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Abstract. We present software packages for the holonomic gradient
method (HGM). These packages compute normalizing constants and the
probabilities of some regions. While many algorithms which compute in-
tegrals over high-dimensional regions utilize the Monte-Carlo method,
our HGM utilizes algorithms for solving ordinary differential equations
such as the Runge-Kutta-Fehlberg method. As a result, our HGM can
evaluate many integrals with a high degree of accuracy and moderate
computational time. The source code of our packages is distributed on
our web page [12]. .

Keywords: holonomic gradient method, normalizing constant, region
probability, Bingham prior, R project

1 Introduction

The numerical evaluation of the normalizing constant for a given statistical dis-
tribution is a fundamental problem in statistics. For example, the normalizing
constant of the Gaussian distribution is expressed in terms of a rational expres-
sion of a parameter of the distribution named the standard deviation. However,
normalizing constants of many interesting statistical distributions do not have
such closed expressions.
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The holonomic gradient method, HGM in short, is a general method to eval-
uate normalizing constant numerically for several parameters in the framework
of Zeilberger’s holonomic systems approach [11]. In fact, broad classes of nor-
malizing constants are holonomic functions with respect to parameters. Then,
such normalizing constants satisfy holonomic systems of linear partial differential
equations.

The HGM consists of three steps for a given normalizing constant. (1) Finding
a holonomic system satisfied by the normalizing constant. We may use compu-
tational or theoretical methods to find it. Gröbner basis and related methods
are used. (2) Finding an initial value vector for the holonomic system. This is
equivalent to evaluating the normalizing constant and its derivatives at a point.
This step is usually performed by a series expansion. (3) Solving the holonomic
system numerically. We utilize several methods in numerical analysis such as
the Runge-Kutta method of solving ordinary differential equations and solvers
of systems of linear equations.

The HGM was proposed in 2011 by a group of people including us [6] and has
given several new results. For example, the orthant probability is the normalizing
constant of the multivariate normal distribution restricted to the first orthant.
The HGM can evaluate it in a high accuracy up to the 20 dimensional case when
the mean vector is near the origin. In the 20 dimensional case, we numerically
solve an ordinary differential equation of rank 220 = 20, 148, 576.

We have developed software packages for the HGM. Packages based on com-
puter algebra systems help us to solve steps (1) and (2). We have implemented
the step (3) for the Fisher-Bingham distribution, the Bingham distribution, the
orthant probability, the Fisher distribution on SO(3), some of A-distributions,
and the distribution function of the largest root of a Wishart matrix in the
language C and/or in the system for statistics R [7]. An implementation for
the polyhedral probability is a project in progress. We find an interesting inter-
play with systems for polytopes in the project. Further references and current
implementations are listed in [12].

This paper is dedicated to Kenta Nishiyama in our memory.

2 Distributions and Algorithms

We give a brief discussion on the Bingham distribution and the orthant prob-
ability in view of the HGM in this section. As to the Fisher distributions on
SO(3), the largest roots of Wishart matrices, Fisher-Bingham distributions, and
A-distributions, we refer to papers in [12].

2.1 Bingham distribution

The Bingham distribution is a probability distribution on the (p-1)-dimensional
sphere defined as

1
Z(Σ)

exp(x>Σ−1x)µ(dx) (x ∈ Sp−1)
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where Σ is a p times p positive definite matrix, µ(dx) is the uniform measure
on the sphere, and Z(Σ) is the normalizing constant (Z(Σ) is also denoted
by c(Σ) in literatures). We denote by x> the transpose of x. We can assume
without loss of generality that the matrix Σ−1 is a diagonal matrix such as
diag(θ1, . . . , θp−1, 0)>.

In [9], the HGM for this normalizing constant is discussed, and an explicit
form of a Pfaffian equation associated with the normalizing constant has been
given. The size of the matrix in the Pfaffian equation is p. In the current im-
plementation, we evaluate the initial value for the HGM by a series expansion.
The complexity to evaluate it is proportional to the number of the terms in the
truncated series. Hence, the complexity is O(pN ). Here, we denote by N the
degree of the truncated series. Thus, the computational complexity of the HGM
for this problem is estimated as

Theorem 1. The complexity of the series expansion method and the HGM for
the normalizing constant of the Bingham distribution on the (p−1)-dimensional
sphere is bounded by

O(pN ) + O(p2) × (steps of the Runge-Kutta method).

Note that the holonomic system for the normalizing constant of the Bingham
distribution and it’s holonomic rank are not determined rigorously. There might
exist a smaller system than that in [9]. Thus, the complexity in the above the-
orem is the upper bound of the complexity. We conjecture that the above com-
plexity gives the lower bound of the complexity of the HGM for the Bingham
distributions.

