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Abstract : We consider bases of Pfaffian systems for A-hypergeometric sys-
tems. These are given by Gröbner deformations, they also provide bases for
twisted cohomology groups. For a hypergeometric system associated with a
class of order polytopes, these bases have a combinatorial description. The size
of the bases associated with a subclass of the order polytopes has a growth rate
of polynomial order.

1 Introduction

The gamma distribution in statistics is a probability distribution on t ∈ (0, +∞)
with two parameters γ > 0 (shape) and x > 0 (rate). The probability density
function is written as exp(−xt)tγ−1/Φ(γ; x) where the normalizing constant Φ
can be expressed in terms of the gamma function as

Φ(γ;x) =
∫ +∞

0

exp(−xt)tγ−1dt = x−γΓ(γ).

Numerical evaluation of the Gamma function is an important problem to apply
the Gamma distribution to problems in statistics. In [12], [22], a new method
to evaluate numerically normalizing constants for a class of unnormalized dis-
tributions was proposed. It is the holonomic gradient method (HGM). The key
step of this method is to construct a Pfaffian system of differential or difference
equations associated to the normalizing constant.

In a series of papers, we are going to study numerical evaluations of A-
hypergeometric functions regarded as a generalization of the gamma and the
beta distributions by the HGM, which leads us interesting mathematical prob-
lems. We will discuss on one of them, which is a method to construct bases of
Pfaffian systems associated to A-hypergeometric functions.

Let g(x, t) =
∑

a∈A xata, ta = ta1
1 · · · tad

d be a generic sparse polynomial
in t = (t1, . . . , td) with the support on a finite set of points A ⊂ Zd. The
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coefficients xa, a ∈ A are denoted by xi, i = 1, . . . , n. The function defined by
the integral

Φ(x) =
∫

C1

g(x, t)αtγdt, or Φ(x) =
∫

C2

exp(g(x, t))tγdt, dt = dt1 · · · dtd

over a cycle Ci in the t-space is called an A-hypergeometric function of x with
parameters α ∈ C, γi ∈ C [1], [9], [11]. It is known that the A-hypergeometric
function satisfies a system of linear partial differential equations in x, which is
called the A-hypergeometric system. The A-hypergeometric system is a holo-
nomic system, and the operators of the system generate a zero-dimensional ideal
in the ring of differential operators with rational function coefficients (see, e.g.,
[13, Chapter 6]). A-hypergeometric systems have been studied for the past 25
years (see, e.g., [10], [11], [26]), and they have applications in many fields.

The function g(x, t)αtγ/Φ(x) or exp(g(x, t))tγ/Φ(x) can be regarded as a
probability distribution function on Ci with parameters x, α, γ satisfying cer-
tain conditions. This distribution, which we will call the A-distribution, is a
generalization of the beta distribution or the gamma distribution. In this con-
text, the function Φ(x) is called the normalizing constant of the A-distribution.
In [12], [13], [22], some new statistical methods were proposed. These were the
holonomic gradient method (HGM) and the holonomic gradient descent (HGD).
The HGM is a method for numerically evaluating the normalizing constant,
which is a function of the parameters x, for a given unnormalized probability
distribution, and the HGD uses the HGM to obtain the maximum likelihood es-
timate. The key step for both of these methods is to construct a Pfaffian system
associated with the normalizing constant. The size of the Pfaffian system deter-
mines the complexity of the HGM and the HGD (see, e.g., [19]). The HGM and
HGD lead us to the following fundamental goals for applying A-hypergeometric
systems to statistics.

1. Find an efficient method for constructing a Pfaffian system associated with
a given A-hypergeometric system.

2. Find a subclass of A-hypergeometric systems for which the associated
Pfaffian systems are of moderate size.

Let us turn into more precise statements of the mathematical problem which
will be discussed in this paper. Let F be a vector-valued function in x1, . . . , xn.
We suppose the length of F is r and that F is a column vector. Let Qi(x),
i = 1, . . . , n, be r × r matrices satisfying

∂Qi

∂xj
+ QiQj =

∂Qj

∂xi
+ QjQi

for all i 6= j. The system of linear differential equations

∂F

∂xi
= Qi(x)F, i = 1, . . . , n
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is called a Pfaffian system. We also call the system of linear differential oper-
ators ∂

∂xi
− Qi a Pfaffian system. The number r is called the size or the rank

of the Pfaffian system. For a given zero-dimensional left ideal in the ring of
differential operators with rational function coefficients, it is well known that
an associated Pfaffian system can be obtained using a Gröbner basis method
and some computer algebra systems can perform this translation (see, e.g., [22,
Appendix]). However, in general, this computation is difficult, and we wish to
provide an efficient method for translating the A-hypergeometric system into a
Pfaffian system.

Twisted cohomology groups can be used as a geometric method for finding
a Pfaffian system associated with a given definite integral that contains param-
eters (see, e.g., the book by Aomoto-Kita [3, Chapter 3, §8]). This approach is
as follows: (1) obtain a basis for a twisted cohomology group, and (2) calculate
the Pfaffian system associated with that basis. We will use this approach to
obtain a Pfaffian system, and in this paper, we consider the step (1).

Gel’fand, Kapranov, and Zelevinsky expressed A-hypergeometric functions
with regular singularities as pairings of twisted cycles and twisted cocycles [11].
Esterov and Takeuchi expressed confluent A-hypergeometric functions as pair-
ings of rapid-decay twisted cycles and twisted cocycles [9]. The cohomology
groups that come from geometry and are associated with A-hypergeometric
systems were discussed by Adolphson and Sperber [2]. The next step is to
obtain explicit bases for these twisted cohomology groups. Orlik and Terao
provided the βnbc bases for the twisted cohomology groups associated with
hyperplane arrangements [25] (see also Remark 3). Aomoto, Kita, Orlik, and
Terao [4] provided a basis for a class of confluent hypergeometric integrals. In
this paper, we will give a computational method for determining the bases of
the twisted cohomology groups associated with generic sparse polynomials or
any A-hypergeometric system, and we will also give a combinatorial method for
a class of generic sparse polynomials.

Let Rn be the ring of differential operators with rational function coefficients
in K(x) of n-variables x = (x1, . . . , xn) where K is a field of characteristic 0.
The first step in finding a Pfaffian system associated with a zero-dimensional
left ideal I in Rn is to obtain a basis for Rn/I as a K(x)-vector space. It is well
known that a basis can be obtained by computing a Gröbner basis of I in Rn.

