Goal of today: Solving a linear indefinite equation in the ring of polynomials by GB
Let K be a field. $K[x]=K\left[x_{1}, \ldots, x_{n}\right]$. We use the multi-index notation, e.g., $x^{\alpha}=\prod_{i=1}^{n} x_{i}^{\alpha_{i}}$. Let $w \in \mathbf{Z}^{n}$ be a vector, which we call a weight vector. We define a total order $<_{w}$ among monomials by

$$
\begin{aligned}
x^{\alpha}<_{w} x^{\beta} \Leftrightarrow & \alpha \cdot w<\beta \cdot w \\
& \quad \text { or } \quad\left(\alpha \cdot w=\beta \cdot w \text { and } \alpha<_{\operatorname{lex}} \beta\right)
\end{aligned}
$$

where $\alpha<_{\text {lex }} \beta$ when the first non-zero component of $\beta-\alpha$ is positive.
Example. $n=2, w=(1,1)$. (We use x, y instead of x_{1}, x_{2}.)

$$
1<_{w} y<_{w} x<_{w} y^{2}<_{w} x y<_{w} x^{2}<_{w} \cdots
$$

$a x^{\alpha}<_{w} b x^{\beta}, a, b \in K$ is defined by $x^{\alpha}<_{w} x^{\beta}$ (ignore coefficients). In particular, $a x^{\alpha}={ }_{w} b x^{\alpha}$ (in the sense of order).

$$
\operatorname{in}_{<_{w}}(f)=\text { the leading term of } f \text { by the order }<_{w}
$$

Example.

$$
\operatorname{in}_{<_{w}}\left(3 x y+y^{2}+2 x\right)=3 x y
$$

For $f, g \in K[x]$, define $f<_{w} g$ iff $\operatorname{in}_{<_{w}}(f)<\operatorname{in}_{<_{w}}(g)$. Note that if $f<_{w} g$ then $h f<_{w} h g$ holds for any non-zero polynomial h.
f is called divisible by g with respect to $<_{w}$ when $\mathrm{in}_{<_{w}}(g) \mid \mathrm{in}_{<_{w}}(f)$.
Example. $3 x y+y^{2}+2 x$ is divisible by $\underline{5 x}+1$.
Assume that a term m of f is divisible by g. Rewriting f to

$$
f^{\prime}:=f-\frac{m}{\tilde{g}} g, \quad \tilde{g}=\operatorname{in}_{<_{w}}(g)
$$

is called the m-reduction of f by g and denoted by

$$
f \longrightarrow f^{\prime} \quad \text { by } g
$$

Example.

$$
\underline{3 x y}+y^{2}+2 x \longrightarrow y^{2}+\underline{2 x}-\frac{3}{5} y \longrightarrow y^{2}-\frac{3}{5} y-\frac{2}{5} \quad \text { by } 5 x+1
$$

When $w_{i}>0$ for $i=1, \ldots, n$ m-reduction stops in finite steps, because there exists only finite lattice points α in the first orthant satisfying $\alpha \cdot w=$ (a given positive integer).
Exercise 1. Prove this fact when $w_{i} \geq 0$.
Let G be a finite set of polynomials. Assume that a term m of f is divisible by a polynomial g in G. (Add a figure of a monoideal.) We reduce f by g. The reduction, which is also called the m-reduction by G, is written as

$$
f \longrightarrow f^{\prime} \quad \text { by } G
$$

If $w_{i}>0$, the m-reduction by G stops in finite steps. When the m -reductions are performed as

$$
f \longrightarrow f^{\prime} \longrightarrow f^{\prime \prime} \longrightarrow \cdots \longrightarrow \bar{f}
$$

where \bar{f} contains no divisible term by G. Then it is written as

$$
f \longrightarrow^{*} \bar{f}
$$

Example. $w=(1,1,1,1,1,1,1)$.
$t_{1}>_{w} t_{2}>_{w} y_{1}>_{w} y_{2}>_{w} y_{3}>_{w} y_{4}$.

$$
G=\left\{\underline{t_{2}}-y_{1}, \underline{t_{3}}-y_{2}, \underline{t_{1} t_{2}}-y_{3}, \underline{t_{1} t_{3}}-y_{4}\right\}
$$

$$
\begin{aligned}
& \underline{t_{1} t_{3} t_{2}} \rightarrow y_{4} t_{2} \quad \text { by } G \\
& \underline{t} 1^{t_{2}} t_{3}
\end{aligned} y_{3} t_{3} \rightarrow y_{2} y_{3} \quad \text { by } G
$$

When $f \rightarrow^{*} h$ by G, h is not necessarily unique.
Define

$$
\operatorname{sp}(f, g)=\frac{\operatorname{lcm}(\tilde{f}, \tilde{g})}{\tilde{f}} f-\frac{\operatorname{lcm}(\tilde{f}, \tilde{g})}{\tilde{g}} g
$$

where $\tilde{f}=\operatorname{in}_{<_{w}}(f)=a x^{p}, \tilde{g}=\operatorname{in}_{<_{w}}(g)=b x^{q}$, $\operatorname{lcm}(\tilde{f}, \tilde{g})=\prod_{i=1}^{n} x_{i}^{\max \left(p_{i}, q_{i}\right)}$. (Add a figure of Icm.)

