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Goal of today: Solving a linear indefinite equation in the ring of
polynomials by GB
Let K be a field. K [x ] = K [x1, . . . , xn]. We use the multi-index
notation, e.g., xα =

∏n
i=1 x

αi
i . Let w ∈ Zn be a vector, which we

call a weight vector . We define a total order <w among
monomials by

xα <w xβ ⇔ α · w < β · w
or (α · w = β · w and α <lex β)

where α <lex β when the first non-zero component of β − α is
positive.
Example. n = 2, w = (1, 1). (We use x , y instead of x1, x2.)

1 <w y <w x <w y2 <w xy <w x2 <w · · ·

axα <w bxβ, a, b ∈ K is defined by xα <w xβ (ignore coefficients).
In particular, axα =w bxα (in the sense of order).
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in<w (f ) = the leading term of f by the order <w

Example.
in<w (3xy + y2 + 2x) = 3xy

For f , g ∈ K [x ], define f <w g iff in<w (f ) < in<w (g). Note that if
f <w g then hf <w hg holds for any non-zero polynomial h.
f is called divisible by g with respect to <w when in<w (g)|in<w (f ).
Example. 3xy + y2 + 2x is divisible by 5x + 1.
Assume that a term m of f is divisible by g . Rewriting f to

f ′ := f − m

g̃
g , g̃ = in<w (g)

is called the m-reduction of f by g and denoted by

f −→ f ′ by g

Example.

3xy + y2 + 2x −→ y2 + 2x − 3

5
y −→ y2 − 3

5
y − 2

5
by 5x + 1
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When wi > 0 for i = 1, . . . , n m-reduction stops in finite steps,
because there exists only finite lattice points α in the first orthant
satisfying α · w = (a given positive integer).
Exercise 1. Prove this fact when wi ≥ 0.
Let G be a finite set of polynomials. Assume that a term m of f is
divisible by a polynomial g in G . (Add a figure of a monoideal.)
We reduce f by g . The reduction, which is also called the
m-reduction by G , is written as

f −→ f ′ by G

If wi > 0, the m-reduction by G stops in finite steps. When the
m-reductions are performed as

f −→ f ′ −→ f ′′ −→ · · · −→ f̄

where f̄ contains no divisible term by G . Then it is written as

f −→∗ f̄
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Example. w = (1, 1, 1, 1, 1, 1, 1).
t1 >w t2 >w y1 >w y2 >w y3 >w y4.

G = {t2 − y1, t3 − y2, t1t2 − y3, t1t3 − y4}

t1t3t2 → y4t2 by G

t1t2t3 → y3t3 → y2y3 by G

When f →∗ h by G , h is not necessarily unique.
Define

sp(f , g) =
lcm(f̃ , g̃)

f̃
f − lcm(f̃ , g̃)

g̃
g

where f̃ = in<w (f ) = axp, g̃ = in<w (g) = bxq,

lcm(f̃ , g̃) =
∏n

i=1 x
max(pi ,qi )
i . (Add a figure of lcm.)
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.
Theorem (Buchberger, 50 years ago)
..

......

Assume that wi ≥ 0. We fix the order <w . When the S-pair
criterion

sp(gi , gj) −→∗ 0 by G

holds for any gi , gj ∈ G, i ̸= j , we have the following properties.
...1 (Standard representationi) For any f ∈ ⟨G ⟩, there exist
hi ∈ K [x ] such that

f =
∑

higi and f ≥w higi

...2 (Ideal membership) For f ∈ ⟨G ⟩ we always have f −→∗ 0 by
G.

...3 If K [x ] ∋ f −→∗ u by G, then u is unique, which is called the
normal form of f by G and <w .
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Example TGB.

G = {t2 − y1, t3 − y2, t1y1 − y3,

t1y2 − y4, y1y4 − y2y3}

The set G satisfies the S-pair criterion.

t1t2t3 → t1t3y1 → t1y1y2 → y2y3

t1t2t3 → t1t2y2 → t2y4 → y1y4 → y2y3

Confluence of the m-reduction.
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.. Proof

. Since sp(g1, g2) →∗ 0 by G , we have

sp(g1, g2) = c1g1 − c2g2 =
∑

sigi

where c1g1 =w c2g2 >w sigi . Before proceeding to the proof, we
introduce the important construction. We call the vector

(s1 − c1, s2 + c2, s3, s4, . . .)

the syzygy vector of the S-pair sp(g1, g2) and denote it by
syzsp(g1, g2). We have syzsp(gi , gj) · G = 0 where G is regarded
as a vector (g1, g2, . . .).
Suppose that f =

∑
higi . By changing indexes, we assume that

h1g1 =w h2g2 =w · · · =w hkgk >w hk+1gk+1 ≥w · · ·

holds. If k = 0, then we have f ≥w higi . We assume that k > 0.
Since in<w (h1g1) =w in<w (h2g2), there exists m = axα such that
m in<w (c1g1) = in<w (h1g1).



. . . . . .

Multiplying m to the syzygy of the S-pair syzsp(g1, g2) and adding
it to the vector (h1, h2, . . .), we construct a new h′ as

h′ = (h1 + s1m − c1m, h2 +m(s2 + c2), h3 +ms3, h4 +ms4, . . .).

Since h′1g1 <w h1g1 and h′igi ≤w higi for i ≥ 2, k descreases or
max<w (h

′
igi ) decreases for the new h′. Repeating this procedure,

we obtain (1) in finite steps.
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Conside the special case of
∑

higi = 0. The important
consequence of this proof is that the solution space of the linear
indefinite equation (syzygy equation)

syz(G ) = {h ∈ K [x ] |
∑

higi = 0}

is generated by the syzygies of the S-pairs syzsp(gi , gj).
Exercise 2. Find the generators of the solutions of the linear
indefinite equation for G in the Example TGB.