Definition 1 Suppose that a left ideal I of Rn is zero-dimensional. Let {u1, . . . , ur}
be a basis of Rn/I as a K(x) vector space and Qi(x) be r× r matrix satisfying

∂
∂xi

U ≡ QiU mod I, U = (u1, . . . , ur)T . The system of linear differential opera-
tors ∂/∂xi − Qi, i = 1, . . . , n is called a Pfaffian system for the basis {ui} and
the basis is called the basis of the Pfaffian system.

In Theorem 1, we show that standard monomials for an ideal in a polynomial
ring give bases and provide an algorithm that is more efficient than computing
the Gröbner basis of I itself. In Theorems 2 and 3, we show that this gives a
basis of the twisted cohomology group.

Our theorems are not only useful for computations, but they also pose in-
teresting theoretical problems in commutative algebra and combinatorics. We
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study the hypergeometric system associated with a class of order polytopes (see,
e.g., [15]). We prove that bases of Pfaffian systems or twisted cohomology groups
have combinatorial descriptions (Theorems 4 and 7). The size of the Pfaffian
system associated with a subclass of the order polytopes has a growth rate of
polynomial order (Theorem 6). We expect that our results will yield a new class
of exponential probability distributions for which we can efficiently apply the
holonomic gradient method (HGM) and the holonomic gradient descent (HGD).
Construction algorithms for Pfaffian systems, utilizing the results of this paper
and examples of numerical evaluations, will be discussed in next papers.

2 Bases for the Pfaffian System

We denote by A = (aij) a d×n-matrix whose elements are integers. We suppose
that the set of the column vectors of A spans Zd. Let s1, . . . , sd be indetermi-
nates. Let D(s) be the Weyl algebra

D(s) = C(s1, . . . , sd)〈x1, . . . , xn, ∂1, . . . , ∂n〉, ∂i = ∂/∂xi

over the field C(s) = C(s1, . . . , sd).

Definition 2 ([10], [26, p.105])

1. The ideal in C[∂1, . . . , ∂n] generated by

n∏

i=1

∂µi

i −
n∏

j=1

∂
νj

j (1)

(with µ, ν ∈ Nn
0 running over all µ, ν such that Aµ = Aν).

is called the affine toric ideal and is denoted by IA.

2. The left ideal in D(s) generated by the elements of IA and

Ei − si :=
n∑

j=1

aijxj∂j − si, (i = 1, . . . , d) (2)

is called the A-hypergeometric ideal or system with indefinite parameters
{si}. The left ideal is denoted by HA(s).

For complex parameters βi, the system of linear differential equations (Ei −
βi)f = 0 (i = 1, . . . , d), (∂µ−∂ν)f = 0 (Aµ = Aν) is called the A-hypergeometric
system of differential equations or just the A-hypergeometric system.

Let Rn be the ring of differential operators with rational function coefficients

Rn = C(s, x)〈∂1, . . . , ∂n〉. (3)

We are interested in bases of Rn/(RnHA(s)) as a vector space over the field
C(s, x) = C(s1, . . . , sd, x1, . . . , xn). Any basis of the vector space yields an
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associated Pfaffian system or an integrable connection associated with HA(s).
Let u1, . . . , ur be a basis of Rn/(RnHA(s)). For uj , there exist rational functions
pk

ij ∈ C(s, x) such that ∂iuj ≡ ∑r
k=1 pk

ijuk modRnHA(s). The action of a
differential operator u on a function F is denoted by u • F . The system of
differential equations ∂i • F = (pk

ij | 1 ≤ j, k ≤ r)F , where F is a vector valued
function of size r, is called a Pfaffian system, and {ui} is the basis of the Pfaffian
system (Definition 1).

Let w be a vector in Zn. For an ideal I in C[∂1, . . . , ∂n], we denote by inw(I)
the ideal generated by inw(`), ` ∈ I, which is the sum of the highest w-order
terms in `. The ideal is called the initial ideal of I for the weight vector w. For
a left ideal J in D(s) and u, v ∈ Zn such that u + v ≥ 0, the initial ideal of J ,
which is denoted by in(u,v)(J), is analogously defined (see, e.g., [26, p.4]). It is
known that in(−w,w)(HA(s)) is generated by inw(IA) and Ei − si, i = 1, . . . , d
[26, Th. 3.1.3].

Bases of Rn/(RnHA(s)) can be described by simpler quotients as in the
following theorem.

Theorem 1 Let w ∈ Zn be a generic weight vector for the affine toric ideal
IA such that deg inw(IA) = deg IA. Let u1, . . . , ur be a monomial basis of
Rn/(RnJ), where the left ideal J is generated by inw(IA) and Ei−si, i = 1, . . . , d
in Rn. Then, the set {u1, . . . , ur} is a basis of the vector space Rn/(RnHA(s)).

Proof . We denote by r the normalized volume of A. Since the si are inde-
terminate, the holonomic ranks of J and HA(s) are r by Adolphson’s theorem
(see, e.g., [1], [26]). In other words, we have dimC(s,x)Rn/(RnHA(s)) = r and
dimC(s,x)Rn/J = r.

We may assume that the ui are expressed as monomials in terms of Euler
operators θj = xj∂j . When we regard J as a system of linear differential
equations, it has r linearly independent solutions of the form xρ, where ρ ∈
C(s)n. We denote them by gi = xρ(i), i = 1, . . . , r. Since the gi are linearly
independent solutions, the Wronskian determinant det(ui •gj) is not identically
equal to 0. The solution gj can be extended to a solution fj of HA(s) such that
gj is the leading monomial of fj with respect to the weight vector w (see, e.g.,
[23], [26, Chapters 2 and 3]). The series fj is expressed as fj = gj

∑
`∈Mj

C`x
`,

C0 = 1, where Mj denotes the set of lattice points in a cone and C` is a constant
belonging to C(s). The series converges in the space of convergent power series
gj · O(U){Mj}, where U is an open set in the s-space and O(U) is the space
of holomorphic functions on U [23]. We replace xi by xit

wi for all i in fj and
denote by xtw the vector (x1t

w1 , . . . , xntwn). From the construction algorithm
of fj , we may assume that fj(xtw) = gj(xtw)(1+O(t)) when t → 0 as a function
of t when x is fixed and s lies in U .