Theorem (Buchberger, 50 years ago)

Assume that $w_{i} \geq 0$. We fix the order $<_{w}$. When the S-pair criterion

$$
\operatorname{sp}\left(g_{i}, g_{j}\right) \longrightarrow^{*} 0 \quad \text { by } G
$$

holds for any $g_{i}, g_{j} \in G, i \neq j$, we have the following properties.
(1) (Standard representationi) For any $f \in\langle G\rangle$, there exist $h_{i} \in K[x]$ such that

$$
f=\sum h_{i} g_{i} \quad \text { and } \quad f \geq{ }_{w} h_{i} g_{i}
$$

(2) (Ideal membership) For $f \in\langle G\rangle$ we always have $f \longrightarrow{ }^{*} 0$ by G
(3) If $K[x] \ni f \longrightarrow^{*} u$ by G, then u is unique, which is called the normal form of f by G and $<_{w}$.

Example TGB.

$$
\begin{aligned}
G= & \left\{\underline{t_{2}}-y_{1}, \underline{t_{3}}-y_{2}, \underline{t_{1} y_{1}}-y_{3},\right. \\
& \left.\underline{t_{1} y_{2}}-y_{4}, \underline{y_{1} y_{4}}-y_{2} y_{3}\right\}
\end{aligned}
$$

The set G satisfies the S-pair criterion.

$$
\begin{aligned}
& t_{1} t_{2} t_{3} \rightarrow t_{1} t_{3} y_{1} \rightarrow t_{1} y_{1} y_{2} \rightarrow y_{2} y_{3} \\
& t_{1} t_{2} t_{3} \rightarrow t_{1} t_{2} y_{2} \rightarrow t_{2} y_{4} \rightarrow y_{1} y_{4} \rightarrow y_{2} y_{3}
\end{aligned}
$$

Confluence of the m-reduction.

Since $\operatorname{sp}\left(g_{1}, g_{2}\right) \rightarrow^{*} 0$ by G, we have

$$
\operatorname{sp}\left(g_{1}, g_{2}\right)=c_{1} g_{1}-c_{2} g_{2}=\sum s_{i} g_{i}
$$

where $c_{1} g_{1}={ }_{w} c_{2} g_{2}>{ }_{w} s_{i} g_{i}$. Before proceeding to the proof, we introduce the important construction. We call the vector

$$
\left(s_{1}-c_{1}, s_{2}+c_{2}, s_{3}, s_{4}, \ldots\right)
$$

the syzygy vector of the S-pair $\operatorname{sp}\left(g_{1}, g_{2}\right)$ and denote it by $\operatorname{syzsp}\left(g_{1}, g_{2}\right)$. We have $\operatorname{syzsp}\left(g_{i}, g_{j}\right) \cdot G=0$ where G is regarded as a vector $\left(g_{1}, g_{2}, \ldots\right)$. Suppose that $f=\sum h_{i} g_{i}$. By changing indexes, we assume that

$$
h_{1} g_{1}={ }_{w} h_{2} g_{2}={ }_{w} \cdots={ }_{w} h_{k} g_{k}>_{w} h_{k+1} g_{k+1} \geq_{w} \cdots
$$

holds. If $k=0$, then we have $f \geq_{w} h_{i} g_{i}$. We assume that $k>0$. Since $\mathrm{in}_{<_{w}}\left(h_{1} g_{1}\right)={ }_{w} \mathrm{in}_{<_{w}}\left(h_{2} g_{2}\right)$, there exists $m=a x^{\alpha}$ such that $m \operatorname{in}_{<_{w}}\left(c_{1} g_{1}\right)=\operatorname{in}_{<_{w}}\left(h_{1} g_{1}\right)$.

Multiplying m to the syzygy of the S-pair $\operatorname{syzsp}\left(g_{1}, g_{2}\right)$ and adding it to the vector $\left(h_{1}, h_{2}, \ldots\right)$, we construct a new h^{\prime} as

$$
h^{\prime}=\left(h_{1}+s_{1} m-c_{1} m, h_{2}+m\left(s_{2}+c_{2}\right), h_{3}+m s_{3}, h_{4}+m s_{4}, \ldots\right) .
$$

Since $h_{1}^{\prime} g_{1}<_{w} h_{1} g_{1}$ and $h_{i}^{\prime} g_{i} \leq_{w} h_{i} g_{i}$ for $i \geq 2, k$ descreases or $\max _{<_{w}}\left(h_{i}^{\prime} g_{i}\right)$ decreases for the new h^{\prime}. Repeating this procedure, we obtain (1) in finite steps.

Conside the special case of $\sum h_{i} g_{i}=0$. The important consequence of this proof is that the solution space of the linear indefinite equation (syzygy equation)

$$
\operatorname{syz}(G)=\left\{h \in K[x] \mid \sum h_{i} g_{i}=0\right\}
$$

is generated by the syzygies of the S-pairs $\operatorname{syzsp}\left(g_{i}, g_{j}\right)$. Exercise 2. Find the generators of the solutions of the linear indefinite equation for G in the Example TGB.