We provide a package of the HGM for the system for statistics R [7]. The
function hgm.ncBingham(th, ...) in our R package hgm performs the HGM for
Bingham distributions with the deSolve package. The initial value for the HGM is
computed by the power series expansion. This function also computes derivatives
of the normalizing constant of the Bingham distribution at any specified point.
The variable th is a (p − 1)-dimensional vector which specifies the first (p − 1)
components of the parameter vector of the Bingham distribution on the (p− 1)-
dimensional sphere. The p-th parameter is assumed to be zero.

For Σ−1 = diag(1, 3, 5, 0), we can obtain the normalizing constant as

hgm.ncBingham(c(1,3,5))

after loading the package with the command library(’hgm’)

2.2 The orthant probability

The orthant probability is the probability with which the random vector, which
is normally distributed with the mean vector µ and the covariance matrix Σ,
falls in the first orthant, and it can be written as∫ ∞

0

· · ·
∫ ∞

0

1
(2π)d/2|Σ|1/2

exp
(
−1

2
(x − µ)>Σ−1(x − µ)

)
dx1 . . . dxd.
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where we denote by d the dimension.
In [3], the HGM for the orthant probability is discussed, and an explicit form

of a holonomic system and a Pfaffian equation associated with the probability is
given. The holonomic rank of the system, which equals to the size of the Pfaffian
equation, is 2d. The initial value of the HGM for the orthant probability can
be given exactly at a point and the computational complexity of the evalua-
tion of the initial value is O(1). The following complexity statement is an easy
consequence of Theorem 15 in [3], but it is fundamental.

Theorem 2. The complexity of evaluating the d-dimensional orthant probability
by the HGM is

O(22d) × (steps of the Runge-Kutta method).

The function hgm.ncorthant(sigma, mu, ...) in our R package evaluates
the orthant probability by the HGM. The first variable sigma is the covariance
matrix, and the second variable mu is the mean vector. This function calls a pro-
gram written by the language C internally, which solves an ordinary differential
equation with rank 2d by a routine in the GNU scientific library (GSL) [2].

For example, when

d = 2, Σ =
(

1 1/2
1/2 1

)
, µ =

(
1
2

)
,

the orthant probability can be computed by the following script of R:

sigma <- matrix(c(1, 0.5, 0.5, 1), nrow =2)
mu <- c(1,2)
hgm.ncorthant(sigma,mu)

In this example, the rank of the ordinary differential equation equals to 22 = 4.
The performance of our implementation for larger d will be illustrated in 3.3.

3 Implementations

3.1 Building blocks of our package

Our algorithms for the holonomic gradient method require efficient and reliable
numerical implementations of the Runge-Kutta method and solving numerically
systems of linear equations. Our package uses the GSL [2], the deSolve package
in R, BLAS, and LAPACK for this purpose.

Most of our algorithms are implemented in the language C. We provide two
interfaces for our C-code. One is a command line interface and the other interface
is R, which is a software system for statistics [7]. For example, in the problem mh
(the largest roots of Wishart matrices), the function mh cwishart gen performs
the HGM for mh. The both of the main function for the command line interface
and the interface module Rmh cwishart gen for R call the common function
mh cwishart gen.
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The system R provides an easy and strong mechanism to include C code
into the R system [10]. It is recommended by the CRAN repository policy to
minimize the size of code and make effort to provide cross-platform code. Then,
we have extracted the source code of some of the functions defined in odeiv.h in
GSL for solving ordinary differential equations, and include them in our HGM
package.

In the current implementation, both of command line interface and R in-
terface are available for the problems mh, orthant, and so3. We provide only a
command line interface for the Fisher-Bingham distribution. Because, our im-
plementation relies on linear algebra functions of the GSL and extracting these
functions for R or rewriting them in BLAS and LAPACK need some works,
which will generate some new bugs without taking relatively long time of careful
porting and debugging. We hope that R officially supports the GSL in a future.

3.2 Use of computer algebra systems for a reliable implementation

Since some ordinary differential equations for the HGM contain complicated ex-
pressions and also evaluation formulas of initial values are complicated, we utilize
computer algebra systems to avoid bugs caused by writing programs by hand
and to provide correct code. For example, our C implementation for the HGD
(holonomic gradient descent) of the Fisher-Bingham distribution is automati-
cally generated by code in Risa/Asir [8], which is a computer algebra system.
Our implementation for the Wishart distribution is firstly written in Risa/Asir
and contains several debugging and checking code of correctness of each steps
(see tk jack.rr in our package). After the code by Risa/Asir works correctly,
we translate it into code in C.

3.3 Performance

We illustrate the performance of our implementation of the orthant probability.
We evaluate the orthant probability by the HGM for Σ = ((1 + δij)/2) and

µ = 0 where δij is the Kronecker’s delta. In this case, it is known that the orthant
probability equals to 1/(d + 1). The table 1 shows the result of the HGM, the
exact value of the orthant probability, and the CPU time for each d. The HGM
is performed by the command hgm ko orthant, and it is compiled by the GNU
C compiler v.4.7.2. We performed the experiments on an Intel(R) Xeon(R) CPU
E5-4650 0 @ 2.70GHz with 252GB RAM, running Linux.