Let us prove W = det(ui • fj) 6≡ 0. We denote by ui(ρ(j)) the constant
(ui • xρ(j))/xρ(j). Under this notation, we have x−ρ(j)ui • gj = ui(ρ(j)) and

(x−ρ(j)(ui • fj))(xtw) =
∑

`∈Mj

ui(ρ(j) + `)C`x
`t`w. (4)
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Note that `w > 0 for ` 6= 0 and ` ∈ Mj . Therefore, we have

det(x−ρ(j)ui • fj)(xtw) = det(x−ρ(j)ui • gj)(xtw) + O(t) (5)

from (4) when x is fixed and t → 0. This implies that the Wronskian determinant
det(ui•fj) =

(∏
j xρ(j)

)
det(x−ρ(j)ui•fj) is not identically equal to 0. Therefore

the ui are linearly independent in Rn/(RnHA(s)). Q.E.D.

Let M be a monomial ideal in C[∂]. When M is generated by {∂α}, the
distraction M̃ ⊂ C[θ] is generated by

∏n
i=1 θi(θi − 1) · · · (θi − αi + 1), where

θi = xi∂i [26, p.68]. Let M = inw(IA). Then, the ideal J in Theorem 1 is
generated by M̃ and

∑n
j=1 aijθj − si, i = 1, . . . , d [26, Sec. 2.3, Prop. 3.1.5].

This leads us to the following corollary.

Corollary 1 Retain the assumptions of Theorem 1. Let J̃ be the ideal generated
by M̃ and

∑
aijθj−si, i = 1, . . . , d in the polynomial ring C(s)[θ] over the field

C(s). The set of the monomial basis of C(s)[θ]/J̃ gives a basis of Rn/RnHA(s)
by the replacement θi = xi∂i.

Remark 1 Theorem 1 and Corollary 1 give an efficient method to find bases
for Pfaffian systems. Let w be a vector in Zn. It is shown in [26, p.6 and Th.
3.1.3] that the set of <w-Gröbner basis of IA and Ei−si’s is a <(−w,w)-Gröbner
basis of HA(s) in the Weyl algebra D(s). Let <1 be a term order in the ring
of differential operators with rational function coefficients Rn and we extend
it to an order < on D(s) by a block ordering as xα∂β < xα′∂β′ if and only if
∂β <1 ∂β′ or (β = β′ and xα <2 xα′) where <2 is a term order in C(s)[x]. It
is known that any <-Gröbner basis in D(s) is a <1-Gröbner basis in Rn (see,
e.g., [13, Th 6.9.3]). This implies that Gröbner bases by block orders in the
Weyl algebra can be regarded as Gröbner bases in Rn. Although the <(−w,w)-
Gröbner basis of HA(s) has a simple form, Gröbner bases for block orders are

not as simple as it in general. For example, set A =
(

1 1 1
0 1 2

)
. The set

G = {∂1∂3−∂2
2 , E1−s1 := x1∂1+x2∂2+x3∂3−s1, E2−s2 := x2∂2+2x3∂3−s2}

is a <(−w,w)-Gröbner basis for any w ∈ Z3. On the other hand, the Gröbner fan
of HA(s) in the homogenized Weyl algebra [26, Sec. 2.1] when s is specialized
to (1/2, 1/3) 1 consists of 26 maximal dimensional cones and only one of them
stands for the Gröbner basis of the 3 elements and other cones stand for more
complicated Gröbner bases. For example, when <1 is the graded lexicographic
order, the Gröbner basis is the union of G and

{ −2x1∂
2
2 − 2x2∂2∂3 − 2x3∂

2
3 − ∂3,

−12x1x3∂2∂3 − 6x2x3∂
2
3 − 4x1∂2 − 7x2∂3,

g6 := 6x2
2x3∂

2
3 − 24x1x

2
3∂

2
3 + 4x1x2∂2 + 7x2

2∂3 − 20x1x3∂3}
1Computing the Gröbner fan with indeterminates si is not easy on our software “kan/sm1

gfan.sm1 package (http://www.openxm.org)”. Then, we specialize si’s to numbers.
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The corresponding Gröbner basis in R3 is {E1 − s1, E2 − s2, g6}. The operator
g6 does not have a simple form even in this case. The set of the standard
monomials for a Gröbner basis is the set of the monomials which are irreducible
by the division in terms of the Gröbner basis. The theory of Gröbner basis tells
that the set of the standard monomials gives a basis of the quotient ring by the
ideal standing for the Gröbner basis as a vector space over the coefficient field.
Theorem 1 and Corollary 1 claim that a basis of Rn/RnHA(s) can be obtained
by a computation of a Gröbner basis in the polynomial ring and we do not need
a computation of a Gröbner basis in Rn. We can expect the former method is
more efficient than the latter method of computing a Gröbner basis in Rn to
obtain a basis of the quotient space. In fact, our computational experiments in
[16] and [24, Sec. 6] support this expectation.

3 Bases of Twisted Cohomology Groups

Let A1 = (a1, . . . , an1), . . . , Ak = (ank−1+1, . . . , ank
), ai ∈ Zδ. To each matrix

Aj , we associate a generic sparse polynomial in t

fj(x, t) =
nj∑

i=nj−1+1

xit
ai , (6)

where tb =
∏δ

i=1 tbi
i . For parameters α1, . . . , αk and γ1, . . . , γδ, we consider the

integral

Φ(α, γ; x) =
∫

C

P (x, t)dt1 · · · dtδ, P (x, t) =
k∏

j=1

fj(x, t)αj tγ (7)

for a suitable twisted cycle C [11, 2.2]. The function Φ is satisfied by the A-
hypergeometric system for

A =




1 · · · 1 0 · · · 0 0 · · · 0
0 · · · 0 1 · · · 1 0 · · · 0
0 · · · 0 0 · · · 0 0 · · · 0
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
0 · · · 0 0 · · · 0 1 · · · 1
a1 · · · an1 an1+1 · · · an2 ank−1+1 · · · ank




(8)

and β = (α1, . . . , αk,−γ1 − 1, . . . ,−γδ − 1)T , where we assume that the rank of
A is maximal [11]. Set P ′ = P |α=γ=1. Let n =

∑k
i=1 ni, and define a projection

p by
p : Cδ+n \ V (P ′) 3 (x, t) 7→ x ∈ Cn.
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We regard P as a function in t = (t1, . . . , tδ) with the parameter vector x. Define
the connection ∇ with rational function coefficients by

∇ = dt +
δ∑

j=1

(
∂P

∂tj
/P

)
dtj (9)

where dt is the exterior derivative with respect to the variables t1, . . . , tδ.
We fix a parameter vector x. Then, p−1(x) is a complement in Cδ of the

algebraic variety V (P ′) where P ′ is regarded as a polynomial in t. The (rational)
twisted cohomology group Hδ(p−1(x),∇) is defined by

C[t1, . . . , tδ, 1/P ′]dt1 ∧ · · · ∧ dtδ

∇
(∑δ

i=1 C[t1, . . . , tδ, 1/P ′] ∧j 6=i dtj

) (10)

which is a C-vector space. When we say a basis of the twisted cohomology
group, it means that a basis of the cohomology group as the C vector space.

