± h, G0 = G (0)
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.. Algorithm (holonomic gradient descent)

Let ε be a small positive number.
...1 Obtain a Gröbner basis of I in R and a set of standard
monomials S of the basis.

...2 Compute the matrices Pi by the normal form in R algorithm
and the Gröbner basis and the set of standard monomials.

...3 Take a point c in E as a starting point and evaluate
numerically G at x = c. Denote the value by Ḡ and put
e = c .

...4 The gradient of the target function f is
(∇f )(e) = ((P1(e)Ḡ )1, . . . , (Pd(e)Ḡ )1) where v1 denotes the
first element of the vector v .

...5 If the gradient is zero, then stop.

...6 Update e to e − ε(∇f )(e). Evaluate the value of G at the
new e numerically and update the value Ḡ . Goto 4.
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As long as the point e stays out of the locus of the singularities of
the Pfaffian equations, we can apply standard convergence
criterions for the gradient descent.
.
Theorem
..

.

. ..

.

.

If a set of operators which annihilate the holonomic function f is
given and if it is zero-dimensional over C(x), then we can apply
the algorithm HGD.

Note that the Hessian of f at e is equal to

(((∂jPi + PiPj)(e)Ḡ )1)
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.. Fisher-Bingham integral

We denote by Sn(r) the n-dimensional sphere with the radius r in
the n+1 dimensional Euclidean space. Let x be a (n+1)× (n+1)
symmetric matrix and y a row vector of length n + 1. We are
interested in the following integral with the parameters x , y , r .

F (x , y , r) =

∫
Sn(r)

exp(tT xt + yt)|dt| (1)

Here, t is the column vector (t1, . . . , tn+1)
T and |dt| is the

standard measure on the sphere. We call the integral (1) the
Fisher-Bingham integral on the sphere Sn(r).
.
Theorem
..
.
. ..

.

.

The Fisher-Bingham integral F (x , y , r) is a holonomic function.
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n = 2.

∂x11 − ∂2
y1 , ∂x12 − ∂y1∂y2 , ∂x13 − ∂y1∂y3 ,

∂x22 − ∂2
y2 , ∂x23 − ∂y2∂y3 , ∂x33 − ∂2

y3 ,

∂x11 + ∂x22 + ∂x33 − r2,

x12∂x11 + 2(x22 − x11)∂x12 − x12∂x22 + x23∂x13 − x13∂x23 + y2∂y1 − y1∂y2 ,

x13∂x11 + 2(x33 − x11)∂x13 − x13∂x33 + x23∂x12 − x12∂x23 + y3∂y1 − y1∂y3 ,

x23∂x22 + 2(x33 − x22)∂x23 − x23∂x33 + x13∂x12 − x12∂x13 + y3∂y2 − y2∂y3 ,

r∂r − 2(x11∂x11 + x12∂x12 + x13∂x13 + x22∂x22 + x23∂x23 + x33∂x33)

−(y1∂y1 + y2∂y2 + y3∂y3)− 2.
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.
Theorem
..

.

. ..

.

.

The holonomic rank (number of the standard monomials) of the
system for n = 2 is 6. A set of standard monomials in R is

1, ∂r , ∂y3 , ∂y2 , ∂y1 , ∂x33 .

http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham.
The full automatic HGD uses integration algorithms in the Weyl
algebra D.
.
Theorem
..

.

. ..

.

.

The system of differential equations for the Fisher-Bingham
integral given in the next page is zero-dimensional in R.
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∂xij − ∂yi∂yj , (i ≤ j) (2)

n+1∑
i=1

∂xii − r2, (3)

xij∂xii + 2(xjj − xii )∂xij − xij∂xjj +
∑
k ̸=i ,j

(xjk∂xik − xik∂xjk )

+yj∂yi − yi∂yj , (i < j , xkℓ = xℓk), (4)

r∂r − 2
∑
i≤j

xij∂xij −
∑
i

yi∂yi − n. (5)
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.. Application to directional statistics

Minimize a holonomic function

F (x , y , 1) exp

−
∑

1≤i≤j≤n

Sijxij −
∑
i

Siyi

 (6)

with respect to x and y for given data ((Sij)i≤j , (Si )).

To estimate the unknown parameter (x , y) in
∏N

ν=1 p(t(ν)|x , y)
(independently identically distributed) from the sample is a main
problem in statistics. An established method is the maximum
likelihood method (MLE) that maximizes a function∏N

ν=1 p(t(ν)|x , y) with respect to (x , y). The MLE is equivalent
to minimizing the function (6) in case of the Fisher-Bingham
distribution.
J. T. Kent, The Fisher-Bingham Distribution on the Sphere,
Journal of the Royal Statistical Society. Series B 44 (1982), 71–80.
A. T. A. Wood, Some notes on the Fisher-Bingham family on the
sphere, Communications in Statistics, Theory and Methods 17
(1988), 3881–3897.
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.. MLE, example

p(t, x) = exp(xt − t3), t ∈ [0,+∞)

Z (x) =

∫ +∞

0
exp(xt − t3)dt normalization constant

t1, . . . , tN : data. Example: t1 = . . . = tN = 1

N∏
k=1

p(tk , x)

Z (x)
= Z (x)−N exp

(
x

N∑
k=1

ti −
N∑

k=1

t3i

)

Z (x)−1 exp

(
x

∑N
k=1 ti
N

−
∑N

k=1 t
3
i

N

)

-4 -3 -2 -1 0 1 2 3 4 5 6

2.5

5
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.. Astronomical data

The astronomical data consist of the locations of 188 stars of
magnitude brighter than or equal to 3.0.
Minimize

F (x , y , 1) exp

−
∑

1≤i≤j≤3

Sijxij −
∑
i

Siyi


on

(x11, x12, x13, x22, x23, x33, y1, y2, y3)

∈ [−30, 10]× [−30, 10]× [−30, 10]× [−30, 10]× [−30, 20]× [−30,−0.01]

×[−30,−0.01]× [−30,−0.001]× [−30, 10]

where (S11,S12,S13,S22,S23,S33,S1,S2,S3) =
(0.3119, 0.0292, 0.0707, 0.3605, 0.0462, 0.3276,−0.0063,−0.0054,−0.0762).
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The result is that the minimum 11.68573121328159669 is taken at

x =

 −0.161 0.3377/2 1.1104/2
0.3377/2 0.2538 0.6424/2
1.1104/2 0.6424/2 −0.0928

,

y = (−0.019,−0.0162,−0.2286)
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.. Estimated distribution
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.. Analogy

Minimize F (x)exp(g(s, x)). s is derived from statistical data.
The target function satisfies a holonomic system of differential
equations.
IP GB gives a flow to the optimal value

HGD GB in R gives a flow to the optimal value

R = C(x1, . . . , xd)⟨∂1, . . . , ∂d⟩

where we denote by C(x1, . . . , xd) the field of rational functions in
x1, . . . , xd . ∂i∂j = ∂j∂i and ∂ia(x) = a(x)∂i +

∂a
∂xi

for
a(x) ∈ C(x1, . . . , xd).
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.. Future

...1 Numerical difficulties of singular locus ⇒ resolution of
singularities, series solutions around singularities.

...2 Full automatic analysis of integrals (normalization constants)
⇒ integration algorithms for D-modules.

...3 Theoretical study of normalization constants ⇒
hypergeometric differential equations.

...4 Non-linear equations for the target function ⇒ differential
algebra.

...5 Finding the minimum for polynomial approximations ⇒ SDPR
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