The computational time of hgm ko orthant increases rapidly when the di-
mension increases. This is a consequence of our complexity result (Theorem 2).
However, our algorithm and implementation are faster in comparison with the
existing software systems which evaluate the orthant probability with high accu-
racy. For example, the CPU time to compute the same problem by pmvnorm [5],
which is in the R package, for the case d = 10 is 61.991 seconds. The function
pmvnorm dissects an orthant probability into (d− 1)! orthoscheme probabilities,
and apply an effective iterative integration whose complexity is O(d). Thus, the
theoretical complexity of pmvnorm is proportional to d!. No other algorithms and
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Table 1. Computational experiments on hgm ko orthant

dimension HGM exact CPU time

2 0.333333331 0.333333333 0.00
3 0.249999998 0.250000000 0.00
4 0.199999998 0.200000000 0.00
5 0.166666666 0.166666667 0.02
6 0.142857142 0.142857143 0.06
7 0.125000000 0.125000000 0.14
8 0.111111111 0.111111111 0.39
9 0.100000000 0.100000000 0.91
10 0.090909091 0.090909091 2.40
20 0.047619048 0.047619048 22721.30

implementations achieve our timing with more than the 9 digits accuracy as far
as we know.

4 Applications

Normalizing constants are fundamental in statistics. In [6], we demonstrate that
Fisher’s maximal likelihood estimate can be performed by utilizing the HGM to
evaluate normalizing constants and its derivatives. The orthant probability of
multivariate normal distribution is also used in various area of statistics. In this
section, we sketch an application to Bayesian analysis.

Consider the multinomial distribution of size n

f(y|π) =
n!

y1! · · · yp!
πy1

1 · · ·πyp
p , y = (y1, . . . , yp) ∈ Zp

≥0,

p∑
i=1

yi = n,

where π = (π1, . . . , πp) belongs to the simplex ∆p−1 = {π ≥ 0 |
∑

i πi = 1}.
For the multinomial distribution, the Dirichlet prior density is often used in the
Bayesian context (e.g. [1]).

We introduce a different class of prior densities. Put Σ−1 = diag(θ1, . . . , θp)
and πi = x2

i for each i in the Bingham distribution defined in Section 2. The
random variable π = (π1, . . . , πp) has the density function

f(π) =
2π

−1/2
1 · · ·π−1/2

p e
Pp

i=1 θiπi

c(θ)
, π ∈ ∆p−1,

with respect to dπ = dπ1 · · · dπp−1, where c(θ) = Z(Σ) is the Bingham normal-
izing constant. We call it the Bingham prior density.

One of important quantities in Bayesian analysis is the marginal likelihood
fmar(y) =

∫
f(y|π)f(π)dπ (see e.g. Section 3.4 of [1]). For the Bingham prior, it

is shown that

fmar(y) =
n!

y1! · · · yp!

∏p
i=1 Γ (yi + 1

2 )
πn+p/2

c(θ, 2y + 1p)
c(θ)

, (1)
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where 1p = (1, . . . , 1) ∈ Rp, and c(θ, d) for d = (d1, . . . , dp) denotes the Bingham
normalizing constant on the (

∑p
i=1 di − 1)-dimensional sphere with the multi-

plicity index d, that is, c(θ, d) = c((θ1, . . . , θ1, . . . , θp, . . . , θp)), where θi appears
di times. The formula (1) is proved in the same way as Proposition 1 of [4]. The
other quantities such as posterior density and predictive density are written in
terms of c(θ, d) as well.

For example, if p = 4, θ = (1, 3, 5, 0) and y = (2, 0, 3, 1), then the marginal
likelihood is evaluated by the following R script

y = c(2,0,3,1); th = c(1,3,5); n = sum(y); p = length(y)
a0 = lfactorial(n) - sum(lfactorial(y))
a1 = sum(lgamma(y+1/2)) - (n+p/2)*log(pi)
a2 = hgm.ncBingham(th, d=2*y+1, withvol=TRUE, logarithm=TRUE)[1]
a3 = hgm.ncBingham(th, withvol=TRUE, logarithm=TRUE)[1]
exp(a0 + a1 + a2 - a3)

where the withvol option specifies that the total uniform measure on the sphere
is its volume (not normalized to 1) and the logarithm option specifies the output
is in the logarithmic scale. The result of the script is 0.008963549. One can check
that the total of fmar(y) over possible y’s given n is 1 (up to numerical error).

For a given data y, the hyper-parameter θ in (1) can be selected by maxi-
mizing the marginal likelihood. This maximization problem is analogous to the
maximum likelihood estimation and then the HGD [6] can be applied in princi-
ple, but details have not been studied and this MLE has not been implemented
yet in our package. It is also an interesting project in progress to derive a holo-
nomic system and a Pfaffian system for other prior densities.
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