Theorem 2 Assume that the matrix A is expressed as (8). Let α, γ be generic
complex parameters, and let {u1, . . . , ur} be a basis as given in Theorem 1. Then
the set of rational expressions {(ui •P )/P} is a basis of the twisted cohomology
group Hδ(p−1(x),∇) when x lies outside of an analytic set.

We mean by “generic complex parameters” parameters such that a set of
logarithm free solutions [26, Sec. 3.4] spans the solution space when we specialize
s to the parameter vector β in the proof of Theorem 1.

Proof . It follows from the local triviality theorem [29, 5.1 Corollaire] that
the projection p is a locally trivial map on a Zariski open subset U of Cn. Take
a point x0 in U . Then the inverse image p−1(U ′) of a small neighborhood U ′ of
x0 is isomorphic, as a smooth manifold, to the direct product of p−1(x0)× U ′.
Therefore, we can form a basis from the twisted homology group Hδ(p−1(x),Px),
x ∈ U ′ of the form

∑
ci∆i ⊗ P , where ci is a constant that does not depend

on x and ∆i is a smooth simplex that does not depend on x. Here, Px is the
local system defined by P at x. Note that Px and Px′ are isomorphic for any
x, x′ ∈ U ′.

Let {u1, . . . , ur} be a basis of Rn/(RnHA(s)) as given in Theorem 1. For
generic parameters α and γ and a twisted cycle Cj =

∑
k cjk∆jk⊗P , where cjk

and ∆jk does not depend on the parameter x, the integral

ui • Φ(α, γ;x) =
∑

cjk

∫

∆jk

ui • Pdt =
∑

cjk

∫

∆jk

ui • P

P
Pdt

can be regarded as a pairing 〈ϕi, Cj〉 of the twisted cocycle ϕi = ui•P
P dt ∈

Hδ(p−1(x),∇) and the twisted cycle Cj . Since the matrix-valued function
(〈ϕi, Cj〉) is a fundamental set of solutions of the Pfaffian system for the A-
hypergeometric system HA(β), its determinant does not vanish away from an
analytic set. This implies that the pairing of Hδ(p−1(x),∇) × Hδ(p−1(x),Px)
is perfect away from the analytic set in the x space. Thus, the set ui • P/P is
a basis of the twisted cohomology group. Q.E.D.
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We consider general A-hypergeometric systems without assuming the special
form of A in (8). We put

g(x, t) =
n∑

i=1

xit
ai , tai =

d∏

j=1

t
(ai)j

j

where ai’s are column vectors of the matrix A = (aij) and (ai)j = aji denotes
the j-th element of the vector ai. Define a projection p by

p : (C∗)d+n 3 (x, t) 7→ x ∈ Cn

We regard g as a function in t = (t1, . . . , td) with the parameter vector x. Let
γ1, . . . , γd be complex numbers. Define the connection ∇ with rational function
coefficients and the twisted cohomology group by

∇ = dt+
d∑

i=1

(
∂g

∂ti
+

γi

ti

)
, Hd(p−1(x),∇) =

C[t±1 , . . . , t±d ]dt1 ∧ · · · ∧ dtd

∇
(∑d

i=1 C[t±1 , . . . , t±d ] ∧j 6=i dtj

) .

Theorem 3 Let γ = (γi) be generic complex parameter vector and let {u1, . . . , ur}
be a basis given in Theorem 1. Then the set of rational forms

ϕi =
ui • exp(g)tγdt

exp(g)tγ
, i = 1, . . . , r

is a basis of the twisted cohomology group Hd(p−1(x),∇) when x lies outside of
an analytic set.

Proof . Our proof relies on the theory of rapid decay homology groups
and confluent A-hypergeometric systems. It follows from Esterov-Takeuchi
[9] and the generic condition on the parameter γ that we can form a basis
C from the rapid decay homology cycles cx ⊗ exp(g)tγ (cx is the support set)
such that

∫
cx

exp(g)tγdt, cx ⊗ exp(g)tγ ∈ C span the solution space of the A-
hypergeometric system for βi = −γi − 1 on Cn \ D where D is the algebraic
set defined by the non-degeneracy condition of g (see, e.g., [9, Def 2.3]). In
particular, ]C = r (the normalized volume of A). Hien and Roucairol [18, Th
3.5 and its proof] prove that the integration over the rapid decay cycles and the
differentiation with respect to xi can be exchanged in this case. In other words,
we have

ui •
∫

cx

exp(g)tγdt =
∫

cx

ui • exp(g)tγ

exp(g)tγ
exp(g)tγdt = 〈ϕi, cx ⊗ exp(g)tγ〉.

It follows from these two results that the rest of the proof is analogous with that
of Theorem 2 under the perfect pairing theorem of the rapid decay homology
group and the twisted cohomology group by Hien [17]. Q.E.D.
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Figure 1: C111

Example 1 Consider the matrix

A =




x1 x2 x3 x4 x5 x6 x7 x8

1 1 1 1 1 1 1 1
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1




(which are the vertices of the order polytope associated to the distributive lattice
of Figure 1; see Section 4). The basis given by Theorem 1 is {1, ∂5, ∂6, ∂7, ∂8, ∂

2
8}.

It is determined by computing a Gröbner basis for the ideal J or J̃ by a com-
puter. Note that this computation is easier than computing the Gröbner basis
in R8 of HA(s). The corresponding basis of the twisted cohomology group is
{1, t1t2dt

Q , t1t3dt
Q , t2t3dt

Q , t1t2t3dt
Q , (t1t2t3)

2dt
Q2 }, where Q = x1 + x2t1 + x3t2 + x4t3 +

x5t1t2 + x6t1t3 + x7t2t3 + x8t1t2t3 and dt = dt1dt2dt3. Note that we assume
that parameters αi, γj are generic.

Example 2 Let

A′ =




x2 x3 x4 x5 x6 x7 x8

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1


.

The hypergeometric system associated with A′ is a confluent system of the pre-
vious example. Put Q = x2t1+x3t2+x4t3+x5t1t2+x6t1t3+x7t2t3+x8t1t2t3 and
dt = dt1dt2dt3. Then the integral

∫
C

exp(Q)tγdt, where C is a rapid decay cycle,
is a solution. The toric ideal IA′ is obtained formally by setting ∂1 = 1 in IA of
Example 1. A basis given by Theorem 1 is {1, ∂5, ∂6, ∂7, ∂8, ∂

2
8}. The correspond-

ing basis of the twisted cohomology group is {1, t1t2dt, t1t3dt, t2t3dt, t1t2t3dt, (t1t2t3)2dt}.

4 A-hypergeometric Systems for Order Polytopes

For some classes of generic sparse polynomials or A, we can calculate by hand the
set of standard monomials for J̃ . These are order polytopes associated to posets

10
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Figure 3: Distributive lattice of J (P )

which decompose into two chains and to posets which are buquets. We note
that it yields the celebrated theorem of K. Aomoto on the twisted cohomology
group for a hyperplane arrangement in a general position as a special case. We
change a gear in this section to combinatorics and symbols P , k, r, s, w, α, β
will be redefined and (ideal) J in this section stands for (ideal) J̃ in the previous
sections.

First, recall the order polytope of a finite partially ordered set ([15, p. 115]).
Let P = {v1, . . . , vm} be a finite partially ordered set with |P | = m. A poset
ideal of P is a subset α of P such that if v ∈ α, w ∈ P , and w ≤ v, then w ∈ α.
Thus in particular the empty set and P itself are poset ideals of P . Let J (P )
denote the distributive lattice ([15, p. 118]) consisting of all poset ideals of P ,
ordered by inclusion. For example, if P is the disjoint union of two chains of
length 2 and length 3 shown in Figure 2, then L = J (P ) is the distributive
lattice shown in Figure 3.

Let e1, . . . , em denote the standard unit coordinate vectors of Rm. If β is a
subset of P , then we write aβ for the (0, 1)-vector

∑
vi∈β ei ∈ Rm. The order

polytope O(P ) ⊂ Rm of P is the convex hull of the finite set {aα : α ∈ J (P )}.
Its dimension is dimO(P ) = m.

Let K = C({ξα}α∈J (P )) denote the rational function field in |J (P )| vari-
ables over C. Let K[t1, . . . , tm, s] be the polynomial ring in m + 1 variables
over K. If β is a subset of P , then we write uβ for the square-free monomial∏

vi∈β tis. Let K[O(P )] denote the subalgebra of K[t1, . . . , tm, s] that is gener-
ated by those square-free monomials uβ with β ∈ J (P ). The semigroup ring
K[O(P )] was introduced in [14]. We call K[O(P )] the toric ring of O(P ). The
Krull dimension of K[O(P )] is m + 1.

Let K[{yα}α∈J (P )] denote the polynomial ring in |J (P )| variables over K,
and define the surjective ring homomorphism π : K[{yα}α∈J (P )] → K[O(P )]
by setting π(yα) = uα. Its kernel IO(P ) is called the toric ideal of O(P ). It is
known [14] that IO(P ) is generated by quadratic binomials

yαyβ − yα∧βyα∨β , (11)

such that α and β are incomparable in the distributive lattice J (P ). We fix
an ordering < of variables of K[{yα}α∈J (P )] with the property that if α >
β in J (P ), then yα < yβ . Let <rev be the reverse lexicographic order on

11
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Figure 5: J (P )

K[{yα}α∈J (P )] induced by the ordering <. In [14] it was shown that the set of
binomials (11) is the reduced Gröbner basis of IO(P ) with respect to <rev. Thus
in<rev(IO(P )) is generated by those square-free quadratic monomials yαyβ such
that α and β are incomparable in J (P ).

Let
Θi =

∑
vi∈α

ξαyα − ηi, 1 ≤ i ≤ m,

and let
Θ0 =

∑

α∈J (P )

ξαyα − η0,

where ηi ∈ K. It then follows that the sequence (Θ0, Θ1, . . . , Θm) is a system of
parameters of both the residue rings K[{yα}α∈J (P )]/IO(P ) and K[{yα}α∈J (P )]/in<rev(IO(P )).
The fundamental goal is to find a K-basis of the zero-dimensional residue ring

K[{yα}α∈J (P )]/(in<rev(IO(P )), Θ0, Θ1, . . . , Θm). (12)

In general, however, this is difficult. When P can be decomposed into two
chains, a complete answer can be found, as shown below. For example, the
poset P of Figure 4 can be decomposed into the chains v1 < v2 < v3 and
w1 < w2 < w3 < w4.

Now, suppose that a finite poset P can be decomposed into two chains
Cp : v1 < · · · < vp of length p− 1 and Cq : w1 < · · · < wq of length q− 1, where
p ≥ 1 and q ≥ 1. Let L denote the set of those pairs (i, j), where 0 ≤ i ≤ p and
0 ≤ j ≤ q, for which {v1, . . . , vi, w1, . . . , wj} is a poset ideal of P . In particular,
(0, 0), (p, q) ∈ L. When (i, j) ∈ L, we write αi,j for {v1, . . . , vi, w1, . . . , wj}. For
example, α0,0 = ∅ and αp,q = P . We then have L = {αi,j : (i, j) ∈ L}. When
(i, j) ∈ L, we write ξi,j for ξαi,j and yi,j for yαi,j . Let

Θi∗ =
∑

i≤k≤p, 0≤j≤q, (k,j)∈L
ξk,jyk,j − ηi∗, 0 ≤ i ≤ p

and
Θ∗j =

∑

0≤i≤p, j≤`≤q, (i,`)∈L
ξi,`yi,` − η∗j , 0 ≤ j ≤ q.

12



In particular,
Θ0∗ = Θ∗0 =

∑

(i,j)∈L
ξi,jyi,j − η0,

with η0 = η0∗ = η∗0. Let K[y] = K[{yi,j}0≤i≤p, 0≤j≤q, (i,j)∈L] and

J = ( in<rev(IO(P )), {Θi∗}0≤i≤p, {Θ∗j}0≤j≤q ), (13)

where

in<rev(IO(P )) = ({ yi,jyk,` : i < k, ` < j, (i, j) ∈ L, (k, `) ∈ L}).
Then the residue ring (12) is K[y]/J . Let <rev denote the reverse lexicographic
order on K[y] induced by the ordering of the variables, as follows: yi,j > yk,` if
either i + j < k + ` or i + j = k + ` with i > k.

Lemma 1 In K[y]/in<rev(J),

yi,jyi,j′ = yi,jyi′,j = 0,

where (i, j), (i, j′) and (i′, j) belong to L.

Proof . Let i < i′. Then

Θi′∗yi,j − yi,j

(( ∑

i′≤k, j≤`, (k,`)∈L
ξk,`yk,`

)
− ηi′∗

)

belongs to in<rev(IO(P )). Hence

yi,j

(( ∑

i′≤k, j≤`, (k,`)∈L
ξk,`yk,`

)
− ηi′∗

)

belongs to J . Thus its initial monomial yi,jyi′,j belongs to in<rev(J).
Let i = i′. Let f be the polynomial

Θi∗yi,j − ξ−1
i,j Θ∗j

( ∑

0≤k≤j−1, (i,k)∈L
ξi,kyi,k

)
,

and write f = f1+f2, where f2 ∈ in<rev(IO(P )) and where none of the monomials
appearing in f1 belongs to in<rev(IO(P )). Then f1 ∈ J and the initial monomial
of f1 is y2

i,j . Hence y2
i,j ∈ in<rev(J). Similarly, yi,jyi,j′ ∈ in<rev(J). Q.E.D.

Lemma 2 For each 0 ≤ i ≤ p, we write j]
i for the smallest integer for which

(i, j]
i ) ∈ L. For each 0 ≤ j ≤ q, we write i[j for the smallest integer for which

(i[j , j) ∈ L. Then yi,j]
i

and yi[
j ,j belong to in<rev(J).

Proof . Since Θi∗ and Θ∗j belong to J , their initial monomials yi,j]
i

and yi[
j ,j

belong to in<rev(J). Q.E.D.

13
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Figure 6:

Let S denote the set of square-free monomials of K[y] of the form

yi1,j1yi2,j2 · · · yir,jr , (14)

with each (ik, jk) ∈ L \ ({ yi,j]
i

: 0 ≤ i ≤ p } ∪ { yi[
j ,j : 0 ≤ j ≤ q }) such that

0 < i1 < i2 < · · · < ir ≤ p, 0 < j1 < j2 < · · · < jr ≤ q, r = 0, 1, 2, . . . .

Theorem 4 The set of standard monomials of in<rev(J) is equal to S.

Proof . In [7, Th. 2.2], it was proven that the number of standard monomials
of degree r coincides with the number of maximal chains of J (P ) with r descents.
Recall that the descents of a maximal chain

α0,0 = αi0,j0 < αi1,j1 < · · · < αip+q,jp+q = αp,q

of J (P ) are those αik,jk
with 1 ≤ k < p + q such that

ik−1 = ik < ik+1, jk−1 < jk = jk+1, jk+1 6= j]
ik+1

.

Now, given a square-free monomial (14) of degree r, we can associate a unique
maximal chain whose descents are

αi1−1,j1 , αi2−1,j2 , · · · , αir−1,jr ,

in the obvious way (see Figure 6.)
Hence the number of square-free monomials (14) of degree r is less than or

equal to that of standard monomials of degree r. On the other hand, since
Lemmata 1 and 2 guarantee that each standard monomial must belong to S, it
follows that S is the set of standard monomials of in<rev(J), as desired. Q.E.D.
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Remark 2 When the variables ηi∗ and η∗j are 0 in the rational function field,
we can work with a system of parameters consisting of homogeneous elements
and both Lemma 2 and Lemma 1 are valid without modification. This observa-
tion is crucial to our argument of counting the number of standard monomials
in the proof of Theorem 4. We also note that ξij may be specialized to any
nonzero number for K = C without changing the claims of this section.

Example 3 Let P be the finite poset of Figure 7, and let L = J (P ) be the
distributive lattice shown in Figure 8. Then the standard monomials of in<rev(J)
are 1; y1,1; y1,2; y2,2; and y1,1y2,2.

Let us turn to the discussion of A-hypergeometric systems. Let Pp,q denote
the disjoint union of two chains Cp : v1 < · · · < vp of length p − 1 and Cq :
w1 < · · · < wq of length q − 1. Let αi,j , where 0 ≤ i ≤ p and 0 ≤ j ≤ q, be
the poset ideal {v1, . . . , vi, w1, . . . , wj}. In particular α0,0 = ∅. This is a special
and interesting subclass of poset ideals. We regard the vector aα, α ∈ J (Pp,q),
as a column vector and construct a matrix Ap,q with these column vectors and
a row vector (1, 1, . . . , 1). For example, A2,2 is




00 01 02 10 11 12 20 21 22
1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1
0 1 1 0 1 1 0 1 1
0 0 1 0 0 1 0 0 1




.

By elementary row transformations, we transform the matrix Ap,q into the ma-
trix Āp,q of the form (8) with k = p+1, n1 = · · · = nk = q +1, and ai = 0 ∈ Rq

when i ≡ 1 mod q +1, ai+1 = ek ∈ Rq when i ≡ k mod q +1. For example, A2,2

can be transformed into

Ā2,2 =




00 01 02 10 11 12 20 21 22
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1




.
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We note that Ap,q and Āp,q define the same A-hypergeometric system.
The matrix A, which represents a poset P that can be decomposed into two

chains (as considered in this section), is obtained by removing some columns
from Āp,q. For example, the A that represents Figure 8 is obtained by deleting
the seventh column of the matrix Ā2,2. Therefore, for A, the sparse polynomials
fj (6) that can be decomposed into two chains are linear in t. In particular,
the fj ’s for Pp,q are in the general linear position. It follows from the inte-
gral representation (7) that the Āp,q-hypergeometric system agrees with the
Aomoto-Gel’fand system E(p + 1, (p + 1) + (q + 1)) [3], because the matrix Āp,q

defines a hyperplane arrangement V (
∏

ti
∏

fj) in a general position. The initial
ideal in<rev(IA) is a square-free monomial ideal. In particular, it follows from
Corollary 1 that the standard monomials of the ideal J defined in (13) provide
a basis of the Pfaffian system for HA(s) when yij is replaced by ∂ij .

Let S be the set of standard monomials given in Theorem 4 for the poset
ideal J (P ). Then, the set S|yij→∂ij

gives a basis of the Pfaffian system for the
A-hypergeometric system.

From our Theorems 2 and 4 and the correspondence that we have explained
above, we have the following theorem (we locally use α and γ to denote complex
parameters in this theorem to use the notation in the previous sections).

Theorem 5 Let A be the matrix in the form (8) representing a poset P that
can be decomposed into two chains, and let S = {u1, . . . , ur} be the set of
standard monomials given in Theorem 4 with yij replaced by ∂ij. Set Q =∏k

j=1 fj(x, t)αj tγ and Q′ = Q|αi=γj=1. Then, the set of rational forms

ui •Q

Q
dt1 · · · dtδ, i = 1, . . . , r (15)

is a basis of the twisted cohomology group (10) (with P replaced by Q) when
αi, γj are generic complex numbers and x lies outside of an analytic set.

Remark 3 In the case P = Pp,q, this theorem is a different presentation of the
celebrated work of K. Aomoto, who gave a basis for the twisted cohomology
group associated with a hyperplane arrangement in a general position (see, e.g.,
[3, Theorem 9.6.2]). In a more general result, Orlik and Terao gave bases of
twisted cohomology groups associated with hyperplane arrangements in terms
of the βnbc basis [25, 6.3]. Our theorem gives bases for twisted cohomology
groups in a very different way for a class of hyperplane arrangements obtained
by restricting the arrangements in the general position to the xij = 0’s.

Example 4 The A-hypergeometric system associated with Figure 8 is the re-
striction of E(3, 6) to x20 = 0. Figure 9 illustrates the arrangement that repre-
sents it.
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5 Rank of a Class of Order Polytopes

We now turn to the discussion of the normalized volume of order polytopes,
which stands for the rank of the Pfaffian system with generic parameters. It
follows from [27] that the normalized volume of the order polytope O(P ) is
equal to e(P ), the number of linear extensions of P . Recall that an antichain
of P is a subset B of P such that if v and w belong to B with v 6= w, then v
and w are incomparable in P . The width of P is the supremum of cardinalities
of antichains of P . The length of a chain C is |C| − 1. The rank of P is the
supremum of lengths of chains of P .

Lemma 3 Fix positive integers q and r. Let P be the disjoint union of q chains
C1, . . . , Cq, and assume that the length of each chain Ci with 1 ≤ i < q is at
most r − 1. Then there exists a polynomial f(m) in m of degree r(q − 1) such
that e(P ) is at most f(m), where m = |P |.

Proof . Let `i denote the length of Ci. Then the number of linear extensions
of P is

e(P ) =
(

m

`1, `2, . . . , `q

)
=

m!
`1!`2! . . . `q!

.

Since `q = m−∑q−1
i=1 `i ≥ m− r(q − 1), it follows that

e(P ) ≤ m!
`q!

≤ m!
(m− r(q − 1))!

.

Let
f(m) = m(m− 1)(m− 2) · · · (m− r(q − 1) + 1),

which is a polynomial in m of degree r(q − 1). Then e(P ) ≤ f(m), as required.
Q.E.D.

Theorem 6 Fix positive integers q and r. Let P be a finite partially ordered
set, and suppose that there exists a chain C of P such that

17
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Figure 11: The bouquet of 3 J (P1,1)’s

(i) the width of P \ C is at most q − 1;

(ii) the rank of P \ C is at most r − 1.

Then there exists a polynomial f(m) in m of degree r(q − 1) such that e(P ) is
at most f(m), where m = |P |.

Proof . Since the width of P \ C is at most q − 1, Dilworth’s theorem [8]
guarantees the existence of q−1 chains C1, . . . , Cq−1 of P \C, where the length of
each Ci is at most r−1, such that P \C = C1∪C2∪· · ·∪Cq−1 and Ci∩Cj = ∅ for
i 6= j. Hence there exists a partially ordered set Q that is the disjoint union of
q chains C ′1, . . . , C

′
q, where the length of each C ′i with 1 ≤ i < q is at most r−1,

such that there is an order-preserving bijection ϕ : Q → P . Hence e(P ) ≤ e(Q).
Thus the desired result follows from Lemma 3. Q.E.D.

Let us turn to the discussion of A-hypergeometric systems. By Theorem 6,
the rank e(P ) of the hypergeometric system associated with the order polytope
O(P ) (m = |P |), has a polynomial growth property with respect to m. This is
good news, since the rank determines the complexity of the holonomic gradient
method [22].

6 Bouquet

We now wish to introduce a “bouquet” of finite distributive lattices. The asso-
ciated hypergeometric systems include the Lauricella function FA as we will see
in Example 5. Let P1, . . . , Pq be finite posets, where

Pi = {v(i)
1 , . . . , v(i)

mi
}, 1 ≤ i ≤ q,

and let Li = J (Pi) be the distributive lattice consisting of all poset ideals of Pi.
The finite meet-semilattice ([28, p. 249, 3.3])

⋃q
i=1(J (Pi)) is called the bouquet

of L1 = J (P1), . . . , Lq = J (Pq). For example, if q = 3 and P1 = P2 = P3 are
the finite poset P1,1 shown in Figure 10, then the Hasse diagram of the bouquet
of L1, L2, L3 is shown in Figure 11.
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Let e(i)
j , 1 ≤ i ≤ q, 1 ≤ j ≤ mi, denote the standard unit coordinate vectors

of Rm, where m = m1 + · · · + mq. If β is a subset of Pi, then we write aβ for
the (0, 1)-vector

∑
v
(i)
j ∈β

e(i)
j ∈ Rm. In particular, w∅ is the origin of Rm. Let

O(P1, . . . , Pq) ⊂ Rm denote the convex hull of the finite set

{ aα : α ∈
q⋃

i=1

J (Pi) }.

Its dimension is dimO(P1, . . . , Pq) = m. In the language of combinatorics, the
convex polytope O(P1, . . . , Pq) is called the free sum ([6]) of O(P1), . . . ,O(Pq).

Let

K = C( { ξα : α ∈
q⋃

i=1

J (Pi) }, { η
(i)
j : 1 ≤ i ≤ q, 1 ≤ j ≤ mi }, η0 )

denote the rational function field in |⋃q
i=1 J (Pi) + (m + 1)| variables over C,

and let
K[ { t

(i)
j : 1 ≤ i ≤ q, 1 ≤ j ≤ mi }, s ]

be the polynomial ring in m + 1 variables over K. If β is a subset of Pi,
then we write uβ for the square-free monomial (

∏
v
(i)
j ∈β

t
(i)
j )s. The toric ring

K[O(P1, . . . , Pq)] of O(P1, . . . , Pq) is the subalgebra of K[{t(i)j }, s] that is gen-
erated by those square-free monomials uα with α ∈ ⋃m

i=1 J (Pi). Its Krull
dimension is m + 1.

Let K[ { yα}α ] = K[ { yα : α ∈ ⋃m
i=1 J (Pi) } ] denote the polynomial ring in

|⋃m
i=1 J (Pi)| variables over K, and define the surjective ring homomorphism

π : K[ { yα}α ] → K[O(P1, . . . , Pq)]

by setting π(yα) = uα. Its kernel is the toric ideal IO(P1,...,Pq) of O(P1, . . . , Pq).
It follows that IO(P1,...,Pq) is generated by those quadratic binomials

yαyβ − yα∧βyα∨β , (16)

where both α and β belong to J (Pi) for some 1 ≤ i ≤ q and where α and β are
incomparable in J (Pi).

We fix an ordering < of the variables of K[ { yα}α ] with the property that
if both α and β belong to J (Pi) for some 1 ≤ i ≤ q and if α > β in J (Pi),
then yα < yβ . Let <rev denote the reverse lexicographic order on K[ { yα}α ]
induced by the ordering <. It then follows that the set of binomials (16) is
the reduced Gröbner basis of IO(P1,...,Pq) with respect to <rev. Thus the initial
ideal in<rev(IO(P1,...,Pq)) of IO(P1,...,Pq) with respect to <rev is generated by those
square-free quadratic monomials yαyβ such that both α and β belong to J (Pi)
for some 1 ≤ i ≤ q and that α and β are incomparable in J (Pi).

Let
Θ(i)

j =
∑

v
(i)
j ∈α

ξαyα − η
(i)
j , 1 ≤ i ≤ q, 1 ≤ j ≤ mi,
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and let
Θ0 =

∑

α∈J (P )

ξαyα − η0.

It then follows that the sequence

(Θ0, Θ
(1)
1 , . . . , Θ(1)

m1
, Θ(2)

1 , . . . , Θ(2)
m2

, . . . , Θ(q)
1 , . . . , Θ(q)

mq
)

is a system of parameters of both the residue rings K[{yα}α]/IO(P1,...,Pq) and
K[{yα}α]/in<rev(IO(P1,...,Pq)).

Now, suppose that each poset Pi can be decomposed into two chains, and
write Si for the set of standard monomials, which is obtained using Theorem 4,
for the residue class ring arising from O(Pi). By virtue of the fact that Θ0 plays
no rule in the proof of Lemma 1, it follows that the set of standard monomials
of

K[{yα}α]/in<rev(in<rev(IO(P1,...,Pq)), Θ0, Θ
(1)
1 , . . . , Θ(q)

mq
) (17)

with respect to <rev is a subset of

{ q∏

i=1

ui : ui ∈ Si, 1 ≤ i ≤ q
}

. (18)

Finally, the computation of the number of standard monomials based on the
equality (7) of [6, Theorem 1.4] together with the information on the facets of
the order polytopes ([27, p. 10]) guarantee the following theorem.

Theorem 7 The set of standard monomials of the residue class ring (17) with
respect to <rev coincides with the set of square-free monomials (18).

Example 5 For the bouquet of Figure 11, the set of standard monomials ob-
tained by Theorem 7 (labeling variables as in Figure 11 and replacing yij by
∂ij) is

{∂k1
11∂k2

22∂k3
33 | ki ∈ {0, 1}}.

We will show that this bouquet represents the Lauricella hypergeometric func-
tion FA of three variables [5, Chapitre VII]. We note that the twisted coho-
mology groups associated with the FA are studied in [20] in a quite different
way. We consider A-hypergeometric system associated with the lattice shown
in Figure 11. The independent variables of the system will be denoted by
p00, p01, p02, p03, p10, p20, p30, p11, p22, p33 or simply as 00, 01, 02, 03, 10, 20, 30, 11, 22, 33
if no confusion arises. The differential operators of the system will be denoted by
∂00, ∂01, ∂02, ∂03, ∂10, ∂20, ∂30, ∂11, ∂22, ∂33 or simply as 00, 01, 02, 03, 10, 20, 30, 11, 22, 33
if no confusion arises. The toric ideal associated with the lattice is generated by

10 · 01− 00 · 11, 20 · 02− 00 · 22, 30 · 03− 00 · 33. (19)
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The underlined terms are the leading terms for the reverse lexicographic order
such that 00 < other variables, and the set is a Gröbner basis with this order.
Hence, the A-hypergeometric system has a solution of the form

pγf

(
10 · 01
00 · 11

,
20 · 02
00 · 22

,
30 · 03
00 · 33

)
. (20)

Set

x =
10 · 01
00 · 11

,

y =
20 · 02
00 · 22

,

z =
30 · 03
00 · 33

.

The differential operator p10p01p00p11(∂10∂01−∂00∂11) can be written as θ10θ01−
xθ00Θ11, where θij = pij∂ij (the Euler operator). We will derive a differen-
tial operator that annihilates the function f from this operator. Apply θ11 to
pγf(x, y, z). Then, we have pγ(γ11 − θx)f . Apply Θ00 to this function. Then,
we have

γ00γ11p
γf +pγγ11(−θx−θy−θz)f−γ00p

γxf−pγ(−1)xfx−pγx(−θx−θy−θz)fx.

This can be factored as

pγ(θx + θy + θz − γ00)(θx − γ11)f.

An analogous calculation leads us to

θ10θ01p
γf(x, y, z) = pγ(θx + γ01)(θx + γ10)f.

Therefore, the function f(x, y, z) satisfies

((θx + γ01)(θx + γ10)− x(θx + θy + θz − γ00)(θx − γ11)) f = 0. (21)

By analogous calculations, we have

((θy + γ02)(θy + γ20)− y(θx + θy + θz − γ00)(θy − γ22)) f = 0, (22)
((θz + γ03)(θx + γ30)− z(θx + θy + θz − γ00)(θz − γ33)) f = 0. (23)

By these equations for the function f , we conclude that the function g =
x−γ01y−γ02z−γ03f(x, y, z) satisfies the differential equations for the Lauricella
function FA, n = 3.

The bouquet of n squares stands for the Lauricella FA of n variables.

Remark 4 The Lauricella functions belong to the Mellin hypergeometric sys-
tems introduced in the 19-th century [3, Appendix 1], [21]. A categorial corre-
spondence between Mellin systems and A-hypergeometric systems is discussed
in [30].
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